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Abstract 

Background: With increasing concern about the environmental impact of a petroleum based economy, focus has 
shifted towards greener production strategies including metabolic engineering of microbes for the conversion of 
plant-based feedstocks to second generation biofuels and industrial chemicals. Saccharomyces cerevisiae is an attrac-
tive host for this purpose as it has been extensively engineered for production of various fuels and chemicals. Many of 
the target molecules are derived from the central metabolite and molecular building block, acetyl-CoA. To date, it has 
been difficult to engineer S. cerevisiae to continuously convert sugars present in biomass-based feedstocks to acetyl-
CoA derived products due to intrinsic physiological constraints—in respiring cells, the precursor pyruvate is directed 
away from the endogenous cytosolic acetyl-CoA biosynthesis pathway towards the mitochondria, and in fermenting 
cells pyruvate is directed towards the byproduct ethanol. In this study we incorporated an alternative mode of acetyl-
CoA biosynthesis mediated by ATP citrate lyase (ACL) that may obviate such constraints.

Results: We characterized the activity of several heterologously expressed ACLs in crude cell lysates, and found that 
ACL from Aspergillus nidulans demonstrated the highest activity. We employed a push/pull strategy to shunt citrate 
towards ACL by deletion of the mitochondrial NAD+-dependent isocitrate dehydrogenase (IDH1) and engineer-
ing higher flux through the upper mevalonate pathway. We demonstrated that combining the two modifications 
increases accumulation of mevalonate pathway intermediates, and that both modifications are required to substan-
tially increase production. Finally, we incorporated a block strategy by replacing the native ERG12 (mevalonate kinase) 
promoter with the copper-repressible CTR3 promoter to maximize accumulation of the commercially important 
molecule mevalonate.

Conclusion: By combining the push/pull/block strategies, we significantly improved mevalonate production. We 
anticipate that this strategy can be used to improve the efficiency with which industrial strains of S. cerevisiae convert 
feedstocks to acetyl-CoA derived fuels and chemicals.
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Background
Increasing environmental concerns about the sustain-

ability of producing petroleum-derived chemicals has led 

to increased interest in alternative means of production. 

Metabolic engineering of microorganisms to convert bio-

mass and organic waste to chemicals that are ordinarily 

derived from petroleum represents a more sustainable 

production strategy. �e yeast Saccharomyces cerevi-

siae is a commonly used microbial cell factory for meta-

bolic engineering [2, 3, 28] as it is tolerant of industrial 

conditions, is extraordinarily well-characterized, and 

offers tools for genetic engineering [19, 20, 29]. While 
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an immense amount of progress has been made, there 

remains room to improve the efficiency with which engi-

neered microbes produce chemicals from feedstocks.

Acetyl-CoA is a key molecule in central carbon metab-

olism [23], as it is required for basic cellular functions 

such as energy metabolism, lipid metabolism, and amino 

acid metabolism. Acetyl-CoA also serves as a precur-

sor for the biosynthesis of many industrial chemicals 

including lipids (dietary supplements and biodiesels), 

polyketides (antibiotics and anticancer drugs), polyhy-

droxyalkanoates (biodegradable polymers), and isopre-

noids (flavors and fragrances, biodiesels, anti-microbials 

and anti-cancer drugs, rubber, cosmetic additives and 

vitamins). In addition, the isoprenoid pathway interme-

diate mevalonate has been cited for its use as a precur-

sor for biobased production of β-methyl-δ-valerolactone, 

which can be transformed into a rubbery polymer [42].

In S. cerevisiae, cytoplasmic acetyl-CoA is endoge-

nously produced from pyruvate through three metabolic 

steps called the pyruvate dehydrogenase (PDH) bypass. 

However, due to the nature of the endogenous regula-

tory metabolism, production of acetyl-CoA  derived 

metabolites via the native cytoplasmic PDH bypass is 

constrained: when grown at high glucose concentrations 

a significant portion of glucose is converted to reduced 

byproducts such as ethanol [41], whereas at low glucose 

concentrations the bulk of pyruvate is transported to the 

mitochondria [32].

Once pyruvate enters the mitochondrion it can be con-

verted to acetyl-CoA by the PDH complex, however, this 

mitochondrial acetyl-CoA pool is not available to cyto-

plasmic biosynthesis pathways.

Although a transport mechanism for shuttling acetyl-

CoA from the mitochondrion to the cytoplasm does not 

exist in S. cerevisiae, many other organisms shuttle acetyl-

CoA through the intermediate citrate. �is is typified by 

oleaginous yeast species, which are defined by their abil-

ity to accumulate high levels of cytoplasmic acetyl-CoA 

derived triacylglycerides in nitrogen-limiting conditions 

[33, 34]. At the genomic level, a key characteristic of ole-

aginous yeasts is that they contain genes encoding the 

ATP citrate lyase (ACL), whereas non-oleaginous yeasts 

such as S. cerevisiae do not [1]. It has been demonstrated 

that in low nitrogen conditions, inhibition of isocitrate 

dehydrogenase (ICDH) leads to citrate accumulation, 

cytosolic transport, and cleavage by ACL thus generating 

cytoplasmic acetyl-CoA [9, 10] (Fig. 1).

In this study, we reconstituted the salient features of 

the ACL pathway in S. cerevisiae through genetic engi-

neering and media optimization. As a proof of principle, 

we demonstrate that this alternative mode of metabo-

lism can be used to significantly increase the yield of the 

acetyl-CoA derived product mevalonate. E. coli has also 

been engineered to produce mevalonate as a final prod-

uct [42]. While the mevalonate pathway in S. cerevisiae 

has been extensively engineered to produce various iso-

prenoid products, this is the first study to our knowledge, 

to produce mevalonate as a final product.

Methods
Media, cultivation, and transformation

For strain construction, pre-cultures were grown with 

5  mL of Yeast extract  +  Peptone  +  Dextrose (YPD) 

medium in glass test tubes with shaking at 200  rpm. 

After 18 h of growth, pre-cultures were used to inoculate 

50-mL cultures in 250-mL Erlenmeyer flasks. After ~6 h 

of growth, strains were transformed by the lithium ace-

tate method [14]. For construction of IDH1::HygB, the 

Hygromycin B resistance cassette was amplified from 

pUG32 [15] with primers containing 40 base pairs cor-

responding to the chromosomal sequence immediately 

5′ and 3′ of the IDH1 locus. For construction of strains 

containing integrated heterologous gene sequences, the 

integration fragments were amplified from their cor-

responding plasmids (Additional file  1: Table S1). Each 

integration fragment contained the heterologous genes 

and either an auxotrophic complementation or drug 

resistance cassette, with flanking 750 base pairs cor-

responding to the site of chromosomal integration. To 

select for DNA transformants containing auxotrophic 

complementation cassettes, cells were plated on stand-

ard dropout medium (Sunrise, San Diego), and for DNA 

transformants containing drug resistance cassettes, cells 

were plated on YPD, grown for 24  h, and then replica 

plated to YPD supplemented with 200  μg/L Geneticin 

(Sigma, cat. no. A1720) or Hygromycin B (Sigma, cat. no. 

H7772).

For the ACL activity assay, single colonies were used to 

inoculate 5 mL Yeast extract + Peptone (YP) + 2 % galac-

tose liquid cultures. Cultures were then diluted into fresh 

medium to an OD of 0.05, and grown for 24 h.

For metabolomics and production experiments, strains 

were grown at 30  °C with shaking at 200  rpm in a base 

medium composed of 6.7 g/L Yeast Nitrogen Base (YNB) 

without amino acids, without ammonium sulfate (Difco), 

and 0.7  g/L Complete Supplemented Media (CSM) 

amino acid mixture (Sunrise, San Diego). Media were 

supplemented with additional components as specified 

below. For metabolomics quantification, cultures were 

grown in the base medium supplemented with 2  % raf-

finose and 0.1  % dextrose. Five milliliter pre-cultures 

were inoculated from single colonies and grown for 36 h 

in test tubes. Production cultures (50 mL) supplemented 

with 2 % galactose were inoculated to an initial OD600 of 

0.05 in 250-mL Erlenmeyer flasks. Low nitrogen cultures 

were supplemented with 7 mg/L ammonium sulfate, and 
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standard nitrogen cultures were supplemented with 1 g/L 

ammonium sulfate.

For experiments ‘Increasing pull on cytoplasmic acetyl-

CoA towards the mevalonate pathway,’ 10-mL pre-cul-

tures supplemented with 2  % galactose were grown for 

36  h in test tubes. �ese cultures were used to inocu-

late an additional 10-mL pre-culture to an initial OD600 

of 0.2, which was grown for 6  h. �e resulting cultures 

were centrifuged at 3000×g and washed once with fresh 

base medium. A fraction of the resulting cell suspension 

was centrifuged and resuspended in 10 mL of fresh base 

medium in test tubes so as to reach an initial OD600 of 

0.5, and then 2 × 7 mm silicone elastomer galactose discs 

(Kuhner) were added.
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Fig. 1 Diagram of S. cerevisiae metabolic pathways relevant to this study. Engineered enzymatic steps of native yeast metabolism are IDH1, isoci-
trate dehydrogenase 1 and ERG12, mevalonate kinase. Non-native engineered enzymatic steps are ACL, ATP citrate lyase of Aspergillus nidulans; 
mvaE acetoacetyl-CoA synthase and HMG-reductase of Enterococcus faecalis; mvaS, acetoacetyl-CoA thiolase of Enterococcus faecalis
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Gene synthesis

Coding sequences for ACLa and ACLb from Aspergil-

lus nidulans were obtained from the Aspergillus Com-

parative Database (http://www.broadinstitute.org/

annotation/genome/aspergillus_group). Both genes were 

codon optimized for S. cerevisiae and synthesized by Gen-

script (Piscataway, New Jersey). �e genes were cloned 

into pADS-AMO-CPR [35] to generate JBEI-7134. Addi-

tional ACL coding sequences were obtained at the fol-

lowing locations: the Rhodosporidium toruloides gene 

was obtained from the Genomics Web Portal (http://

crdd.osdd.net/raghava/genomesrs/); the Yarrowia lipo-

lytica genes were obtained from the Genelovures Yeast 

Genomes Database (http://genolevures.org/yali.html); 

the Lipomyces starkeyi genes were obtained from the JGI 

Genome Portal (http://genome.jgi.doe.gov/Lipst1_1/

Lipst1_1.home.html); and the Mus musculus gene was 

obtained from the NCBI Gene Database (http://www.ncbi.

nlm.nih.gov/gene/104112). Coding sequences were opti-

mized for expression in S. cerevisiae using the IDT codon 

optimization tool, and were cloned into the pESC-LEU2d 

(strain  Keasling-1951) parent plasmid by JGI to generate 

JBEI-10648, and JBEI-10641–10644 (see Table 1).

MvaE was codon optimized for S. cerevisiae and syn-

thesized by Genscript (Piscataway, New Jersey). �e 

coding sequences were obtained from NCBI cataloged 

under accession: AF290092.1 GI: 9937382. MvaS was 

amplified directly from the Enterococcus faecalis genome, 

with primers designed to amplify from the nucleo-

tide sequence obtained from the same NCBI accession 

number.

Plasmid construction

All strains (Table  1), expression plasmids (Table  2), 

additional plasmids used for constructing strains and 

expression plasmids (Additional file  1: Table S1), and 

the corresponding sequence files are described in the 

JBEI Public Registry (https://public-registry.jbei.org/) 

[16], and are available upon request. All plasmids built 

in this study used for strain and expression plasmid con-

struction were constructed using Gibson assembly [13] 

or Yeast assembly [27]. Plasmids were designed using 

Device Editor bioCAD software [4], and assembly prim-

ers were generated with j5 DNA assembly design auto-

mation software [18] using the default settings. PCR 

amplification was performed using Prime STAR GXL 

DNA polymerase using the manufacturer’s instructions 

(Takara). Assemblies were performed using Gibson 

assembly master mix (New England Biolabs), and were 

transformed into DH10b competent cells for propaga-

tion. Plasmid DNA was purified using a QIAprep Spin 

Miniprep Kit (QIAGEN), and plasmids were sequenced 

with  ~2X coverage (Quintara). DNA sequences derived 

from S. cerevisiae were amplified from genomic DNA 

prepared using a modified Miniprep protocol: 1 mL yeast 

cell culture in YPD medium was centrifuged in a screw 

cap tube (3000×g) and resuspended in buffer P1 (from 

Qiagen kit). Cells were lysed by adding glass beads and 

shaking in a benchtop homogenizer/bead beating instru-

ment (FastPrep-24, MP Biomedicals) for ~1 min. Result-

ing suspension was used for remaining steps in Qiagen 

Miniprep protocol. Details of construction for each plas-

mid are as follows:

Table 1 Strains and plasmids

Yeast strains used in this study

Strain Genotype Reference

BY4741 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 Euroscarf

JBEI-10683 BY4741 ura3::PGAL10-AnACLb-PGAL1-AnACLa-kanMX4 This study

JBEI-10684 BY4741 ura3::PGAL1-RtACL-kanMX4 This study

JBEI-10685 BY4741 ura3::PGAL1-MmACL-kanMX4 This study

JBEI-10686 BY4741 ura3::PGAL10-YlACLb-PGAL1-YlACLa-kanMX4 This study

JBEI-10687 BY4741 ura3::PGAL10-LsACLb-PGAL1-LsACLa-kanMX4 This study

JBEI-10688 BY4741 idh1::kanMX4 Euroscarf

JBEI-10689 BY4741 ura3::PGAL10-AnACLb-PGAL1-AnACLa-kanMX4 idh1::hphMX4 This study

JBEI-10569 BY4741 trp1::EfMvaE-EfMvaS–SpHIS5 This study

JBEI-10690 BY4741 ura3::PGAL10-AnACLb-PGAL1-AnACLa-kanMX4 trp1::EfMvaE-EfMvaS–SpHIS5 This study

JBEI-10691 BY4741 ura3::PGAL10-AnACLb-PGAL1-AnACLa-kanMX4 idh1::hphMX4 trp1::EfMvaE-EfMvaS–SpHIS5 This study

JBEI-10692 BY4741 ura3::PGAL10-AnACLb-PGAL1-AnACLa-kanMX4 idh1::ylIDH–CaURA3 trp1::EfMvaE-EfMvaS–SpHIS5 This study

JBEI-10693 BY4741 ura3::PGAL10-AnACLb-PGAL1-AnACLa-kanMX4 idh1::hphMX4 ERG12::KlLeu2–PCTR3-ERG12 This study

JBEI-10694 BY4741 ura3::PGAL10-AnACLb-PGAL1-AnACLa-kanMX4 ERG12::KlLeu2–PCTR3-ERG12 This study

http://www.broadinstitute.org/annotation/genome/aspergillus_group
http://www.broadinstitute.org/annotation/genome/aspergillus_group
http://crdd.osdd.net/raghava/genomesrs/
http://crdd.osdd.net/raghava/genomesrs/
http://genolevures.org/yali.html
http://genome.jgi.doe.gov/Lipst1_1/Lipst1_1.home.html
http://genome.jgi.doe.gov/Lipst1_1/Lipst1_1.home.html
http://www.ncbi.nlm.nih.gov/gene/104112
http://www.ncbi.nlm.nih.gov/gene/104112
https://public-registry.jbei.org/
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JBEI-7134 (pACLab). Two multi-copy plasmids, 

pRS426 [5] and pESC-URA (Stratagene, La Jolla), were 

previously combined to form plasmid pADS-AMO-CPR 

[35]. �is plasmid contained genes encoding amorphadi-

ene synthase (ADS), amorphadiene oxidase (AMO) and 

its redox partner cytochrome P450 reductase (CPR). We 

removed the AMO and CPR genes and replaced them 

with ACLa and ACLb genes, respectively, to form pESC-

PGAL1ACLa-PGAL10ACLb-PGAL1-ADS-LEU2d (JBEI-3271) 

plasmid. �en ADS was removed by yeast homologous 

recombination. Phosphorylated primers, with 20 over-

hanging base pairs and matching ends homologous 

to the promoter or terminator regions surrounding 

ADS, were designed to amplify the pESC-PGAL1ACLa-

PGAL10ACLb-PGAL1-ADS-LEU2d vector regions sur-

rounding the ADS gene by PCR. �e PCR product was 

transformed into yeast and colonies were screened for 

the removal of ADS by PCR. �e resulting construct was 

purified using a modified Miniprep protocol (described 

above) and transformed into DH10b competent cells for 

propagation.

JBEI-10632 (pMvaES). �is plasmid was constructed 

from Keasling-2159 by replacing AMO with mvaE and 

CPR with mvaS using standard yeast homologous recom-

bination. Replacement of the LEU2d marker for the 

URA3 marker was performed by cutting the plasmid 

once within the LEU2d marker, treatment of the plasmid 

with phosphatase, and co-transformation of the treated 

cut plasmid with PCR product of the URA3 cassette, 

with flanking ends homologous to the site of integration 

within the vector.

JBEI-10650. DNA from Y. Lipolytica was prepared 

using the modified Mini prep protocol described above. 

�e pESC-LEU2d backbone, the Y.l.IDH1 and PGAL1/10 

fragments were amplified for Gibson assembly-based 

construction as described above. �e genomic Y.l.IDH2 

gene contains an intron 24 base pairs 3′ from the start of 

the coding sequence. In order to remove the intron, the 

intron-less coding sequence was broken into two parts. 

�e first part was amplified from a 500-bp gBlock (IDT), 

while the second part was amplified from genomic 

DNA.

ACL Activity assay

Cell lysates were prepared as follows: 20 OD units of 

three biological replicate cultures were centrifuged at 

3300×g for 10 min. Cells were washed in 2 mL of 0.1 M 

Tris buffer, pH 8.7 supplemented with 10  µL protease 

inhibitor (Sigma cat. no. P8215) and then resuspended in 

500 µL of the same buffer. 500 µL of glass beads (USA sci-

entific) were added, and cells were broken using a bench-

top homogenizer/bead beating instrument (FastPrep-24, 

MP Biomedicals). Cells were shaken 5 ×  20  s intervals, 

separated by one-minute intervals on ice. Beads and 

cellular debris were centrifuged at 10,000×g for 2  min 

at 4  °C. 300 µL of supernatant were collected as the cell 

lysate.

ACL activity assays were performed as described previ-

ously [26] with minor modifications. Briefly, 20 µL of cell 

lysate was added to a mixture composed of 100 mM Tris–

HCl (pH 8.4), 20 mM sodium citrate, 5 u/ml malate dehy-

drogenase (Sigma), 10 mM MgCl2, 10 mM DTT, 0.15 μM 

NADH, 0.3 mM Coenzyme A, and 5 mM ATP. Reactions 

were initiated by adding cell lysate and the decrease in 

absorption at 340 nm was monitored every 15 s using a 

SPMAX plate reader set at 30  °C. Lysate activities were 

calculated as the initial rate of the decrease in absorp-

tion at 340 nm. Initial rates were calculated as the slope 

of a general linearized model for the first 10 min of the 

reaction. For the ACL-containing strains, activities were 

reported as the absolute initial rate divided by the initial 

rate of the parent strain, then divided by total mg protein 

in each sample as measured by Pierce BCA protein assay 

kit (Life Technologies).

Citric acid cycle metabolite analysis

Metabolite extraction was performed as previously dem-

onstrated by [38], modified for S. cerevisiae by use of 

bead-beating for cell lysis of five OD units of culture. Tri-

carboxylic acid (TCA) cycle intermediates were analyzed 

by liquid chromatography and mass spectrometry (LC–

MS). Chemical standards were made up to 200 µM, as the 

stock solution, in methanol–water (50:50, v/v). �e sepa-

ration of the TCA cycle intermediates was conducted on 

a ZIC-pHILIC column (150 mm length, 4.6-mm internal 

Table 2 Expression plasmids used in this study

Plasmid name JBEI registry number Description Reference

pESC-LEU JBEI-10738 Yeast episomal plasmid with 2μ-origin and LEU2 selectable marker Stratagene, La Jolla, CA

pACLab JBEI-7134 pESC-PGAL10-AnACLb-PGAL1-AnACLa-LEU2d This study

pESC-URA JBEI-10737 Yeast episomal plasmid with 2μ-origin and URA3 selectable marker Stratagene, La Jolla, CA

pMvaES JBEI-10632 pESC-PGAL10-EfMvaE-PGAL1-EfMvaS-URA3 This study

pYlIDH JBEI-10650 pESC-PGAL10-YlIDH1-PGAL1-YlIDH2-Leu2d This study
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diameter, and 5-µm particle size; from Merck SeQuant, 

and distributed via �e Nest Group, Inc., MA., USA) 

using an Agilent Technologies 1200 Series HPLC system 

(Agilent Technologies, CA, USA). �e sample injection 

volume was 3 µL. �e temperature of the sample tray was 

maintained at 4 °C using an Agilent FC/ALS �ermostat. 

�e column compartment was set to 40  °C. �e mobile 

phase was composed of (A) 10 mM ammonium carbon-

ate and 0.5 % ammonium hydroxide in acetonitrile–water 

(2:8, v/v) and (B) 10 mM ammonium carbonate and 0.5 % 

ammonium hydroxide in acetonitrile–water (8:2, v/v). 

TCA cycle intermediates were eluted isocratically with a 

mobile phase composition of 33  % mobile phase A and 

67 % of mobile phase B. A flow rate of 0.45 mL/min was 

used. �e HPLC system was coupled to an Agilent Tech-

nologies 6210 time-of-flight mass spectrometer (LC-TOF 

MS) by a 1/6 post-column split. Contact between both 

instrument set-ups was established using a LAN card in 

order to trigger the MS into operation upon initiation of 

a run cycle from the MassHunter workstation (Agilent 

Technologies, CA, USA). Electrospray ionization (ESI) 

was conducted in the negative ion mode and a capillary 

voltage of—3500 V was used. MS experiments were car-

ried out in full scan mode, at 0.86 spectra/second for the 

detection of [M–H]/Z. Prior to LC-TOF MS analysis, the 

TOF MS was calibrated via an ESI-L-low concentration 

tuning mix (Agilent Technologies, CA, USA). Data acqui-

sition and processing were performed by the MassHunter 

software package. �e instrument was tuned for a range 

of 50–1700 m/z—were quantified via eight-point calibra-

tion curve ands ranging from 625 nM to 200 µM. �e R2 

coefficients for the calibration curves were ≥0.99.

CoA metabolite analysis

For CoA metabolite analysis, a method previously estab-

lished was adapted from [7]. Briefly, 20 OD units of each 

culture were pelleted (6000 rpm, 5 min, 4 °C). �e super-

natant was aspirated, and the cells were suspended in 

1 mL of 10 % TCA containing crotonyl-CoA (10 μM) as 

an internal standard. �e cells were bead-beaten for a 

total of 5 min (intervals of 20 s of beating followed by 20 s 

on ice). �e supernatant was collected and neutralized 

with 2 × volume of 1 M octylamine. Samples were then 

filtered and the neutralized TCA extract was analyzed via 

LC–MS using electrospray ionization. �e LC conditions 

used were adapted from [31].

Extracellular metabolites and organic acids detection

Glucose, galactose, acetate, ethanol and glycerol were 

separated by HPLC and detected by RID and DAD detec-

tors. One mL of cell culture was transferred and centri-

fuged at 18,000×g for 5 min. �e supernatant was then 

filtered using a Costar® Spin-X® Centrifuge Tube Filters, 

0.22-µm pore and applied to an Agilent 1100 series HPLC 

equipped with an Agilent 1200 series auto-sampler, an 

Aminex HPX-87H ion exchange column (Biorad), and an 

Agilent 1200 series DAD and RID detectors. Metabolites 

were separated using 4 mM H2SO4 aqueous solution with 

a flow rate of 0.6 ml/min at 50 °C. Galactose consumption 

was calculated as the concentration of galactose remain-

ing in prepared medium with cultured strains, subtracted 

from the concentration of galactose in the control culture 

of prepared media without cells.

Mevalonate and squalene quanti�cation

A detailed description of mevalonate and squalene quan-

tification was recently described [36]. In brief, meva-

lonate was derivatized to mevalonolactone by mixing 

200  µL cell culture with 50  µL 2  M HCl and vortexing 

for 15  min. Mevalonolactone was extracted into ethyl 

acetate by adding 250 µL ethyl acetate containing 10 μg/

mL caryophyllene (internal standard) and vortexing for 

5  min. Samples were centrifuged at 3000×g for 5  min 

and 100 µL of the organic phase was removed and trans-

ferred to glass GC vials for GCMS analysis. 1 μL of sam-

ple was injected (splitless), by using He as the carrier gas 

onto a CycloSil-B column (Agilent, 30-m length, 0.25-

mm inner diameter (i. d.), 0.25-μm film thickness, cat. 

no. 112–6632) using an Agilent GC system 6890 series 

GCMS with Agilent mass selective detector 5973 net-

work. �e carrier gas was held at a constant flow rate of 

1.0  mL/minutes. After each sample injection, the oven 

temperature was held at 90  °C for 1  min, followed by a 

ramp of 30  °C/minute to a final temperature of 250  °C, 

and then held at 250 °C for 2 min. Solvent delay was set 

to 3.5 min, EMV mode was set to a gain factor of 1, and 

the MS instrument was set to SIM for acquisition, moni-

toring m/z ions 58 and 71 (mevalonolactone ions), along 

with 189 and 204 (caryophyllene internal standard ions). 

Peak areas for mevalonolactone and caryophyllene were 

quantified using MSD Productivity ChemStation soft-

ware (Agilent), and relative mevalonolactone levels were 

calculated as the quotient of mevalonolactone and caryo-

phyllene. For absolute quantification, sample values were 

fit to a generalized linear model generated from mevalo-

nolactone standards.

Squalene was extracted by resuspending cells from 

2  mL culture in 0.4  mL of the alcoholic KOH solution 

containing 10 μg/mL cholesterol, and boiling for 5 min. 

Squalene was extracted from the alcoholic solution by 

adding 0.4 mL of dodecane and vortexing for 5 min. Sam-

ples were centrifuged at 3000×g for 5 min and 100 µL of 

the organic phase was removed to glass GC vials. GCMS 

analysis and quantification were as described above with 

the following modifications: samples were injected onto 

a DB-5MS column (Agilent); after each sample injection, 
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the oven temperature was held at 80  °C for 1  min, fol-

lowed by a ramp of 20  °C/min to 280  °C, and then held 

for 15  min at 280  °C and a ramp to 300  °C at a rate of 

20 °C/min with a final hold at 300 °C for 2 min.; solvent 

delay was set to 10 min, EMV mode was set to a gain fac-

tor of 1, the mass spectrometer was set to SIM acquisi-

tion mode, monitoring m/z ions 218, 386 and 396, and 

the temperatures of the quadrupole and the ion source 

were set to 200 and 300 °C, respectively.

Results
Activity of ACLs from di�erent sources

Previous work has demonstrated that incorporating ACL 

from various organisms into S. cerevisiae improves pro-

duction of acetyl-CoA derived products [11, 24, 40]. We 

synthesized yeast codon optimized ACL genes from five 

different sources—four from the fungi A. nidulans, R. 

toruloides, Y. lipolytica, and L. starkeyii, and one from 

the house mouse Mus musculus. In order to compare 

the activity of the heterologously expressed ACLs, we 

integrated each of the sequences into the S. cerevisiae 

genome, and measured their activity in crude cell lysates 

using an NADH-dependent coupled assay (Fig.  2). We 

observed a range of activity levels among the cell lysates. 

ACLs from R. toruloides and L. starkeyi displayed no 

detectable activity, ACLs from Mus musculus and Y. lipo-

litica displayed activity above background, consistent 

with previous publications [11, 24, 40]. �e ACL from 

A. nidulans exhibited the highest activity by approxi-

mately an order of magnitude. Because the ACL from A. 

nidulans exhibited by far the highest activity, we decided 

to focus on this enzyme to further characterize expres-

sion of this ACL in S. cerevisiae.

Engineering increased intracellular �ux through ACL

In S. cerevisiae citrate is primarily produced in the mito-

chondrion, where it is consumed by the citric acid cycle. 

A fraction of the mitochondrial citrate is transported 

to the cytoplasm by the citrate transporter CTP1 in 

exchange for malate [21]. �e cytoplasmic citrate may 

then be consumed by ACL for cytoplasmic acetyl-CoA 

production. To determine whether A. nidulans ACL is 

active in  vivo, and whether enough intracellular citrate 

is available for increased acetyl-CoA production, we 

measured the intracellular concentrations of citrate and 

acetyl-CoA in a strain containing A. nidulans ACL on 

a high copy plasmid. �ese strains were grown in both 

standard (i.e., supplemented to 1 g/L ammonium sulfate) 

and nitrogen limited conditions, as previous studies have 

reported higher activity of the mitochondrial citrate syn-

thase in cells grown with low nitrogen concentration [22]. 

Citrate levels decreased to a similar extent in both con-

ditions when ACL was expressed (39  % standard nitro-

gen; 35  % low nitrogen), suggesting that heterologously 

expressed ACL actively consumed citrate irrespective 

of nitrogen concentration (Fig. 3a). However, we indeed 

observed higher absolute levels of citrate in nitrogen-

limited conditions when compared with the wild-type 

strain grown in medium with standard nitrogen sup-

plementation (70  % increase) (Fig.  3a). �e increase in 

total intracellular citrate concentrations associated with 

growth in limited nitrogen medium prompted us to 

adopt this growth condition for subsequent engineering 

experiments.

Surprisingly, the total cellular acetyl-CoA concentra-

tion decreased in both limited and standard nitrogen 

conditions with the expression of ACL (Fig. 3c). Because 

there are myriad cellular pathways that consume acetyl-

CoA [12], we reasoned that total acetyl-CoA levels may 

not reflect flux through ACL. Consistently, several previ-

ous studies have demonstrated that total cellular acetyl-

CoA concentrations between strains do not correlate 

with production of acetyl-CoA derived products [31, 39].

One of the major sinks for cytoplasmic acetyl-CoA in 

S. cerevisiae is the isoprenoid pathway, which leads to 

the biosynthesis of ubiquinone, prenylated proteins, and 

sterols (Fig.  1). Previous work has shown that strains 

engineered for isoprenoid production exhibit accumu-

lation of the pathway intermediate mevalonate [30, 36]. 

We observed an increase in mevalonate suggesting that 

ACL expression may increase flux toward the meva-

lonate pathway, however the effect was modest (30  %) 

(Fig. 3c). We reasoned that the limited increase in flux to 
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acetyl-CoA-dependent pathways was likely due to insuf-

ficient citrate supply.

In order to increase citrate supply to ACL, we 

attempted to further mimic the lipid accumulation 

phase of oleaginous yeast central carbon metabolism, 

by shunting the citrate destined for the TCA cycle to 

the cytoplasm. In oleaginous yeast, the major regula-

tory mechanism controlling the shift of citrate flux 

from the TCA cycle to ACL is mediated by inhibition of 

mitochondrial ICDH [9, 10]. S. cerevisiae contains both 

NADP+- and NAD+-dependent mitochondrial ICDHs. 

In a wild-type background the NAD+-dependent mito-

chondrial ICDH mediates the bulk of the cellular flux 

[6]. It has been shown previously that deletion of IDH1, 

which encodes the regulatory subunit of NAD+-depend-

ent mitochondrial ICDH, results in increased citrate 

concentration [25], suggesting that IDH1Δ could effec-

tively shunt citrate from the TCA cycle to the cytoplasm. 

�is prompted us to measure the effect of IDH1Δ and 

ACL overexpression on the levels of other key central 

carbon metabolites.

Changes in metabolite concentrations in strains with 

IDH1Δ and ACL expression strongly suggest that we suc-

cessfully reconstituted this key aspect of oleaginous yeast 

metabolism. First, isocitrate was undetectable in IDH1+ 

strains, but was clearly detectable in the IDH1Δ back-

ground, indicating that flux through ICDH was effectively 

blocked (Fig.  3b). Second, while citrate and isocitrate 

concentrations increased in the IDH1Δ background, both 

decreased dramatically when ACL was expressed, indi-

cating that a substantial fraction of cellular citrate was 

transported from the mitochondrion to the cytoplasm 
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and consumed by ACL (46 % decrease in citrate concen-

trations with ACL expression) (Fig.  3b, c). �ird, while 

the mevalonate concentration decreased in the IDH1Δ 

background, it increased when ACL was expressed (96 % 

increase) (Fig. 3d), suggesting that shunting citrate from 

the TCA cycle may allow additional acetyl-CoA pro-

duced by ACL to be directed to acetyl-CoA dependent 

biosynthesis pathways.

Other key metabolites of the TCA cycle and glyoxy-

late shunt were measured (Additional file  2: Figure S1). 

IDH1∆-modified strains demonstrate fold increases of 

intracellular concentrations of malate, fumarate and 

succinate by 2.5, 2.2, and 1.8, respectively, as compared 

to the wild type strain (Additional file  2: Figure S1). 

Interestingly, these metabolites are key products of the 

glyoxylate cycle, and large increases in intracellular con-

centrations of malate, fumarate, and succinate in IDH1∆ 

strains may be indicative of utilization of the glyoxylate 

cycle. Notably, 2-oxoglutarate was also found to signifi-

cantly increase (205 % increase) with ACL expression, as 

compared to the IDH∆ background without ACL (Addi-

tional file 2: Figure S1). We speculate that the expression 

of ACL leads to down stream effects which replenish the 

mitochondria with 2-oxoglutarate for further oxidative 

phosphorylation.

Increasing pull on cytoplasmic acetyl-CoA towards the 

mevalonate pathway

We next set out to test whether our strategy could be 

used to improve biosynthesis of acetyl-CoA  derived 

products in a strain engineered for greater pull towards 

the mevalonate pathway. In particular we focused on 

production of the acetyl-CoA derived pathway interme-

diate mevalonate, because of its potential use as a precur-

sor for biobased production of β-methyl-δ-valerolactone 

[42]. Acetyl-CoA flux was directed to the mevalonate 

pathway by integrating two genes from Enterococcus fae-

calis, mvaE and mvaS, that together encode the first three 

steps of the mevalonate pathway [17, 43, 44] (Fig.  1). 

Functional expression of these genes has not previously 

been demonstrated in S. cerevisiae to our knowledge.

When mvaE and mvaS were expressed in a wild-type 

background, we observed a significant increase in both 

mevalonate and the downstream metabolite squalene 

(Fig. 4a, b). Squalene has previously been shown to accu-

mulate in strains engineered for increased flux to the 

mevalonate pathway [8, 37]. Expressing ACL with mvaE 

and mvaS did not lead to an increase in mevalonate 

concentration, and led to only a  ~twofold increase in 

squalene concentration. However, when ACL, mvaE, 

and mvaS were expressed in an IDH1Δ background, we 

observed significant increases in both mevalonate and 

squalene (137 and 445 %, respectively, increase over the 

strain engineered with mvaE, and mvaS expression only). 

�ese data demonstrate that while expression of the 

upper mevalonate pathway genes mvaE and mvaS leads 

to mevalonate accumulation, a substantial amount of 

produced mevalonate is converted to downstream prod-

ucts such as squalene, and may also accumulate as other 

downstream products (Fig. 1). Lastly, the combined strat-

egy of ACL expression with IDH1Δ led to a  ~threefold 

increase in mevalonate production over strains without 

these two modifications. �is is consistent with our pre-

vious results, and indicates that shunting citrate from the 

TCA cycle via IDH1Δ in combination with expression of 

ACL is a viable strategy for increasing flux to the meva-

lonate pathway.

Interestingly, the best producing strain (JBEI 10691–

IDH1Δ; ACL; mvaES) also exhibited substantially less 

growth than the IDH1+ strains (Additional file  3: Fig-

ure S2). We reasoned that this may have been caused 

by reduced citrate flux to the TCA cycle. We initially 

hypothesized that replacing S. cerevisiae ICDH with one 

from an oleaginous yeast might achieve a flux distribu-

tion between the TCA cycle and the ACL pathway that 

would allow for improved growth and similar or higher 

titers, as previous work has shown that ICDH from ole-

aginous yeast are responsive to the carbon/nitrogen 

molar ratio [43]. To test this, genes from Y. lipolytica with 

homology to S. cerevisiae IDH1 and IDH2 were iden-

tified, and their functionality was confirmed through 

complementation of S. cerevisiae IDH1/2Δ (Additional 

file 4: Figure S3). However, when the Y. lipolytica ICDH 

replaced IDH1, we observed reduced production com-

pared with IDH1Δ (Fig.  4). �e failure of Y.l.IDH1/2 to 

improve mevalonate production is likely due to the dif-

ferent regulatory environment between oleaginous yeasts 

and S. cerevisiae.

Engineering a strain for high mevalonate production

Having demonstrated that expressing ACL in the IDH1Δ 

background serves to increase flux to the engineered 

mevalonate pathway, we next focused our efforts on fur-

ther increasing production of the pathway intermediate 

mevalonate. We first determined that mevalonate does 

not inhibit growth, nor is it consumed as a carbon source 

(Additional file 5: Figure S4 A, B). We then determined 

that mevalonate does not accumulate intracellularly, and 

is efficiently exported extracellularly (Additional file  6: 

Figure S5). To engineer mevalonate accumulation, mvaE 

and mvaS were expressed from a high copy plasmid so as 

to maximize flux from acetyl-CoA to mevalonate. �en, 

we attempted to reduce flux downstream of mevalonate 

by modifying the expression of mevalonate kinase, the 

next step in the mevalonate pathway. �is activity is 

encoded by ERG12, which is essential, as flux through 
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the mevalonate pathway is necessary for production of 

sterols, lipids and a host of other metabolites (Fig.  1). 

In order to achieve an expression level that allowed 

enough flux through the mevalonate pathway to meet 

essential requirements, while limiting accumulation of 

other pathway intermediates, the ERG12 promoter was 

replaced with the copper-repressible CTR3 promoter. 

Consistent with our previous results, expression of ACL 

(without the PCTR3::PERG12 modification) resulted in 

an approximately twofold increase in mevalonate pro-

duction. When the PCTR3::PERG12 modification was 

introduced (without ACL expression), ERG12 repres-

sion resulted in a twofold increase in mevalonate pro-

duction. When the two modifications were combined, 

we observed a modest but significant increase in meva-

lonate production as compared to strains engineered 

with either of the individual modifications, ultimately 

leading to production of over 30 mg/liter of mevalonate 

(Fig. 5).

Conclusions
In this study the yeast S. cerevisiae was engineered 

with an alternative mode of acetyl-CoA biosynthe-

sis mediated by ACL in conjunction with a push/pull/

block strategy. As a proof of principle, we demonstrate 

that this alternative mode of metabolism can be used 

as a strategy to significantly increase the yield of the 

acetyl-CoA  derived product mevalonate. We demon-

strate the basic requirements for directing flux through 

the ACL pathway: increased citrate supply, expression 

of an active ACL, increased pull towards a product of 

interest, and limitation of competing downstream path-

ways. We anticipate that this strategy can be extended 
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to the production of a wide array of acetyl-CoA derived 

molecules.
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