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Abstract

We summarize recent advances in modeling of solidification microstructures using computational methods that bridge atomistic to

continuum scales. We first discuss progress in atomistic modeling of equilibrium and non-equilibrium solid-liquid interface proper-

ties influencing microstructure formation, as well as interface coalescence phenomena influencing the late stages of solidification.

The latter is relevant in the context of hot tearing reviewed in the article by M. Rappaz in this issue. We then discuss progress

to model microstructures on a continuum scale using phase-field methods. We focus on selected examples in which modeling of

3D cellular and dendritic microstructures has been directly linked to experimental observations. Finally, we discuss a recently in-

troduced coarse-grained dendritic needle network approach to simulate the formation of well-developed dendritic microstructures.

This approach reliably bridges the well-separated scales traditionally simulated by phase-field and grain structure models, hence

opening new avenues for quantitative modeling of complex intra- and inter-grain dynamical interactions on a grain scale.
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1. Introduction

The quantitative prediction of solidification microstructures

has been a long standing computational challenge [15, 5]. It

generally requires accurate modeling of the complex dynam-

ics of the solid-liquid interface during the entire solidification

process. The past two decades have witnessed major progress

in modeling this dynamics through atomistic- and continuum-

scale simulations, and a handshake between those methods.

On the one hand, atomistic simulations have yielded accu-

rate predictions of fundamental anisotropic properties of the

solid-liquid interface for various metallic systems, such as the

interface free-energy [65, 66, 5, 48] and kinetic coefficient

[69, 66, 130, 53, 101] that affect microstructural pattern forma-

tion over a wide range of solidification conditions. Those simu-

lations typically use a million atoms and interatomic potentials

modeled by the embedded-atom method (EAM). They have

also yielded useful quantitative insights into solute-trapping in

rapidly solidified alloys [158, 70], as well as interface coales-

cence phenomena that control crystal cohesion during the late

stages of solidification [67, 46, 111] and are relevant to hot tear-

ing, reviewed in the article by Rappaz in this issue [118].

On the other hand, phase-field simulations have been ex-

tensively used to model the formation of monophase and

polyphase solidification microstructures in a wide range of den-

dritic, eutectic and peritectic alloys [16, 5]. Progress has been
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made to formulate quantitative phase-field models of alloy so-

lidification for a wider range of phase diagrams [113] and diffu-

sive transport properties [19, 20] within the theoretical frame-

work of the thin interface limit [79, 38, 77]. Results of atomistic

modeling have been incorporated into phase-field simulations

to model complex observations. For example, the quantita-

tive characterization of interface free-energy anisotropy derived

from atomistic simulations has been useful to model changes

of dendrite growth orientation [63, 35]. Moreover, boosted

by steady increases in computing speed and massively paral-

lel code implementations on multicore architectures such as

graphic processing units (GPUs), phase-field simulations have

become increasingly 3D and able to access experimentally rel-

evant length and time scales [124, 12].

In the following section, we review recent advances in atom-

istic modeling of solid-liquid interface properties and coales-

cence, focusing on the prediction of key parameters influencing

microstructure formation or hot tearing on a larger scale. In

section 3, the core section of this article, we review progress

in phase-field modeling focusing on cellular and dendritic mi-

crostructures. We leave out two-phase microstructures, re-

viewed in the separate article by Plapp in this issue [114]. In

section 4, we discuss recent progress to bridge the gap be-

tween phase-field modeling on the microstructure scale and

grain structure modeling [118]. This gap stems from the fact

that, while 3D volumes up to about a mm3 are within reach

of today’s large scale phase-field computations, those volumes

are still minute on the scale of a casting. In contrast, Cel-

lular Automata coupled with Finite Elements (CAFE) mod-
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els [119, 51, 118] can access those much larger scales and pre-

dict grain structures of castings [26]. However, those models do

not resolve dynamical interactions between branches of hierar-

chical dendritic networks, which can strongly influence both

intra-grain microstructure selection and the growth competition

of different grains [139]. Section 4 describes a dendritic nee-

dle network (DNN) approach designed to quantitatively model

those interactions on the grain scale, beyond the current reach

of phase-field modeling. While this approach is not a substi-

tute for grain structure models, it opens new avenues to test and

improve those models by investigating complex branch interac-

tions that shape the grain structure [138].

2. Atomistic modeling

2.1. Solid-liquid interface properties

The advent of microscopic solvability theory during the

1980’s [86, 81] led to the understanding that anisotropic prop-

erties of the solid-liquid interface have a profound influence on

dendrite growth. Those properties generally determine the se-

lection of both the dendrite tip operating state and growth direc-

tion. Predictions of solvability theory were validated by phase-

field simulations during the 1990’s [78, 79] and the first decade

of this millennium witnessed major progress in characterizing

interfacial properties by atomistic modeling [65, 66, 5]. Those

studies yielded the novel insight that at least two parameters

a1 and a2 (also commonly denoted by ǫ1 and ǫ2 [66]) are nec-

essary to describe the anisotropy of the solid-liquid interfacial

free-energy γsl, as opposed to a single parameter a1 previously

considered [86, 81, 78, 79]. Since this anisotropy is weak in

metallic systems forming fcc or bcc crystal structures, the vari-

ation of γsl with the direction normal to the interface, n̂, can be

parameterized by an expansion in Kubic harmonics

γsl(n̂) = γ0 [1 + a1K1(n̂) + a2K2(n̂) + · · ·] (1)

where the Ki’s are combinations of spherical harmonics with

cubic symmetry. The first harmonic K1(n̂) favors dendrite

growth along 〈100〉 directions for a1 > 0, while the second

K2(n̂) favors 〈110〉 directions for a2 < 0. Molecular dynam-

ics (MD) simulations of several fcc metals (e.g. Cu, Ni, Al,

Au, Ag) and alloys (e.g. Ni-Cu) reviewed in [5] have pre-

dicted that a1 > 0 and a2 < 0 corresponding to the ordering

γ100
sl
> γ110

sl
> γ111

sl
; the magnitude of γsl was reasonably well

predicted by the Turnbull relation [143] γsl = αL̺2/3 with a

Turnbull coefficient α ≈ 0.55 for fcc (L is the latent heat of

melting per atom and ̺ is the solid atomic density). A study of a

model alloy system with nearly ideal solution thermodynamics

has also predicted that alloying tends to make a2 more negative,

thereby potentially promoting growth towards 〈110〉 [10]. This

knowledge has motivated detailed phase-field modeling and ex-

perimental studies of changes of dendrite growth directions in

Al-Zn alloys, discussed in the next section. Those changes are

explained by the assumption that Zn addition changes the γsl

anisotropy so as to induce a transition from 〈100〉 to 〈110〉 di-

rections, but atomistic modeling remains needed to predict a1

and a2 for this alloy system to validate this scenario.

While dendrite growth is controlled by γsl and its anisotropy

for low solidification rate, it becomes strongly influenced by

anisotropic interface kinetics for large solidification rates [22,

72, 21]. MD simulations have been used to compute the in-

terface kinetic coefficient µ (proportionality constant between

interface velocity and undercooling) and its anisotropy for var-

ious pure metals [68, 69, 66, 130, 53, 101]. Simulations for

fcc (e.g. Ni) and bcc (e.g. Fe) have predicted the ordering

µ100 > µ110 > µ111 that favors dendrite growth along 〈100〉 di-

rections, as commonly, albeit not uniquely, observed in deeply

undercooled melt experiments. This ordering was predicted by

a theoretical study of bcc crystallization kinetics that exploits

a Ginzburg-Landau (GL) expansion of the excess solid-liquid

free-energy [156]. There, the GL expansion was expressed in

terms of the amplitudes of density waves corresponding to prin-

cipal reciprocal lattice vectors of the crystal lattice. A simi-

lar expansion had been used to predict γsl and its anisotropy

[155] in equilibrium. In its extension outside of equilibrium,

GL theory is closely related to the linear density wave theory of

µ by Mikheev and Chernov (MC) [97, 30]. The anisotropy of µ

arises naturally in both theories from the dependence of density

wave profiles across the solid-liquid interface on the interface

normal direction n̂. Both theories also predict that µ is inversely

proportional to the relaxation time τL of density waves in the

liquid, itself related to the liquid diffusivity. Using a direct com-

putation of τL by MD simulations for an EAM model of bcc Fe

[156], GL theory was found to predict much more accurately

than the MC theory the magnitude of µ and its anisotropy ob-

tained in free-solidification MD simulations for the same EAM

potential [53]. This improvement can be attributed to the fully

nonlinear description of density wave profiles across the solid-

liquid interface in GL theory. The prediction that µ ∼ 1/τL is

also consistent with free-solidification MD simulations show-

ing that, for different EAM potentials and small interface un-

dercooling, µ correlates well with the liquid diffusivity [96].

In addition to determining µ in pure metals, MD simulations

have also probed the strong departure from chemical equilib-

rium at the solid-liquid interface during rapid alloy solidifica-

tion for both a Lennard-Jones binary system and an EAM model

of Ni-Cu [158, 70]. The results have confirmed the expected

transition to complete solute trapping at high growth rates pre-

dicted by different analytical models [7, 50, 75], and demon-

strated the existence of solute drag previously examined using

both sharp-interface [7] and phase-field models [2]. They have

also shown solute drag to be anisotropic [158], potentially af-

fecting both dendrite growth rate and orientation [70].

2.2. Interface coalescence

While crystal cohesion is energetically favored when solid-

liquid interfaces from the same grain impinge upon each other

during the late stages of solidification, it can become ener-

getically disfavored when the two grains are sufficiently dis-

oriented. If the grain-boundary (GB) free-energy γgb exceeds

twice γsl, i.e. ∆γ ≡ γgb − 2γsl > 0, the formation of a thin

intergranular liquid-like film becomes energetically favored at

temperatures below the melting point. This GB premelting phe-

nomenon has been widely studied experimentally [28, 8, 71, 92,
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145, 152, 36, 73, 37, 91, 59] and theoretically using lattice mod-

els [82], phase-field models [89, 134, 135, 99, 151, 121], MD

simulations [24, 146, 154, 67, 46, 111], and phase-field-crystal

simulations that resolves the atomic-scale crystal density field

[14, 95, 1]. In a solidification context, intergranular films delay

crystal cohesion, which occurs at a bridging temperature below

the liquidus temperature when ∆γ > 0, thereby reducing shear

resistance. For this reason, ∆γ is a key parameter in continuum

models of hot tearing [120, 150, 5] reviewed in Ref. [118].

Atomistic modeling has been used to characterize quantita-

tively the structural forces that control the intergranular layer

width w [95, 67, 46, 1]. This characterization has been carried

out by defining a disjoining potentialΨ(w) via the excess Gibbs

free-energy per unit of GB area

Gexc(w,T ) = ∆G(T )w + Ψ(w) (2)

where ∆G(T ) = GS (T ) − GL(T ) is the bulk Gibbs free-energy

difference between solid and liquid and Ψ(w) − 2γsl represents

the part of this excess Gibbs free-energy due to the overlap of

spatially diffuse solid-liquid interfaces from the two impinging

grains. Minimization of Gexc(w,T ) with respect to w using the

simple analytical form Ψ(w) = 2γsl +∆γ exp(−w/δ) [153, 120],

where δ is proportional to the solid-liquid interface width, pre-

dicts that w diverges at the melting point Tm for ∆γ > 0 and

remains zero up to a temperature exceeding Tm for ∆γ < 0.

MD simulations that exploit fluctuations of layer width to

compute Ψ(w) [67, 46] have shown that high-energy GBs ex-

hibit a purely repulsive disjoining potential that is consistent

with the exponential form of Ψ(w) for ∆γ > 0, as illustrated

in Fig. 1 for a pure Ni twist GB. However, for lower-energy

GBs, Ψ(w) exhibits a shallow minimum that corresponds to a

finite layer width at the melting point, as illustrated for a pure

Ni tilt GB in Fig. 1. This nanometer-scale width represents a

compromise between attractive and repulsive parts of the dis-

joining potential that are both structural in nature, since they

are mediated by the overlap of the tails of the crystal density

fields and crystal-defect formation energy, respectively. The

disjoining potential Ψ(w) also generally contains an attractive

part due to London dispersion forces that are not accounted for

in MD or PFC simulations, but play an important role in other

systems (e.g. ceramic materials [32]). However, in metallic

systems, dispersion forces can be estimated to yield a contri-

bution to Ψ(w) on the order of mJ/m2 that is negligible on the

scale of Fig. 1. Similar GB premelting behaviors are also pre-

dicted by PFC simulations [95, 1], which have been compared

quantitatively to MD simulations for classical models of pure

Fe [1]. PFC [95] and MD [111] studies have also yielded the

insight that the condition ∆γ = γgb − 2γsl > 0 can only accu-

rately predict GB premelting if one takes into account the fact

that γgb is significantly reduced at the melting point (compared

to zero temperature) due to the elastic softening of the material.

Those studies have also revealed the existence of novel transi-

tions between different GB structures mediated by pairing of

dislocations [95, 111].

Atomistic modeling has also been used recently to charac-

terize the response of high-temperature GBs to a shear stress
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Figure 1: Snapshots of MD simulations of pure Ni modeled with an EAM po-

tential at an undercooling of 2K below the melting point with solid (liquid)

atoms colored in red (blue). Snapshots on the top left illustrate different con-

figurations for a wet Σ9 twist boundary that exhibits large fluctuations of the

liquid-layer width w [67], while those on the top right are for a dry Σ9 tilt

boundary that exhibits smaller width fluctuations [46]. The bottom figure shows

the disjoining potentials for those two boundaries. The twist boundary exhibits

a purely repulsive potential, corresponding to a diverging liquid layer width at

the melting point, while the potential for the tilt boundary exhibits a minimum

corresponding to a finite width at the melting point.

[25, 74, 142, 141, 80]. An exhaustive MD study of [100] sym-

metric tilt GBs in pure Ni [25] has shown that the range of GB

misorientation where GB sliding is observed in response to a

shear stress increases close to the melting point, consistent with

the view that the formation of an intergranular liquid-like film

favors sliding. However, a recent combined PFC and MD study

[141] also showed that asymmetrical GBs in fcc metals can ex-

hibit sliding unrelated to premelting. While those results have

not been incorporated to date in mesoscale models of mechani-

cal behavior of the mushy zone and hot tearing, they should be

relevant for understanding those complex phenomena. Finally,

while multiphase-field modeling has been used to investigate

interface coalescence in simple binary alloys [151], MD stud-

ies remain limited to pure metals. Those studies still need to be

extended to metallic alloys to understand more quantitatively

the influence of solute addition on hot cracking sensitivity.

3. Phase-field modeling

3.1. Quantitative phase-field modeling

Due to their simplicity and potential in handling complex

free-boundary problems, phase-field (PF) models have become
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ubiquitous in materials science [16, 29]. They are well adapted

to study solid-liquid interface dynamics during solidification.

Quantitative predictions have long been limited by the require-

ment of a diffuse interface width of comparable size to the

physical interface, i.e. a few atomic planes. However, the

development of asymptotic analysis of PF equations, now re-

ferred to as the thin interface limit, has made it possible to

use a numerical interface thickness several orders of magni-

tude larger than the physical interface thickness [79, 77, 38].

For alloy solidification, a quantitative PF formulation was orig-

inally formulated for isothermal [77] and non-isothermal [38]

solidification by introducing an anti-trapping current [77, 38].

This current compensates for the excess solute trapping asso-

ciated with a mesoscale interface thickness and yields the de-

sired thin-interface limit for low solidification rate, where the

interface can be assumed to be in local thermodynamic equilib-

rium. However, this formulation is only valid for dilute alloys

and vanishing solute diffusivity in the solid. Recent progress

has been made to develop quantitative PF models of binary al-

loy solidification that also utilize an anti-trapping current, but

remain valid for arbitrary phase diagrams [113] or for a finite

solid diffusivity [23, 19, 20]. The generalization to arbitrary

phase diagram is based on deriving the PF equations variation-

ally from a grand-potential, instead of a free-energy, functional,

and concomitantly using the chemical potential as dynamical

variable instead of the solute concentration [113]. This ap-

proach also unifies different physical interpretations of alloy PF

models (see [113] and earlier references therein). The extension

to finite solid diffusivity, in turn, exploits additional freedom in

model formulation by introducing a cross coupling between the

nonconserved phase field and the conserved concentration field

within the formal theoretical framework of irreversible thermo-

dynamics and the Onsager relations [23, 19, 20].

3.2. Computationally intensive phase-field implementations

A major contribution to bridging scales with phase-field

modeling has been the fast growth of computational capabili-

ties. Numerous approaches have been proposed to take advan-

tage of the available computational power including adaptive

mesh refinement [116], optimized implementations on parallel

architectures [124], hybrid finite-difference and random-walk

algorithms [115], implicit time stepping schemes and multi

grid approaches [58, 17], and methods that exploit up-scaling

techniques and symmetry [13]. We highlight two of these ap-

proaches that yielded significant insight into microstructure se-

lection, namely mesh refinement and massive parallelization

facilitated by the growing use of Graphic Processing Units

(GPUs).

Phase-field remains the method of choice for simulating

complex interface patterns in solidification. However, a quanti-

tative prediction of growth dynamics with PF requires an accu-

rate description of the dendrite tip curvature. This limit may be

circumvented using a non-uniform discretization of the simu-

lation domain, with an increased accuracy, i.e. a finer mesh,

where it matters the most, in the present case close to the

solid-liquid interface and the dendritic tips. Dynamic (adaptive)

remeshing techniques for PF calculations [117] — also appli-

cable to atomistic phase-field-crystal calculations [6] — allow

efficient simulations up to the scale of an entire dendritic array.

Resulting simulations have shed light on several microstructure

selection mechanisms [3, 61, 4, 109, 60, 102], and have been

coupled to larger-scale heat transfer models and probabilistic

nucleation models to predict microstructure distribution in pro-

cesses such as laser powder deposition [44] and welding [103].

From a hardware perspective, the parallel architecture of

GPUs, first developed for graphics in video games and movies,

has recently emerged as a powerful and cost-effective tool for

intensive computations. With the development of GPUs dedi-

cated to high performance computing, these massively parallel

architectures — e.g. 2,880 cores in one Nvidiar Teslar K40

— have been increasingly used in scientific computing. The

most advanced use of GPUs for solidification simulation is the

work of Aoki, Takaki, Yamanaka, and co-workers [157, 124],

reaching the petaFLOPS calculation on the Japanese TSUB-

AME 2.0 supercomputer, using a hybrid CPU-GPU algo-

rithm for a three-dimensional competitive grain growth sim-

ulation — 4,000 GPUs along with 16,000 CPU cores, for

4,096×6,500×10,400 grid points [124]. While such intensive

calculations require a significant investment in terms of imple-

mentation, the simplest single GPU implementations already

allow 3D simulations that are two orders of magnitude faster

than using a single CPU core [157, 139].

Alongside with adaptive remeshing, parallelization tech-

niques on GPUs or other archictectures — e.g. using MPI [54,

106] or OpenMP [106, 56] — allow simulations at experimen-

tally relevant length/time scales [12, 56, 139]. The following

subsection highlights a few examples of how the combination of

theoretical approaches and advanced computational techniques

can lead to a deeper understanding of growth dynamics and mi-

crostructure selection in solidification processing.

3.3. Selected applications

3.3.1. Comparison to directional solidification experiments

The thin interface approach, extended to non-isothermal so-

lidification and combined with the anti-trapping current, has

shown quantitative agreement with directional solidification ex-

periments [38]. It has provided an exact benchmark for analyti-

cal models of tip undercooling selection, and highlighted com-

plex mechanisms such as the existence of stability gaps in pat-

tern selection at low interfacial anisotropies [62, 12]. The long-

standing problem of dendritic sidebranching (SB) origin was

confirmed to be noise amplification [86], while a bifurcation to

a limit-cycle oscillatory branch of deterministic SB was shown

to exist at large spacings [39]. Interestingly, a higher thermal

gradient was found to reduce the onset velocity and wavelength

of SB, due to the dendrite tip becoming blunter, thus promoting

noise amplification.

This PF model, implemented on GPUs, yields quantitative

predictions on complex nonlinear dynamics of spatially ex-

tended solid-liquid interfaces. This is exemplified in Fig. 2

by a recent comparison of 3D simulations to directional so-

lidification experiments with in situ imaging of the dynamics
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Figure 2: Oscillations in three-dimensional cellular patterns [12]. Locally or-

dered regions of the array exhibit coherent breathing-mode oscillations. Mi-

crogravity experiments (top) and phase-field simulations (bottom) are in excel-

lent quantitative agreement. In both, cells belonging to three sublattices of the

hexagonal array oscillate 2π/3 out-of-phase with a period τ of 45 minutes.

of spatially extended cellular arrays under microgravity condi-

tions where fluid flow is suppressed [12]. There, PF simulations

on time scales of several hours, reproduce oscillatory breathing

modes observed in cellular arrays with a striking agreement on

the oscillation period. The simulations have also shown that the

absence of long-range spatial coherence of those oscillations is

due to tip splitting events that maintain a disordered cellular

array structure, unlike in two-dimensions where coherent oscil-

lations are observed [55].

3.3.2. Orientation transition and twinning in Al-Zn alloys

Atomistic simulations, reviewed in section 2, have shown

that alloying may give rise to substantial changes in inter-

face free-energy anisotropies [10]. Phase-field simulations of

equiaxed dendritic growth have revealed the existence of a con-

tinuous transition of growth direction from 〈100〉 to 〈110〉 as

a function of anisotropy parameters [63]. A qualitatively sim-

ilar transition was observed to occur as a function of increas-

ing Zn concentration in the fcc Al phase in directionally solid-

ified Al-Zn alloys [63], suggesting that anisotropy parameters

are changing as a function of Zn concentration. This transition

has been further characterized both experimentally by direc-

tional solidification of Al-Zn alloys [47] and numerically [35]

by phase-field simulations that model quantitatively those ex-

periments. Those simulations, illustrated in Fig. 3, show a

continuous transition of dendrite growth directions over a nar-

row range of anisotropy parameters, producing hyperbranched

structures in the form of textured seaweeds [35].

Further investigations on microstructure selection in Al-Zn

alloys have focused on the growth morphology of twinned den-

drites. Experimental [122] and phase-field [123] studies have

suggested the presence of a groove at the tip of twinned den-

Figure 3: Phase-field prediction of the dendrite orientation transition from 〈100〉

to 〈110〉 in directional solidification of Al-Zn alloys, as a function of the two

anisotropy parameters a1 and a2 defined in Eq. (1). [35]

drites, evolving into a doublon morphology, associated with the

formation of small pockets of highly concentrated liquid at the

doublon root for relatively high solidification rates. Recently,

new experiments have brought strong evidence that twinned

dendrites may nucleate on the faces of a fivefold symmetric

phase, such as icosahedral quasicrystals or Al45Cr7. This nu-

cleation mechanism provides a natural explanation for the sig-

nificant increase in twinned dendrites and the subsequent grain

refinement in Al-Zn alloys when minute amounts of Cr are

added [84]. A similar mechanism was reported in gold alloys

when adding small amounts of Ir into the melt [85].

3.3.3. Intragrain microstructure selection

At the scale of a dendritic array, phase-field simulations have

been shown to reproduce experimentally established scaling

laws for the steady-state selection of primary spacing as a func-

tion of processing conditions and crystal orientation [139]. As

the growth velocity is increased, PF simulations can predict the

transition of the cell/dendrites growth direction from the orien-

tation of the temperature gradient to the orientation of the crys-

tal, as well as the morphology transition to degenerate struc-

tures at high temperature gradient and/or high crystal misori-

entation [4, 56, 139]. However, while two-dimensional simu-

lations qualitatively reproduce realistic scaling laws, full three-

dimensional simulations remain necessary to reach a quantita-

tive agreement with experiments [56].

Provatas and co-workers have also shown that two-

dimensional PF simulations can reproduce transient spacing
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evolution in directional solidification [3]. This evolution is

characterized by plateau-like regions of constant primary spac-

ing that are observed experimentally [90], which can be related

to the hysteretic nature of the dynamical selection of the spac-

ing as a function of pulling velocity [61]. Adding the effect of

repulsive grain boundaries [109], they investigated grain bound-

ary coalescence at high solid fraction, the formation of highly

segregated liquid pools, and the evolution of solid connectivity

during late stage solidification [60, 102].

3.3.4. Intergrain microstructure selection

Much attention was recently given to grain growth competi-

tion in polycrystalline directional solidification [40, 41, 87, 133,

132, 139]. A conceptual framework to understand this compe-

tition was originally proposed by Walton and Chalmers [147].

They assumed that a grain growing at a higher misorienta-

tion with respect to the temperature gradient direction cannot

overgrow a better-oriented grain because the latter grows with

a smaller undercooling and hence ahead of the misoriented

grain. However, observations [164] and phase-field simula-

tions [40, 41, 133] have suggested more complex mechanisms

of grain-boundary evolution during solidification.

Using 2D phase-field, several groups have confirmed the oc-

currence of overgrowth of the better-oriented grain at the con-

verging GB [87, 132, 139]. The underlying mechanism was

shown to be diffusive interactions between dendrite tips. As

misoriented dendrites impinge upon the well-oriented grain, the

local spacing progressively decreases in the well-oriented grain

close to the GB, and its local undercooling increases, until elim-

ination of the dendrite closest to the GB [87, 132]. However, the

frequency of this overgrowth mechanism at the converging GB

is relatively low, such that the orientation of the converging GB

remains close the temperature gradient orientation [139].

In contrast, grain competition at the diverging GB is con-

trolled by the growth of tertiary branches and appears more

complex [40, 41, 139]. Since dendritic sidebranches originate

from selective amplification of noise, microscopic thermal fluc-

tuations may have significant macroscopic consequences on the

selection of GB orientation. This was evidenced by running se-

ries of 2D simulations of grain competition with similar control

parameters, but different random number seeds in PF calcula-

tions [139]. Therefore, orientation selection of the diverging

GB has to be regarded as a stochastic process, and treated statis-

tically in order to obtain relevant quantitative data, which makes

the task all the more computationally challenging.

With the exception of a few large scale 3D simulations [40,

41, 133], most recent systematic PF studies of columnar growth

competition were achieved using 2D simulations with one grain

aligned along the temperature gradient direction [87, 132, 139].

In this configuration, grain elimination is relatively slow [139].

Even in two dimensions, the combination of orientations of

both crystals has a strong influence on GB orientation selec-

tion [40, 41], and a slight misorientation of the better-oriented

grain can yield a much faster grain elimination, due to the pref-

erential orientation of secondary sidebranches [136].

Furthermore, in order to reproduce realistic experiments, one

needs to consider the 3D orientation of the two (or more) crys-

(a) (b) 

x	



y	



x	



y	



z	



y	



Figure 4: Dendritic grain growth competition in three-dimensional thin-sample

directional solidification. Experimental pictures (top) are from [52]. The arrow

in each phase-field simulation (bottom) follows a unique dendrite in time. [125]

tals. This is illustrated in Fig. 4 with 3D simulations reproduc-

ing the mechanisms exposed by Gandin et al. in thin sample

experiments [52]. When the two grains have their crystalline

axes parallel or normal to the thin sample walls in (a), tertiary

branching occurs preferentially from the misoriented grain and

grain elimination is limited. When the misoriented crystal ex-

hibits a second angle with the walls, e.g. 45◦ in (b), sidebranch-

ing from that grain is inhibited, tertiary branches originate from

the best oriented grain, and grain elimination is much faster (see

Fig. 12 in [139] for a schematic description).

3.4. Other advances in phase-field modeling

3.4.1. Mixed transport

Since the introduction of the no-slip condition at the solid-

liquid interface to model melt flow in phase-field simula-

tions [11], several studies have shed light on microstructure se-

lection mechanisms in the presence of convection. The solid-

liquid density change in free growth was shown to affect the

dendritic tip selection parameter [131]. However, a reformula-

tion accounting for density changes [43] provides a good esti-

mation of the tip selection parameter independent of the rela-

tive density change. Two-dimensional simulations have shown

that modulated flow with a given pulse duration can yield de-

terministic sidebranching events [108], much like with a short

thermal perturbation of a dendrite tip in diffusive growth [39].

However, dimensionality plays a critical role in the study of

convective flows around dendrites [160] and three-dimensional

simulations appear mandatory to achieve conclusive studies on

fluid flow effect on dendritic microstructure selection.

An alternative approach to fluid flow consists in replac-

ing the full resolution of Navier-Stokes equations by Lattice
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Boltzmann (LB) equations. Whether using a solidification

model based on LB equations [98, 129], coupling with phase-

field models [93, 107], or with cellular-automaton based mod-

els [159], this simple and computationally efficient approach

provides a powerful scale-bridging tool and may yield valuable

insight into convective crystal growth in the future.

3.4.2. Rapid solidification

Rapid solidification is of particular interest in the context of

microstructure selection in processes such as welding, along-

side with the growing interest in additive manufacturing. A

model recently introduced by Steinbach and co-workers re-

places the interface equilibrium partitioning condition by cou-

pling two concentration fields linked by a kinetic equation, de-

scribing the exchange of components between phases [128].

This approach introduces an effective interface permeability pa-

rameter, which can be adjusted by comparison to smaller scale

thin-interface calculations for rapid solidification [49, 161].

This method has also been extended to multicomponent al-

loys [162]. A similar model, based on thermodynamic ex-

tremal principle was also recently proposed [149, 148]. Such

approaches were found to successfully predict solute trapping

effects experimentally measured in Si-As alloys [128, 149].

Additionally, using a coupled thermal-solutal thin-interface

phase-field model, Mullis and co-workers have recently dis-

cussed the validity of the anti-trapping current in the context of

rapid solidification, when solute trapping is expected to occur,

and proposed strategies to adapt the strength of the corrective

current to retrieve quantitative predictions [105]. They have

also shown an evolution of the the tip selection parameter at

high undercooling [104], and suggested it as a possible explana-

tion for grain refinement in deeply undercooled melt [105, 104].

3.4.3. Multi-phase and multicomponent systems

In order to model industrially-revelant alloys and structures,

one needs quantitative PF models for multi-grain, multi-phase,

multicomponent systems [114].

For polycrystalline structures, the orientation-field PF model

has been developed that uses only one additional scalar field

corresponding to the grain orientation in 2D [83]. This model

naturally describes grain rotation owing to the rotational invari-

ance of the underlying free-energy and dynamical equations.

A different formulation of this model was recently proposed

in an attempt to minimize spurious long-range GB interactions

associated with the method [64]. However, limitations of those

models have been recently emphasized [112]. The multi-phase-

field approach, with each grain attached to an individual phase

field [127] remains a practical solution in common situations

where grain rotation, which is not described by this approach,

is absent. The method is more computationally demanding,

and requires advanced algorithms to avoid a drastic increase in

memory usage [57, 144]. In addition, polycrystalline solidifica-

tion can also be modeled with a single phase-field and an integer

orientation field in situations, such as the growth competition of

columnar grains [139], where the GB groove is situated deep

into the mushy zone and need not be modeled accurately.

Several approaches have been proposed in recent years to

handle quantitative PF simulations of multicomponent alloys

solidification [42, 31, 100, 110, 162]. One approach exploits

a grand-potential functional [31] that uses the chemical poten-

tial as dynamical variable instead of the solute concentration,

similarly to the approach introduced for binary alloys [113].

This grand potential formulation, which has also been extended

to rapid solidification [34], appears to be a promising candi-

date to handle alloys with arbitrary phase diagrams, with the

potential to be coupled with CalPhaD calculations (see e.g.

[42, 18, 45, 163]).

4. Towards the grain scale

In concentrated alloys, solidification usually produces grains

in the form of hierarchical networks of sharp needle-like

branches, like in Fig. 5a. Thus, several orders of magnitude

separate the scale of the tip radius ρ and the diffusion length

D/V where D is the solute diffusivity and V the growth veloc-

ity. Such morphologies are challenging to model with PF sim-

ulations that need to resolve the solid-liquid interface of each

branch. To overcome this limitation, we recently developed a

multiscale Dendritic Needle Network (DNN) model [138, 140]

that is briefly reviewed in this section.

The DNN model represents the hierarchical dendritic net-

work (e.g. Fig. 5a) by its ensemble of branches approximated

as thin needles that interact with each other through the long-

range diffusion field (Fig. 5b) [76, 138]. The solid-liquid inter-

face along each needle is assumed to be in local equilibrium.

ρ

(d)	



(a)	

(b)	



(c)	



1 mm

! ρ

≈ D/V

! D/V
≈ ρ

V u ≈ ui +
d0

ρ

u ≈ ui

u ≈ ui

u = ui

Figure 5: The multiscale Dendritic Needle Network (DNN) model represents

a dendritic grain — such as the ammonium-bromide crystal in (a) from [33]

— by a network of thin needle crystals that interact through the solute field,

as illustrated in (b). The growth dynamics of each individual needle branch

is obtained by combining two independent conditions at two distinct length

scales: (c) a solute conservation equation at a length scale much larger than the

needle tip radius ρ but much smaller than the diffusion length D/V , and (d) a

solvability condition at the scale of the needle tip radius ρ [138]. The u field

is a dimensionless measure of the departure of the concentration field from its

equilibrium value ui for a reference flat interface.
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The growth dynamics of each individual needle can then be

uniquely prescribed by two independent conditions. The first

condition stems from the fact that the concentration gradient

normal to the solid-liquid interface is largest at the needle tip

as depicted schematically in Fig. 5c. Based on the form of the

diffusion field in the near-tip region on an intermediate scale

much larger than ρ but much smaller than D/V , it is possible

to define a solutal flux intensity factor F (t) that represents the

instantaneous strength of this gradient averaged over the tip re-

gion. F (t) can be calculated using a condition of solute con-

servation expressed as a contour (surface) integral around the

tip in 2D (3D) [140], which yields the result that F (t) is pro-

portional to the product ρV2 in 2D and ρV in 3D [138, 140].

The second condition is identical to the standard microscopic

solvability condition that relates the product ρ2V (also the se-

lection parameter σ = 2Dd0/ρ
2V , with d0 the solute capillar-

ity length at the tip) to the strength of the interfacial energy

anisotropy [86, 9]. While this condition was originally derived

for steady-state growth conditions [86, 9], subsequent PF simu-

lations demonstrated that ρ2V remains approximately constant

in time during transient growth conditions where both ρ and

V are temporally varying [115]. This finding reflects the fact

that the solvability condition that determines ρ2V is obtained

by a solution to the interface growth equations on the tip scale

(Fig. 5d), and hence should be expected to remain valid in sit-

uations where the diffusion field is slowly evolving on a scale

much larger than ρ, as seen in PF simulations [115]. This key

property allows us to assume that ρ(t)2V(t) remains constant in

time in the DNN model and hence, together with the other con-

dition F (t) ∼ ρ(t)V2(t) in 2D or F (t) ∼ ρ(t)V(t) in 3D, to de-

termine ρ(t) and V(t) independently for each needle in the den-

dritic network. This approach rigorously bridges the dynamics

of the dendrite tip and diffusion scales.

Sidebranches are generated periodically on the side of each

dendrite, including fluctuations to represent the selective ampli-

fication of thermal noise at the origin of dendritic sidebranch-

ing [138]. The time evolution of ρV2 (in 2D) or ρV (in 3D)

as a function of the flux intensity factor F (t) captures the evo-

lution of the solute field surrounding each dendrite tip and the

resulting evolution of V(t), hence making it possible to model

branches interactions and their unsteady growth competition.

The DNN model reproduces the Ivantsov steady-state solu-

tions for a single free dendrite in 2D and 3D [140], as well as an-

alytical laws for early-stage transient growth of idealized cross-

shaped equiaxed crystals in 2D [138] and 3D [140]. (The sharp

needle formulation in [138] actually reproduces an approxi-

mation of the Ivantsov solution at low supersaturation.) The

three-dimensional DNN model applied to unsteady competitive

sidebranch growth [137] yields a good agreement with experi-

mentally measured scaling laws for dendrite envelopes [88, 94].

First applications to directional solidification experiments show

an excellent agreement on primary spacing selection [140].

For instance, in Fig. 6, the directional solidification of an Al-

12at.%Cu alloy at a temperature gradient G = 62 K/cm and

a growth velocity V = 115 µm/s yields an average measured

spacing Λexp. ≈ 258 µm, while DNN simulations predict an

average spacing Λ3D ≈ 237 µm.

Experiment	

 500 µm DNN 3D	



Figure 6: Spacing selection during directional solidification of an Al-12at.%Cu

alloy at G = 62 K/cm and V = 115 µm/s in the direction of the crystal growth

(tilted by 30◦ with respect to gravity and thermal gradient). The X-ray image

in (a) and the 3D simulation in (b) are represented at the same scale. [140]

5. Outlook

The last two decades have witnessed major progress in atom-

istic simulations methods to compute key interfacial proper-

ties impacting solidification microstructures. However, quan-

titative predictions of those properties remain scarce for al-

loys. Atomistic modeling is needed to predict interfacial energy

anisotropies in the Al-Zn system in order to link more directly

continuum scale modeling to experimentally observed changes

of dendrite growth directions as a function of Zn concentra-

tion. Current atomistic modeling predictions also fall short ex-

plaining the full spectrum of dendrite growth directions and

morphologies observed in rapid alloy solidification [27]. In

particular, existing atomistic computations of interface kinetic

anisotropy predict that dendrite growth along 〈100〉 directions

should be favored at large growth rate while other directions

〈111〉, and disordered growth modes that may underly grain re-

finement, are also observed. In addition, atomistic modeling

studies of interface coalescence, which have so far focused on

pure metals, remain to be extended to binary alloys. The results

of such studies, used in conjunction with mesoscale modeling,

could potentially help explain how hot cracking sensitivity de-

pends on the choice and concentration of alloying elements.

The increased availability of EAM interatomic potentials for

different alloy systems should facilitate such studies.

At the continuum scale, PF modeling has been used success-

fully to model a wide range of solidification microstructures,

with the last few years witnessing the most rapid advances to

simulate experimentally relevant length and time scales in 3D.

However, despite advances in computing technologies, quan-

titative PF modeling still relies on formulating models with

the desired thin-interface limit. While there has been signifi-

cant recent advances in formulating new PF models for a wider

range of transport properties, as well as concentrated and multi-

component alloys, extensions of those models and more exten-

sive benchmarking of their predictions remain needed.

At the grain scale, multiscale approaches like the dendritic

needle network model should pave the way to quantitative stud-

ies of dendritic microstructure selection mechanisms at length

and time scales out of the reach of phase-field models. Large

scale simulations of dendritic structures should yield significant
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insight into complex mechanisms such as grain growth compe-

tition [139], the long range effect of fluid flow on microstructure

selection [126], and the columnar-to-equiaxed transition [165].
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