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We propose to investigate the full counting statistics of nonequilibrium spin transport with an ul-
tracold atomic quantum gas. The setup makes use of the spin control available in atomic systems to
generate spin transport induced by an impurity atom immersed in a spin-imbalanced two-component
Fermi gas. In contrast to solid-state realizations, in ultracold atoms spin relaxation and the deco-
herence from external sources is largely suppressed. As a consequence, once the spin current is
turned off by manipulating the internal spin degrees of freedom of the Fermi system, the nonequi-
librium spin population remains constant. Thus one can directly count the number of spins in each
reservoir to investigate the full counting statistics of spin flips, which is notoriously challenging in
solid state devices. Moreover, using Ramsey interferometry, the dynamical impurity response can be
measured. Since the impurity interacts with a many-body environment that is out of equilibrium,
our setup provides a way to realize the non-equilibrium orthogonality catastrophe. Here, even for
spin reservoirs initially prepared in a zero-temperature state, the Ramsey response exhibits an expo-
nential decay, which is in contrast to the conventional power-law decay of Anderson’s orthogonality
catastrophe. By mapping our system to a multi-step Fermi sea, we are able to derive analytical
expressions for the impurity response at late times. This allows us to reveal an intimate connection
of the decay rate of the Ramsey contrast and the full counting statistics of spin flips.

I. INTRODUCTION

Some of the most interesting applications of condensed
matter theory are concerned with transport [1–3]. Most
studies of transport focus on averaged quantities such
as currents of charge, concentrations, or heat. How-
ever, transport experiments contain more information
than just those average quantities. Indeed, one of the
important ideas that emerged in the studies of transport
in condensed matter physics is that fluctuations contain
more information than accessible from sole measurements
of averaged quantities. In particular, the study of quan-
tum noise that arises from fluctuations which persist even
at zero temperature became of great practical relevance
since it presents the ultimate limit to noise in electronic
and spintronic devices. From a more fundamental per-
spective, the analysis of noise in transport [4, 5] made
the demonstration of charge fractionalization in quantum
Hall systems possible [6, 7], and provided a new means
to separate ballistic and diffusive quasiparticle transport
in low-dimensional materials [8].

Likewise, achieving a high level of control over trans-
port requires a study beyond average quantities [9]. In
particular, gaining control on the level of single electrons
and spins necessitates the understanding of the intrinsic
quantum noise in such systems [10–12]. A theoretical tool
for this purpose is the full counting statistics (FCS) that
contains the information about all moments of the de-
sired observable [13]. In solid state experiments, the con-
trol of the quantum noise is, however, challenging since

it is difficult to change system parameters [14–23].

In recent years, ultracold atoms have emerged as
a toolbox to study the transport of in- and out-of-
equilibrium systems in a controlled setting, where a
high degree of isolation from the environment is realized
and single-atom resolution is achievable. First examples
range from the expansion of fermions in optical lattices
[24] to the conductivity of a Fermi gas [25], transport in
spin systems [26, 27] localization induced by disorder in
the Hubbard model [28–30], atom transport in analogs of
point contacts [31–33] as well as the study of anomalous
transport in quantum Hall systems [34–36], and topolog-
ical charge pumping in bosonic quantum gases [37, 38].

Inspired by the recent ultracold atom experiments on
quantum impurities [39–47], in this work we propose a
new type of transport experiments that allows one to
study an analog of spintronics in ultracold atomic sys-
tems. Our setup provides a new platform for studying
the full counting statistics of transport, and allows one
to reveal its remarkable relation to the non-equilibrium
orthogonality catastrophe. In contrast to solid state sys-
tems, our proposed ultracold atom setup does not suffer
from limited coherence times resulting from phonon re-
laxation and electron interactions and has the advantage
that dynamics takes place on a much longer time scale
due to the diluteness of the atomic quantum gas.

Specifically, our proposed setup consists of a sin-
gle quantum impurity that is coupled to two reservoirs
of fermions, see Fig. 1. These two imbalanced Fermi
reservoirs can be experimentally realized by preparing
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fermionic atoms in two different hyperfine states. We
show that, despite atom collisions being originally spin
conserving, by creating a superposition of the two hy-
perfine states, spin changing collisions can be engi-
neered. Combined with controllably switching the inter-
actions between the impurity and the Fermi seas, a non-
equilibrium spin-flip dynamics between the reservoirs is
induced that can be directly measured using, e.g., ab-
sorption imaging. Moreover, the full counting statistics
of the scattered fermionic particles is accessible, which
is characterized by the probability distribution PN (t) of
finding N scattered particles at time t. With cold quan-
tum gases this can be achieved using time-of-flight mea-
surements [48] or quantum gas microscopy [49–56], both
techniques that are not available in solid-state systems.
In addition, decoherence dynamics of the system can

be studied by applying a Ramsey sequence on the impu-
rity [44, 57–60]. We find that the Ramsey response of
the impurity, S(t), is governed by a non-equilibrium or-
thogonality catastrophe (NOC). Quite counterintuitively
the NOC features an exponential decay in S(t) even at
zero temperature. This is in contrast to the conventional
orthogonality catastrophe where an exponential decay is
a signature of thermal decoherence [57] (for a review see
Ref. [59]). Remarkably, in the long-time limit we find,
up to logarithmic corrections, a simple relation between
the decay of the Ramsey signal S(t) and the FCS of spin
flips at zero temperature

|S(t)| ∼
√

PN=0(t). (1)

This equation highlights the intimate relation between
Ramsey interferometry and the counting statistics of
spin flips.

This work is organized as follows: In Sec. II we in-
troduce the model. In Sec. III we discuss spin transport
and full counting statistics for various parameter regimes.
In Sec. IV we present the results for the impurity deco-
herence dynamics, which can be measured by Ramsey
interferometry and discuss the NOC. The full-time Ram-
sey response is evaluated numerically, but also long-time
analytical expressions are provided. We present an anal-
ysis for both zero and finite temperature and establish
the relation between S(t) and PN=0(t). In Sec. V we
summarize our results and discuss future prospects.

II. MODEL

We consider a single immobile impurity immersed in
a non-interacting two-component Fermi gas. Experimen-
tally the fermionic atoms of massm are initially prepared
in two (hyperfine) spin states denoted by (↑, ↓). Fur-
thermore, we assume that the impurity has two internal
states |u〉 and |d〉. For simplicity we assume that inter-
actions occur only between the impurity in the state |u〉
and fermions in the |↑〉-state; our analysis can, however,

Spin rotation
between Fermi seas

impurity

x

y

z

FIG. 1. Schematic representation of our setup. An im-
purity atom is coupled to a spin-imbalanced two-component
Fermi gas with mismatched chemical potentials µ↑ 6= µ↓. Up-
per row: the impurity atom in the internal state |u〉 resonantly
interacts with the first component | ↑〉, but not with the sec-
ond one | ↓〉. Lower row: applying a spin rotation mixes the
two spin states and introduces impurity-induced spin-flips be-
tween the two fermionic components.

be easily generalized. The Hamiltonian is given by

Ĥ =
∑

kσ

(ǫk − µσ)ĉ
†
kσ ĉkσ + |u〉 〈u| ⊗ 1

V
∑

kq

Vqĉ
†
k+q↑ĉk↑

(2)

where V is the system volume and ĉ†kσ and ĉkσ denote the
fermion creation and annihilation operators, respectively.
The dispersion relation of the fermions is ǫk = k

2/2m and
their occupation number in the two spin states σ = (↑
, ↓) can be tuned individually by the chemical potentials
µσ. Unless indicated otherwise we work in units where
~ = 1. The short-range potential Vq gives rise to an s-
wave scattering phase shift δk for low scattering momenta
k = |k|. While our analytical results hold for general δk,
for our numerical results we consider

δk = − tan−1(ak) (3)

with the s-wave scattering length a.
The Hamiltonian (2) conserves spin and hence does not

suffice to study spin transport. In order to introduce the
required spin-changing interactions we make use of co-
herent spin-control available in atomic systems. To this
end we start from the state |FS↑〉 ⊗ |FS↓〉, where |FSσ〉
represent filled Fermi seas (at zero temperature). Then
a spin rotation is applied that rotates the spin state of
fermions on the Bloch sphere at an arbitrary “polariza-
tion angle” θ leading to atoms in a superposition state
described by

d̂k1 = cos(θ/2)ĉk↑ − sin(θ/2)ĉk↓,

d̂k2 = sin(θ/2)ĉk↑ + cos(θ/2)ĉk↓ (4)
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FIG. 2. Non-equilibrium momentum population. Occupations (a) n1(t, k) and (b) n2(t, k) in the two different fermionic
spin states at zero temperature. Initially, only the state |1〉 is occupied up to the Fermi energy and no atom are in the second
state |2〉. We have chosen the dimensionless interaction parameter kF1a = −6.

(for an illustration see Fig 1). In the absence of impu-
rities in the |u〉 state this process is fully coherent. It
initializes the state |ψF 〉 ≡ |FS1〉 ⊗ |FS2〉 with |FSα〉 =
∏

|k|<kFα
d̂†kα |0〉 and α = (1, 2), where the Fermi mo-

menta kF1 = kF↑ and kF2 = kF↓ are invariant under the
spin rotation (similarly, µ1 = µ↑ and µ2 = µ↓).
Expressing the fermionic operators in Eq. (2) in terms

of d̂k1 and d̂k2 yields

Ĥ =

Ĥ0

︷ ︸︸ ︷
∑

kα

ǫkd̂
†
kαd̂kα +

1

V
∑

kq

Vq

(

d̂†k+q1

d̂†k+q2

)T (
cos2( θ2 ) cos( θ2 ) sin(

θ
2 )

cos( θ2 ) sin(
θ
2 ) sin2( θ2 )

)(
d̂k1
d̂k2

)

︸ ︷︷ ︸

Ĥ1

⊗ |u〉 〈u| −
∑

α

µα,kd̂
†
kαd̂kα. (5)

Here, the second term generates spin flip processes be-
tween the states 1 to 2 of the atoms in the Fermi seas
when scattering with the impurity and thus Eq. (5) al-
lows one to realize the analog of a quantum spin pump.
In App. A we provide a solution to the single-particle
problem corresponding to the Hamiltonian (5) where the
spin-dependent interaction is controlled by the polariza-
tion angle θ and interaction strength V0. Both are fully
tunable in real time in ultracold atomic systems. In the
following we study the dynamical and statistical proper-
ties of this Hamiltonian.

III. SPIN TRANSPORT

In our setup the Fermi seas |FS1〉 and |FS2〉 represent
two ‘spin reservoirs’ 1 and 2. We choose EF2 = 0 so
that the system is initially far from the state of equal
spin population. Switching the impurity state from |d〉
to |u〉 leads to spin flips that result in a ‘spin current’
from reservoir 1 to 2.

A. Spin current

First we study the ‘discharging’ dynamics of the two-
component Fermi gas. In our setup the spin transport

rate (we denote it as ‘spin current’) between the reser-
voirs |FS1〉 and |FS2〉 is controlled by the rotation angle
θ. There are two processes contributing to the dynamics:
First, a fermion in reservoir 1 can scatter with the impu-
rity leading to a change in its momentum state, while it
remains in the same spin state. This is a spin-conserving
process. By contrast, in the second type of process the
impurity can additionally flip its spin in the scattering
event, leading to a transfer of spins from reservoir 1 to 2.

In the time evolution, the spin current generated by
the spin flips is accompanied by a build-up of a non-
trivial momentum distribution in both spin components

n1,2(k, t) = 〈ψF |eiĤtn̂1,2(k)e
−iĤt|ψF 〉. We consider an

ultracold, dilute Fermi gas and short-range interactions.
Hence only s-wave states contribute to the dynamics and
we will only consider these modes in the following. The
two main processes contributing to the dynamics are re-
flected in the s-wave contributions n1,2(t, k) shown in
Fig. 2 (k refers to the s-wave radial momentum). First,
in |FS1〉 the sudden switch on of the impurity leads to the
generation of particle-hole fluctuations within the Fermi
sea that are the origin of the Anderson orthogonality
catastrophe [61]. This dynamics which originates from
the momentum changing collisions of the fermions with
the impurity is well-studied [57, 59]. There is, however,
also the second process corresponding to the spin flips
between the states 1 to 2, and, since we have chosen the
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FIG. 3. Non-equilibrium spin current J. (a) The current
J is shown for EF2/EF1 = 0 as function of the inverse scat-
tering length 1/kF1a for θ = π/4, π/2, 3π/4. (b) J as function
of the spin rotation θ for fixed interaction kF1a = −1.5 and
12. The current J is symmetric with respect to θ and π − θ.
Both cases are evaluated at zero temperature T = 0. The nu-
merically evaluated current J , symbols, agrees well with the
analytical expression (7), solid lines.

second Fermi sea |FS2〉 to be initially empty, one can at-
tribute all atoms found in the state 2 to such spin-flip
processes.
The spin-flip probability Γ(E) inherits its energy de-

pendence from the phase shift δ(E) ≡ δk=
√
2mE that in-

creases monotonically with energy E = k
2/2m. It is de-

termined by recognizing that scattering occurs according
to |↑〉 ⊗ |u〉 → e2iδ(E) |↑〉 ⊗ |u〉, and |↓〉 ⊗ |u〉 → |↓〉 ⊗ |u〉.
From this relation it follows (see App. B)

Γ(E) = sin2 θ sin2 δ(E). (6)

Since the phase shift δ(E) increases monotonously in
magnitude with energy, the spin-flip probability is largest
for fermions close to the Fermi surface. Hence we find the
largest build up of occupations in the reservoir 2 close to
the Fermi energy EF1 of the first Fermi sea.
Experimentally the momentum occupation n2(t, k) can

be measured by transferring the impurity back to its non-
interacting state |d〉 at time t and simultaneously rotating
the Fermi seas back to their ↑, ↓-states. Following the
separation of the spin states ↑ and ↓ by a Stern-Gerlach
procedure, the momentum distribution is obtained from
a time-of-flight measurement. Since the dynamics has
been initialized with an empty reservoir 2, all observed
atoms in the atomic ↓-state can be attributed to the spin-
flip dynamics. This allows one to achieve measurements
with a high signal-to-noise ratio.

We find that the current flow is not only unidirectional
from reservoir 1 to 2 at early times, but remains so also
at long times. This effect can be understood in a picture
where the Fermi sea is decomposed into wave packets that
are localized both in energy and space [59]. When these
wave packets are scattered off the impurity they move
ballistically outwards and can not re-scatter. If their spin
has been flipped in the scattering process they are thus
forced to remain in the final spin state. Note that in the
scattering process the wave packet becomes a superpo-
sition of a spin-flipped and spin-conserved components.
In real space this effect will be visible as an ever grow-
ing cloud of atoms with spin-flipped components moving
outwards from the impurity center.
Summing over the occupation numbers Nσ(t) =

∑

k nσ(k, t) we numerically find that after a short ini-
tial time a steady current N2(t) = Jt is established.

Here the current is defined as J = d∆N(t)
dt with ∆N(t) =

N2(t)−N2(0). The current can also be determined ana-
lytically by integrating the spin-flip probability Γ(E) in
Eq. (6) over the occupation of the reservoir 1. With the

phase shift δ(E) = − tan−1(a
√
2mE), we arrive at

J =

ˆ EF1

0

dE

2π
Γ(E) = sin2 θ

2ma2EF1 − ln(1 + 2ma2EF1)

4πma2

(7)

Fig. 3 demonstrates that the data, obtained by the func-
tional determinant approach (FDA), see App. A for de-
tails, is fully described by the analytical expression. This
figure also illustrates how the spin current J can be con-
trolled in various ways. For instance, changing the di-
mensionless scattering length kFa, the largest current is
achieved at resonance where a diverges and the scatter-
ing rate is thus maximal. The symmetry between positive
and negative values of kFa, directly apparent from the
analytical result Eq. (7) (cf. also Fig. 3(a)), indicates
that the bound state, existing for a > 0 is not relevant
for the spin transport dynamics at long times. Moreover,
as shown in Fig. 3(b), the spin current J can be adjusted
by the polarization angle θ, which determines the ratio of
the off-diagonal to diagonal matrix elements in Eq. (5).
As can be seen from Fig. 3(b) J increases monotonically
with θ and reaches its maximum at θ = π/2.

B. Full counting statistics of spin current

In solid-state systems it is notoriously difficult to mi-
croscopically observe spin transport dynamics on the
level of a few spins. By contrast, with cold atoms one can
directly count the number of transferred spins by absorp-
tion imaging. Moreover, spin counting can be achieved in
real-time by destructively measuring the particle number
at arbitrary times because of the characteristically slow
dynamics of cold atomic system [45]. This brings about
the possibility to study time-resolved shot-to-shot fluctu-
ations.
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FIG. 4. Full counting statistics. Probability PN2
to mea-

sureN2 atoms for rotation angle θ = π/2 and EF2/EF1 = 0 at
zero temperature for kF1a = −0.5 [Fig. (a,b)], and kF1a = −6
[Fig. (c,d)]. The left panels show PN2

(t) as a function of
the time tEF1 and transferred spin number N2 as obtained
from the numerically exact FDA calculation. The right panels
show PN2

(t) at fixed times tEF1 = 10 and tEF1 = 100. The
numerical results are shown as blue bars and the analytical
prediction from Eq. (9) is shown as red circles. In the upper
panel of Fig. (d) we do not show analytical data as at such
short times and strong interactions Eq. (9) becomes invalid.

While the current J gives the averaged particle number
N2(t) transferred per time between the Fermi seas, in
each individual experimental measurement the observed
number N2 will fluctuate. The corresponding probability
PN2

to measure a certain transferred particle number N2

in an individual experimental realization — also called
the ‘full counting statistics’ (FCS) of N2 — is given as
the Fourier transformation of the characteristic function

χ(λ, t) ≡ 〈eiλN̂ 〉(t) =
∑

N

PN (t)eiλN (8)

with respect to the counting parameter λ.
The characteristic function χ(λ, t) contains all in-

formation about the distribution of counted particles.
In particular arbitrary moments of the distribution
PN (t) can be computed by differentiation 〈N̂n〉t =

dn

d(iλ)nχ(λ, t)|λ=0. Since N̂ is a bilinear, one can com-

pute χ(λ, t) exactly using the functional determinant ap-
proach (FDA), from which PN (t) then follows from a
Fourier transform.
In Fig. 4(a,c) we show the time evolution of PN2

for in-
termediate and strong interactions at zero temperature
and polarization angle θ = π/2 as function of time t
and N2. After sufficiently long times, the distribution is
peaked around its mean value, and tracking the linear

evolution of the mean with time makes the development
of the steady spin current J evident. However, what is
the distribution of measured N2 away from its mean?
This question is studied in Fig. 4(b,d) where the distri-
bution PN2

(t) obtained from the FDA is shown at fixed
times tEF1 = 10 and 100 as blue bars.
The observed distributions can again be studied in a

wave packet picture. Over time wave packets reach the
impurity and either remain in the original spin reservoir
(only picking up a scattering phase shift) or they un-
dergo a spin-changing collision. For N incoming particles
within a time span t there are N trials to flip the spin.
This line of argument leads us to Levitov’s formula that
describes fermions transmitted through a multi-channel
barrier at zero temperature [3, 13],

lnχ(λ, t) = t

ˆ EF1

0

dE

2π~
ln[1 + Γ(E)(eiλ − 1)]. (9)

The data obtained from this expression, which is valid in
the long-time limit, is shown as red circles in Fig. 4(b,d).
The excellent agreement with the exact numerical re-
sult underlines the accuracy of the intuitive picture of
wave packets of fermions scattering of the impurity and
thereby flipping their spin with a finite probability. One
can understand the FCS derived from Eq. (9) in various
regimes analytically. For very weak coupling |kFa| ≪ 1,
where δk = −ka, Eq. (9) reduces to the characteristic
function of a Poisson distribution. At unitarity (where
a tends to infinity), δk = π/2, Γ(E) is independent of
energy, and Eq. (9) becomes the characteristic function
of a binomial distribution. Finally, in the regime in be-
tween, Eq. (9) represents a superposition of binomial dis-
tributions; see App. C. We note that a finite number of
impurities leads to deviations from the FCS studied in
this section, as discussed in App. G.

IV. NON-EQUILIBRIUM ORTHOGONALITY

CATASTROPHE

So far we discussed how to employ the fermionic
medium as a probe to study transport. However, our sys-
tem also allows us to use the impurity as a probe of the
many-body dynamics to study the ‘non-equilibrium or-
thogonality catastrophe’ (NOC). In the ‘conventional’ or-
thogonality catastrophe, as introduced by Anderson [61]
and then extended to dynamics by Nozieres et al. [62],
one considers a single-component Fermi gas in its ground
state into which a scattering potential is suddenly intro-
duced. This results in a quantum quench dynamics ex-
hibiting a characteristic power law decay of the impurity
Greens function [62–65]. Extending this scenario, where
the Fermi sea is initially in an equilibrium state, the non-
equilibrium orthogonality catastrophe refers to the situ-
ation where the system is initially in a non-equilibrium
state. This scenario is realized in our setup since the
system, despite being in a pure state, is initially not in



6

its energetic ground state of the non-interacting Hamil-
tonian Ĥ0 due to the large spin imbalance between the
two reservoirs.
Previously it has been shown that quite generally the

sudden introduction of a scattering potential into a sys-
tem exhibiting Fermi baths with multiple Fermi edges (in
our case two), leads to a dynamical response of the sys-
tem that features modified power-laws accompanied by
exponential dampening [66–69]. Here we bring together
the results of these previous works as well as the study of
subleading excitation branches and bottom-of-the-band
dynamics introduced in Refs. [57, 59], and show how the
dynamics can be observed in ultracold atom experiments.
Combining both analysis allows us to analytically un-
cover a non-trivial connection between the decay of the
Ramsey contrast and the tail of the FCS of spin trans-
port. However, before we turn to the analytical analysis
of the NOC, we consider the exact numerical solution of
the problem and outline how it can be probed in experi-
ments.

A. Ramsey Spectroscopy

One of the key signatures of the NOC is contained in
the impurity Green’s function that can be probed directly
in Ramsey spectroscopy. To this end, the Fermi gas (in
this section we allow for a finite Fermi energy EF2) is first
prepared in its initial non-equilibrium state by a spin
rotation of the polarization angle θ leading to |ψF 〉 =
|FS1〉 ⊗ |FS2〉 (cf. Fig. 1). This is followed by a π/2 rf
pulse acting on the impurity hyperfine states so that the
initial state of the system reads |Ψ(0)〉 = 1√

2
(|u〉+ |d〉)⊗

|ψF 〉. After a time evolution for a time t, the expectation
value of σ̂x of the impurity spin is measured which yields
the Ramsey signal [57, 59, 70]

〈σ̂x〉 = Re〈ψF |eiĤ0te−iĤ1t|ψF 〉 = ReS(t). (10)

Moreover, by choosing the phase of the closing π/2 pulse,
the complex signal S(t) can be measured [57] which pro-
vides access to the full time-dependent response of the
impurity spin [57, 70].

As described in App. A, the overlap S(t) can be ob-
tained numerically exactly using the FDA. The FDA
allows us to map the calculation of many-body wave
function overlaps onto the evaluation of determinants in
single-particle Hilbert space. For S(t) one obtains

S(t) = 〈ψF | eiĤ0te−iĤ1t |ψF 〉 = det[✶+ n̂(R̂− ✶)]. (11)

Additional to ✶ = diag(1, 1), Eq. (11) contains two
non-commuting block matrices: the two-component dis-
tribution matrix n̂ = diag(n̂1, n̂2) that is diagonal in

the (1,2)-basis (n̂i = 1/(eβ(ĥ0,i−µi) + 1)) and the ma-

trix R̂ = diag(eiĥ0,↑te−iĥ1,↑t, 1̂) which acts diagonally in

the (↑, ↓)-basis. Here ĥ0,↑, ĥ1,↑, and ĥ0,i are the single-
particle representations of the many-body Hamiltonian
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FIG. 5. Ramsey signal of the impurity. (a) Ramsey
contrast |S(t)| for θ = 3π/4, scattering length kF1a = 1.5
and temperature T = 0. Red, blue, green symbols corre-
spond to the numerical FDA result for EF2/EF1 = 0.75,
EF2/EF1 = 0.4, and EF2/EF1 = 0, respectively, while
the solid lines show the analytical prediction obtained from
Eq. (14), with coefficients C obtained from fits to the data.
(b) Real and imaginary part of the Ramsey signal com-
puted numerically using the FDA (symbols) for θ = 3π/4,
kF1a = 1.5 and EF2/EF1 = 0.75. The solid lines are obtained
from the asymptotic form, Eq. (23), using the coefficients C
as fit parameters.

Ĥ0,↑ =
∑

k ǫkĉ
†
k↑ĉk↑, Ĥ1,↑ = Ĥ0,↑ + V0

V
∑

kq ĉ
†
k↑ĉq↑ and

Ĥ0,i=1/2 =
∑

k ǫkd̂
†
kid̂ki, respectively.

The time evolution of S(t) at zero temperature is
shown in Fig. 5 for EF1 6= EF2. We find that S(t) devel-
ops oscillations and an exponential damping at long times
that persists even at zero temperature. In the conven-
tional orthogonality catastrophe, an exponential decay of
S(t) is observed only for finite temperature T > 0. There
it indicates thermal decoherence due to the thermal oc-
cupation of single particle states given by the Fermi dis-
tribution nk. Thus one might be tempted to assume
that the exponential decay observed in the NOC might
be related to the development of a quasi-thermal state
of the Fermi bath, which in turn induces quasi-thermal
decoherence. However, as we have seen in the previous
discussion that nσ(t, k) does not reach a thermal state;
see, e.g., Fig. 2. Therefore, the exponential decay of S(t)
must have a different origin and we will discuss below by
analytical means.
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B. Analytical approach to the asymptotic behavior

of S(t) at zero temperature

Building on the insight from the numerically exact so-
lution using the FDA, one may use the theory of Toeplitz
determinants to derive analytical expressions that de-
scribe the exact dynamics with high accuracy also at
intermediate times. To find such a description we first
map the problem of an impurity interacting with two
Fermi seas to the case of an impurity interacting with a
single-component Fermi sea. To this end we express both
n̂ and R̂ in the (↑, ↓) basis using a unitary transformation

(|1〉 , |2〉)T = Û(|↑〉 , |↓〉)T . A straightforward calculation
(see App. D) shows that Eq. (11) can be expressed as

S(t) = det[1 + (eiĥ0,↑te−iĥ1,↑t − 1)n̂(E)] (12)

where the associated single-particle occupation operator
n̂(E) corresponds to the momentum distribution

n(E) = (1− p)nF (E − EF2) + pnF (E − EF1). (13)

This distribution is shown in Fig. 6. It exhibits two Fermi
surfaces at energies EF1 and EF2 and the polarization
p = cos2(θ/2) determines the occupation of the middle
plateau in n(E). Using this transformation we have thus
mapped the dynamics of the two-component Fermi gas
onto the dynamics of a one component Fermi gas featur-
ing two Fermi edges for which long-time solutions have
been discussed in the literature [68, 69].

In fact, Eq. (12) already allows one to qualitatively un-
derstand the source of the observed exponential decoher-
ence persistent in the NOC at T = 0. Indeed comparing
Eq. (12) to the functional determinant formula Eq. (A1)
in App. A reveals that the dynamics is effective governed
by a many-body density matrix that describes a single-
component Fermi gas not in a pure but in a mixed state.
It is the classical nature of this state that provides the
resource of exponential decoherence of the observed dy-
namics. We now turn to support this argument by a
quantitative derivation.
Following Refs. [57, 59], we decompose S(t) in terms

of branches of different excitations of the Fermi system.
These so-called ‘excitation branches’ are

(i) Particle-hole excitations near the two Fermi sur-
faces [denoted as (FS1) and (FS2)].

(ii) Excitations from the bottom-of-the-band (FB).

(iii) For a > 0, excitations involving the bound
state (BS).

We focus first on the ‘attractive interaction regime’,
where the scattering length a, as determined by the low-
energy expansion of the phase shift δk = −ka, is negative,
a < 0. Using the formulation in terms of a single Fermi
sea, the asymptotic behavior of S(t) can be organized as

S(t) =
∑

n1+n2+n3=0

Cn1,n2,n3 e
−iκ0t

· S(FS1)
n1

(t)S(FS2)
n2

(t)S(FB)
n3

(t). (14)

FIG. 6. Effective two-step distribution function. The
expectation value of the effective single-particle occupation
operator n̂(E) is given by a two-step function n(E) =
(1 − p)nF (E − EF2) + pnF (E − EF1) with polarization p =
cos2(θ/2).

Here the subscript ni=1,2 refers to the number of particles
added to or removed from the first and second Fermi
edge, respectively, while n3 < 0 refers to the number
of particles removed from the bottom of the Fermi sea.
Particle number conservation imposes the constraint n1+
n2 + n3 = 0.
While the coefficients Cn1,n2,n3 depend on the micro-

scopic details, the other contributions in Eq. (14) can be
cast in analytical form. The complex-valued constant κ0
is, for instance, given by [68, 69] (see also App. E)

κ0 = ∆E0 − iγ =i

ˆ ∞

0

dE

2π
ln[1 + n(E)(e2iδ(E) − 1)]

=−
ˆ EF2

0

dE

π
δ(E)−

ˆ EF1

EF2

dE

π
δeff(E).

(15)

Here the first term of the last expression is obtained from
the integration from 0 . . . EF2 where n(E) = 1. The sec-
ond term originates from the remaining integration re-
gion EF2 . . . EF1 where n(E) = p < 1. It involves the
effective phase shift defined by

δeff(E) = − i

2
ln
[
1 + p(e2iδ(E) − 1)

]
, (16)

and represents a generalization of Fumi’s theorem (that
expresses the ground state energy as a sum over scatter-
ing phase shifts [71, 72]) of the conventional OC to the
case of spin-flip interactions.
The analytical calculation of the time-dependent fac-

tors Si(t) in Eq. (14) is challenging in a naive bosoniza-
tion approach. Instead, the use of Szegő formula [73–76]
to second order allows one to approach the problem. In-
deed, Gutman and coworkers showed that the contribu-
tions involving exclusively particle-hole fluctuations close
to the two Fermi edges are given by [68, 69]

S
(FS1)
0 (t) ∝ t

−
(

δ̃1
π

)2

(17)

S
(FS2)
0 (t) ∝ t

−
(

δ̃2
π

)2

. (18)
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These expressions represent the Fermi edge singularities
and exhibit a non-trivial power-law behavior with expo-
nents determined by (see App. E)

δ̃1 = δeff(EF1 − 0+) (19)

δ̃2 = δ(EF2 + 0+)− δeff(EF2 − 0+). (20)

Generalizing this analysis to the case where n particles
are added or removed from the Fermi edges at EF1 and
EF2 allows one to describe analytically not only the long-
but also the intermediate-time dynamics with high accu-
racy [68, 69]. In App. E we provide a detailed derivation
that leads to the expressions

S(FS1)
n (t) ∝ e−inEF1t

(1

t

)
(

δ̃1
π
−n

)2

,

S(FS2)
n (t) ∝ e−inEF2t

(1

t

)
(

δ̃2
π
−n

)2

(21)

that are valid in the zero-temperature limit. Note that
here we include the phase factors that depend on the

Fermi energies into the definitions of S
(FS1,2)
n (t), which

is a different convention compared to Ref. [59]. To reflect
this choice we introduced the subindex n = 0 in κ0 given
by Eq. (15).
A further contribution which has so far not been stud-

ied in the context of NOC dynamics originates from pro-
cesses where particles are excited from the bottom of the
band to the two edges of the Fermi sea, leaving holes be-
hind. The corresponding contribution can be found from
few-body theory and reads [57, 59]

S(FB)
n ∝

[ ˆ ∞

0

dE√
E

sin2 δ(E)eiEt
]−n

, (22)

with n ≤ 0.
We now turn to the interaction regime for a > 0, where

a weakly-bound state of energy Eb < 0 exists. Here, the
overlap S(t) can be expressed as

S(t) =
∑

n1+n2+n3+n4=0

Cn1,n2,n3,n4
e−iκ0t

· S(FS1)
n1

(t)S(FS2)
n2

(t)S(FB)
n3

(t)S(BS)
n4

(t).

(23)

The index n4 takes on values 0 or 1, depending on
whether the bound state is occupied or empty; i.e.,

S
(BS)
1 = e−iEbt or S

(BS)
0 = 1, respectively. In Fig. 5(b)

we compare the analytical expression to the numerical
results. Here the coefficients C serve as fit parameters
and we keep only leading contributions with

∑

i |ni| ≤ 2.
We find that the asymptotic form reproduces the ex-
act numerical results with remarkable precision down to
small evolution times. Here the superposition of oscillat-
ing factors from bottom-of-the-band contributions (given
by Eq. (22)), bound-state (proportional to eiEbt) and
Fermi surface contributions (proportional to ∼ e−inEFit,
c.f. Eq. (21)) results in the oscillations visible in Fig. 5.

(a)

(b)

FIG. 7. Asymptotic decay rate γ of the Ramsey sig-

nal. The decay rate γ is shown as a function of scattering
length kF1a for three different values of the polarization an-
gle θ = {π/4, π/2, 3π/4}, an initially empty second reservoir
EF2/EF1 = 0, and temperatures (a) T/TF1 = 0 and (b)
T/TF1 = 0.1. The solid lines are obtained from Eq. (24).

C. Role of finite temperature

In the previous discussion we have found that a key sig-
nature of the non-equilibrium orthogonality catastrophe
is the exponential decay of |S(t)| ∼ e−γt that is present
even at zero temperature. We now focus on the temper-
ature dependence of the decay rate γ. Using the Szegő
theorem for the asymptotic properties of Toeplitz deter-
minants, we find

γ = −Re

ˆ ∞

0

dE

2π
ln[1 + n(E)(e2iδ(E) − 1)]. (24)

In this expression, which follows from Eq. (15) (for details
see App. E), we take into account the energy-dependent
phase shift δ(E) and the temperature-dependent distri-
bution function n(E) given by Eq. (13).
In Fig. 7 this analytical result is compared to the decay

rate obtained from fitting |S(t)| ∼ e−γt to the exact FDA
results at long times. We find excellent agreement be-
tween the numerical FDA data and the analytical expres-
sion both when studying the θ and 1/kF1a dependence of
γ for the two temperatures T/TF = 0 and T/TF = 0.1.
Using the relation Re ln[1 + p(e2iδ(ε) − 1)] = Re ln[1 +

(1−p)(e2iδ(ε)−1)] one finds from the analytical prediction
Eq. (24) that the decay rate is symmetric with respect to
p = 1/2 at zero temperature, as shown by the comparison
of p = cos2(π/4) and p = cos2(3π/4) in Fig. 7(a). At fi-
nite temperatures this symmetry is absent and, as shown
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in Fig. 7(b), we find that p > 1/2 exhibits a larger decay
rate than p < 1/2. The reason for the different decay
rates lies in the fact that it is spin-conserving collisions
within a reservoir, as determined by the diagonal element
of the scattering matrix in Eq. (5), that give rise to ad-
ditional thermal decoherence; and since we have chosen
the reservoir 1 to have a larger occupation, polarizations
p = cos2(θ/2) < 1/2 will give a larger decoherence rate
compared to p > 1/2.

D. Relation between Ramsey interferometry and

the FCS of spin flips

It turns out that the decay rate of the Ramsey signal
has a remarkable relation to the FCS of spin flips. Specif-
ically, we find that the decay rate γ in Eq. (24) and the
FCS at zero temperature and EF2 = 0, as described by
the time-dependent generating function χ in Eq. (9), are
related by (see App. F):

|S(t)| → e
1

2
lnχ(eiλ→0) (25)

From this equation directly follows the relation Eq. (1),

|S(t)| ∼
√

PN=0(t), which holds up to logarithmic cor-
rections.
This relation implies that the Ramsey decoherence is

given by the square root of the probability of having no
spin flips in the time interval 0 . . . t, which fits the notion
of PN=0(t) as an ‘idle-time probability’, similar to the
emptiness probability discussed in other contexts [77, 78].
Thus the Ramsey signal is related directly to the FCS
and thus the intrinsic quantum noise in the number of
observed spin flips. Therefore, the decay of the Ramsey
signal can serve as an indirect probe of the tail of the
FCS at low particle number.
The relation Eq. (1) can be understood as follows: the

Ramsey contrast |S(t)| is determined by the overlap of
many-body states. When the spin of one of the fermions
is flipped, a state of the Fermi system results that is or-
thogonal to the initial state, leading to a vanishing Ram-
sey contrast. Therefore, finding a finite Ramsey contrast
requires configurations that have no fermion spin flipped.
The probability of such a configuration is PN=0. The
Ramsey contrast |S(t)| measures, however, an amplitude

(cf. Eq. (11)) so that |S(t)| is proportional to
√
PN=0.

V. CONCLUSION AND DISCUSSION

In this work we proposed an ultracold atom experi-
ment where impurities are coupled to a spin-imbalanced
two-component Fermi gas. The setup allows one to
study fundamental relations between quantum fluctua-
tions in transport and dephasing dynamics. Specifically,
we showed that applying rf pulses to the Fermi system

provides a means to realize initial non-equilibrium spin
populations that are required to study spin transport.
Based on a functional determinant approach we explored
the full counting statistics of the spin flips that accom-
pany the spin current generated in our setup.
Furthermore, we showed that the dynamics of the

many-body wavefunction can be explored using Ramsey
interferometry. This opens the path toward the study
of the non-equilibrium orthogonality catastrophe (NOC)
with ultracold quantum gases. The NOC is characterized
by a decay of the Ramsey signal which is exponential al-
though the system is initially in a pure quantum state,
and one thus might have naively expected a power-law
decay as obtained for the Fermi edge singularity. By
mapping the problem onto a multi-Fermi edge scenario
in energy space, we obtained analytic predictions for the
long-time impurity response and, in particular, for its
exponential decay rate. This allowed us to uncover a re-
lation between the FCS of spin flips and the rate at which
the Ramsey contrast of the impurity decays. In this work
we considered local quench-type dynamics, in which the
impurity strength is changed only once. In order to ex-
plore a broader class of non-equilibrium phenomena, one
may include multiple quenches of the scattering phase
shift. Mathematically handling such multiple disconti-
nuities will require a further generalization of the the-
ory of Toeplitz determinants with Fisher-Hartwig singu-
larities [69]. In this respect ultracold atom experiments
might provide a quantum tool to explore mathematical
problems for which solutions have yet to be found.
Moreover, in the present work we did not attempt to

explore ways to explicitly control the FCS of spin flips.
In this regard it will be interesting to study whether it is
possible to suppress fluctuations imprinted in the FCS by
controlling and manipulating the impurity potential sim-
ilarly to the realization of a source of pure single-particle
spin transmission [10, 13, 79]. Finally, it has recently
been shown that von Neumann and the Renyi entangle-
ment entropies can be expressed in terms of even order
cumulants [80, 81]. The fact that the full counting statis-
tics contains the information about moments of arbitrary
order thus suggests that our proposed scheme might en-
able one to further explore the relation between entangle-
ment dynamics and full counting statistics in cold atom
experiments.
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Appendix A: Functional determinant approach and solution of the single-particle problem

For any bilinear many-body operator X̂α =
∑

ij 〈i| x̂α |j〉 ĉ†i ĉj , we can make use of the identity

〈eX̂1 · · · eX̂N 〉 = Tr[ρ̂eX̂1 · · · eX̂N ] = det(1− n̂+ n̂ex̂1 · · · ex̂N ), (A1)

with ρ̂ the density matrix and n̂ denotes the corresponding single-particle occupation operator. Hence, S(t) can be
expressed as

S(t) = 〈eiĤ0te−iĤ1t〉 = det[1̂− n̂+ n̂eiĥ0te−iĥ1t], (A2)

where ĥ0 and ĥ1 are the single-particle Hamiltonians in the absence and presence of impurity, respectively. To evaluate

the functional determinant numerically, we work in the basis of single-particle eigenstates of ĥ0 and ĥ1.
To this end, we solve the single particle problem in the presence of localized impurity. The Schrödinger equation

for the two-component host fermions is given by
(

−∇2

2m + V (r) cos2( θ2 ) V (r) cos( θ2 ) sin(
θ
2 )

V (r) cos( θ2 ) sin(
θ
2 ) −∇2

2m + V (r) sin2( θ2 )

)(
ψ1(r)
ψ2(r)

)

= E

(
ψ1(r)
ψ2(r)

)

(A3)

where V (r) is the short-range potential. For our numerics we consider a finite system confined in a sphere of radius
R chosen large enough so that finite size corrections are negligible. For short-range interactions only the s-wave
components of the scattering wave functions experience a phase shift. Defining the radial wavefunction φn(r) via

ψn(r) = φn(r)/(
√
4πr) with nodal quantum number n, Eq. (A3) is expressed as a radial one-dimensional Schrödinger

equation. The interaction between the impurity and itinerant fermions is fully characterized by the scattering length
a with the s-wave scattering phase shift given by δk = − tan−1 ka.

When the host fermions do not interact with the impurity, the eigenfunctions are given by

φ1,n(r) =

√

2

R
sin(knr)⊗ |1〉, φ2,n(r) =

√

2

R
sin(knr)⊗ |2〉, (A4)

with the boundary condition knR = nπ.

In presence of the scattering potential, Eq. (A3) has solutions with energies En = k′n
2
/2m that are determined by

k′nR+ δk′
n
= nπ and eigenstates

φn(r) = An

√

2

R
sin(k′nr + δkn

)⊗
[

cos

(
θ

2

)

|1〉+ sin

(
θ

2

)

|2〉
]

(A5)

where An = 1/

√

1 +
sin 2δk′

n

2k′
nR

. There exists also a second set of solutions that is given by the noninteracting solutions

determined by E0(n) = (kn)
2/(2m) and

φ0,n(r) =

√

2

R
sin(knr)⊗

[

sin

(
θ

2

)

|1〉 − cos

(
θ

2

)

|2〉
]

. (A6)

Finally, for a > 0 a bound state exists with energy Eb = −1/(2ma2) and eigenfunction

φb(r) = Abe
−r/a ⊗

[

cos

(
θ

2

)

|1〉+ sin

(
θ

2

)

|2〉
]

. (A7)

Here Ab =
√

2
a up to corrections that vanish as R→ ∞.

Appendix B: Spin flip probability Γ(E)

Here we derive an analytical expression for the spin flip probability Γ(E) given by Eq. (6) in the main text.
Scattering occurs only between fermions in their | ↑〉 spin state and the impurity in the |u〉 state:

| ↑〉 ⊗ |u〉 7→ ei2δ(E)| ↑〉 ⊗ |u〉
| ↑〉 ⊗ |d〉 7→ | ↑〉 ⊗ |d〉
| ↓〉 ⊗ |u〉 7→ | ↓〉 ⊗ |u〉
| ↓〉 ⊗ |d〉 7→ | ↓〉 ⊗ |d〉, (B1)



14

where δ(E) is the energy-dependent phase shift.
Initially we apply a spin rotation such that each fermion is prepared in a superposition state

|1〉 = cos(θ/2)| ↑〉 − sin(θ/2)| ↓〉, (B2)

|2〉 = sin(θ/2)| ↑〉+ cos(θ/2)| ↓〉. (B3)

When the impurity is switched into the interacting state |u〉, the bath fermions, now prepared in states |1〉 to |2〉,
undergo spin flip interactions. Using Eq. (B1) this scattering process is described by

|1〉 7→ cos(θ/2)ei2δ(E)| ↑〉 − sin(θ/2)| ↓〉, (B4)

|2〉 7→ sin(θ/2)ei2δ(E)| ↑〉+ cos(θ/2)| ↓〉 (B5)

When rewriting this process in the basis of |1〉, |2〉

|1〉 7→ [ei2δ(E) cos2(θ/2) + sin2(θ/2)]|1〉
+(ei2δ(E) − 1) sin(θ/2) cos(θ/2)|2〉, (B6)

|2〉 7→ (ei2δ(E) − 1) sin(θ/2) cos(θ/2)|1〉
+[ei2δ(E) sin2(θ/2) + cos2(θ/2)]|2〉, (B7)

one can directly read of the spin flip probability

Γ(E) = |(ei2δ(E) − 1) sin(θ/2) cos(θ/2)|2 = sin2 θ sin2 δ(E). (B8)

Appendix C: Non-equilibrium momentum population and FCS in a given energy interval

Eq. (9) shows that the FCS of the total number of spin flips is determined as a sum involving the scattering
probability for each momentum mode of the fermions. Hence, according to this expression, the FCS of spin flips in
each individual momentum mode gives rise to a binomial distribution. In this appendix, we show that this argument
is indeed confirmed by exact numerical simulation using the FDA.
To this end, we prepare an initial state where the second Fermi sea of component |2〉 is empty and where the

momentum distribution of the fermions in the state |1〉 has only a small interval of energy levels that are occupied.
The spin flip rate, as given by Eq. (6), depends on the scattering phase shift δ(E) that increases monotonously with
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FIG. 8. Non-equilibrium momentum population and FCS obtained in a scenario where in the initial state fermions occupy
only a small energy interval. In the upper panel fermions occupy a low-energy interval while in the lower panel higher energies
are occupied. The second component |2〉 is initially empty while the first component |1〉 has a finite occupation. The interaction
strength is characterized by kF1a = −0.5. (a,d) Energy-resolved occupation by the first and second spin component. The FCS
of the number of spin flips PN2

(t) is shown in (b) and (e) for tEF1 = 10, and at tEF1 = 100 in (c) and (f). The numerical FDA
results (blue bars) are compared to a binomial distribution (red crosses).
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FIG. 9. Non-equilibrium momentum population and FCS starting from initial occupations in a small energy interval as in
Fig. 8, here for interactions characterized by kF1a = −12.

E (considering a < 0). Consequently, at a fixed interaction strength kF1a, fermions in lower energy modes should
experience a smaller spin flip rate.
This is confirmed by the numerical simulation shown in Fig. 8 for moderate interaction strength kF1a = −0.5.

In the upper panel we show the time evolution of the FCS for an initial state occupation confined to a low-energy
interval, while for the lower panel higher energy-modes are occupied initially. Confirming our expectation from the
analytical result Eq. (9), in both cases the FCS of total spin flips (Fig. 8(b,c) and (e,f), respectively) obeys a binomial
distribution. Furthermore, for higher energies the spin flip probability is indeed enhanced. In Fig. 9 we repeat the
simulation for a interaction strength kF1a = −12 further corroborating our findings.

Note that in the momentum resolved distributions shown in the left panels of the figures a broadening of the initially
sharp distribution function can be seen. This broadening is due to the sudden quench of interactions which projects
the initially occupied states into the eigenstates of the interacting Hamiltonian. The overlaps to these states are non-
zero also for states outside of the initial energy window which represents the scattering of the fermions to different
momentum state upon collisions with the impurity and that leads to the broadening of the momentum distribution.

Appendix D: Mapping onto a single-component Fermi gas

The time-dependent response S(t) is obtained from the determinant det(✶+ n̂(R̂− ✶)), where the two-component
occupation matrix n̂ = diag(n̂1, n̂2) is diagonal in the rotated atomic (1, 2)-basis. The matrix representing the

dynamics, R̂ = diag(eiĥ0,↑t/~e−iĥ1,↑t/~, 1̂) = diag(e2iδ̂θ(t), 1̂), is on the other hand diagonal in the non-rotated basis

(↑, ↓). In these expressions n̂1/n̂2 are the number operators, and δ̂ is the phase shift operator that applies the scattering
phase shift to scattering wave packets.
To compute S(t), we first write both n̂ and R̂ in the basis | ↑〉 and | ↓〉 using the unitary transformation (|1〉, |2〉)T =

Û(| ↑〉, | ↓〉)T , with

U =

(
cos( θ2 ) − sin( θ2 )
sin( θ2 ) cos( θ2 )

)

, (D1)

to express n̂ as n̂ = Û †diag(n̂1, n̂2)Û . We obtain

S(t) = det
[(

1̂ 0

0 1̂

)

+ Û†
(
n̂1 0
0 n̂2

)

Û

(

e2iδ̂θ(t) − 1̂ 0
0 0

)]

(D2)

= det
[(

1̂ 0

0 1̂

)

+

(

n̂1 cos
2( θ2 ) + n̂2 sin

2( θ2 )
(n̂2−n̂1)

2 sin(θ)
(n̂2−n̂1)

2 sin(θ) n̂2 cos
2( θ2 ) + n̂1 sin

2( θ2 )

)(

e2iδ̂θ(t) − 1̂ 0
0 0

)]

(D3)

= det(1̂ + (e2iδ̂θ(t) − 1̂)n̂(E)) (D4)
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where n̂(E) = n̂1 cos
2(θ/2) + n̂2 sin

2(θ/2) represents a one-component distribution exhibiting two Fermi surfaces. It
is determined by

n(E) = (1− p)nF (E − EF2) + pnF (E − EF1), (D5)

where we assumed EF2 < EF1 and defined the polarization angle p = cos2(θ/2).

Appendix E: Fermi surface dynamics from Toeplitz matrices

In this Appendix we study the Fermi surface contributions to the time-dependent overlap function

S(t) = 〈ψF |eiĤ0t/~e−iĤ1t/~|ψF 〉 = det[1− n̂+ n̂eiĥ0t/~e−iĥ1t/~] (E1)

using the theory of Toeplitz matrices. Here ĥ1 and ĥ0 are the single-particle representations of the many-body
Hamiltonian describing the interaction of an impurity with a single-component Fermi gas. In Eq. (E1) we have used
the mapping onto a single component Fermi gas so that n̂ is the occupation operator given by Eq. (D5). By inspection
of Eq. (A1) it is evident that in this representation the system can be understood to be described by a mixed density
matrix. In contrast, without the mapping the ket |ψF 〉 on the LHS of Eq. (E1) represents the pure initial state of the
system given by |ψF 〉 = |FS1〉 ⊗ |FS2〉.
In the following we work in a basis of wave packets localized in time and energy [75]. In this basis the time evolution

operator eiĥ0t/~e−iĥ1t/~ acts approximately diagonally in energy. Following Refs. [59, 68], time may be descretized
according to t = N∆t where we introduce the time interval ∆t = ~π/Λ and a high-energy cutoff Λ. The overlap S(t)
can then be rewritten in terms of an N ×N Toeplitz matrix σ̂:

S(t) = det












σ0 σ−1 σ−2 · · · σ−N+1

σ1 σ0 σ−1
. . .

...

σ2 σ1
. . . · · · σ−2

...
. . .

. . . σ0 σ−1

σN−1 · · · σ2 σ1 σ0












. (E2)

The matrix elements σk (k is here a time index) follow from Fourier transformation

σk =

ˆ 2Λ

0

dEeiEk∆t/~

2Λ~
σ(E), (E3)

of the kernel

σ(E) = eiEδ/Λ(1− n(E) + n(E)ei2δ), (E4)

that is diagonal in energy. The high energy regularization of the integral In Eq. (E3) follows from the definition of the
time-interval ∆t = ~π/Λ so that energies are restricted to the interval E ∈ (0, 2Λ]. Furthermore, following Gutman
et al. [68], we have imposed a phase factor eiEδ/Λ in the kernel σ̂ in Eq. (E4). Introducing the angular variable

θ ≡ E∆t/~ defined on a unit circle θ ∈ (0, 2π] to express σk =
´ 2π

0
dθeiθk

2π σ(θ) the phase factor ensures periodicity of
the kernel σ(θ) on (0, 2π] in Eq. (E4). In the end of the calculation we will take the limit Λ → ∞ so that the phase
factor will disappear.
The kernel now obeys periodic boundary conditions limE→0 σ(E) = limE→2Λ σ(E) [68]. This allows us to apply

the Szegő theorem [82] to find the asymptotic properties of the Toeplitz matrix SN defined by Eq. (E2) in the limit
of large N . Since N = t/∆t, considering large N corresponds to the limit of long times t. For large N the Szegő
theorem states that

ln det σ̂ ∼ N [lnσ(θ)]0 +
∞∑

k=1

k[lnσ(θ)]k[lnσ(θ)]−k. (E5)

The Szegő theorem demands lnσ(θ) to be be a smooth function with Fourier harmonics [lnσ(θ)]k =
´ 2π

0
dθ
2π lnσ(θ)e−ikθ. In our case the smoothness of σ(E) is, however, not guaranteed and we rely on the Fisher-

Hartwig (FH) conjecture that extends the applicability of Eq. (E5) [68, 69, 76]. In fact in Ref. [68, 69] it was shown
that also for Fermi distributions with multiple steps the naive formula following from the strong Szegő theorem still
leads to correct results.
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Expressing the real-time overlap function as

det σ̂ ∝ e−iκt+c(t), (E6)

the first term of Eq. (E5) yields a term with a linear dependence on time,

−itκ =
{

N

ˆ 2π

0

dθ

2π
lnσ(θ)

}

=
{

N

ˆ 2Λ

0

∆tdE

2π~
lnσ(E)

}

→
{

t

ˆ ∞

0

dE

2π~
ln(1− n(E) + n(E)ei2δ)

}

, (E7)

where in the last line we have taken the limit Λ → ∞ so that σ(E) → 1−n(E)+n(E)ei2δ. Accordingly the exponential
decay rate γ, defined by |S(t)| ∼ e−γt, is given by

γ = −Re
{ ˆ ∞

0

dE

2π~
ln(1− n(E) + n(E)ei2δ)

}

. (E8)

Remarkably, Gutman and coworkers [68] showed that also for subleading contribution c(t) defined in Eq. (E6) an
analytical expression can be found. It is determined by the second term

∑∞
k=1 k[lnσ(θ)]k[lnσ(θ)]−k in Eq. (E5) and

as shown in [68] it leads to a non-trivial power-law behavior in time. Following Ref. [68] we consider zero temperature
T = 0 and the double step distribution function (EF2 < EF1),

n(E) = (1− p)θ(EF2 − E) + pθ(EF1 − E). (E9)

The regularized kernel in Eq. (E4) takes the form [68]

σ(E) = eiEδ/Λ ×







e2iδ , 0 < E < EF2

1 + p(ei2δ − 1) , EF2 < E < EF1

1 , EF1 < E
(E10)

Thus 1
2i lnσ(E) can be expressed as:

1

2i
lnσ(E) =

Eδ

2Λ
+







δ , 0 < E < EF2

δ̃eff(E) ≡ − i
2 ln

[
1 + (e2iδ − 1)p

]
, EF2 < E < EF1

0 , EF1 < E
. (E11)

The Fourier harmonics [lnσ(E)]k 6=0 =
´ 2Λ

0
∆tdE
2π~ lnσ(E)e−ik∆tE/~ required for the evaluation of Eq. (E5) are given by

[lnσ(θ)]k 6=0 = − 1

πk
[δ̃1e

−ikEF1∆t + δ̃2e
−ikEF2∆t ] (E12)

where δ̃1 = δ̃eff(EF1 − 0+) and δ̃2 = δ − δ̃eff(EF2 − 0+) take into account the phase jumps at Fermi energies EF1 and
EF2. From Eq. (E12) the second term of Eq. (E5) follows:

∞∑

k=1

k[lnσ(θ)]k[lnσ(θ)]−k = −
∞∑

k=1

1

π2k
[δ̃21 + δ̃22 + 2δ̃1δ̃2 cos

(
k∆t(EF1 − EF2)

)
]

∼ −
ˆ t

∆t

dτ
1

π2τ
[δ̃21 + δ̃22 + 2δ̃1δ̃2 cos

(
τ(EF1 − EF2)

)
]. (E13)

When EF1 = EF2, Eq. (E13) gives − δ2

π2 ln
tΛ
π , which recovers correctly the power-law decay of S(t) characteristic

for the Anderson OC that considers a single-component Fermi sea with a single Fermi edge. For EF1 6= EF2 in the
long-time limit defined by t|EF1 − EF2| ≫ 1, Eq. (E13) leads to

∞∑

k=1

k[lnσ(θ)]k[lnσ(θ)]−k ∼ −(
δ̃21
π2

+
δ̃22
π2

) ln
tΛ

π
− 2δ̃1δ̃2[ln

π(EF1 − EF2)

Λ
+ γ − π2(EF1 − EF2)

2

4Λ2
] (E14)

where we applied the limit ∆t → 0 (i.e. Λ → ∞) and performed the cosine integral Ci(x) =
´∞
x
du cos(u)

u ≈ lnx+γ− x2

4

with γ the Euler-Mascheroni constant. Note that the last term in Eq. (E14), which is proportional to δ̃1δ̃2, is time-
independent.
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Combining all results for the case of two Fermi steps assuming EF2 < EF1 we obtain the long-time behavior of the
contribution from particle-hole excitations at the two Fermi edges as

S(FS)(t) ∝ t−(
δ̃2
1

π2
+

δ̃2
2

π2
)e−iκ0t. (E15)

Thus we identify S
(FS1)
0 (t) ∼ t−

δ̃2
1

π2 at Fermi edge EF1 and S
(FS2)
0 (t) = t−

δ̃2
2

π2 at the Fermi edge EF2 where

δ̃1 = δ̃eff(EF1 − 0+) (E16)

δ̃2 = δ̃k(EF2 + 0+)− δ̃eff(EF2 − 0+). (E17)

Inspired by previous studies of Fermi surface contributions with n 6= 0 for the case of an impurity interacting with
a single-component Fermi gas in its ground state [59] we may now straightforwardly conjecture the generalization to
our case of a spin-flip Hamiltonian (5) and arrive at

S(FS1)
n (t) ∝ e−inEF1t

(1

t

)(
δ̃1
π
−n)2

,

S(FS2)
n (t) ∝ e−inEF2t

(1

t

)(
δ̃2
π
−n)2

. (E18)

Finally we note, that in Eqs. (E7) and (E8) one may reintroduced the energy dependent phase shift δ(E) on a
phenomenological basis and also apply those results to the case of finite temperature. Indeed we find that these
expressions yield excellent agreement with exact numerical results for a large range of temperatures (see Fig. 7). In
fact Eqs. (E7) and (E8) represent a direct generalization of previous findings [59] which were restricted to the case of
an impurity interacting with a Fermi gas with a single Fermi-step distribution n(E), to the case of non-equilibrium
fermions with a multi-step distribution that fulfills n(E) = 1 for E = 0 and n(E) = 0 for E → ∞.

Appendix F: Relation of Ramsey decoherence and FCS

The exponential decay rate of the Ramsey signal at long times at T = 0 and EF2 = 0 is determined by

A = −γ = ln |S(t)| = Re lnS(t) = t

ˆ EF1

0

dE

2π
Re ln[1 + p(e2iδ(E) − 1)] (F1)

where p = cos2 θ/2 is the polarization angle. Using Re ln z = ln |z| one finds

A = t

ˆ EF1

0

dE

2π
ln
∣
∣
∣1 + p(e2iδ(E) − 1)

∣
∣
∣

= t

ˆ EF1

0

dE

2π

1

2
ln [1− 2p(1− p)(1− cos 2δ(E))] . (F2)

Now consider the quantity

B =
1

2
lnχ(eiλ → 0) (F3)

where χ is given by Eq. (9), so that

lnχ(eiλ → 0) = t

ˆ EF1

0

dE

2π~
ln[1− Γ(E)]. (F4)

Using Γ(E) = sin2 θ sin2 δ(E), sin2 θ = 4p(1− p) and sin2 δ(E) = (1− cos 2δ)/2 one finds that indeed

B = t

ˆ EF1

0

dE

2π

1

2
ln [1− 2p(1− p)(1− cos 2δ(E))] (F5)

which equals Eq. (F2) and hence we have shown

|S(t)| →
√

χ(eiλ → 0). (F6)

This prescription projects out the contributionN2 = 0 in Eq. (8), so that we can indeed conclude that up to logarithmic
corrections,

|S(t)| =
√

PN=0(t) =

[
ˆ

dλχ(λ, t)

]1/2

. (F7)
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Appendix G: FCS for a finite number of impurities

Experiments that use impurities as probes, are naturally subject to relatively small signal-to-noise ratios due to the
small numbers of impurities. By using the many-body medium itself as a probe, our experimental scheme circumvents
this challenge. In particular, the measured signal can become large at late times, because the impurity can flip an
arbitrary number of spins in the background gas. The fact that many spin flips occur has also a consequence for
theoretical approaches to the impurity-induced spin-transport problem: Since the number of spin-flipped atoms easily
exceeds one, simple variational wave functions based on few-fermion excitations [83–90] are bound to fail.

In typical experimental setups the impurity number will be finite which rises the question of what the influence of

a finite density of impurities is on the observed dynamics. In this regard the typical inter-particle distance d ∼ n
−1/3
I

between impurities of a density nI becomes a relevant length scale. As a very conservative estimate, the dynamics will
be governed by the physics of independent scattering centers as long as times tvF < d (with vF the Fermi velocity)
are considered. Only when tvF > d fermions will be able to scatter from multiple impurities leading to correlated
scattering events that are, for instance, the basis for bath-mediated, Ruderman-Kittel-Kasuya-Yosida (RKKY)-type,
impurity-impurity interactions.
Here, we focus on the regime of a low-impurity density where induced interactions can be neglected. In this case

scattering events are independent and each impurity (representing an independent stochastic variable) is characterized
by a FCS with generating function χ(λ). The probability P̄NTot

2

to measure a total number NTot
2 of spin flipped atoms

in a sample of NI impurities (localized in a central region of a Fermi gas of constant density) is then derived from the
characteristic function

χTot(λ, t) = [χ(λ, t)]
NI . (G1)

The evaluation of the Fourier transform of this expression yields the desired probability

P̄NTot

2

(t) =

ˆ

dλ

[
∑

N2

PN2
(t)eiλN2

]NI

e−iλNTot

2 . (G2)

This equation renders the constraint NTot
2 =

∑

iN2(i), where N2(i) is the number of spin flips produced by the i-th
impurity, particularly transparent. As we have seen, the distribution PN2

is well described by a sum over binomials,
c.f. Eq. (9), so that PN2

has well-defined moments. Thus, by virtue of the central limit theorem, the distribution of
total observed spin flips, P̄NTot

2

, approaches a normal distribution for a sufficiently large number of impurities NI .
This can be seen explicitly as follows: let us assume that the impurities represent independent and identically

distributed random variables N̂(1), · · · , N̂(NI), each with mean value 〈N̂〉 and variance σ2
N . Consequently

∑NI

x=1 N̂(x)

has mean vale NI · 〈N̂〉 and variance NI · σ2
N . As dictated by the central limit theorem, the probability PNTot

2

will
tend towards a normal distribution as the number of independent random variables increases. To make this statement
more precise we follow standard textbooks [91], and define the sum of rescaled variables

ẐNI
=

NI∑

x=1

1√
NI

Ŷx (G3)

where the variables Ŷx = N̂(x)−〈N̂〉
σN

have zero mean and unit variance. The characteristic function of ZNI
is

χẐNI

(λ) = χ∑NI
x=1

1√
NI

Ŷx
(λ) = χŶ1

(
λ√
NI

)χŶ2
(
λ√
NI

) · · ·χŶNI

(
λ√
NI

) =
[
χŶ1

(
λ√
NI

)
]NI

(G4)

where we made use of the fact that χ Ŷx√
NI

(λ) = χŶx
( λ√

NI
). By expanding the characteristic function χŶ1

( λ√
NI

),

χŶ1

(
λ√
NI

)

=
∑

N1

PN1
e
i λ√

NI

N1−〈N̂〉
σN = 1 +

i2λ2

2NI
+O

((
λ√
NI

)3
)

(G5)

the characteristic function χẐNI

(λ) can be written as

χẐNI

(λ) ≃
(

1 +
i2λ2

2NI

)NI

→ e−
λ2

2 (G6)
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FIG. 10. Influence of multiple impurities. FCS P̄
N

Tot

2

of total number of spin flips NTot

2 for strong interactions kF1a = −6

at times (a) tEF1 = 10 and (b) tEF1 = 60 for NI = 1, 4, 16 impurities immersed in the Fermi gas (left to right). The blue
squares represent the exact result from FDA. For the first figure in (a) the normalized Gaussians is not shown. It does not fit
the data since NTot

2 is bound by zero from below.

where we have used ex = limn→0(1+x/n)
n. This last expression shows that, even when the probability distribution of

a single impurity, obtained from 〈eiλN̂ 〉, is not Gaussian, the distribution of the
∑NI

x=1 N̂(x) indeed becomes a normal
distribution as NI → ∞, in accordance with the central limit theorem.
In Fig. 10 we show the spin flip dynamics at strong interactions kF1a = −6, for up to NI = 16 impurities immersed

in a Fermi gas. At long times and for such strong interactions a normal distribution is quickly approached. In this
figure we assume that the spatial inter-impurity separation is chosen such that up to the maximal times shown,
tEF1 = 60, scattering events can be treated as independent. As discussed above, beyond this time scale, multi-
impurity collisions will affect the normal distribution at late times in a non-trivial way, which would be intriguing to
measure experimentally.
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