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Abstract

Background: Functional studies in model organisms, such as vertebrates and Drosophila, have shown that
basic Helix-loop-Helix (bHLH) proteins have important roles in different steps of neurogenesis, from the
acquisition of neural fate to the differentiation into specific neural cell types. However, these studies
highlighted many differences in the expression and function of orthologous bHLH proteins during neural
development between vertebrates and Drosophila. To understand how the functions of neural bHLH genes
have evolved among bilaterians, we have performed a detailed study of bHLH genes during nervous system
development in the polychaete annelid, Platynereis dumerilii, an organism which is evolutionary distant from
both Drosophila and vertebrates.

Results: We have studied Platynereis orthologs of the most important vertebrate neural bHLH genes, i.e.
achaete-scute, neurogenin, atonal, olig, and NeuroD genes, the latter two being genes absent of the Drosophila
genome. We observed that all these genes have specific expression patterns during nervous system
formation in Platynereis. Our data suggest that in Platynereis, like in vertebrates but unlike Drosophila, (i)
neurogenin is the main proneural gene for the formation of the trunk central nervous system, (ii) achaete-
scute and olig genes are involved in neural subtype specification in the central nervous system, in particular
in the specification of the serotonergic phenotype. In addition, we found that the Platynereis NeuroD gene
has a broad and early neuroectodermal expression, which is completely different from the neuronal
expression of vertebrate NeuroD genes.

Conclusion: Our analysis suggests that the Platynereis bHLH genes have both proneural and neuronal
specification functions, in a way more akin to the vertebrate situation than to that of Drosophila. We
conclude that these features are ancestral to bilaterians and have been conserved in the vertebrates and
annelids lineages, but have diverged in the evolutionary lineage leading to Drosophila.
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Background

Neurogenesis is a complex process that involves the for-
mation of a vast array of neuronal and glial cell types that
must be produced in the correct numbers and at appropri-
ate positions. Genetic and molecular studies mainly con-
ducted in Drosophila and vertebrates have shown that
genes encoding transcription factors of the basic Helix-
Loop-Helix (bHLH) class play pivotal roles in various
steps of neurogenesis, including commitment of neural
precursors (proneural function), specification of particu-
lar neuronal identities, and neuronal differentiation [1-5].
Most of the genes encoding bHLH transcription factors
and which are involved in neural development (hereafter
named neural bHLH genes), belong to five of the numer-
ous phylogenetically-defined bHLH families, achaete-scute
and four families of atonal-related genes, neurogenin,
atonal, olig (oligo), and NeuroD [2,6]. While some of the
neural bHLH genes show strikingly similar functions in
Drosophila and vertebrates [2,3,7], there are also profound
differences between them [1,4].

First, in vertebrates, genes of the neurogenin family (ngn1,
ngn2, and ngn3) are required for the formation of the pre-
cursors of many neural cells of both the Peripheral and
Central Nervous Systems (PNS and CNS) [8-10] while
their single Drosophila ortholog, tap/biparous, has no
proneural role and is expressed in a few differentiating
neural cells [11,12]. In Drosophila, the main proneural
bHLH genes for the CNS belong to the achaete-scute family
and are also involved, together with atonal family genes,
in the formation of the sensory organs [2,3,13,14]. Verte-
brate achaete-scute and atonal genes probably also have
proneural functions but in a much more limited set of
cells, in particular in the CNS [1,2,4].

Second, vertebrate proneural genes contribute to the spec-
ification of progenitor-cell identity [2,4,5]. A clear exam-
ple of such a function is provided by the dorsal embryonic
spinal cord, in which Mathl (atonal family), ngnl, and
Mash1 (ascll; achaete-scute family) are required for the cor-
rect specification of discrete dorsoventral progenitor
domains that produce distinct types of interneurons [15-
18]. Mash1 has also been shown to have instructive roles
in the specification of noradrenergic, GABAergic, and ser-
otonergic neurons in various positions in the brain and
the spinal cord [19-22]. Finally, ngn2 has a key role for
motor neurons formation in the ventral spinal cord
[23,24]. Such important roles in neuronal specification
for proneural bHLH genes in the CNS are not found in
Drosophila [1,4].

Third, bHLH genes that have important functions during
vertebrate neurogenesis do not have orthologs in Dro-
sophila. Many vertebrate neurons require the function of
genes, which belong to the NeuroD family, for their proper
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differentiation and survival [25-27]. Genes of the olig fam-
ily (olig1, olig2, and olig3) have key roles in the specifica-
tion of motor neurons, dorsal interneurons, and
oligodendrocytes in the vertebrate CNS [18,23,24,28-30].
olig and NeuroD genes do not exist in Drosophila (the gene
known in Drosophila as Dm-oli is in fact an ortholog of the
vertebrate Beta3 genes) [6,31].

Given these differences and in order to decipher which
aspects of the functions of neural bHLH genes are ances-
tral to bilaterians and which are derived characters specific
to some bilaterian lineages, we have isolated and studied
these genes in the polychaete annelid, Platynereis dumerilii,
which belongs to a different branch (Trochozoa) of the
bilaterians tree than Drosophila (Ecdysozoa) and verte-
brates (Deuterostoma) and is therefore evolutionary dis-
tant to both these organisms [32]. In addition, Platynereis
is considered to have retained some bilaterian ancestral
features, making it a useful model for comparative devel-
opmental biology [e.g. [33-35]]. Here, we report the
expression patterns of Platynereis orthologs of the most
important neural bHLH genes, including the olig and Neu-
roD genes not found in Drosophila. Our data suggest that
Platynereis bHLH genes have both proneural and neuronal
specification functions, in a way more akin to the verte-
brate situation than to that of Drosophila. These data indi-
cate that these functions were already established in
Urbilateria, the last common ancestor of all bilaterians.

Results

Brief overview of the formation of the Platynereis larval
nervous system

Platynereis displays an indirect development which gives
rise to a ciliated trochophore larva that subsequently met-
amorphoses into a juvenile worm [36]. The formation of
the Platynereis larval trunk nervous system has been thor-
oughly described, up to the late trochophore stage (meta-
trochophore; 48 to 55 hours post fertilization, hpf), using
whole-mount in situ hybridization (WMISH) with RNA
antisense probes corresponding to Platynereis neuronal
differentiation genes, such as elav (Pdu-elav), synaptotag-
min (Pdu-syt), Tryptophane Hydroxylase (Pdu-TrpH), and
Vesicular Acetylcholine Transporter (Pdu-VAchT) [35]. In
order to give an overview of larval neurogenesis, which is
important to understand the next parts of this article, we
show here some WMISH for these previously character-
ized genes in 24 hpf to 55 hpf larvae and extend the pub-
lished description by looking at juvenile worms (72 hpf).

A simple larval nervous system first differentiates during
the early (24 hpf) to late trochophore (48 hpf) stages: a
few cells expressing Pdu-elav are observed on the ventral
side of the 24 hpf and 34 hpf larvae (Figure 1A,B) and
these cells give rise to two bilateral anterior groups and
one posterior group of Pdu-syt-expressing neurons (Figure
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Overview of formation the trunk nervous system in Platynereis. Expression of Pdu-elav, Pdu-syt, Pdu-TrpH, and Pdu-
VAchT, as determined by WMISH, on a selection of larval stages is shown. All pictures are Image] projections and are ventral
views (anterior up). The blue dotted lines indicate the position of the prototroch (a ring of ciliated cells involved in the loco-
motion of the larva) and therefore the separation between the prospective head (up) and trunk (down) regions. The position
of the mouth region is indicated either by dotted red lines or a red asterisk, depending on the stage. The formation of the lar-
val neurons is shown in A to E. A few neurons with stereotyped positions differentiate between 24 h to 48 h as seen by the
expression of Pdu-elav and Pdu-syt (A-C). A single pair of neurons, located close to the mouth region, is serotonergic as seen by
the expression of Pdu-TrpH (D), a few other neurons are cholinergic (as seen by the expression of Pdu-VAchT; E), and the other
ones are of unknown identity. F to L depict the formation of the juvenile worm nervous system. See the main text for details.
Arrows in ] point to peripheral neurons associated with the parapodes. M to O are schematic drawings of the organization of
the nervous system of 24 hpf, 48 hpf, and 72 hpf larvae. The neuroectodermal cells are indicated in yellow, the cells expressing
Pdu-elav in red, and the Pdu-syt-expressing neurons in blue.
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1C). Different neuronal subtypes can be identified, such
as serotonergic (identified as cells expressing Pdu-TrpH)
and cholinergic (identified as cells expressing Pdu-VAchT;
Figure 1D,E). From 48 hpf, a large number of cells enter
neural differentiation and express first Pdu-elav (Figure
1F,G) and then Pdu-syt (Figure 1H). These neurons form
the ventral nerve cord (VNC) of the 72 hpf juvenile worm
(Figure 11J). Many of the formed neurons are cholinergic
neurons as seen by the massive expression of Pdu-VAchT
(Figure 1L) in the VNC, except in its medialmost part
where several serotonergic neurons differentiate (expres-
sion of Pdu-TrpH; Figure 1K). Outside the VNC, peripheral
neurons are also found mainly associated with the
appendages (the parapodes; arrows in Figure 1J).

Identification of Platynereis atonal- and achaete-scute-
related bHLH genes

By sequence similarity searches on an expressed sequence
tag (EST) collection (40,000 ESTs from normalized cDNA
libraries of mixed larval stages, corresponding to more
than 10,000 unigene clusters) [34], we identified several
Platynereis dumerilii bHLH genes among which some show
strong sequence similarity to either achaete-scute- or
atonal-related genes. The predicted amino acid sequence
of the bHLH domains were aligned with those of a sample
of metazoan bHLH genes identified in a previous study
[31]. Multiple phylogenetic reconstructions show that we
identified orthologs of the neurogenin/biparous, achaete-
scute/ASCL/ASH, olig, and NeuroD genes (Figures 2 and 3).
We named these genes Pdu-Ngn, Pdu-ASH, Pdu-Olig, and
Pdu-NeuroD, respectively. For each family, we found a sin-
gle Platynereis member but we cannot exclude that addi-
tional members do exist, although duplicated
evolutionary-conserved genes are rare in Platynereis [34].
We also included in our analysis the previously identified
atonal ortholog (Pdu-ATH; not found in the EST collec-
tion) [35,37] in order to study Platynereis representatives
for all the main families of bHLH genes involved in neural
determination and specification in vertebrates and Dro-
sophila [2,4]. We also identified Beta3 and mist genes in
Platynereis (Figure 2), but these genes were not further
characterized as their Drosophila and vertebrate orthologs
do not have well defined functions in neurogenesis. We
used WMISH to monitor the expression of Pdu-Ngn, Pdu-
ASH, Pdu-Olig, Pdu-ATH, and Pdu-NeuroD during Platy-
nereis development and focused on possible expressions
during trunk nervous system formation for which a good
characterization exists [35]. All the genes are also
expressed in the head, probably in the brain and/or sen-
sory organs, but these expressions were not further charac-
terized.
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Platynereis atonal- and achaete-scute-related bHLH genes
are expressed during trunk nervous system formation

The five bHLH genes are already expressed in 24 hpf lar-
vae. Pdu-NeuroD is expressed in a broad ventral ectoder-
mal domain (Figure 4A) which corresponds to the larval
neuroectoderm. This expression domain is similar to that
of Platynereis orthologs of bilaterian conserved neuroecto-
dermal genes, such as SoxB (Figure 5A-C and P.K. et al.,
unpublished). Pdu-Ngn and Pdu-ASH are expressed in a
few cells located on the ventral side of the larvae, in par-
ticular around the stomodaeal area (Figure 4B,C). This
expression nicely prefigures the distribution of differenti-
ating neurons that is observed in slightly later stages (Fig-
ure 1B,C), suggesting that the two genes are expressed in
precursors of the larval central nervous system. Pdu-ATH
and Pdu-Olig are expressed in a few lateral cells we were
unable to identify (Figure 4D,E).

In 34 hpf larvae, Pdu-NeuroD is still expressed in a broad
ventral ectodermal domain (Figure 4F) which includes the
prospective VNC region in which Pdu-Ngn and Pdu-ASH
become widely expressed (Figure 4G,H). At this stage, the
expression of Pdu-SoxB strongly decreases in the same
region (Figure 5D). In vertebrates, the transition from
neuroectodermal cells to committed progenitors is linked
to the activation of the expression of bHLH proneural
genes and a concomitant repression of the expression of
SoxB genes [e.g. [2,38]]. Our data suggest that a similar
transition occurs around 34 hpf in the Platynereis larvae.
However, at this stage, only very few cells express Pdu-elav
(Figure 1B), indicating that the Pdu-Ngn and Pdu-ASH
expressing precursors are still not engaged towards differ-
entiation. Both Pdu-Ngn and Pdu-ASH are also expressed
in more lateral cells that may correspond to peripheral
nervous system precursors (Figure 4G,H). Pdu-ATH and
Pdu-Olig continue to be expressed in lateral cells, with
Pdu-Olig expressed in three bilateral small stripes (Figure
41,]).

In 40 hpf to 55 hpf larvae, Pdu-NeuroD continues to be
broadly expressed in the ventral ectoderm (Figure 4K,P).
Expression of Pdu-NeuroD is restricted to the superficial
layer of the ectoderm (not shown). From 40 hpfto 55 hpf
larvae, Pdu-Ngn is largely expressed in the whole prospec-
tive VNC region as well as in some more lateral cells (Fig-
ure 4L,Q). Pdu-Ngn is expressed in a salt and pepper
manner, with highly-expressing cells interspersed with
weakly-expressing ones. In 40 hpf and 48 hpf larvae,
Denes et al. [35] showed that the prospective Platynereis
VNC region is multilayered with, from superficial (apical)
to more internal (basal), a proliferating progenitor zone
(a single layer of BrdU incorporating cells), a post-mitotic
progenitor zone (Pdu-elav positive, Pdu-syt negative cells),
and a differentiation zone (Pdu-elav positive, Pdu-syt pos-
itive cells). To define in which zone(s) of the prospective
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Figure 2

Phylogenetic analysis of the Platynereis atonal-related bHLH genes. The phylogenetic tree has been constructed by
Maximum Likelihood (ML) as described in the Methods section. Similar tree topologies were obtained using other phylogenetic
reconstruction methods (not shown). The different groups of orthology are indicated (for more details, see [31]). Statistical
supports for the internal branches that define these groups are indicated (first number: bootstrap support in Neighbour-joining
(NJ) analysis; second number: bootstrap support in ML analysis; third number: posterior probability in Bayesian inference anal-
ysis). The tree has been rooted using a non-atonal-related (twist) bHLH gene as outgroup. Platynereis genes are indicated in bold
red. Species abbreviations: Cc: Capitella spl (annelid); Dm: Drosophila melanogaster (insect); Dp: Daphnia pulex (crustacean); Lg:
Lottia gigantea (mollusk); Mm: Mus musculus (vertebrate); Pdu: Platynereis dumerilii (annelid); Sp: Strongylocentrotus purpuratus
(echinoderm); Tc: Tribolium castaneum (insect).
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Phylogenetic analysis of the Platynereis achaete-scute-related bHLH gene. The phylogenetic tree has been con-
structed by Maximum Likelihood (ML) as described in the Methods section. Similar tree topologies are obtained using other
phylogenetic reconstruction methods (not shown). Statistical supports for the internal branches that define these groups are
indicated (first number: bootstrap support in Neighbour-joining (NJ) analysis; second number: bootstrap support in ML analy-
sis; third number: posterior probability in Bayesian inference analysis). The tree has been rooted using non-achaete-scute bHLH
genes as outgroup. The Platynereis gene is indicated in bold red. The "!" indicates a group of divergent achaete-scute-like genes
found in some species and that cannot be related to either of the two bilaterian achaete-scute families (see [31] for more
details). Species abbreviations are as in Figure 2.
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Expression of Platynereis neural bHLH genes during trunk neurogenesis. Expression of Pdu-NeuroD, Pdu-neurogenin
(Pdu-Ngn), Pdu-achete-scute (Pdu-ASH), Pdu-Olig, and Pdu-atonal (Pdu-ATH), as determined by WMISH, on a selection of larval
stages is shown. Most of the images are Image| projections and all images are ventral views (anterior up). Labels are as in Figure
I. See the main text for the detailed descriptions of the expression patterns. In (B) and (C), arrows point to the groups of cells
expressing Pdu-Ngn or Pdu-ASH and whose positions correspond to the neurons that will latter differentiate (compare with Fig-
ure IB,C). In (G) and (H), the arrowheads point to putative PNS precursor cells. In (]), the arrow points to a weak medial
expression of Pdu-Olig and arrowheads to its more lateral expression domains that form three bilateral small stripes. In (M, N,
O, R, S, T), the arrow points to the medial expression and the arrowheads to the more lateral expression domains that lie out-
side the VNC. In (W-Y), arrowheads point to expressions in cells associated with the parapodes. Labelling associated with the
parapodes in (U) is probably background (as seen at higher magnification).
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Additional expressions of Platynereis neural genes during trunk neurogenesis. A, D, E-H are ventral views; B, C are
lateral views (ventral on the left). Most of the images are Image] projections. Labels are as in Figure |. E-H correspond to more
internal views than those of Figure 4U-Y which are superficial views. See the main text for details. Arrows in E-H point to
internal cells expressing neural bHLH genes and that may belong to the posterior growth zone [41,42].

VNC Pdu-Ngn is expressed, we performed double WMISH
[39] for Pdu-Ngn, on one hand, and Pdu-elav or Pdu-syt, on
the other hand, and visualized the labellings with confo-
cal microscopy (Figure 6). We found that Pdu-Ngn is
mainly expressed in superficial cells in contrast to Pdu-elav
and Pdu-syt (Figure 6A,B). We used 3D reconstructions of
confocal stacks to perform virtual cross-sections of the
VNC region (Figure 6F H): we found that Pdu-Ngn is
expressed in the apicalmost cells of the prospective VNC
with very little overlap with Pdu-elav and no overlap with
Pdu-syt. We therefore conclude that Pdu-Ngn is expressed
in undifferentiated neural precursors and mainly in the
proliferating ones.

Pdu-ASH and Pdu-Olig, at 40 and 48 hpf, are expressed in
the medialmost part of the prospective VNC region as well
as in more lateral cells (Figure 4M,0). As for Pdu-Ngn,
Pdu-ASH and Pdu-Olig are expressed in proliferating pro-
genitors, as determined by double WMISH (Figure
6C,D,G,I and not shown). The expression of Pdu-ASH and
Pdu-Olig in the medialmost part of the prospective VNC
region is similar to that of the Platynereis NK2.2 gene and
corresponds to the region from which serotonergic neu-
rons will emerge (Figure 1K) [35]. We confirmed by dou-

ble WMISH that the serotonergic neurons (Pdu-TrpH-
expressing cells) are located below the Pdu-ASH-express-
ing precursors (Figure 6]). At 55 hpf, Pdu-ASH shows the
same expression pattern than in the previous stages, but
Pdu-Olig is no more expressed in the prospective VNC
region (Figure 4R,T). In 40 hpf to 55 hpf larvae, Pdu-ATH
is only expressed in a few cells located on both sides of the
prospective VNC region (Figure 4N,S).

At 72 hpf, the five genes are expressed in more limited sets
of cells in the VNC region and in cells associated with the
parapodes (Figure 4U-Y). In addition, Pdu-Ngn, Pdu-ASH,
Pdu-Olig, and Pdu-NeuroD are expressed in posteriorly-
located internal cells (Figure 5E-H) whose position
roughly corresponds to that of cells expressing Platynereis
hunchback [40] and stem-cells markers, such as Platynereis
piwi and vasa [41]. The cells expressing Pdu-Ngn, Pdu-ASH,
Pdu-Olig, and Pdu-NeuroD may therefore belong to the
posterior subterminal growth zone that will allow the
posterior addition of new segments to the existing ones
(and the corresponding elongation of the VNC) in a
sequential manner throughout most of the life of the ani-
mal [41,42].
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Pdu-Ngn
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2 = Post-mitotic progenitor
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Position of the Pdu-Ngn- and Pdu-ASH-expressing cells with respect to the apicobasal organization of the pro-
spective ventral nerve cord region. Confocal picures of double WMISH are shown. The probes which have been used are
indicated on the pictures. A and C are superficial plans, B and D more internal ones. Pdu-Ngn and Pdu-ASH are mainly expressed
in superficial cells while Pdu-elav is mainly expressed in more profound cells. F to ] are virtual cross-sections, sections have been
made at two anteroposterior levels (| and 2) as indicated on a schematic drawing (E). Apical is up, basal is down. Pdu-Ngn and
Pdu-ASH are mainly expressed in the apicalmost layer of cells of the prospective VNC while Pdu-elav, Pdu-syt, and Pdu-TrpH are
expressed in more basal cells. Some internal cells also express Pdu-Ngn (H) and Pdu-ASH (not shown) and on some confocal
sections we can see rare cells co-expressing Pdu-Ngn or Pdu-ASH and Pdu-elav. Such co-expressions are never observed with
Pdu-syt or Pdu-TrpH. The white asterisk indicates an expression in the stomodeum. K summarizes the apicobasal layering of the
Platynereis prospective VNC based on the data published by Denes et al. [35] and includes the expression of Pdu-Ngn and Pdu-
ASH defined in this study. Apical is up, basal is down. Pdu-elav expression domain is in green, Pdu-ASH and Pdu-Ngn expression
domain is in red, and the yellow region indicates the zone of overlap of these expression domains.

Discussion

Olig and NeuroD genes belong to the ancestral bilaterian
toolkit of neural developmental genes

In this article, we report, for the first time, the characteri-
zation of several atonal- and achaete-scute-related bHLH
genes from a lophotrochozoan species, the annelid Platy-
nereis dumerilii. Our phylogenetic analyses demonstrate
that we have identified neurogenin, achaete-scute, olig, and
NeuroD orthologs in addition to a previously character-
ized atonal gene (Figures 2 and 3). neurogenin, achaete-
scute, and atonal genes have been found in many diverse
species, including Drosophila melanogaster, Caenorhabditis
elegans, and several vertebrates, and shown to be involved

in neural development in all these species [e.g. [2,7,31]].
We found a similar situation in Platynereis as the three
genes display specific expressions during neurogenesis
(see below for further discussion), confirming their evolu-
tionary-wide implication in neurogenesis in bilaterian
animals.

NeuroD genes have been shown to be important neuronal
differentiation genes in vertebrates (see introduction). A
putative NeuroD gene (named cnd-1 but whose orthology
relationship with the vertebrate NeuroD genes is only
poorly supported; [43]) has been described in the nema-
tode Caenorhabditis elegans and is involved in several steps
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of the formation of the motor neurons [44]. NeuroD genes
cannot be found in the genomes of Drosophila mela-
nogaster and of the urochordate Ciona intestinalis [6,45].
Our phylogenomic analysis (Figure 2) indicates that Neu-
roD genes are in fact widely found in bilaterians and that
their absence in Drosophila melanogaster and Ciona intesti-
nalis results from a rather specific loss in these species. We
found the Platynereis NeuroD gene to have a broad and
early neuroectodermal expression, which is completely
different from the neuronal expression of vertebrate Neu-
roD genes and the neural subtype-specific expression of
Caenorhabditis cnd-1. It is therefore difficult to infer from
these data any putative ancestral expression or function of
NeuroD. More precise inference will await additional data
from other species.

Olig genes were thought to be vertebrate-specific genes as
they are not found in the Drosophila melanogaster,
Caenorhabditis elegans, and Ciona intestinalis genomes
[6,45]. In fact, olig genes are found in several non-verte-
brate species (Figure 2). However, we cannot find such
genes in any of the sequenced arthropod and nematode
genomes [[31], E.S. and M.V, unpublished observations],
suggesting that olig genes have been lost quite early during
the evolution of these phyla. We found the Platynereis olig
gene to be specifically expressed during nervous system
formation and that its expression shows similarities to
that of vertebrate olig genes (see below). We therefore con-
clude that olig, together with neurogenin, achaete-scute,
atonal, and NeuroD genes belong to the ancestral bilate-
rian toolkit of neural developmental genes.

Vertebrate-like expression of Platynereis neurogenin
suggests a major proneural role and provides insights into
the evolution of the proneural function in bilaterians

One striking difference between vertebrate and Drosophila
neurogenesis is the differential use of neurogenin genes in
these species. Indeed, neurogenin genes are the key prone-
ural genes in the vertebrate CNS while it is not the case for
their Drosophila counterpart (see introduction). In Dro-
sophila, and probably more generally in arthropods, the
proneural function in the CNS is mainly performed by the
achaete-scute genes (see introduction and [46]). These
genes have a much more limited proneural functions in
vertebrates (see introduction). Given these differences, it
is challenging to infer what was the ancestral situation, i.e.
what were the main proneural genes acting in Urbilateria,
the last common ancestor of all bilaterians. Our data on
Platynereis help to answer this question.

We found that Platynereis neurogenin (Pdu-Ngn) has an
expression suggestive of a wide proneural function in the
developing trunk CNS which is similar to that of the ver-
tebrate neurogenin genes. Indeed, Pdu-Ngn expression
arises at early stages of neural development, overlapping

http://www.biomedcentral.com/1471-2148/8/170

that of the neuroectodermal marker SoxB, and preceding
the expression of the differentiation marker elav. The
expression domain of Pdu-Ngn is large and covers the
whole prospective CNS region (ventral part of the trunk
ectoderm) as well as more lateral regions which probably
correspond to the PNS. Pdu-Ngn is expressed in a salt and
pepper manner which is often found for proneural genes
as a consequence of lateral inhibition processes (reviewed
in [1,2]). Finally, Pdu-Ngn is expressed in the apicalmost
part of the forming CNS, which has been shown to
include proliferative neuroectodermal cells and neural
precursors [35]. Pdu-Ngn is therefore expressed at the right
time, the right place, and the right manner to be the major
proneural gene for the formation of the Platynereis trunk
nervous system, like its orthologs in vertebrates. This sim-
ilarity between vertebrates (deuterostomes) and an anne-
lid (a protostome) suggests that the broad proneural
function of neurogenin genes is ancestral to bilaterians and
has been lost in the evolutionary lineage leading to
present-day insects (or even arthropods). This does not
necessarily mean that proneural function of achaete-scute
genes is a derived character: indeed, such function is
found in vertebrates and in arthropods, and the expres-
sion of Pdu-ASH is not incompatible with this function, as
it is expressed in early stages of VNC formation (although
only in a subset of the Pdu-Ngn-expressing cells — an
expression that is, to our opinion, more consistent with a
role in neural specification). It is therefore conceivable
that both neurogenin and achaete-scute were acting as
proneural genes in Urbilateria, the former being the pre-
dominant one.

Platynereis bHLH genes may have neural specification
functions in the CNS — evolution of neural specification in
bilaterians

Another striking difference between vertebrates and Dro-
sophila is the differential use of bHLH genes in neural sub-
type specification in the CNS. In vertebrate, neural bHLH
genes such as olig and achaete-scute genes are important to
specify many types of neural cells which are produced in
the CNS, while it is not the case in the Drosophila CNS
(although a single study has suggested that achaete-scute
genes may be involved in the specification of a limited set
of cells in the CNS [47]; but see [1]). This raises the possi-
bility that the functions of bHLH genes in neural subtype
specification may largely represent vertebrate innova-
tions. Alternatively, they could be bilaterian ancestral
functions that have been lost in the evolutionary lineage
leading to Drosophila. We found that two Platynereis bBHLH
genes, Pdu-ASH and Pdu-Olig, are expressed in a way sug-
gestive of an involvement in neural specification in the
CNS. Both genes are expressed in the medialmost part of
the CNS, they are first co-expressed and in a second time,
only Pdu-ASH continues to be expressed. Interestingly,
these expression profiles coincide with those of verte-
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brates olig and achaete-scute genes which are also expressed
in medial parts of the neural tube (reviewed in [5]).
Importantly, this similarity is probably meaningful as the
overall organization of the Platynereis CNS bears striking
resemblances with that of vertebrates, as seen by the con-
served expression domains of many neural patterning and
differentiation genes between Platynereis and vertebrates
[35]. The cells expressing Pdu-ASH and Pdu-Olig corre-
spond to a domain of the VNC characterized by the co-
expression of Platynereis NK2.2 and NKG genes [35]. In
vertebrates, such as mammals, Ascll/Mashl is also
expressed in a NK2.2/NK6 positive medial domain (p3
domain in the spinal cord and its topological equivalent
in the hindbrain, PMNv) and controls the formation of
serotonergic neurons from this domain in the hindbrain
[21,22]. Strikingly, serotonergic neurons in Platynereis
also emerge from a medial domain of the CNS, corre-
sponding to cells expressing NK2.2 and achaete-scute. We
therefore suggest that Pdu-ASH is involved in the specifi-
cation of serotonergic neurons in Platynereis and that this
may represent an ancestral function of achaete-scute genes
in bilaterians.

In vertebrates, such as mammals, olig genes have impor-
tant roles in neural specification. olig2 gene is expressed in
the so-called pMN domain of the spinal cord, located
slightly more laterally than the p3 domain (see Introduc-
tion and [5]). This domain corresponds to a NK6/Pax6-
positive domain from which originate Hb9-positive
cholinergic motor neurons and oligodendrocytes, the
specification of both of these cells types being controled
by olig2. This NK6/Pax6-positive domain also exists in
Platynereis and, as in vertebrates, Hb9-positive cholinergic
neurons emerge from this domain [35]. Pdu-Olig is, how-
ever, not expressed in this domain (it is expressed in the
more medial NKG6/NK2.2-positive domain) and is there-
fore much probably not involved in motor neurons spec-
ification. However its co-expression with Pdu-ASH at
some but not all stages of VNC formation, in the NK6/
NK2.2-positive domain, suggests it may contribute to the
diversification of neural cell types from this domain. We
suggest that different neural cell types may form in the
prospective Platynereis VNC first from the Pdu-ASH/Pdu-
Olig-positive cells and then from the Pdu-ASH-positive
(Pdu-Olig-negative) cells. This suggestion is based on the
fact that, in vertebrates, different combinations of neural
bHLH have been shown to control the formation of differ-
ent cell types from a single medio-lateral domain [5,48].

Our data suggest that some neural bHLH genes are
involved in neural subtype specification in Platynereis, like
in vertebrates, and that this may therefore represent an
ancestral feature of bilaterians. In insects, such as Dro-
sophila, the specification functions of neural bHLH genes
(and even some genes such as Olig) have been lost. This
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may be related to the fact that insects have evolved a diver-
gent way to pattern their CNS: while in vertebrates and
Platynereis the CNS is subdivided into large domains from
which emerge specific neural cell types, insects have
shifted to a mainly cell-to-cell-based process in which
neuroblasts (even neighbouring ones) will express differ-
ent combinations of developmental genes that control
their identity.

Conclusion

We have identified, for the first time in a lophotrocho-
zoan species, Platynereis dumerilii, orthologs of the most
important neural bHLH genes known in vertebrates,
including the Olig and NeuroD genes not found in Dro-
sophila. We have performed a detailed analysis of the
expression patterns of these Platynereis bHLH genes and
we show that all these genes are expressed during neuro-
genesis. Our analysis suggests that the Platynereis bHLH
genes have both proneural and neuronal specification
functions, in a way more akin to the vertebrate situation
than to that of Drosophila. Our data suggest that these
functions are ancestral to bilaterians.

Methods

Breeding culture, embryo collection, whole mount in situ
hybridization (WMISH), microscopy, and image processing
Animals were obtained from a breeding culture estab-
lished in Gif-sur-Yvette according to the protocol of Fisher
and Dorresteijn [49]. Larvae collection and fixation, as
well as WMISH, were done as previously described
[39,50]. In the case of the double WMISH, one of the
probes was revealed using tyramide signal amplification
(fluorescent dye) and the other using the classical NBT/
BCIP reaction. The NBT/BCIP staining was visualized by
reflection confocal laser scanning microscopy [39].
Labeled embryos picture Z-stacks were manually taken on
a Leica bright-field microscope and Z-projection images
were made using Image] 1.36b. Confocal pictures were
taken on a Leica Sp2 confocal microscope and images
were 3D reconstructed with Metamorph.

Isolation of Platynereis bHLH genes and phylogenetic
analyses

Platynereis bHLH genes were identified by BLAST searches
against an EST collection [34]. The coding sequences of
the different genes were amplified using SMART™ RACE
c¢DNA amplification procedures with gene-specific prim-
ers (whose sequences are available upon request). PCR-
products were TA cloned into the PCR2.1 vector (Invitro-
gen), sequenced on an ABI automated sequencer, and
used as template to produce labeled antisense RNA probes
for WMISHSs. Accession numbers for the newly cloned
genes are FM163169 to FM163172.
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Multiple sequence alignments were built using ClustalW
[51] using a large set of bHLH domains derived from
Simionato et al. [31] in addition to those encoded by the
isolated Platynereis genes. Neighbour-joining (NJ) recon-
structions were performed with the PAUP 4.0 program
using the BioNJ algorithm and 10,000 bootstrap repli-
cates [52,53]. Maximum likelihood (ML) analyses were
performed with PHYML using the Jones, Taylor, Thornton
(JIT) model of amino acid substitutions [54] and 150
bootstraps to assess the statistical reliability of the
obtained internal branches. Bayesian inference was per-
formed using the Markov chain Monte Carlo method as
implemented in the MRBAYES (version 3) package [55].
We used the JIT substitution frequency matrix with
among-sites rate variation modelled by means of a dis-
crete y distribution with four equally probable categories.
Two independent Markov chains were run, each contain-
ing 2,000,000 Monte Carlo steps. One out of every 250
trees was saved. The trees obtained in the two runs were
meshed and the first 25% of the trees were discarded as
'burnin'. Marginal probabilities at each internal branch
were taken as a measure of statistical support. All the
alignments and the trees are available upon request.
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