

 1

AtomsMasher: Personalised Context-Sensitive

Automation for the Web
Max Van Kleek1, Paul André2, Mikko Perttunen3,

Michael Bernstein1, David Karger1, Rob Miller1 and m.c. schraefel2

1CSAIL, MIT

32 Vassar St.

Cambridge, MA, 02139, USA

{max, msbernst, karger}@mit.edu

2Electronics and Computer Science

University of Southampton

SO17 1BJ, UK

{pa2, mc}@ecs.soton.ac.uk

3Dept. of Electrical

 and Information Engineering

University of Oulu, Finland

mikko.perttunen @ee.oulu.fi

ABSTRACT

This paper introduces AtomsMasher, an environment for

creating reactive scripts that can draw upon widely hetero-

geneous information to automate common information-

intensive tasks. AtomsMasher is enabled by the wealth of

user-contributed personal, social and contextual informa-

tion that has arisen from Web2.0 social networking content

sharing and micro-blogging sites. Starting with existing

web mashup tools and end-user automation, we describe

new challenges in achieving reactive behaviours: deriving a

consistent representation that can be used to predictably

drive discrete action from a multitude of noisy, incomplete

and inconsistent data sources. Our solution employs a mix

of automatic and user-assisted approaches to build a com-

mon internal representation in RDF, which is used to pro-

vide a simplified programming model that lets Web2.0

programmers succinctly specify behaviours in terms of

high level relationships between entities and their current

contextual state. We highlight the advantages and limita-

tions of this architecture, and conclude with ongoing work

towards making the system more predictable and under-

standable, and accessible to non-programmers.

ACM Classification: D2.6 Programming Environments,

D3.3 Language Constructs and Features, H5.2 Information

interfaces and presentation: User Interfaces.

General terms: Design, Experimentation, Human Factors,

Languages, Standardization

Keywords: toolkit, programming language, end user auto-

mation, rdf, context aware, mashup, reactive behaviours

1. INTRODUCTION

We find ourselves in many scenarios that potentially re-

quire retrieving, consulting and consolidating multiple

sources of information. Automating these actions could

save us time and effort in scenarios such as:

• context-based reminders -- remind me to call my

mother when I get home;

• status update multicast -- forward my Twitter updates

(that I send from my mobile phone) to Facebook and

Jabber too;

• activity-based information filtering -- during meeting-

packed days, make my RSS reader meeting-sensitive,

to serve as a way to get e-mails and messages pertain-

ing to my current meeting;

• event consolidation -- I subscribe to many different

cinema feeds; consolidate these sources, and remove

redundant entries so I can view them in my calendar;

• evening planning -- Find out if there are any bands I

like playing tonight, and which of my friends that like

similar music are free to come.

While programmers could write custom applications to

realise each of these desired behaviours, doing so would

require repeatedly solving the same problems a number of

times from scratch. The existence of such common prob-

lems, from parsing and aligning data schemas, entity reso-

lution between items from different sources, continually

monitoring for creating reactive behaviours, as well as

sources for context, indicates the need for common support

to solve these problems. We have been developing an ap-

proach to make it easier for Web2.0 programmers to write

behaviours (mini-applications) that incorporate these at-

tributes of mixing public/social/personal data, context-

awareness, and reactivity.

What makes these kinds of context-rich applications pos-

sible now (as opposed to with a previous lack of sources) is

the rise of Web2.0 services promoting users to publish in-

formation like activity, location and schedule, giving un-

precedented access to a rich sea of public, social and per-

sonal information, much of it available in semi-structured

or structured form. Our approach has been to investigate

passively filtering and blending this information, as in

web/data mashups, while actively scripting automation

based on this information, as in web end-user automation,

to realise broader and richer functionality in reactive be-

haviours (doing something active in response to blended

data).

To this end, we present AtomsMasher (AM), a context-

aware reactive-behaviour authoring environment that al-

lows an author to write simple rules to realise such scen-

arios. This personal automation tool is aimed at a similar

audience to that of most mashups and EUA, the "growing

 Keep this space free for the ACM copyright notice.

 2

group of web designers and developers familiar with scrip-

ting languages"[4].

AtomsMasher provides a common representation and con-

sistent data model that unifies heterogeneous sources; the

use of JavaScript to express rule conditions and conse-

quents for querying, filtering and specifying behaviours; a

rule engine that determines when scripts should run based

on incoming information; and finally, a script authoring

environment which makes it possible to understand, predict

and debug script behaviour.

The rest of the paper is organised as follows. We first

examine related work before elaborating on these challen-

ges and describing the architecture of AM. We show how

addressing these challenges enables our original scenarios,

before discussing future work in extensibility and sharing,

and engaging with end-users.

2. RELATED WORK

End-user automation (EUA) tools are used today to per-

form tasks more quickly and efficiently with reduced effort.

For example, UNIX power users routinely optimize their

workflows by writing shell scripts that often process data

from multiple sources and applications, using files, process

pipes, and character and byte stream transformation opera-

tors. AM similarly aims to facilitate cross-application data

sharing and manipulation by facilitating the transformation

of data into a flexible common representation consisting of

structured entities representing the kinds of objects we

commonly use to describe common personal information

tasks – people, places, documents, and events. These ab-

stractions are intended to facilitate the application of AM to

personal-information related tasks.

On the Web, Chickenfoot [2] has sought to do for web pro-

grammers what shell scripting languages did for UNIX

programmers - permit automation and customisation of the

environment to accelerate common tasks and better fit us-

ers' needs. Chickenfoot's programming model avoids use of

invisible complex selectors such as XPaths to describe

items on pages, instead supporting relational descriptions

of visible items, to make it easier for programmers to script

complex actions involving complex pages. This design

inspired our goals for AM 's query language, in which we

hide the complexities of query and data heterogeneity by

using a familiar javascript object model. Furthermore, we

are working to fully support the use of Chickenfoot actions

in AM 's action vocabulary. In turn, our system extends

Chickenfoot by providing a rule engine (to support auto-

matically executing scripts), a repository of external infor-

mation which Chickenfoot scripts can use in their actions to

be more adaptive, and actions that support scripting "off the

page" -- e.g. web services.

2.1 Web Mashups

AM's approach towards retrieving and aligning information

from multiple, heterogeneous sources on the web differs

from typical mashup systems [3,17] in several ways. First,

it uses obtained information to construct a relational repre-

sentation in RDF, unlike most data mashups which align

two or more structured data streams at the syntactic or

structural level. The RDF model, which supports rich link-

ing of related data items, is what is seen by the rule engine

and users' scripts. As described in section 3.4 the effects of

having such model is that it greatly simplifies integration,

in particular towards scaling to new data sources and types,

and encourages script portability by reducing dependence

on the source representation. In addition to this model,

AM's action language, consisting of Javascript with extra

classes and operators is more general than what is generally

provided by the visual dataflow interfaces of data mashups

such as Pipes. Finally, unlike most data mashups, AM sup-

ports the integration of private data sources such as e-mail,

and sources on the user's desktop, such as the user's local

filesystem.

2.2 Rule-based reactive systems

AM can be considered a type of rule-based reactive behav-

ioural system for end user information management. A pre-

vious system which employed reactive production rules

towards a similar goal was the Information Lens [9], an

end-user rule-based system designed to help members of an

organization cope with the large number and variety of

electronic messages they received via their new enterprise

messaging system each day. Today, the Web and e-mail

have extended the reach of information far beyond the

walls of corporate enterprises, this problem has become

much greater and more general. Another important simi-

larity surrounded the fact that this paper also concluded that

rich "semi-structured metadata" could reduce the need for

natural language processing techniques to enable this

automation. Sadly as described later, many sources of in-

formation on the web are designed for human consumption

and not richly structured; AM takes advantage of what

structure is available.

2.3 Context awareness

As stated in the introduction, AM enables applications to

be "context-aware" by letting users leverage context infor-

mation about a user's activity available in the various data

sources on the web. Much work has surrounded making

computers more context aware, in particular for handling

input from sensors connected to the environment. Out of

the proposed architectures for facilitating the creation of

such applications, AM most closely resembles blackboard

architectures, proposed by Winograd for use in context-

aware applications, due to its pattern-based nature and cen-

tralized common representation [16].

3. ATOMSMASHER ARCHITECTURE

In this section we briefly give an overview of AM's design

goals, and describe each of the architectural components of

AM in detail.

3.1 Objectives

As with many EUA systems, our primary goal was to build

a framework that grants users enough flexibility in script

creation to create scripts that achieve a wide variety of

tasks. The overarching design criteria that we therefore

sought were versatility, scalability, and openness that

would ensure that users could extend, appropriate or

modify the system to do things other than what we as sys-

 3

tem designers could have conceived of. To this end, AM

uses open data formats and public APIs to encourage code

re-use and integration with 3rd party applications. To en-

courage appropriation and co-modification we added two

additional design goals: system transparency and simplicity

achieved through uniformity, which we believed to be im-

portant for encouraging end-user system extension and ap-

propriation.

Since we wished to target an audience that would be enthu-

siastic and creative in identifying opportunities for automa-

tion in their lives, we targeted "life hackers", a term that

connotes a person who takes pride in techniques for opti-

mising aspects of their lives. In this paper we focus on the

language and toolkit to provide this value, aiming at a class

of users who are comfortable with computers and have

basic programming experience, particularly with scripting

for the web in Javascript, a similar audience to that of most

web mashup tools and Chickenfoot. In future work we dis-

cuss how we plan to extend this first prototype with con-

siderations of a UI accessible to non-programmers.

With these design goals in mind we built AM, a reactive

behavioural end-user scripting environment driven by web

and personal data sources. Figure 1 details an architecture

diagram, the highlighted numbers represent:

1) AM periodically retrieves external information via web

feeds (RSS/ATOM), web service api calls (e.g., weather),

e-mail and IM.

2) Feed Prisms - process each source item decoding source

encodings, extracting information from source schemata,

and constructing a generic instance in RDF aligned to the

AM ontology (Section 3.6.1)

3) Feed rules - reconcile new items produced by prisms

with entities already in the KB, resolving references to enti-

ties mentioned in the new entity's properties

4) State rules - drive the state model, by analyze incoming

entries and setting state variables based on patterns in these

items

5) Behaviour rules - execute reactive behaviours based on

incoming items and state variable values, and causes ac-

tions to occur.

Figure 1. AM data flow: the process of responding

to new incoming information

In the following section, we describe the core external data

model of the system in terms of how users express and rep-

resent automation. Our primary design goal throughout in

designing this external data model is to provide the sim-

plest possible programming model that would be suffi-

ciently expressive to encompass desired use cases while

retaining familiarity to web (Javascript) developers.

3.2 Representations in AtomsMasher

The basic unit of AtomsMasher (AM) is the user-

contributed script, consisting of instructions on what to do

and when to do it. In the language of rule-based systems,

each of these scripts can be considered a rule, with the con-

ditions for execution forming the antecedent (which may be

empty for scripts meant to be manually triggered), and the

actions to take the rule consequent. In AM, writing a rule is

as easy as writing a simple Javascript if-statement. The next

section describes how AM allows succinctly expressing

antecedents in a syntax familiar to Javascript programmers.

3.2.1 Rules

Rules are used in AM to represent end-user reactive behav-

iours, update the user’s state model described in section

3.3, and process new, incoming data items as described in

section 3.6. A rule is triggered when its antecedent can be

satisfied. AM can satisfy the antecedent for a rule if and

when it can find a means to make its antecedent true. If a

rule’s antecedent consists of query variables which repre-

sent wildcards standing for entities such as people, places

and things in AM’s KB, this problem translates to finding

suitable entries in the KB such that the substitution of these

entries into the expression yields true. AM executes the

consequent for each such set of satisfying values. We de-

scribe how AM computes the satisfaction of query vari-

ables next.

3.2.2 Query Variables

Rule antecedents in AM can consist of query variables,

which are wildcards that represent some set of entities in

AM’s knowledgebase. To resolve query variables to satis-

fying entities, AM's query variables start by representing all

(or a set of) entities in the underlying KB simultaneously.

For example, suppose person is declared to be a query vari-

able over all entities representing people in the KB. The

expression person.name would represent all names of peo-

ple in the KB. The expression person.name.equals("John

Smith") would then correspond to the value true for all per-

son entities whose names matched "John Smith" in the KB.

When an operator is applied to a query variable, it yields a

new derived query variable that represents the values resul-

ting from mapping the operator over each of the items indi-

vidually. Operators that represent tests (e.g., ==, <, >) cor-

respond to a filter operation; they result in a new variable

containing only values corresponding to the objects of the

values that satisfy the source variable's values. Whenever

an operator is applied, the resulting query variable main-

tains pointers back to the original database entry or entries

that were the source(s) of each value. This makes it pos-

sible to re-identify at the end of a series of operator applica-

tions the set of entities in the KB that met the criterion.

Using this model, binary operators involving two query

variables become slightly more complex. They are handled

 4

by considering all consistent combinations of variable val-

ues, and the results of applying the desired operator to each

such combination. Therefore, the result of a binary operator

is a new query variable whose values have multiple source

objects apiece. To keep these bindings straight, AM main-

tains in the aforementioned source object field of a query

variable the list of variable id-to-value bindings corre-

sponding to the interpretation that was in effect when the

value was computed. These variable ids are created when a

top level query variable is created by user code and are

carried over to new derived query variables, such as when

an operator is applied. Variables with different ids are

considered "free" to bind to values independently of one

another. A consistent set of bindings then comprises the set

of values for which source bindings agree, that is, the val-

ues for which the source values represent the same value

for the same variable, or any values for different variable.

The successive application of binary operators to unique

query variables causes this number of combinations to

grow exponentially in the number of such unique variables.

However, based upon our scenarios, we believe that in gen-

eral, the number of unique variables involved in successive

binary operator applications in typical use should be very

small (2-3) in practice. Such exponential explosions can be

made more controlled by using an and operator (described

next) over query variables with domains that have already

been narrowed, such as with one of the aforementioned

filter operators. Narrowing the set of values for such vari-

ables amounts to reducing the base of the exponent.

Under the semantics of consistency and binary operators

just discussed, the and operator acts as a "gateway" that

returns a derived query variable representing all of the

query variables across all its clauses, admitting only non-

false values whose source bindings were consistent across

clauses. The or operator, in contrast, consolidates all values

across all its clauses, admitting all (and removing domi-

nated) bindings. These semantics yield "sensible" results

visible below:

 // creates 2 unique query variables

 var a = person(); var b = person();

 // returns all bindings of a with a bound to

all people whose name starts with Max AND are

over age 25

 and(a.name.startsWith('Max'),

a.age.greaterThan(years(25)));

 // returns all |a|x|b| combinations of bind-

ings (a,b) for a is the subset of all people

whose name starts with 'Max',

 // b is the subset of all people over 25

 and(a.name.startsWith('Max'),

b.age.greaterThan(years(25)));

 // returns a new query variable with a bound

to UNION of

 // the set of all people whose name starts

with 'Max', and the

 // and the set of all people older than 25

(with duplicates removed)

 or(a.name.startsWith('Max'),

a.age.greaterThan(years(25)));

One might notice that the syntax in our above examples to

be slightly peculiar due to the use of functions instead of

Javascript's built-in operators. Although we wished to over-

load the default implementation of Javascript's operators

with our query variable and RDF-type aware (see section

3.5) implementation, this goal was thwarted by the lack of

support for operator overloading in the current (1.7) version

of the language specification. Javascript 2.0 is currently

slated to support operator overloading, at which point we

will leverage that to make the syntax more natural;

for example and(a.name.startsWith('Max'),

b.age.greaterThan(years(25))) will appear as
a.name.startsWith('Max') && b.age > years(25)

The above-described design of AM query variables was

inspired by object relation mappers (ORMs) such as

SQLObject [12] and Hibernate [5], which make it easier for

program code to create and manipulate data stored in data-

bases by creating proxy objects in the language which rep-

resent the items in the databases. Using an ORM, a com-

plex JOIN of tables in an underlying database could appear

as a simple field access on an object instance. However,

because ORMs typically establish a one-to-one mapping

between proxy objects and items in the underlying data-

base, programs still use special query constructs to find and

select among elements in the database. Our goal was to see

if we could let the user express queries over sets of items

without having to use query terms or higher order predi-

cates (map/filter/reduce).

3.2.3 Special query variable: 'New'

As illustrated throughout section 4 a special reserved query

variable called New can be used in rules to represent an

item that has just been imported into the knowledgebase.

New items added to AM's knowledgebase get bound to

New exactly once in their lives. Although it is intended for

use in input processing and state model rules (described in

section 3.6) New is occasionally useful for non-idempotent

behaviours that need to be executed only once. For exam-

ple, if Bob only wants his Facebook/Jabber status once per

new incoming Twitter message; for this he should use the

New query variable to check for incoming twitters.

3.3. State variables

Certain sources of information publish updated observa-

tions of some dynamically changing state of the world.

Examples of such data sources include Plazes [11] which

reports a user’s most recently identified location, a user’s

Twitter state, or current weather. Unlike regular entities in

the KB, for these types of information, only the latest (e.g.,

most recent) entry is ultimately important. To make it con-

venient for users to employ such data in rule antecedents,

AtomsMasher supports a second type of variable known as

a state variable which work simply by being assigned to by

a rule (which we then call a state rule). AtomsMasher then

holds state variables’ values until they are explicitly reset

by another rule triggering or expire. An example of a rule

setting such a state variable is as follows:

Antecedent:

 5

 and(New.type.equals('plaze'),

New.location.nearAddress("Central Square Apart-

ments", miles(0.01)))

Consequent:

 my.location = Location("Home", {geo:New.geo});

This simple state rule is responsible for setting the user’s

location state to an RDF Location entity called “Home”

when he or she is reported (via a Plazes entry) to be very

close to his or her apartment. As can be seen in this exam-

ple, the state model is identified in a global Javascript ob-

ject called my. Rules can create new state variables simply

by assigning to my; values assigned to the state model can

be of any arbitrary type (typically RDF objects or strings).

To set an expiry time, users can use the special wrapper

autoExpiring, which takes the new value, a decay time and

a post-decay value as follows: my.location = autoExpir-
ing(Location("Home", {geo:New.geo}), hours(24),

Location("Unknown")); This specifies that my.location

should assume the user is home until up to 24 hours have

passed since the state variable was last assigned; after

which the point the value should be reset to Lo-

cation("Unknown"). Besides my, a secondary special state

variable, now, maintains the current time, to facilitate time-

conditional antecedents.

3.4. Simplifying access to RDF Resources

As described in section 3.6, AtomsMasher internally uses

an RDF data model as its entity knowledgebase or KB.

This KB is kept in a persistent triplestore using a MySQL

backed Jena model in Java, which are loaded on demand

into Javascript over XML-RPC. To make accessing RDF

properties “feel” like accesing regular Javascript object

properties, AtomsMasher creates wrapper proxies for every

entity it loads from the triplestore with accessor functions

for every property on the original resource. AtomsMasher

also augments each resource with all operators that are ap-

plicable to the resouce, so that they can be directly invoked

as if they were a Javascript object method.

One small difficulty with mapping access to RDF proper-

ties using Javascript object property names is that RDF

properties (like resources) typically identified by a

full-length URI (e.g.,

http://AtomsMasher.csail.mit.edu/2006/01/am#Person).

Typing such a full-length URI is, first, too cumbersome,

and cannot be used directly using dotted field access nota-

tion, since URIs contain characters which are not allowed

within Javascript identifiers. To make access convenient

given these constraints, AtomsMasher creates additional

accessors that use only the local name of a property's URI,

which, although not guaranteed to be globally unique, are

often unique enough to be useful.

When a set of proxied RDF entities are assigned to a query

variable, the query variable wraps all of the operators and

methods found on all of the entities represented by the

query variable up to the query variable itself. Since items

may have different properties and supported operators,

AtomsMasher ensures that when one of these accessors are

called, it only considers the values for which that operator

or property exists. If more than one outgoing edge for an

item, the set of all values for the property are collected, and

wrapped in a single returned query variable. This way, the

same query filter mechanism can be used to fully navigate

the RDF graph and select nodes with minimal syntactic

overhead.

For example, if the query variable person is initially bound

to the set of all entities corresponding to people in AM's

knowledgebase, the simple expression person.email

would correspond to the set of all email addresses for all

people. Similarly, finding the person in the KB with a par-

ticular e-mail address can be expressed simply by narrow-

ing this set; e.g., person.email.equals('max@mit.edu')

would query all such entries for that had that email address.

Note that this syntax is identical to Java syntax of checking

to see if a particular object's email matches a particular

string

3.5 Comparison Operators

Comparison operators in AM play a large part in defining

the expressiveness of rule antecedents because they deter-

mine the ways in which entities can be compared with one

another, and values for which a rule will trigger. Three con-

siderations make the design of operators challenging. First,

many types of operators need to be specific to the type of

the entity; however since RDF does not mandate what

properties must exist for a given type, examining an entity's

type exclusively is insufficient to tell whether an operator

applies. AM handles this by identifying the operators that

are compatible with a given resource (corresponding to an

entity) in two different ways; by type and by topology. For

the former, AM looks up the RDF types of the resource

(comprising its declared and entailed types, which are

computed by Jena and included in the object proxy), and

for each, consults its registry of operators. For the latter

(topology), AM similarly consults a separate registry in-

dexed by property name. This latter strategy is employed

for operators such as nearTo(), which supports any entity

that has either a geo property (which indicates a latitude

and longitude), or a streetAddress.

Second, the surface type of an object might not be the ac-

tual type; for example, a string could designate a time or a

location. For this, AM uses a simple strategy of maintain-

ing a list of string-constructors that parse strings into an

RDF type, and attempts to apply these string constructors if

an operator lookup on a string argument to an operator

fails. AM only currently supports this runtime coercion for

operator arguments; therefore, datatype constructors should

be called explicitly if beginning an expression that needs to

be coerced from string. This strategy resembles "sloppy

programming" [8], which searches over the space of func-

tion applications (which could be type conversions); adding

such functionality would greatly enhance the system's

ability to coerce types, but may also increase computational

complexity.

The final challenge surrounds the need for operators to con-

tain some robustness to noise -- for example in comparing

variations on string renderings of a person's name. AM

approaches this problem by adding liberal comparison op-

 6

erators for several low-level types with optional tolerance

threshold parameters. For example, the string liberal string

equality operator .resembles() first strips arguments of pad-

ded whitespace, ignores case, checks for containment, and

compares the edit distance with an optional maximum edit

distance parameter (expressed as either number of charac-

ters or percentage of the original length of the string). We

are currently working on making these thresholds more

adaptive by using a Bayesian likelihood computation ap-

proach that can be trained to be sensitive to different prior

probabilities for entities being the same or different.

3.6 Acquiring and Representing external information

Having a rich common RDF representation for entities in

AM creates an abstraction barrier between data sources and

end-user reactive behaviours, shielding query variables

from the source of information. This allows the system to

scale to new data sources, and encourages the re-usability

and sharability of behaviours by preventing authors from

writing their behaviours specific to a particular source.

From a reactive behavioural-based systems standpoint, hav-

ing a common representation makes the system's model of

the world concrete. This was important for many aspects of

the system, including the lazy rule scheduler described in

Section 3.7, which relies on knowing how the system's

view of the world has not changed to determine which rules

it can ignore.

In this section, we describe how this intermediate represen-

tation is built from external data sources.

3.6.1 Data Prisms: Low-level data extraction

We quickly discovered that despite standardization in data

schemas for feeds, e.g., RSS 0.95, 1.0, 2.0, ATOM, there

was much variation among content providers regarding

how and what information was conveyed in feeds. That is,

while the base syntax and schema was standardized, differ-

ent sources on the web used fields in these schemas for

different purposes. As a result, it was necessary for some

data sources (mostly web-feeds) to create feed-specific

import filters, which we call data prisms, to distil informa-

tion from packed and misappropriated source schema fields

into RDF. A yet additional common problem was that feeds

included linkback URLs in feed fields instead of the actual

data; under such circumstances, several data prisms retrieve

the indicated page and grabs the value using Chickenfoot.

Since prisms are rather onerous to create and require sub-

stantially more programming experience than writing rules,

we wanted to ensure that most people would not have to

worry about writing them. Fortunately prisms perform

source-specific transformations that are rather user-

agnostic, they are ideal types for being redistributed and

shared among users. Although we have currently a central-

ized infrastructure to do that (e.g., a single repository of

prisms we have created), we are moving towards a more

community-sharing oriented model (see section 6).

3.6.2 Feed rules: Reconciling and personalizing incoming

items

As just described, the output of the data prisms in the first

phase consists of new RDF descriptions of entities such as

news stories, updates from the local weather service, face-

book and Twitter; personal e-mails, or upcoming events, as

obtained directly from particular information sources such

as RSS feeds, mail servers, and web services. There are two

problems with putting this new description directly into the

entity KB; first, there might already be a description cor-

responding to the same entity that came in from previously,

possibly from another information source. In such a situa-

tion, the two descriptions may or may not have exactly the

same information; either description may have been in-

complete or incorrect. Thus, there is a need to reconcile and

merge descriptions of entities to create a coherent view

based on incomplete or redundant sources.

The second problem surrounds resolving references to enti-

ties within an incoming entity description. For example, an

event may list an organiser, a location, and attendees. Each

of these entity references needs to be resolved to the appro-

priate entity description in the knowledgebase in order for

AM to be able to service query variable expressions via this

new entity. For example, if an event's location is success-

fully resolved, then all information pertaining to that event

becomes available through the query variable expression,

e.g., event.location.streetAddress; this additional in-

formation might be important because it might be required

for comparison via operators such as nearTo, described in

the next section.

If such an entity to be resolved has a globally agreed-upon

unique identifier, (as proposed by proponents of the Se-

mantic Web), then entity resolution corresponds to a data-

base lookup. In general, however, this is virtually never the

case with Web 2.0 data sources which tend to be highly

heterogeneous. Thus, AM must rely on comparing avail-

able information, often consisting of noisy and ambiguous

identifiers -- to entities in its KB. Since fully automatic

approaches to entity resolution in an open (personal) do-

main is an open unsolved problem, AM takes a purely

pragmatic approach: use a greedy strategy that might work

most of the time, and keep this strategy transparent (easily

modifiable) by the user.

In order to do this, AM uses a special set of rules called

feed rules which operate like other rules in the system but

are privileged because they get first access to incoming

data items - before these items have been added to the KB.

This gives the feed rules an opportunity to modify the in-

coming item and to declare that it is a duplicate of an exist-

ing item. AM allows feed rules an extra operator, sameAs()

on New which takes a resource as an argument. This estab-

lishes an OWL sameAs relation [15] between the New and

specified items, effectively merging these two resources.

Feed rules can also freely modify fields on the item, such as

for resolving embedded entities. After all triggered feed

rules have been applied, the changes to the New item are

committed to the KB. Examples of such feed processing

rules are given in section 4.

3.7 Scheduling rules

Since evaluating a rule's antecedent can involve a complex

set of queries over the KB, AM's rule engine attempts to

 7

conserve computational cycles by postponing the consider-

ation of a rule until an event occurs that could cause that

rule to trigger. Such an event could include the re-

trieval/arrival of a new data item, the changing of a state

variable, or merely the passing of time. For example, when

a particular state variable changes, it considers all the rules

whose antecedents depend on it; similarly, when new enti-

ties of a particular type are added to the KB, AM considers

the rules whose antecedents rely on query variables over

entities of that type. In addition, rules that condition on

New are considered whenever a new entity is introduced to

the system. Antecedents involving Now (the variable repre-

senting the current time) can cause significant problems

with this approach, because it might suddenly become true

when the clock strikes a particular value (without any ex-

ternal change). Thus, AM handles such expressions spec-

ially. For time expressions involving comparing Now to an

absolute time (e.g. "Wednesdays at 3pm"), AM determines

the soonest moment that the expression could become satis-

fied, and sets a system callback alarm for that moment.

Antecedents that somehow relate Now to a state or query

variable require more delicate consideration; AM deter-

mines the soonest moment the rule could trigger by evalu-

ating the expression involving Now over all the (current)

values of that variables in the expression, setting a wakeup

alarm for the soonest such time. AM also re-evaluates such

rules if the relevant state or query variables experience up-

dates, since this could result in a yet sooner trigger time.

Note that AM does not yet employ logic for detecting con-

flicts or feedback when considering rules or their actions;

rules are simply considered and triggered one at a time.

Since conflicts are likely indicators of problems with user

rules, we are considering strategies to try to detect and re-

veal such conflicts.

3.8 User Interface

The user interface of the AM prototype is shown in Figure

2. It consists of five main views: feed items (top left), the

state model (bottom left), behaviours (middle), and actions

(top right). The log view (bottom right) displays a detailed

record of rule triggers and actions taken by the system. This

default view was chosen to give users a complete "eagle's-

eye" high level overview of the state of the system in one

glance, to easily inspect what the system as a whole was

doing. From this view, the UI is designed to facilitate drill-

ing down into the details of any particular aspect of the

system.

For example, the feed item view by default displays only

the titles of items of all types, with the most recently ac-

quired items displayed most prominently. If one wishes to

further inspect any item, a complete summary (of all fields)

is displayed when the mouse cursor is hovered over it.

Clicking on an item displays the item fully, and provides

simple editing facilities for the item. If the item view is

clicked, it becomes expanded, which reveals keyword-

based search facilities across items. Feeds can be added and

removed by clicking on the corresponding button, and pro-

viding a URL to a web feed. Note, however, that every feed

requires a suitable prism to be available to it for AM to be

able to extract information out of it. AM has rudimentary

facilities for inspecting feeds to determine whether a prism

it has already installed may be applicable. This is used to

suggest a prism when adding a URL to a feed; users can

override their choice by providing a path to an alternative

prism.

Figure 2. Main view with a manual action dialog.

 8

The three tabs of the rule view correspond to the three dif-

ferent rule sets: behaviour rules, state rules, and feed rules,

and shown in Figure 1. In Figure 2 the behaviour rules tab

is visible. For each rule, the view shows a description, con-

ditions, actions, and two properties specifying whether the

rule should be fired only once, and whether the rule is cur-

rently enabled. All of these can be edited in place by click-

ing on them, or a rule editing view can be opened by select-

ing a row and clicking the 'Edit rule' button. The edit view

is shown in Figure 3. This view provides the user with di-

rect feedback for the rule authoring by displaying the bind-

ings of the query variables against current knowledgebase

contents in the 'Simulated bindings' box.

Figure 3. Editing a rule.

As discussed previously, the state model describes time-

varying aspects of the user's situation. In Figure 2 the state

variable view is condensed to display only the type of the

state variable, its current value, and a timestamp. This table

can be expanded to also show the associated rule of each

state variable by clicking the 'Show rules' button. Clicking

the 'Edit state' button replaces the rules view with a state

editing view. The state editing view is similar to the behav-

iour rule editing view, except for the action part which al-

ways assigns a value to a state variable.

The actions view allows the user to browse the available

actions for rules and to manually fire behaviours. Figure 2

shows the manual action view for setting Twitter status

message.

3.9 Implementation

AM is implemented partially in Java as part of PLUM [14],

our user modelling framework, and partially in Javascript.

The Java components of AM consist of components re-

sponsible for retrieving and transforming information into

RDF, including code for parsing web feeds (using ROME),

interfacing with e-mail (via POP/IMAP using JavaMail),

and IM (using Muse). Data prisms which call these APIs

are also implemented in Java. We built plug-ins for ROME

to handle special RSS schema extensions such as XCAL

which were not previously supported. RDF items are per-

sisted in Java by Jena using an OWL-reasoning enabled

MySQL-backed model. The Java components of AM start

an XML-RPC server which allows AM's Javascript com-

ponents with retrieve entities and save and load state.

All remaining parts of AM are written in Javascript and are

currently designed to run within Firefox. The rule and

query variable engine make heavy use of functional pro-

gramming patterns, which was greatly facilitated by the

MochiKit functional programming API [10]. This API let

us make the query variable code closely resemble a text-

book example of a rule-based systems often presented in

introductory AI texts in Scheme, which made it compact

and elegant. AM employs jsolait [6] for asynchronous

XML-RPC2, to communicate with the Java components,

and Yahoo's JSON parser to validate communications. The

UI components were developed in parallel with the engine,

using HTML, CSS, JavaScript, and the Yahoo! User Inter-

face Library (YUI).

Currently both Java and Javascript components need to be

running in order for AM to be reactive. We are currently

working to get around this limitation two ways: by porting

the Javascript code to run under Rhino [12] for those who

want to install and have AM running on their machines in

the long term; and second, make AM entirely self-

contained within a Firefox extension that launches a Java

subprocess for casual users who want to try AM out with-

out having to perform an installation.

4. DISCUSSION

In this section, we revisit the scenarios from the Introduc-

tion and illustrate how they are implemented using AM. A

description and code example for each shows how suitable

feed or state rules, and behaviour or query rules can be

written in AM syntax to implement each scenario.

Scenario 1: remind me to call my mother when I get home.

The state rule instructs AM to look for such incoming items

of type “plaze” whose name equals “Central Sq Apts”.

Having found such an item, AM creates a Location object

called “Home”, and assigns the geo-spatial coordinates

from the incoming item into this object. This object is

stored to the state model as the value of location variable.

Note that the variable my always refers to the state table.

The behaviour rule of 1) is satisfied when the state variable

location equals the home-object the creation of which we

just described.

If //state/feed rule

 and(New.type.equals('plaze'),

 New.location.name.equals("Central Sq

Apts"));

then

 my.location = Location("Home", {geo:New.geo});

if //query/behaviour rule

 my.location.equals(Location("Home"));

then

 showReminder("Call mom!");

Scenario 2: When I send an update to Twitter, update

Facebook and Jabber too. This requires only a single be-

haviour rule. The antecedent of the rule is instantiated when

the title of a new Twitter feed item contains the string

“I’m”. Note that this antecedent always has at most one

binding, because there can be only one Twitter feed item

bound to New at a time. As an example, let the Twitter

message be “I’m working”. In this case the Facebook status

 9

would be set to “is working” (Facebook prepends the mes-

sage automatically).

If //just a behaviour rule

 and(New.type.equals("Twitter"),

New.title.contains("I'm"))

then

 setJabberStatus(New.title);

 setFacebookStatus(

New.title.substring("I'm".length).concat("is"));

Scenario 3: make my RSS reader meeting sensitive, to

serve as a easy to get e-mails and messages pertaining to

the meeting I am currently in. This is slightly more com-

plex. The feed processing rule used to implement this scen-

ario looks for new emails whose sender or subject contain

“haystack” (project name). When such an item is met, the

consequent of the rule assigns a tag “haystack” to it. This

allows the tag to be easily used in the associated behaviour

ruleThis rule triggers whenever Christine’s current activity,

a state variable, constitutes a meeting; the result is that it

sets the RSS filter to display all items tagged with a word

that appears in the active meeting’s name.

Filters that appropriately tag incoming data

items with meeting names. For example:

If //state rule

 and(New.type.equals('email'),

 or(New.recipient.contains("haystack"),

 New.subject.contains("[haystack"));

then

 New.tag = "haystack";

--

if //behaviour rule

 my.activity.type.equals("meeting");

then

 setRSSFilter(function(x) {

 return my.activity.name.contains(x.tag);

 });

Scenario 4: incoming items from multiple sources consoli-

dated and redundant entries eliminated to view in y calen-

dar. Here only feed processing rules are involved. This rule

checks a new item against existing items and asserts them

as the same item, if the set of specified fields have identical

values. We have borrowed the sameAs-relation from

OWL[15] for this purpose. Note that asserting this relation

between the two items (RDF resources), means that the

fields of them become a union of their fields. This rule also

demonstrates how easily one can incorporate the JavaScript

else-statement in a rule. In the else-branch, the consequent

turns the new item into an event by simply assigning to it a

new field “eventtype” and adding it to the person’s events

calendar.

Incoming item processor:

If //state/feed rule

 m = events({ eventtype: 'film' });

 and(New.type.equals('event'),

 New.location.equals(m.location),

 New.name.equals(m.name),

 New.start.equals(m.date.start))

then // auto-reconcile two entities

 New.sameAs(m);

else // turn into an event; add to our Events

calendar under "films"

 New = newEvent(New);

 New.eventtype = 'film';

 add(events, New);

Scenario 5: who is playing in my area tonight, and which

of my friends that like similar music are free to come? This

illustrates an “extreme” use of AM to query across infor-

mation obtained from potentially hundreds of data sources

– all of her friends’ online social calendars. This rule,

which for simplicity we assume is meant to be manually

triggered, starts by isolating a set of concerts she might

want to attend, by finding the intersection between concerts

in her area happening on the particular day in question, and

artists on her recently played (last.fm) list. Then, the script

selects her friends who have no appointments scheduled

that evening, and determines whether each have recently

listened to any of the artists featured in the evenings con-

certs. The list of all such people and the concerts for which

this final criterion is satisfied are returned.

if (none) // manually triggered query

then

 c = events({eventtype:'concert',

dtstart:Now.day()});

 playedmusic = recentlyPlayedMusic();

 goodshows = and(c.location.nearTo(my.location,

miles(2)),

c.artist.equals(playedmusic.artist));

 freefriends =

friends().filter(function(friend) {

 return

and(friend.events.date.before(Date("tomorrow"),

 friend.events.date.after(Date("6pm to

day"))).length == 0; });

freefriends.musicPlaylist.artist.equals(goodshows

);

5. FUTURE WORK

5.1 End-User Interface

It was our aim in this iteration of AM to target a similar

audience to mashups, users familiar with scripting, to dem-

onstrate the feasibility of creating reactive behaviours from

previously passive sources. We are currently undertaking

studies in other types lay-user automation to examine how

we could develop a user interface that truly supports all

types of end-users. This involves work in simplifying both

the specification of rule antecedents and the actions that

should be taken. For example, in integrating AM more

closely with our user modelling framework PLUM [14], we

can use a form of query-by-example to look back in your

history and say, in future, 'when something like this hap-

pens, I want this to happen'. We are also considering other

visual programming metaphors and programming-by-

demonstration, to simplify the initiation, understanding and

completion of actions, and scrutability of behaviours. In

addition, part of this work is designing and evaluating

AtomStasher, a new component described next.

5.2 Extensibility and sharing

We encourage the re-usability and sharing of behaviours by

shielding query variables from direct access to the informa-

tion sources, preventing authors from writing their behav-

iour specific to a particular source, and allowing the system

to scale to new data sources. As we have elaborated else-

where [1], the social community data that inspired AM is

part of a wider social evolution on the Web. By establish-

ing the "AtomStasher" (similar to the Co-Scripter wiki [7]),

 10

we aim to make prisms and actions shareable, encouraging

an active community, and allowing less experienced users

to download more complex rules that others have written.

As a further social aspect of the system, we aim to allow

publishing state variables as feeds, to provide the user with

a way of exposing some of their state to their friends, and

their applications.

5.3 Privacy and Security

There are obvious concerns in blending personal and Web

data, though by running AM client-side we hope to retain

control over any potential problems. These dangers include

exposing the unwary to any behaviours that may engage

with one's personal data in potentially nefarious ways, and

as we mention in 5.1, part of the UI challenge is the scruta-

bility of the effects and actions taken by behaviours. In a

broader sense, AM may even create its own privacy impli-

cations. By increasing the ease of combining multiple sour-

ces of data about a friend (twitter updates, facebook ac-

tions, last.fm feed, flickr photos), AM highlights how much

personal information is being broadcast to the Web, and

enables inference and reactive behaviours based on that

information. It remains to be studied what users' major pri-

vacy concerns regarding AM are.

5.4 Rule Language, Engine Design, Fine-Grained Con-

text

It is our ongoing work to identify the most useful type of

rules for AM, and to design an easily comprehensible syn-

tax for the constructs needed by those rules. We intend to

explore how to support rule validity duration and reverting

rule consequences. For example when checking location

and setting a twitter status to 'at home', AM could suggest a

rule that states when location is not 'home', unset the status,

to avoid leaving the house and still appearing to be at

home. There may also be need for a 'while/afterwards' con-

struct, for example to filter e-mails while in a meeting to

only those relevant, but remove the filter after the meeting.

This also requires subtleties in book-keeping of other ac-

tions that may have fired. We also intend to further explore

handling uncertainty, (we currently support approximate

matching of strings), and the most feasible way of propa-

gating uncertainty and how this should be displayed to a

user. A simple feature that was found to be desirable in

early test drives was an "ask user" tag to either ask a user

for confirmation about an automated action, or to ask for

some additional action parameter that cannot be automati-

cally detected or derived.

As we integrate our user capture framework PLUM, as

mentioned above, we have the potential of gaining fine-

grained, frequently updated context such as currently run-

ning applications, visited websites, WLAN positioning,

even web camera images. It will be interesting to see, for

example, whether users with to publish this information as

a feed through their state variables, and whether the rules

become proportionally more fine-grained.

6. CONCLUSION

In this paper we have presented AM, a browser-based desk-

top tool that explores the blending of increasingly 'microb-

logged' personal, public and social data to drive context-

aware reactive behaviours. We offer evidence that the de-

sign and implementation make it feasible to use these sour-

ces of information to automate our repetitive, tedious tasks.

The core design problem we addressed is that of providing

a suitable rule language for specifying the reactive behav-

iours, as well as a consistent data model and representation

over which it is easy to write behaviours. With these con-

tributions, others can start creating these blends of data, and

sharing them as we discuss in ongoing work, and we can

begin to explore the interesting user interface issues of how

to present this time-saving automation for end-users, not

just coders.

REFERENCES

1. André, P., schraefel, m., Wilson, M. L. and Smith, D. A.

The Metadata is the Message. Web Science Workshop

at WWW'08.

2. Bolin, M., Webber, M., Rha, P., Wilson, T., and Miller,

R. C. Automation and customization of rendered web

pages. UIST '05.

3. Ennals, R. J. and Garofalakis, M. N. 2007. MashMaker:

mashups for the masses. SIGMOD'07.

4. Hartmann, B., Wu, L., Collins, K., and Klemmer, S. R.

Programming by a sample: rapidly creating web appli-

cations with d.mix. UIST'07.

5. Hibernate: http://hibernate.org

6. Jsolait: http://jsolait.net/

7. Leshed, G. and Haber, E. and Lau, T. and Cypher, A.

CoScripter: Sharing ‘How-to’ Knowledge in the Enter-

prise. GROUP'07.

8. Little, G., and Miller, R. C. Translating Keyword

Commands into Executable Code. UIST 2006.

9. Malone, T. W., Grant, K. R., Lai, K., Rao, R., and

Rosenblitt, D. A. 1989. The information lens: an intelli-

gent system for information sharing and coordination.

In Technological Support For Work Group Collabor-

ation, Lawrence Erlbaum Associates, Mahwah

10. MochiKit: http://www.mochikit.com/

11. Plazes: http://plazes.com

12. Rhino – JavaScript for Java:

http://www.mozilla.org/rhino/

13. SQLObject: http://sqlobject.org

14. Van Kleek, M., Shrobe, H. A Practical Activity Capture

Framework for Personal, Lifetime User Modeling.

UM2007.

15. W3 Web Ontology Language:

http://www.w3.org/TR/owl-features/

16. Winograd, T. Architectures for Context. Human-

Computer Interaction, 16(2, 3 & 4).

17. Wong, J. and Hong, J. I. Making mashups with mar-

mite: towards end-user programming for the web.

CHI'07.

