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ABSTRACT 
 

Eukaryotic DNA is incorporated into the nucleoprotein structure of 

chromatin. This structure is essential for the proper storage, maintenance, 

regulation, and function of the genomes’ constituent genes and genomic 

sequences. Importantly, cells generate discrete types of chromatin that impart 

distinct properties on genomic loci; euchromatin is an open and active 

compartment of the genome, and heterochromatin is a restricted and inactive 

compartment. Heterochromatin serves many purposes in vivo, from heritably 

silencing key gene loci during embryonic development, to preventing aberrant 

DNA repeat recombination. Despite this generally repressive role, the DNA 

contained within heterochromatin must still be repaired and replicated, creating a 

need for regulated dynamic access into silent heterochromatin. In this work, we 

discover and characterize activities that the ATP-dependent chromatin 

remodeling enzyme SWI/SNF uses to disrupt repressive heterochromatin 

structure. 

First, we find two specific physical interactions between the SWI/SNF core 

subunit Swi2p and the heterochromatin structural protein Sir3p. We find that 

disrupting these physical interactions results in a SWI/SNF complex that can 

hydrolyze ATP and slide nucleosomes like normal, but is defective in its ability to 

evict Sir3p off of heterochromatin. In vivo, we find that this Sir3p eviction activity 

is required for proper DNA replication, and for establishment of silent chromatin, 
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but not for SWI/SNF’s traditional roles in transcription. These data establish new 

roles for ATP-dependent chromatin remodeling in regulating heterochromatin. 

Second, we discover that SWI/SNF can disrupt heterochromatin structures 

that contain all three Sir proteins: Sir2p, Sir3p and Sir4p. This new disruption 

activity requires nucleosomal contacts that are essential for silent chromatin 

formation in vivo. We find that SWI/SNF evicts all three heterochromatin proteins 

off of chromatin. Surprisingly, we also find that the presence of Sir2p and Sir4p 

on chromatin stimulates SWI/SNF to evict histone proteins H2A and H2B from 

nucleosomes. Apart from discovering a new potential mechanism of 

heterochromatin dynamics, these data also establish a new paradigm of 

chromatin remodeling enzyme regulation by nonhistone proteins present on the 

substrate. 
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Chapter I: Introduction 

 

Eukaryotic genomes and chromatin 

 Cells are the emergent properties of their genes. All of the information that 

a cell needs to survive and reproduce—all of its genes and gene regulatory 

elements—are encoded by the sequence of adenine, cytosine, guanine, and 

thymine bases within that cell’s DNA molecules. Each cell bears a full set of 

these DNA molecules. For humans, this is a set of 46 polyanions comprising 6.4 

billion base pairs of DNA, which stretched end-to-end would exceed one meter in 

length. Not only must each human cell fit all of that negative charge and genetic 

information within a nucleus that is 10 micrometers across, but the cell must also 

properly replicate and express that genetic information.  

These tasks are all greatly facilitated by the storage of eukaryotic 

genomes within the regulatory nucleoprotein structure called chromatin. Over 

millions of years, eukaryotes have incorporated aspects of chromatin structure 

into the regulation of most cell processes, from transcription (Rando and 

Winston, 2012; Venkatesh and Workman, 2015), to regulation of cell fate and 

development (Brookes and Shi, 2014; Laugesen and Helin, 2014), to DNA 

replication and repair (Papamichos-Chronakis and Peterson, 2012; Rivera et al., 

2014; Sinha and Peterson, 2009). Two contradictory themes of chromatin 

structure are structural compaction and dynamic accessibility: the restricted 

accessibility of DNA that is stored within packed chromatin, and the ways cells 
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have evolved to actively circumvent this storage. In my thesis I will talk about 

work I have done to characterize a novel balance between these two themes. I 

will begin by talking about chromatin structure, then transition into ways that cells 

modulate this structure.  

 

Features of the nucleosome 

The basic unit of chromatin is the nucleosome, in which 147 base pairs of 

DNA is wrapped 1.67 times around an octamer of histone proteins (Figure 1A) 

(Luger et al., 1997a). As ten base pairs of nucleosomal DNA results in one full 

superhelical turn of DNA, one nucleosome contains fifteen such turns. Counting 

these superhelical turns along the nucleosome (superhelical location, or SHL) 

provides a useful reference point for the following discussion of nucleosome 

structure. SHL0 is defined as the midpoint of the nucleosome. Nucleosomes are 

a symmetrical structure, thus starting at SHL0 and progressing the same 

distance in different directions along the DNA, e.g. one superhelical turn to 

SHL+1 and SHL-1, brings you to the same locations on the two symmetrical 

halves of the nucleosome. 

As implied by its symmetry, each nucleosome contains two copies apiece 

of the highly conserved core histones H2A, H2B, H3 and H4. These histones are 

small proteins, each only ~100-140 amino acids in length, and they contain a 

high proportion of lysine (K) and arginine (R) residues, imparting a large positive 

charge on the histone protein at physiological pH (pH 7-8). This positive charge 
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Figure 1: Structure and composition of the nucleosome (PDB#1AOI) (Luger 

et al., 1997a). (A) Crystal structure of the nucleosome at 2.8 Å resolution. See 

right key for colors; orange numbers correspond to SHL. (B) Histones contain 

core fold domains and unstructured tail domains. (C) Handshake interactions 

(purple highlight) hold histones together, and four-helix bundle interactions 

(orange highlight) hold histone heterodimers together. 
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helps to partially neutralize the strong negative charge of the DNA polyanion 

(Kornberg, 1977; Hansen, 2002). 

At the core of each histone protein lies a ~70 amino acid-long histone fold 

domain (Figure 1B). This histone fold domain contains three alpha helices that 

are separated from one another by two loop domains. Hydrophobic interactions 

between histone fold domains of different histones ultimately guide the assembly 

of the histone octamer via two different modes of binding. The handshake mode 

of binding uses the length of the histone fold’s middle helix to unite heterodimers 

of H2A/H2B and H3/H4 (Figure 1C) (Arents et al., 1991). The four-helix bundle 

mode of binding combines two H3/H4 heterodimers into a tetramer that sits at 

SHL0, the center of the histone octamer. Additional four-helix bundles at SHL±3, 

between H4 and H2B, anchor H2A/H2B heterodimers on either side of the 

central H3/H4 tetramer (Arents et al., 1991; Luger et al., 1997a). Finally, 

interactions between the two H2A/H2B dimers in the nucleosome lend 

cooperative stability to dimer binding (Suto et al., 2000). 

Given the strong positive charge of each histone protein, histone octamers 

only assemble under conditions where the positive charge can be shielded, such 

as at high concentrations of salt (over 2M sodium chloride) or in the presence of 

sufficient DNA. On their own, histone octamers at physiological salt 

concentrations (150mM sodium chloride) dissociate into two H2A/H2B 

heterodimers and a tetramer of H3/H4. These ionic stability characteristics are 

commonly used to reassemble histone octamers and DNA into nucleosomes in 
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vitro, by step salt dialysis (Tatchell and Van Holde, 1977). Octamers and DNA 

are first mixed at high salt (2M sodium chloride) and gradually dialyzed or diluted 

into lower salt concentrations. By 1M sodium chloride, the histone octamer 

dissociates into an H3/H4 tetramer and two H2A/H2B dimers, and the H3/H4 

tetramer binds to DNA. This tetrasome binds from SHL-3 to SHL+3, where the 

center of the nucleosome will ultimately be. At 0.8M sodium chloride, and again 

at 0.6M sodium chloride, H2A/H2B dimers bind, flanking the H3/H4 tetramer and 

occupying from SHL±3 to SHL±6. The final superhelical turns, SHL±7, are then 

held by H3 and H4 (Hansen et al., 1991; Luger et al., 1997a). This stepwise 

order of octamer assembly is similar to what occurs in vivo during DNA 

replication, except this process in vivo makes use of specialized chaperone 

proteins that stabilize the histone proteins away from DNA, instead of salt-based 

ionic shielding (Corpet and Almouzni, 2009). 

 In contrast with the structured histone fold domains, the rest of the histone 

protein consists of unstructured N-terminal (H2A, H2B, H3 and H4) and C-

terminal (H2A) tails (Figure 1B). These tails exist outside of the confined 

nucleosome core and are generally more accessible, e.g. to proteases like 

trypsin, than the histone fold domains (Weintraub and Lente, 1974). Despite this 

accessibility, the high concentration of positive charges along the histone tails 

would suggest that the tails are regularly bound to negatively charged surfaces. 

Examples of negatively charged binding partners include nucleosomal DNA, 

linker DNA—the naked DNA that spans between adjacent nucleosomes—and 
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negatively charged regions on other proteins, including histone tail binding 

proteins and other nucleosomes (Hansen, 2002). 

The histone tails emerge from diverse parts of the octamer core. The 

histone H2B and H3 N-terminal tails emerge from the sides of the core, passing 

between the two gyres of DNA. These tails fit out in spots where the minor 

grooves of the two DNA gyres align. The H2B tail sits between SHL±4.5 and the 

opposite SHL±3, and the H3 tail emerges between SHL±1 and the opposite 

SHL±7. Notably, the H3 N-terminal tail aligns with the entry and exit points of 

DNA from the nucleosome, implying a direct function for the H3 N-terminus in 

regulating the boundaries of the nucleosome. In contrast, the H4 N-terminal tail 

and the H2A C-terminal tail emerge from the top and bottom of the octamer core, 

at SHL±1.5 and SHL±0.5 respectively (Luger et al., 1997a). The H4 tail 

specifically plays a key role in the organization of individual nucleosomes into 

higher-ordered structures (Hansen, 2002; Allahverdi et al., 2011). 

 

Higher-order chromatin structure 

Eukaryotic genomes, depending on their size, contain from tens of 

thousands to millions of nucleosomes. Along a linear stretch of DNA, adjacent 

nucleosomes are separated from one another by twelve to seventy base pairs of 

linker DNA (Kornberg, 1977; Lohr and Holde, 1979). This simple one-

dimensional starting point for chromatin structure, the 10nm-tall ‘beads-on-a-

string’ chromatin fiber, is very open and lacks contacts between nucleosomes 
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(Olins and Olins, 1974). However, this structure is only known to exist in vitro, at 

salt concentrations lower than what is found physiologically. 

Once salt is added and the strong negative charge of the DNA begins to 

be shielded, this 10nm fiber begins to undergo folding. If monovalent cations like 

sodium(+) are added, this folding proceeds to an intermediate state; if divalent 

cations like magnesium(2+) are added, you begin to see formation of a maximally 

folded state (Hansen et al., 1989). This maximally folded state, the 30nm fiber, 

also occurs in the presence of the linker histones H1 and H5, which bind one per 

nucleosome at SHL0 and stabilize an additional 20bp of DNA within the 

nucleosome, turning it into a chromatosome (Hansen, 2002). The physical 

dimensions of the 30nm fiber depend upon the length of the linker DNA between 

the nucleosomes (Dorigo, 2004; Robinson et al., 2006; Wong et al., 2007). While 

the existence of this 30nm fiber has yet to be confirmed in vivo, one common 

feature of 30nm fiber computational and EM studies is that nucleosomes interact 

with neighboring nucleosomes both on their top/bottom sides, where the H4 and 

H2A tails reside, and side-to-side past the DNA. At yet higher concentrations of 

divalent cations, chromatin fibers will cooperatively aggregate (Schwarz et al., 

1996). All of these structural transitions have been shown to be reversible. 

Histone tails also mediate higher-order chromatin structure, specifically 

the interactions between separate nucleosomes. Many solved crystal structures, 

including that of a tetranucleosome array, highlight the importance of interactions 

between the positively charged H4 tail of one nucleosome, and the negatively 
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charged H2A acidic patch of another nucleosome (Luger et al., 1997a; Dorigo, 

2004). The H4 tail is required for formation of 30nm fibers in vitro—even 

acetylation of one lysine on the H4 tail, lysine 16, is sufficient to disturb both 

30nm fiber folding and inter-array cooperative aggregation (Shogren-Knaak, 

2006). 

On yet higher levels, these 30nm fibers are thought to be organized into 

loops whose physical dimensions are on the scale of hundreds of nanometers 

(Belmont, 1994; Horn and Peterson, 2002; Woodcock and Ghosh, 2010). Recent 

molecular biology approaches based on the chromosome conformation capture 

methodology, which crosslinks spatially close genomic loci together to derive 

information about overall genome packaging, imply the existence of large-scale 

topologically associated domains (TADs) in metazoan cells (Lieberman-Aiden et 

al., 2009; Dixon et al., 2012). These domains vary in size between organisms—

from sixty thousand base pairs in flies (Sexton et al., 2012), to hundreds of 

thousands of base pairs in human cells (Rao et al., 2014; Sexton and Cavalli, 

2015)—but they share common features. Nucleosomes within these domains 

show greater interaction frequency with each other than with nucleosomes 

outside of these domains. Also, the ends of these domains constitute insulators 

or "barriers" that block interaction between nucleosomes on opposite sides of the 

barriers. Interestingly, these domains interact with other domains in ways that 

correlate with the organization of genomes into active and repressed regions, or 
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euchromatin vs. heterochromatin (Lieberman-Aiden et al., 2009; Rao et al., 

2014). 

 

Euchromatin and heterochromatin 

 Despite sharing a common base subunit, there exist many different types 

of chromatin within the cell. These types of chromatin fall broadly into two 

categories based on overall transcriptional activity. The first type, euchromatin, 

contains genes that are actively expressed, such as housekeeping genes whose 

continuous activity is required for cell viability. In line with this activity, 

euchromatin is a more open and accessible structure—this has been found both 

observationally, by electron microscopy and intensity of DNA staining, and 

biochemically, by accessibility of its DNA to endogenous and ectopic proteins. 

Euchromatin also replicates earlier during S phase of the cell cycle (Woodcock 

and Ghosh, 2010). 

 The second type of chromatin, heterochromatin, generally occupies 

inactive genes, repetitive DNA, and structural DNA elements like centromeres 

and telomeres. First noted cytologically for the density of its staining relative to 

other chromatin (Heitz E., 1928), heterochromatin is a generally repressive mode 

of genetic storage. Cytologically, heterochromatin is found toward the periphery 

of cell nuclei, as well as abutting the nucleolus. Molecularly, gene loci within 

heterochromatin domains are generally transcribed at low levels, and the DNA 

sequences within these domains are less accessible to proteins. There are two 
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main types of heterochromatin in metazoans, defined empirically by whether they 

are silenced in all of an organism’s cell types (constitutive heterochromatin) or 

only in particular cell types (facultative heterochromatin). Importantly, both 

facultative and constitutive heterochromatin are heritable—they represent 

genomic states that persist through generations of cell divisions—despite not 

being directly coded into the genome itself (Grewal and Jia, 2007). 

The existence of facultative heterochromatin helps to explain how two 

cells that contain the same DNA can become different cell types, as different as 

one person’s cardiac muscle cells and neurons. Indeed, many genes that are 

important for establishing facultative heterochromatin domains were first 

identified during genetic screens for developmental defects (Lewis, 1978; Simon 

and Kingston, 2009). Subsequent studies showed that heterochromatic silencing 

plays a key role in silencing development-sensitive gene loci to facilitate 

embryonic patterning. In agreement with this, the loss of key heterochromatin 

proteins in embryonic stem cells results in defective transition into differentiated 

cell types (Laugesen and Helin, 2014; Steffen and Ringrose, 2014).  

As expected from a repressive domain, heterochromatin replicates late 

during S phase of the cell cycle, and is also repressed for DNA recombination. 

This recombinational repression seems intuitively palatable given that 

heterochromatin covers repetitive DNA loci. Recombination is a repair process 

that takes a damaged DNA locus, searches elsewhere in the genome for 

homologous DNA sequence, then uses the other locus it finds as a template to 
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repair the initial damaged locus. If the homology search step detects a 

homologous repeat on a different chromosome, then recombination can lead to 

chromosomal translocation, which is a hallmark phenotype of cancer. Consistent 

with this logic, disruption of heterochromatin structure by knockdown of key 

heterochromatin proteins results in repetitive DNA-associated genome instability 

(Peng and Karpen, 2007, 2009).  

Counterintuitively, it has also been shown that heterochromatic loci are 

preferentially repaired by homologous recombination. This repair happens at 

slower rates in heterochromatin than in euchromatin, and the rate-limiting step 

appears to be association of the damaged locus with the protein that mediates 

homology search, Rad51p. The damaged locus must spatially exit the 

heterochromatin domain before it can associate with Rad51p and proceed with 

recombinational repair (Chiolo et al., 2011). It has also been shown in vitro that 

Rad51p can mediate a search through euchromatin for homology (Sinha and 

Peterson, 2008), but inclusion of key heterochromatin proteins block homology 

search (Sinha et al., 2009). Taken together, these data describe the role of 

repressive heterochromatin in establishing a chromatin context for the regulation 

of multiple nuclear processes. 

The distinction between euchromatin and heterochromatin begins at the 

nucleosome. Histone proteins are extensively post-translationally modified—

methylated, acetylated, phosphorylated, ubiquitylated, and more—on both their 

histone tails and on solvent-exposed parts of their core (Bannister and 
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Kouzarides, 2011). Only a few of these modifications affect chromatin higher-

order structure by influencing chromatin folding (Shogren-Knaak, 2006; Lu et al., 

2008), as outlined above; most histone post-translational modifications function 

as recognition keys for chromatin-associated “reader” domains (Musselman et 

al., 2012).  

Euchromatic nucleosomes tend to bear active histone marks, like H3K9 

and H4K16 acetylation, or H3K4 and H3K36 methylation. These marks vary as a 

function of the proteins around that nucleosome, and as an extension of that, 

they vary based on where that nucleosome sits within the gene body. Similarly, 

heterochromatic nucleosomes bear their own repertoire of post-translational 

modifications. Generally, these nucleosomes exhibit very low levels of 

acetylation, in combination with additional modifications that interact specifically 

with heterochromatin proteins (Grewal and Jia, 2007; Yang et al., 2008; Gozani 

and Shi, 2014). 

Heterochromatin formation has several evolutionarily conserved themes. 

First, its formation begins at a nucleation site, where proteins interacting with the 

nucleation site DNA also recruit enzymatic machinery that deposits 

heterochromatin-specific modifications on adjacent nucleosomes. In recent 

years, some noncoding RNA transcripts have also been shown to help in the 

recruitment step (Brockdorff, 2013). Second, these post-translationally modified 

nucleosomes are then specifically bound by other, structural heterochromatin 

proteins. These structural proteins recruit more of the post-translational 



14 
 

modification complex, creating more binding sites for the structural proteins. This 

cycle iterates, with the upshot being that the heterochromatin domain spreads 

outwards along the chromosome in a DNA sequence-independent manner 

(Grewal and Jia, 2007; Hathaway et al., 2012; Grunstein and Gasser, 2013). 

To set an outer limit for the spreading of a heterochromatin domain, 

boundary factors are needed. One such boundary factor that regulates 

heterochromatin is the incorporation of histone variants, alternate versions of the 

canonical core histones, into the nucleosome. An example of this is the 

incorporation of the histone variant H2A.Z, a variant of H2A associated with gene 

promoters, into loci on the border of heterochromatin; this acts as a barrier to 

prevent further spreading of silent heterochromatin (Bönisch and Hake, 2012; 

Meneghini et al., 2003; Lu and Kobor, 2014). In contrast, the plant-specific H2A 

variant H2A.W is ubiquitously present in heterochromatic regions, playing key 

roles in gene silencing and compaction (Yelagandula et al., 2014). Proteins other 

than histone variants also serve as key boundary factors. For example, the 

insulator protein CTCF regulates chromatin TAD boundaries as well as the extent 

of facultative heterochromatin at developmentally regulated gene loci (Rao et al., 

2014; Narendra et al., 2015). 

 

Sir heterochromatin 

 Currently, the most well-understood model system for heterochromatin 

has been described for the budding yeast Saccharomyces cerevisiae. This 
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heterochromatin, nucleated by the silent information regulator (Sir) proteins, 

exhibits all of the functional properties of heterochromatin found in higher 

eukaryotes, from transcriptional silencing to delayed replication (Grunstein and 

Gasser, 2013). While Sir heterochromatin itself is not perfectly conserved in 

higher eukaryotes, two of its three constituent proteins are conserved, and one is 

implicated in Drosophila facultative chromatin formation (Furuyama et al., 2004). 

 Sir heterochromatin in yeast is found at transcriptionally silent loci—at 

subtelomeric regions on the ends of each chromosome, and also at the silent 

‘homothallic mating’ loci HMLα and HMRa (Grunstein and Gasser, 2013). These 

two silent loci contain different coding copies of the transcriptionally active MAT 

locus. The MAT locus expresses genes that are required for haploid yeast to be 

either one of the two yeast mating types—α or a. Haploid yeast can switch 

mating types by expressing the HO endonuclease, which creates a double-strand 

break in the DNA at the MAT locus. This break is repaired by recombination, with 

the silent mating locus of the opposite mating type from the MAT locus being 

used as the preferred template (Herskowitz and Jensen, 1991; Pâques and 

Haber, 1999). 

In order for haploid yeast to mate and form a diploid, one of the yeast 

must express α genes from its MATα locus, and the other must express a genes 

from its MATa locus. If yeast are defective for silencing HMLα or HMRa, then 

those pseudodiploid yeast express both α- and a-specific genes (like diploid 

MATα/MATa yeast) and are unable to mate. Identifying haploid yeast that were 
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unable to mate after mutagenic screening identified proteins that are important 

for heterochromatic silencing (Rine and Herskowitz, 1987). These proteins were 

also found to be involved in silencing in regions adjacent to telomeres (Aparicio 

et al., 1991). 

 

The Sir proteins 

There are three main Sir proteins that are indispensable for silencing at 

both subtelomeres and HMLα/HMRa: Sir2p, Sir3p, and Sir4p (Figure 2A). There 

is one additional protein, Sir1p, whose presence is not absolutely required for 

silencing at telomeres. In the absence of Sir1p, the silent mating loci can exist in 

either transcriptionally active or inactive states, both of which are epigenetically 

heritable (Rine and Herskowitz, 1987). Sir1p binds to the BAH domain of Orc1p 

and to Sir4p (Triolo and Sternglanz, 1996; Hsu et al., 2005). 

 The first Sir protein that will be described here is Sir4p. Sir4p is the largest 

and least well-conserved of the Sir proteins. It interacts with a large number of 

other proteins, including the N-terminal tails of histones H3 and H4 (Hecht, 

Andreas et al., 1995). The amino terminus of Sir4p (aa1-270) appears to bind 

and protect linker DNA on reconstituted nucleosomes, a function that is important 

for telomeric but not HM silencing in vivo (Kueng et al., 2012). This region of 

Sir4p also interacts with yKu80p (Roy et al., 2004). Further down the protein, the 

PAD (aa950-1262) in the center of Sir4p is known to interact with Esc1p and 

yKu80p, thereby promoting the recruitment of silent heterochromatin to the  
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Figure 2: Sir heterochromatin. (A) Schematic representation of the Sir protein 

peptides, with their constituent domains as abbreviated in the text. (B) Crystal 

structure of the Sir3 BAH domain bound to a nucleosome at 3.0 Å resolution. 

Star denotes the H4 tail (PDB#3TU4) (Armache et al., 2011). (C) Schematic 

representation of Sir heterochromatin spreading from an HM silencer, with 

inhibition from boundary factors. ORC is the ORC complex, R is Rap1p, A is 

Abf1p, numbers 1 through 4 are Sir1p through 4p 
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nuclear periphery (Taddei et al., 2004). Sir4p also binds to yKu70p (Tsukamoto 

et al., 1997) and Rap1p (Luo et al., 2002), interactions that serve to anchor Sir4p 

to proper DNA elements at telomeres and HM loci. At the C-terminus (aa1262-

1358) of Sir4p is a coiled-coil motif that has been shown to interact with Sir3p 

(Chang et al., 2003; Rudner et al., 2005) and other molecules of Sir4p (Chang et 

al., 2003). Finally, aa737-839 of Sir4p forms a stable heterodimeric complex with, 

and stimulates the enzymatic activity of, the second Sir protein, Sir2p (Hsu et al., 

2013). 

Sir2p is a histone deacetylase (Imai et al., 2000). It is the eponymous, 

founding member of the sirtuin class of NAD-dependent histone deacetylases. 

Sirtuin deacetylases have been implicated in gene silencing and organism 

lifespan in various species, from yeast to man (Poulose and Raju, 2015). Unlike 

the other Sir proteins, Sir2p also plays a role at rDNA loci. There, Sir2p 

represses RNA polymerase II transcription and promotes rDNA repeat stability 

(Gottlieb and Esposito, 1989). The most well-characterized role of Sir2p in Sir 

silencing is the deacetylation of histone H4 at lysine 16 (H4K16) (Imai et al., 

2000). This deacetylation creates a high-affinity binding site for the third Sir 

protein, Sir3p. 

 Sir3p is thought to be the predominant structural protein of Sir 

heterochromatin (Hecht et al., 1996; Strahl-Bolsinger et al., 1997; Sinha et al., 

2009; Swygert et al., 2014). It contains an N-terminal (aa1-214) nucleosome-

binding BAH domain that is indispensable for proper silencing (Norris and Boeke, 
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2010). BAH domains are found in many other conserved chromatin-associated 

proteins, many of which are involved in transcriptional silencing (Callebaut et al., 

1999). Despite poor primary amino acid sequence conservation—particularly 

across BAH domains in different protein families—the core ‘distorted β-barrel’ 

fold of the BAH domain is ubiquitous (Oliver et al., 2005; Kuo et al., 2012).  

In the few cases where these domains have been functionally 

characterized, they have been found to mediate protein-protein interactions with 

chromatin (Muller et al., 2010; Armache et al., 2011; Chambers et al., 2013). 

Many of these interactions are also sensitive to post-translational modifications 

on histone proteins, an insight that bridges in vitro structural studies to in vivo 

transcriptional control. For example, Sir3p itself is a silencing-specialized paralog 

of the key origin recognition complex subunit Orc1p. Orc1p serves the purpose of 

Sir3 in other fungal species’ silent heterochromatin (Hickman and Rusche, 2010; 

Hickman et al., 2011). Furthermore, in metazoans, the BAH domain of Orc1 

helps the origin recognition complex interact with chromatin in vivo in an 

H4K20me2-dependent manner. Disruption of this specific interaction results in 

the primordial dwarfism of Meier-Gorlin Syndrome (Kuo et al., 2012; Zhang et al., 

2015). 

How do BAH domains read chromatin? The crystal structure of the Sir3p 

BAH domain bound to a nucleosome has recently been solved by several groups 

(Figure 2B) (Armache et al., 2011; Wang et al., 2013; Yang et al., 2013). These 

structures give mechanistic bases to the genetic phenotypes of many histone 
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and Sir3p BAH domain mutants (Norris and Boeke, 2010). Spatially, the Sir3p 

BAH domain binds a swath across the face of the nucleosome, from SHL±2 on 

the DNA, over the H4 tail, the LRS region of H3 and H4, and terminating on a 

region of H2B that abuts the H2A acidic patch (Figure 2B, left). One such 

interaction happens entirely on one face of the nucleosome, and in the crystal 

structure two BAH domains are bound to opposite faces of each nucleosome. 

Per BAH, approximately thirty residues are involved in contacting the 

nucleosome surface, and many of these contacts are electrostatically mediated 

(Armache et al., 2011). 

One important contact occurs between a negatively charged ‘pocket’ on 

the Sir3p BAH domain and the positively-charged H4K16-R19 patch on the H4 

tail (Figure 2B; red/yellow star). Disruption of the Sir3p BAH pocket-H4 tail 

interaction, specifically via charge-neutralizing acetylation of H4 at K16, 

abolishes both silencing in vivo as well as Sir3p BAH-nucleosome binding in vitro 

(Onishi et al., 2007; Buchberger et al., 2008; Armache et al., 2011). This theme 

of H4 tail reading is also present in the crystal structure of mouse Orc1 BAH 

domain bound to an H4K20me2 histone tail peptide; there, the methylation state 

of the lysine is read by a hydrophobic pocket (Kuo et al., 2012).  

As a result of this tail-pocket interaction, the H4 tail becomes structured 

and held in a particular configuration. Tight sequestration of the H4 tail by Sir3p 

could block interaction of the H4 tail with other proteins, changing chromatin fiber 

conformation and blocking access of transcriptional activation machinery to 
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chromatin. Another side effect of this mode of binding is that two arginine 

residues on the H4 tail, R17 and R19, are pushed into the DNA backbone. It is 

thought that this H4-DNA interaction helps establish a resilient heterochromatin 

structure. In line with his hypothesis, charge-neutralizing mutations of these 

arginines to alanines do not affect binding of Sir proteins to nucleosomes, but 

drastically inhibit transcriptional silencing (Wang et al., 2013). 

While the Sir3p BAH domain on its own is able to interact with 

nucleosomes, the remainder of the Sir3p protein is also involved in silencing. 

Following the N-terminal BAH domain is an unstructured region (aa214-532). 

This region is known to be post-translationally modified by phosphorylation at 

several serine residues in response to stress, thereby affecting expression of a 

subset of subtelomeric genes (Ai et al., 2002).  

The C-terminus of Sir3 contains a number of protein-protein interaction 

sites. Beginning after the unstructured region is a conserved domain related to 

the AAA+ family of ATPases. This domain is also present in Orc1p. However, the 

Sir3p AAA+-like domain (532-845) lacks the nucleotide binding pocket, and 

thereby the nucleotide hydrolysis activity, that is present in other AAA+ ATPases 

(Ehrentraut et al., 2011). There is considerably less sequence identity between 

the AAA+ domains of Orc1p and Sir3p (~27%) than between their BAH domains 

(~50%)—as Orc1p and Sir3p that have swapped BAH domains are still 

functional, while swapped AAA+ chimeras are not functional (Bell et al., 1995). 

The AAA+ domain also has the ability to interact with histones H3 and H4, as 
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well as bind to nucleosomes in a manner that is sensitive to methylation of 

H3K79 (Hecht, Andreas et al., 1995; Ehrentraut et al., 2011). 

Other proteins known to interact with the Sir3 C-terminus include Rap1p 

(Moretti et al., 1994), Sir4p (Chang et al., 2003; Liou et al., 2005; King et al., 

2006), and other molecules of Sir3p (King et al., 2006; Oppikofer et al., 2013a). 

Sir4 interacts with a complex surface on Sir3p, minimally requiring residues 464-

728. This region encompasses the entire ‘base’ fold region of the Sir3p AAA+ 

domain, as well as an alpha helical stretch extending from the N-terminus of the 

AAA+ domain. Finally, the C-terminal 138 amino acids of Sir3p constitute a 

winged helix-turn-helix (wH) domain whose dimerization activity is required for 

silent chromatin formation. Inclusion of this dimerization domain with the 

aforementioned AAA+ domain results in increased nucleosome and DNA binding 

activity, presumably due to cooperative binding made possible by dimerization 

(King et al., 2006; Oppikofer et al., 2013a). 

 

Establishment of Sir domains 

As mentioned above, one hallmark of heterochromatin is the manner in 

which it forms regions of silent chromatin. This formation happens in two general 

phases: nucleation, and subsequent sequence-independent spreading. The 

nucleation step is generally controlled by DNA-sequence-specific binding factors, 

which ensure that heterochromatin occurs at the correct loci. 
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For Sir heterochromatin, these sequence-specific binding factors vary 

based on genomic location. At the HM loci, flanking silencer DNA elements “E” 

and “I” contain binding sites for Rap1p, Abf1p and the ORC (Rusche et al., 

2003). Here, Sir1p is known to interact with the BAH domain of Orc1p, a step 

important for silent chromatin establishment but not its maintenance (Rine and 

Herskowitz, 1987; Fox, 1997; Hsu et al., 2005). Redundancy is key for these 

nucleation loci, both in terms of the presence of multiple binding sites for the 

same factor, and also the binding of multiple factors. Then, in a Sir2p activity-

independent manner (Imai et al., 2000), these factors bind and recruit the Sir 

proteins (Rusche et al., 2003; Grunstein and Gasser, 2013).  

At telomeres, more redundant nucleation factor interactions are seen. 

Rap1p binds to the TG-rich telomeric repeat sequence. The yKu70p/yKu80p 

heterodimer is also present at telomeres, and both the yKu heterodimer and 

Rap1p interact with Sir4p (Luo et al., 2002; Roy et al., 2004). These Sir4p 

interactions are key for the establishment of silent chromatin at subtelomeric 

regions, but are not as essential for HM silencing. HM Sir silencing is also much 

more resilient than subtelomeric Sir silencing. While HM loci are almost never 

expressed, genes in subtelomeres are generally less Sir-repressed the further 

one goes away from the telomere core. Additionally, reporter genes integrated at 

subtelomeric regions regularly become heritably expressed (Gottschling et al., 

1990; Kitada et al., 2012). This gene-sequence-independent transcriptional 

variation is called “Telomere Position Effect,” and it resembles the “Position 
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Effect Variegation” heterochromatin effect seen in Drosophila (Grunstein and 

Gasser, 2013). 

There are also connections between heterochromatin nucleation and the 

process of DNA replication. In addition to the ORC binding sites present at the 

HM “E” and “I” silencers, earlier work demonstrated that passage through S 

phase was required for restoration of transcriptional silencing in temperature-

sensitive Sir protein mutants (Lau et al., 2002). This finding was expounded upon 

in more recent work, which showed that tightly bound DNA-protein complexes 

recruit Sir proteins and silence reporter genes in cis (Dubarry et al., 2011). This 

phenomenon was found to also happen at replication pause sites in strains 

lacking the replication-assisting helicase Rrm3p. Taken together, these data 

suggest that DNA replication stress plays a key role in heterochromatin 

nucleation. 

The second phase of heterochromatin establishment is the spreading of 

the heterochromatin domain from the nucleation site. Unlike other forms of 

transcriptional silencing, which occur primarily when repressor factors bind near 

gene promoters and preclude activator binding (Rando and Winston, 2012), 

heterochromatin establishes its silent domains by spreading outward from its 

nucleation sites. This spreading requires protein-protein and protein-DNA 

interactions between the chromatin fiber and heterochromatin proteins, as well as 

interactions between heterochromatin proteins themselves. The importance of 

heterochromatin self-interaction in silencing is evident in the numerous protein-
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protein interactions listed above. Hypothetically, constraining the genome with 

self-associating groups of factors could be sufficient to explain the preferential 

interaction of chromosomal domains with similar distal chromosomal domains. 

Therefore, two key cellular targets for regulating heterochromatin 

spreading are controlling the amount of available heterochromatin proteins, and 

regulating the chromatin surface to which they bind. Towards the first point, 

changing the level of Sir protein expression has multiple different effects on gene 

expression. Overexpression of Sir4p or Sir2p disrupts silencing (Cockell et al., 

1998), while overexpression of Sir3p leads to ectopic Sir spreading and larger 

clustering of telomeres and HM loci at the nuclear periphery (Hecht et al., 1996; 

Strahl-Bolsinger et al., 1997; Ruault et al., 2011). These findings, along with in 

vitro evidence that Sir3p alone is sufficient to change the shape of the chromatin 

fiber and to inhibit recombination (Sinha et al., 2009; Swygert et al., 2014), are 

the arguments for Sir3p being the primary, limiting structural protein of Sir 

heterochromatin. 

Heterochromatin proteins can also be post-translationally modified in such 

a way as to decrease the amount of protein available for binding. Examples of 

this are the aforementioned phosphorylation of Sir3p (Ai et al., 2002), and the 

phosphorylation of the metazoan heterochromatin protein TRIM28 in response to 

DNA damage (Ziv et al., 2006; Bolderson et al., 2012). Finally, heterochromatin 

proteins might bind to partner proteins or ectopic loci away from their loci of 
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interest, thereby lowering the effective available amount of that protein (van 

Leeuwen et al., 2002; Dror and Winston, 2004).  

With regards to chromatin surface regulation, another common theme in 

heterochromatin spreading is the concomitant perpetuation of specific 

heterochromatin-associated post-translational modifications on the histone 

proteins themselves (Hathaway et al., 2012). As mentioned before, deacetylation 

of H4K16 by Sir2p is essential for Sir3p to bind and establish repressive 

chromatin. This Sir3p can also interact with the Sir2p/Sir4p heterodimer (Liou et 

al., 2005), providing a platform to increase the range of Sir2p’s deacetylase 

activity (Figure 2C). 

One factor curtailing Sir spreading is acetylation of H4K16. Mutation of 

H4K16 to glutamine, mimicking constitutive acetylation, totally ablates Sir 

silencing (Johnson et al., 1990). H4K16 acetylation is performed in subtelomeric 

regions primarily by the SAS-I complex, whose core catalytic subunit is the 

MYST family histone acetyltransferase, Sas2p (Kimura et al., 2002). H4 

acetylation by NuA4 complex has also been proposed to direct incorporation of 

H2A.Z, another boundary factor briefly described above, at subtelomere 

boundaries (Altaf et al., 2010). These data could imply a cooperative mode of 

boundary function. 

Another histone mark, H3K79Me, is known to inhibit silent chromatin 

formation in vivo and in vitro (van Leeuwen et al., 2002; Johnson et al., 2009; 

Kitada et al., 2012; Xue et al., 2015). This mark, despite somehow having no 
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effect on Sir2/3/4 complex binding to chromatin in vitro or by ChIP assay, can 

block binding of either the Sir3p BAH domain or AAA+ domain to nucleosomes. 

This mark is deposited by Dot1p, an SAM-dependent histone methyltransferase. 

It only methylates H3K79 residues that are already within nucleosomes. While 

Dot1p is known to deposit H3K79Me in a transcription-associated manner, no 

enzyme is known that removes this mark. Therefore, establishment of silencing 

can only happen once H3K79Me nucleosomes have been diluted out by 

successive cell cycles.  

The H3K79 residue is present at ±2 SHL on the surface of the histone 

core, within the LRS region of the nucleosome, and right underneath loop 3 of 

the Sir3p BAH domain. While the impact of H3K79 on Sir3p AAA+ binding is not 

currently understood, structural studies predict that H3K79 could form up to three 

hydrogen bonds with negatively charged residues on the Sir3p BAH domain 

(Armache et al., 2011). This partially explains the influence of H3K79 methylation 

on Sir silencing—methylation of H3K79 removes hydrogens, increases the 

amine’s Lewis basicity, and makes the residue larger and more hydrophobic. All 

of these effects impact both the hydrogen bonding of the amine and the sterics of 

its interaction with the BAH domain. Interestingly, totally removing not only 

H3K79 hydrogen bonding but also its charge, by mutating H3K79 to alanine, 

results in a much larger silencing loss than deletion of Dot1p alone (van Leeuwen 

et al., 2002). While overexpression of Dot1p leads to decreased levels of Sir 

proteins at telomeres by ChIP, Dot1p deletion only results in minor Sir3p 
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relocalization by ChIP-chip and silencing phenotypes at some telomeres 

(Takahashi et al., 2011). These data might hint at methylation-independent roles 

for H3K79 in silencing. 

Recent studies have also shown that the Ino80 chromatin remodeling 

complex, which has been shown to evict H2A.Z from chromatin, functions as a 

boundary factor in yeast (Xue et al., 2015). However, instead of preventing the 

spread of heterochromatin into euchromatin, Ino80 plays the opposite role: it 

prevents the spread of euchromatin into heterochromatin. The proposed model 

for this barrier function is that Ino80 inhibits the methylation of H3K79. Some 

potential mechanisms for this inhibition: Ino80 binding could sterically occlude 

Dot1p activity, or Ino80-mediated histone dynamics could influence Dot1p 

activity, or Ino80 could prevent transcription outside of normally transcribed 

regions thereby preventing transcription-associated H3K79 methylation.  

Taking all of the above data into consideration, much is known about the 

nucleation, spreading, regulation, and confinement of inactive Sir 

heterochromatin (Figure 2C). However, less is known about the exact molecular 

superstructure of heterochromatin, and how this superstructure imposes 

dormancy on the underlying genetic information. Empirically, we know that 

heterochromatin is a refractory, inaccessible domain. However, it cannot remain 

permanently inaccessible—at least once per cell cycle, heterochromatic DNA 

must be replicated. Also, when heterochromatic DNA is damaged, as described 

above, a cell must access and faithfully repair that damage. Very little is known 
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about the manner by which cells can dynamically circumvent heterochromatin 

structure in times of need. 

Comparatively more is known about strategies that cells use to regulate 

their euchromatin. The three paradigms of chromatin regulation are histone 

posttranslational modification, histone variant incorporation, and ATP-dependent 

chromatin remodeling. Extensive interplay exists between these paradigms, and 

they impact the control and mechanism of most nuclear processes (Clapier and 

Cairns, 2009; Bannister and Kouzarides, 2011; Swygert and Peterson, 2014; 

Venkatesh and Workman, 2015). The first two paradigms, as described above, 

have been explored with relation to regulating heterochromatin. The focus of this 

thesis is on the less explored third paradigm of chromatin regulation, which we 

will now introduce. 

 

ATP-dependent chromatin remodeling enzymes 

 Dynamic accessibility of genetic information is a concern for even 

euchromatin. While linker DNA is free to bind transcription factors—when linker 

histones are not present—still, much of the genome lies within a nucleosome. 

DNA sequences on the interior of the nucleosome, facing the histone core, are 

more protected even from small molecules like hydroxyl radicals (Hayes et al., 

1990). Also, incorporation into a nucleosome bends the DNA backbone such that 

even DNA sequences away from the histone core assume a different 

conformation than free DNA in solution. There is a subset of “pioneer” 
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transcription factors that bind well even to chromatinized motifs (Iwafuchi-Doi and 

Zaret, 2014), but binding of many transcription factors and DNA processing 

enzymes is inhibited by nucleosomes (Rando and Winston, 2012). 

Nucleosomes themselves can spontaneously unwrap their DNA and 

change positions along DNA in vitro (Li and Widom, 2004). However, this 

unwrapping of nucleosomal DNA happens at time scales that are prohibitive in a 

biological sense, especially for loci near the nucleosomal dyad. Iterative loading 

of DNA-binding proteins to kinetically trap spontaneous unwinding has been 

shown to separate DNA from nucleosomes (Javaid et al., 2009), but the end 

product is a protein-occluded substrate. Finally, nucleosome dynamics can be 

slightly regulated in vitro by a subset of histone posttranslational modifications 

and histone variants (Thakar et al., 2009; Watanabe et al., 2010), but the primary 

tool used by cells for dynamic genome access is ATP-dependent chromatin 

remodeling (Clapier and Cairns, 2009). 

The first ATP-dependent chromatin remodeling enzyme complex was 

discovered in yeast, via two genetic screens (Neigeborn and Carlson, 1984; 

Stern et al., 1984). One screen searched for genes involved in the transcription 

of the aforementioned HO endonuclease; yeast bearing mutations in these genes 

were unable to switch (swi-) mating types. The second screen identified sucrose 

non-fermenting (snf-) yeast that were defective in transcribing the sucrose 

invertase SUC2. The first hint of these genes’ function came from their common 

transcriptional phenotypes (Peterson and Herskowitz, 1992), and also by their 
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genetic interaction with mutant histone alleles (Peterson et al., 1991; Kruger et 

al., 1995). The products of five genes from these screens were found to co-purify 

as the SWI/SNF protein complex: Swi1p, Swi2p/Snf2p, Swi3p, Snf5p and Snf6p 

(Peterson et al., 1994). This complex and its human homolog were shown to 

stimulate binding of a transcription factor to nucleosomal DNA (Cote et al., 1994; 

Kwon et al., 1994). Notably, this activity requires the energy of ATP hydrolysis.  

 After the discovery of SWI/SNF, a number of other distinct chromatin 

remodeling enzymes were found based on sequence homology with the Swi2p 

enzyme (Cairns et al., 1996; Delmas et al., 1993; Elfring et al., 1994; Tsukiyama 

et al., 1995; Tran et al., 2000; Shen et al., 2000; Mizuguchi, 2004). These ATP-

dependent chromatin remodeling enzymes are generally megadalton-sized, 

multiprotein complexes, nucleated around a SNF2-family core subunit. While 

originally discovered and studied in the context of transcriptional regulation, 

these enzymes are involved in all aspects of genome regulation, from 

nucleosome positioning and DNA replication to DNA repair. There are four 

families of these enzymes, with each family named after its founding member: 

the ISWI family, the CHD family, the Ino80 family, and the SWI/SNF family. While 

these families have unique compositions, activities and regulation, they all share 

a common reaction mechanism: using the power of ATP hydrolysis to translocate 

DNA within a nucleosome. This hydrolysis and translocation mechanism is 

catalyzed by a conserved SF2 helicase domain present in the core subunit of 

each complex (Hauk and Bowman, 2011). 
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 SF2 core domains in ATP-dependent chromatin remodeling enzymes, 

hereafter referred to as SNF2 ATPase domains, consist of two RecA-like folds 

separated by an insertion of variable length. The two RecA-like folds interface 

with each other, and grip DNA in the cleft between them (Figure 3A) (Dürr et al., 

2005, 2006). This DNA-bound state is the active, hydrolysis-competent 

conformation of the ATPase core. With its grip, the ATPase domain uses ATP 

hydrolysis to translocate along the DNA, a process that generates superhelical 

torsion in the DNA. However, these enzymes do not generate enough torsion to 

match what would be seen if they perfectly tracked the DNA backbone, implying 

either an alternative mode of translocation or transient loss of torsion (Singleton 

et al., 2007). 

There are seven conserved motifs interspersed throughout SNF2 ATPase 

domains. The N-terminal RecA fold, a Walker A-type fold, contains motifs I, Ia, II 

and III. This N-terminal half seems to coordinate ATP binding and hydrolysis. The 

C-terminal RecA fold, a Walker B-type or DEAD-box-type fold, contains motifs IV, 

V, VI and VII. This C-terminal half directs coupling of ATP hydrolysis to 

productive DNA translocation and nucleosome remodeling. In summary, these 

ATPase domains can bind to and hydrolyze ATP, bind to DNA, and translocate 

along DNA in what has been mostly shown to be the 3`->5` direction (Smith and 

Peterson, 2005; Singleton et al., 2007). This translocation occurs at a rate of 

~12bp*sec-1 of nucleosomal DNA in small 1-3bp steps, with a force of up to 

12pN, for purified SWI/SNF complex (Zhang et al., 2006; Sirinakis et al., 2011).  
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Figure 3: Snf2-family ATPases. (A) Crystal structure of the S. sulfataricus Snf2-

family ATPase domain bound to DNA at 3.0 Å resolution. The N-terminal RecA-

like lobe is colored in light green; the C-terminal such lobe is colored in dark 

green (PDB#1Z63) (Dürr et al., 2005). (B) Schematic representation of the 

ATPase subunits for each of the four families of chromatin remodeling enzymes. 
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While the ATPase translocates along DNA, the rest of the complex stays 

bound to the nucleosome. This anchored motion, together with superhelical 

torsion generated from translocation, pumps DNA into the nucleosome, ultimately 

destabilizing nucleosomal DNA as a loop off of the octamer surface (Bazett-

Jones et al., 1999; Zhang et al., 2006). Chemical crosslinking experiments using 

SWI/SNF and ISWI complexes have defined a strong contact between their 

ATPase domains and nucleosomal DNA at ±2SHL. Creating substrates with 

nicks or gaps in the DNA around ±2SHL strongly inhibits nucleosome sliding by 

SWI/SNF and ISWI chromatin remodeling enzymes, suggesting that this 

particular region of the nucleosome is the focus of DNA translocation to drive 

DNA loop formation. This loop subsequently relaxes by repositioning 

nucleosomal DNA along the histone core (Zofall et al., 2006; Dechassa et al., 

2008). 

While this core ATPase motor is very well conserved between families of 

chromatin remodeling enzymes, the different families demonstrate different 

biological and biochemical activities when placed in the context of entire 

complexes. These differences can be attributed to regulatory domains and 

subunits that are also present in intact complexes (Figure 3B). Some of these 

domains, like acetyllysine-binding bromodomains or methyllysine-binding 

chromodomains, function purely to recognize and bind to specific histone 

posttranslational modifications, thereby decreasing the off-rate of the enzyme 

from a substrate locus. Some of these subunits function to interact with external 
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transcriptional activators in order to drive recruitment of these complexes to loci 

of interest (Rando and Winston, 2012). Some subunits purely function as a 

scaffold, to hold the components of the complex together.  

However, there also exist a number of domains outside the ATPase core 

that serve to directly regulate the ATPase’s activity, in order to drive the 

formation of a specific product (Manning and Peterson, 2013). Some of these 

domains are inhibitory, and some may act as chaperones for reaction 

intermediates. For example, research done on the ISWI complex catalytic core 

subunit identified an “AutoN” domain N-terminal of the ATPase domain that 

inhibits ATP hydrolysis. While the H4 tail is required for ISWI ATPase activity, 

AutoN is thought to mimic the H4 tail and compete with the H4 tail for binding to 

the ATPase domain, thereby inhibiting ISWI ATPase activity in the absence of its 

substrate (Clapier and Cairns, 2012; Mueller-Planitz et al., 2012). Similarly, the 

chromodomains of CHD’s core subunit have an acidic helix region that, in the 

absence of bound nucleosomes, binds to the Walker B motif of the CHD ATPase 

core. This binding sterically prevents the ATPase core from binding DNA and 

reaching its active, ATP-hydrolyzing conformation. However, these 

chromodomains also play a positive role in the CHD chromatin remodeling 

mechanism, as their deletion reduces the efficiency of nucleosome repositioning 

by two orders of magnitude (Hauk et al., 2010; Patel et al., 2011, 2013). 

Ultimately, the emergent properties of each complex’s different subunits 

grant that enzyme complex unique activities. The currently known range of ATP-
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dependent chromatin remodeling enzyme activities includes nucleosome 

repositioning via sliding, histone dimer and histone octamer eviction, and histone 

dimer exchange (Clapier and Cairns, 2009; Swygert and Peterson, 2014). 

Members of the CHD and ISWI families can slide nucleosomes along DNA, and 

can homogenously space nucleosomes to make nucleosomal arrays with uniform 

linker length in vitro (Vary Jr. et al., 2003). In the case of mononucleosome-

length chromatin molecules, CHD and ISWI will reposition a nucleosome on the 

end of the DNA fragment to the middle of the DNA fragment. For ISWI, 

accessory subunits like Itc1p (ACF in metazoans) help act as a biochemical ruler 

to regulate DNA translocation in a way that is sensitive to linker DNA (Hwang et 

al., 2014); for CHD, it has been proposed that the N-terminus of its core subunit 

may serve a similar role (Hughes and Rando, 2015). 

The Ino80 enzyme can also centrally position nucleosomes on DNA 

fragments. In addition, the Ino80 family of enzymes possesses the ability to 

replace nucleosomal histone H2A/H2B dimers with different, free H2A/H2B 

dimers. SWR complex, another member of the Ino80 family, specifically replaces 

nucleosomal H2A/H2B dimers with H2AZ variant-containing dimers (Mizuguchi, 

2004); Ino80 catalyzes the reverse reaction (Papamichos-Chronakis et al., 2011). 

This activity appears to be catalyzed by subcomplexes associated with this 

enzyme family’s elongated (200-300aa long) ATPase insertion domains. These 

subcomplexes contain the AAA+ ATPase Rvb helicase proteins, along with 

additional conserved subunits that are central to regulating both ATPase activity 
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and enzyme complex conformation. Interestingly, SWR appears to be specialized 

for histone dimer exchange—it lacks nucleosome sliding activity, and has a 

uniquely low ATP hydrolysis rate (Watanabe et al., 2015).  

 

SWI/SNF-family chromatin remodeling enzymes 

 The final family of ATP-dependent chromatin remodeling enzymes is 

named after the founding complex, SWI/SNF. The SWI/SNF enzyme family, 

which contains SWI/SNF, RSC (Figure 4A), and their respective human 

homologs SWI/SNF-A (BAF) and SWI/SNF-B (P-BAF) (Figure 4B), possess 

nucleosome sliding (Cote et al., 1994; Kwon et al., 1994), H2A/H2B dimer 

eviction (Vicent et al., 2004), and octamer eviction (Dechassa et al., 2010) 

activities in vitro (Figure 4C). When given a mononucleosome substrate that is 

positioned in the center of a DNA fragment, SWI/SNF enzymes will push the 

nucleosome to either end of the DNA (Jaskelioff et al., 2000), in contrast to the 

spacing and centering activities of other enzyme families.  

This spacing-insensitivity may also contribute to the octamer eviction 

activity of SWI/SNF enzymes. SWI/SNF has been shown in vitro to evict dimers 

from nucleosomes it remodels (Yang et al., 2007), as well as dimers and 

octamers from nucleosomes that are adjacent to the nucleosome being 

remodeled by SWI/SNF (Dechassa et al., 2010). One suggested mechanism for 

this eviction is the anchoring and committed remodeling of one nucleosome by 

SWI/SNF; after sufficient DNA is translocated into that nucleosome, the adjacent  
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Figure 4: SWI/SNF-family chromatin remodeling enzymes. (A) Equimolar 

amounts of SWI/SNF and RSC (Rsc2p-containing) complex were resolved on 

SDS-PAGE and visualized by silver staining. Subunits are listed next to their 

corresponding protein bands; names in red are the ATPase subunits, names in 

blue are the shared Arp submodule. (B) Table containing evolutionarily 

conserved SWI/SNF-family conserved subunits with their names in S. cerevisiae 

and H. sapiens. (C) Schematic representation of SWI/SNF family activities on 

chromatin, top: nucleosome sliding, middle: dimer eviction, bottom: octamer 

eviction. 
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nucleosome becomes destabilized. This mechanism, however, cannot explain 

eviction of H2A/H2B dimers from mononucleosomes by SWI/SNF; a separate 

mechanism whereby the remodeled nucleosome is destabilized must happen in 

this case. 

The SWI/SNF holoenzyme is a 1.15 megadalton protein complex 

containing twelve unique subunits: Swi1p, Swi2p/Snf2p, Swi3p, Snf5p, Snf6p, 

Snf11p, Swp82p, Swp73p, Arp7p, Arp9p, Swp29p and Rtt102p (Smith et al., 

2003). Of these subunits, Swi1p, Swi2p, Swi3p, Snf5p, Swp73p, Arp7p and 

Arp9p have homologs in mammalian SWI/SNF proteins (figure 4B). The core 

ATPase-containing subunit of SWI/SNF, Swi2p, is characterized by its C-terminal 

bromodomain and its HSA domain. The HSA domain is an extended alpha-helix 

that coordinates binding to the regulatory Arp7p/Arp9p/Rtt102p subcomplex 

(Szerlong et al., 2003, 2008; Schubert et al., 2013). Between the ATPase domain 

and the bromodomain of Swi2p are a SnAC domain, involved in coupling ATP 

hydrolysis to nucleosome repositioning, and an AT-hook DNA binding motif (Sen 

et al., 2011, 2013). Toward the N-terminus of Snf2p is a conserved 40aa-long 

region that binds to the Snf11p subunit. The N-terminal half of SWI/SNF also 

interacts with Swi3p, which is thought to then scaffold interactions with the rest of 

the complex.  

Deletion of the Swi3p SANT protein-protein interaction domain results in 

the dissolution of SWI/SNF into four subcomplexes: Swi2p/Arp7p/Arp9p/Rtt102p, 

Swi1p, Snf5p, and Swi3p/Swp73p/Snf6. Surprisingly, the Swi2p-containing 
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minimal subcomplex retains most of the ATPase and nucleosome sliding activity 

of full SWI/SNF complex, but lacks dimer eviction activity—that activity requires 

the Swi3p N-terminal acidic patch (Yang et al., 2007). The biochemical 

sufficiency of the minimal subcomplex is surprising, primarily given how swi1Δ 

and swi3Δ yeast have similarly severe growth phenotypes as swi2Δ yeast, and 

how Snf5p and Swp82p crosslink to the nucleosome core (Dechassa et al., 

2008). One possible explanation is that the other SWI/SNF subunits primarily 

function to recruit the enzyme to loci of interest through interactions with 

transcriptional activators. An alternative, non-mutually-exclusive explanation is 

that SWI/SNF-catalyzed dimer eviction is a very important, albeit understudied, 

activity in vivo. 

SWI/SNF family enzymes play important roles in DNA replication, DNA 

repair, and transcriptional regulation (Clapier and Cairns, 2009; Venkatesh and 

Workman, 2015). In line with this, human SWI/SNF family genes are key tumor 

suppressor genes, found to be mutated in up to 20% of sequenced cancer 

samples (Kadoch and Crabtree, 2013; Kadoch et al., 2013; Morgan and 

Shilatifard, 2015). Similarly, budding yeast lacking a functional SWI/SNF complex 

have the aforementioned severe growth defects, and budding yeast lacking RSC 

complexes are inviable (Peterson and Herskowitz, 1992; Cairns et al., 1996).  

Biochemically, RSC and SWI/SNF are very similar. RSC subunits Sth1p, 

Sfh1p, Rsc8p, and Rsc6p are paralogs of Snf2p, Snf5p, Swi3p and Swp73p, 

respectively, and both complexes contain the Arp7p/Arp9p/Rtt102p subcomplex 
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(Figure 4A). However, these similar complexes have been adapted to serve 

different roles in the cell. Looking at the subunit composition of these complexes, 

the key general difference between SWI/SNF and RSC complexes are the 

mutually exclusive proteins Swi1p (ARID1 in humans) and Rsc1/2/4p (PBRM1 in 

humans). These components each have multiple domains that can mediate 

interaction with chromatin substrates. Swi1 contains a zinc finger motif and a 

conserved ARID DNA-interaction domain. Rsc1/2/4p, present as the single 

polypeptide PBRM1 in humans, contains six bromodomains, two BAH domains, 

a zinc finger motif, and a DNA-binding HMG box group domain. RSC and 

SWI/SNF complexes also differ in abundance—RSC complex (~2000 copies per 

cell) is more abundant in vivo than SWI/SNF (~200 copies per cell) in yeast 

(Ghaemmaghami et al., 2003). While SWI/SNF is important for inducible gene 

transcription, RSC plays a crucial role in establishing proper chromatin 

architecture at promoter regions (Rando and Winston, 2012). The two 

remodeling enzymes are involved in different DNA repair pathways, as well (Chai 

et al., 2005). 

            Interestingly, SWI/SNF complex has also been implicated in regulating 

heterochromatin. In development, SWI/SNF is part of the trithorax group of 

genes, genes that are known to counteract heterochromatic polycomb group 

genes at key homeotic loci (Steffen and Ringrose, 2014). Further work has been 

done showing that derepression of silent plant flowering genes requires SWI/SNF 

to antagonize polycomb heterochromatin (Wu et al., 2012; Li et al., 2015). In 
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yeast, artificially tethered SWI/SNF is sufficient to act as a barrier against Sir 

heterochromatin spreading (Oki et al., 2004). Finally, SWI/SNF was previously 

shown to aid in DNA repair of Sir heterochromatin via NER and HR pathways 

(Chai et al., 2005; Gong et al., 2006; Sinha et al., 2009). These myriad lines of 

evidence imply that SWI/SNF could dynamically regulate the accessibility of 

heterochromatin. 

            The most direct evidence for SWI/SNF interacting with heterochromatin 

came from in vitro homologous recombination studies. While Sir proteins are 

sufficient to block Rad51p-mediated homology search, the inclusion of SWI/SNF 

complex reversed this inhibition. No other chromatin remodeling complex studied 

was able to recapitulate this rescue, even the highly similar RSC complex. These 

studies also provided a putative mechanism for heterochromatin accessibility—a 

novel ATP-dependent Sir3p heterochromatin protein eviction activity present in 

SWI/SNF complex (Sinha et al., 2009). However, the requirements, mechanism, 

and in vivo applications of this activity still remained unknown. 

 

Concluding remarks 

 Heterochromatin is a repressive mode of storage for genetic information. 

However, a cell must possess means to dynamically access the DNA contained 

within heterochromatin, at the very least for DNA repair and replication purposes. 

ATP-dependent chromatin remodeling enzymes have been found to regulate 

chromatin structure and play roles in most DNA metabolic pathways, and 
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specifically the SWI/SNF enzyme may be implicated in dynamically regulating 

heterochromatin structure. This enzyme complex has a novel Sir3p eviction 

activity that is sufficient to rescue homologous recombination in vitro. However, 

the mechanism, scope, and applications of this heterochromatin remodeling 

activity are still largely unknown. This work aimed to address these remaining 

questions, and in so doing present a new paradigm for genomic regulation. 
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Chapter II: Binding Interactions Guide Sir3p Eviction by SWI/SNF 

 

Summary 

 

Heterochromatin is a specialized chromatin structure that is central to 

eukaryotic transcriptional regulation and genome stability. Despite its globally 

repressive role, heterochromatin must also be dynamic, allowing for its repair and 

replication. In budding yeast, heterochromatin formation requires Sir2p, Sir3p, 

and Sir4p, and these Sir proteins create specialized chromatin structures at 

telomeres and silent mating type loci. Previously, we found that the SWI/SNF 

chromatin remodeling enzyme can catalyze the ATP-dependent eviction of Sir3p 

from recombinant nucleosomal arrays, and this activity enhances early steps of 

recombinational repair in vitro. Here, we show that the ATPase subunit of 

SWI/SNF, Swi2p/Snf2p, interacts with the heterochromatin structural protein 

Sir3p.  Two interaction surfaces are defined, including an interaction between the 

ATPase domain of Swi2p and the nucleosome binding, Bromo-Adjacent-

Homology (BAH) domain of Sir3p. A SWI/SNF complex harboring a Swi2p 

subunit that lacks this Sir3p interaction surface is unable to evict Sir3p from 

nucleosomes, even though its ATPase and remodeling activities are intact. In 

addition, we find that the interaction between Swi2p and Sir3p is key for 

SWI/SNF to promote resistance to replication stress in vivo and for establishment 

of heterochromatin at telomeres. 
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Introduction 

 

All eukaryotic genomes are stored within the nucleoprotein structure of 

chromatin, the core subunit of which, the nucleosome, consists of 147 base pairs 

of DNA wrapped ~1.7 times around an octamer of histone proteins (Luger et al., 

1997a). Over millions of years, eukaryotes have incorporated chromatin structure 

into the regulation of many aspects of DNA metabolism, from simple nuclear 

packaging to transcriptional control (Rando and Winston, 2012). This diversity of 

purpose is reflected in two general types of chromatin structures within the 

nucleus – euchromatin, which is decondensed and transcriptionally active, and 

heterochromatin, which is typically localized to the nuclear periphery and 

repressive for DNA recombination and transcription. Heterochromatin structures 

are commonly associated with centromeres and telomeres, and these domains 

package much of a genome’s repetitive DNA (Grewal and Jia, 2007). 

Consequently, the maintenance of heterochromatin is key for genomic integrity, 

as it prevents illicit recombination among DNA repeats and promotes 

chromosome segregation during mitosis (Peng and Karpen, 2007, 2009). 

On a molecular level, heterochromatic loci are marked by specific 

chromatin posttranslational modifications, which are recognized and bound by 

characteristic nonhistone proteins. In many vertebrates, heterochromatin is 

characterized by members of the heterochromatin protein 1 (HP1) family of 

proteins, whereas in budding yeast, the silent information regulator (Sir) proteins, 
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Sir2p, Sir3p, and Sir4p, create heterochromatin structures at telomeres and the 

silent mating type loci (Grunstein and Gasser, 2013; Canzio et al., 2014). Sir3p is 

believed to be the key structural component of yeast heterochromatin—Sir3p 

contains numerous protein-protein interaction motifs (Norris and Boeke, 2010; 

Ehrentraut et al., 2011; Oppikofer et al., 2013a), including an N-terminal Bromo-

Adjacent Homology (BAH) domain that interacts with the nucleosomal surface 

(Armache et al., 2011; Arnaudo et al., 2013; Wang et al., 2013). BAH domains 

are found in many other chromatin associated factors, including the Rsc2p 

subunit of the RSC remodeling enzyme and the Orc1p subunit of the Origin 

Recognition Complex (Callebaut et al., 1999). The stability of the Sir3p BAH-

nucleosome complex requires deacetylated histone H4 lysine 16 (Johnson et al., 

1990); consequently, amino acid substitutions at H4-K16 disrupt Sir3p-

nucleosome binding and eliminate heterochromatin assembly in vivo (Johnson et 

al., 1990; Onishi et al., 2007; Johnson et al., 2009). 

In spite of the repressive structure of heterochromatin, these domains 

must be replicated and repaired, implying that mechanisms exist to regulate 

heterochromatin disassembly. Previously, we described an in vitro assay to 

monitor early steps of recombinational repair with recombinant nucleosomal 

array substrates (Sinha and Peterson, 2008).  Whereas the repair machinery was 

not hindered by the simple presence of nucleosomes, we reported that the 

binding of the Sir proteins, or even Sir3p by itself, led to dramatic repression of 

recombinational repair events on nucleosomal arrays (Sinha and Peterson, 2008; 
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Sinha et al., 2009). Surprisingly, we discovered that the ATP-dependent 

chromatin remodeling enzyme, SWI/SNF, was able to counteract these 

repressive effects of heterochromatin in vitro, stimulating early steps of 

homologous recombination. Intriguingly, these assays uncovered that SWI/SNF 

catalyzed the ATP-dependent eviction of Sir3p from nucleosomes, an activity not 

shared by several other remodeling enzymes (Sinha et al., 2009). Thus, these 

studies suggested that the SWI/SNF enzyme may have a unique ability to disrupt 

heterochromatin structures.  

In this paper, we identify a physical interaction between SWI/SNF and the 

heterochromatin protein Sir3p. We identify a pair of interactions—between the 

Swi2p Helicase SANT Adjacent (HSA) domain and the Sir3p AAA+ domain, and 

between the Swi2p ATPase domain and the Sir3p BAH domain. Surprisingly, the 

ATPase-BAH interaction is conserved between many Swi2p/Snf2p ATPase 

family members and between two classes of BAH domains, suggesting a 

common mode of binding between these domains. Mutations are generated that 

ablate the interaction between Swi2p and Sir3p, and we find that the Swi2p-Sir3p 

interaction surfaces are required for SWI/SNF to evict Sir3p from nucleosomal 

arrays in vitro. Furthermore, in vivo studies indicate that SWI/SNF-Sir3p 

interactions are important both for resistance to replication stress and for 

establishment of silenced heterochromatic domains.  
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Results 

 

SWI/SNF binds Sir3p 

To investigate the unique ability of SWI/SNF to displace Sir3p from 

nucleosomes, we began by asking whether SWI/SNF and Sir3p physically 

interact. First, Sir3p-FLAG was affinity purified from yeast and immobilized on 

anti-FLAG antibody resin. Purified SWI/SNF and RSC remodeling enzymes were 

incubated with Sir3p-bound beads, and bound and free fractions were analyzed 

by western blotting (Figure 5A). Strikingly, SWI/SNF, but not the highly related 

RSC complex, was able to interact with bead-bound Sir3p (Figure 5A). This 

interaction was also apparent if SWI/SNF was immobilized on beads and 

incubated with purified Sir3p (Figure 6A). In order to confirm the interaction and 

to gain insight into which SWI/SNF subunit might be involved, we used far 

western analysis. Purified SWI/SNF, RSC, and Sir2p/Sir4p complexes were 

separated on an SDS-PAGE gel and transferred to a membrane. The membrane 

was incubated in buffer to stimulate protein renaturation, then incubated with 

purified Sir3p (Fig. 5B). Proteins bound to Sir3p were then detected by western 

blotting, using antisera to Sir3p. As expected, Sir3p interacted strongly with Sir4p 

in this assay, but little interaction was detected with subunits of RSC (Fig. 5B, 

right lanes). In contrast, Sir3p interacted well with two polypeptides from 

SWI/SNF. The largest species co-migrated with the Swi2p ATPase subunit  
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Figure 5: SWI/SNF interacts with Sir3p. (A) SWI/SNF, but not RSC, interacts 

with resin-bound Sir3p. Purified remodeling enzyme was incubated with anti-

FLAG resin that was pre-bound with (+) or without (-) Sir3p. ‘U’, unbound 

supernatant; ‘B’, bound fraction. (B) Subunits of SWI/SNF, but not RSC, interact 

with Sir3p by far western. Equimolar amounts of SWI/SNF, RSC and Sir2p/4p 

complex were separated on SDS-PAGE, electro-blotted, renatured, and 

incubated with Sir3-FLAG. Sir3p-bound protein bands were visualized by anti-

FLAG immunoblotting. 
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Figure 6: Characterizing Swi2p subdomains that bind Sir3p. (A) Sir3p binds 

to immobilized SWI/SNF. Calmodulin affinity resin-bound SWI/SNF was 

incubated with increasing concentrations of Sir3p. (B) A central 10 amino acid 

stretch of the Swi2p HSA domain is required for Sir3p binding. GST fusions of 

the Swi2p HSA and progressive N-terminal truncations (C1 through C4) and C-

terminal truncations (N1 through N4) of it were assayed for ability to bind Sir3p. 

(C) The N-terminal lobe of the Swi2 ATPase is able to bind Sir3p. Pieces of the 

Swi2p ATPase were assayed as GST fusions for ability to interact with free 

Sir3p. Bottom: Phyre2 predicted structure 

(http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index) of the Swi2p ATPase 

domain, with different colors representing the corresponding regions of the 

ATPase domain. (D) SWI/SNF and RSC complexes interact with H. sapiens Orc1 

BAH domain. 
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(~250kDa), and the smaller species is either a proteolytic fragment of Swi2p or 

the Swi1p subunit (~150 kDa). 

To directly monitor interactions between Swi2p and Sir3p, each protein 

was divided into several domains, expressed as GST fusion proteins in bacteria, 

and used in interaction studies (Fig. 7). First, GST-Swi2p fusions were tested for 

binding to full-length, purified Sir3p (Fig. 7A). Two regions of Swi2p were found to 

interact with Sir3p, the HSA domain and the central ATPase domain (Szerlong et 

al., 2008). Likewise, two regions of Sir3p bound to SWI/SNF complex, the N-

terminal BAH domain and a region at the C-terminus of the AAA+ domain (Fig. 

7B). Each domain was then expressed as a FLAG fusion protein and used in 

GST interaction assays. Interestingly, these domains were found to interact in a 

pairwise manner -- the Swi2p ATPase domain bound the Sir3p BAH domain, and 

the Swi2p HSA domain bound the Sir3p AAA+ domain (Fig. 7C). Progressive N-

terminal and C-terminal truncations of the GST-HSA fusion protein (Fig. 6B) 

defined a region of ten amino acids in the Swi2p HSA domain that is required for 

interaction with Sir3p (Fig. 7D). Likewise, dissection of the Swi2p ATPase 

domain identified a 49 amino acid fragment within the first RecA-like fold that 

retained Sir3p binding activity (Fig. 6C).  Interestingly, the analogous residues 

from the ATPase domain of the RSC catalytic subunit, Sth1p, were unable to 

bind to Sir3p (Fig. 7D). 
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Figure 7: Swi2p and Sir3p have multiple interaction domains. (A) Schematic 

shows Swi2p domains.  GST-Swi2 fusion proteins were used in pulldown assays 

with full-length Sir3p. GST-bound fractions were analyzed by western blot. 10% 

of Input is shown. (B) Schematic shows Sir3p domains. GST-Sir3 fusions were 

used in pulldown studies with SWI/SNF complex. Bound fractions were assayed 

by western blot as in (A). (C) GST-Swi2 or GST-Sir3 fusion proteins were 

incubated with FLAG-tagged Swi2p or Sir3p domains, and interactions were 

identified by GST pulldown and western analyses. (D) Swi2p alterations that 

disrupt Sir3p interactions. Schematic depicts alterations within either the Swi2p 

HSA or ATPase domain. The Δ10 derivative removes Swi2p residues 613-622; 

the Sth1(R) derivative replaces Swi2p residues 836-885 with the homologous 

region from Sth1 (residues 539-588). GST-Swi2 fusions harboring the indicated 

alterations were used in GST pulldowns with full-length Sir3p. Note that these 

binding assays used the individual HSA and ATPase regions of Swi2p. 
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SWI/SNF and RSC interact with core BAH domains 

Progressive C-terminal truncations were used to delimit the SWI/SNF-

interacting sequences within the Sir3p BAH domain (Fig. 8A).  Each deletion 

construct retained SWI/SNF binding, and a GST fusion that contained only the 

97-amino acid core BAH domain was sufficient to interact with SWI/SNF.  

Surprisingly, this core BAH domain also interacted strongly with the RSC 

remodeling enzyme, whereas larger BAH-containing fragments were either 

unable to interact or interacted only weakly with RSC (Fig. 8A). To test if a BAH 

core domain might generally be sufficient for interaction with SWI/SNF-like 

enzymes, the core BAH domain of Rsc2p was assayed for interactions. Indeed, 

both SWI/SNF and RSC interacted well with the Rsc2p BAH core domain; 

however, inclusion of the conserved C-terminal (CT-1) domain eliminated 

interactions with both SWI/SNF and RSC (Chambers et al., 2013). Furthermore, 

SWI/SNF also bound to the BAH domain from Orc1p, a subunit of the Origin 

Recognition Complex (ORC) (Fig. 8B). The RSC remodeling enzyme was also 

able to bind to the Orc1p BAH, despite being unable to interact with Sir3p BAH. 

Both SWI/SNF and RSC were also competent to bind to the human ORC1 BAH 

(Fig. 6D).  In contrast, the Isw2 remodeling enzyme did not interact at detectable 

levels with either the Sir3 or yORC1 BAH domain, suggesting that BAH 

interactions may be a general feature of only the SWI/SNF subfamily of 

chromatin remodeling enzymes (Fig. 8B). These data also suggest that  
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Figure 8: SWI/SNF ATPases interact with BAH core domains. (A) Schematic 

shows C-terminal truncations within the Sir3p BAH domain. The indicated GST-

BAH fusion proteins were incubated with either SWI/SNF or RSC, and bound 

fractions were assayed by western.  The Rsc2p BAH fusion contains only the 

core BAH domain; the BAHCT-1 fusion also contains the C-terminal conserved 

CT-1 domain from Rsc2p.  Western analyses used sera to the Arp9p subunit, 

common to both remodeling enzymes. (B) SWI/SNF, RSC or Isw2 complexes 

were incubated with GST- BAH fusions from yeast Orc1p or Sir3p. Bound 

fractions assayed by western to the indicated subunits. Bottom panel shows 

ponceau-stained membrane, depicting levels of GST fusions. 
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sequences C-terminal to BAH core domains may govern the specificity of 

remodeling enzyme interactions. 

 

Swi2/Snf2-Sir3p interactions are required for Sir3p eviction in vitro 

Having identified Sir3p-interaction domains within Swi2p, we asked if they 

were required for the ATP-dependent eviction of Sir3p by SWI/SNF.  To this end, 

a SWI2 gene was created that contains a 10 amino acid deletion within the HSA 

domain (Δ10) as well as a 197 amino acid swap between the Sth1p and Swi2p 

ATPase domains (Sth1[R]) (termed swi2-Δ10R; see Figure 7D). This region of 

Sth1p encompasses the first RecA-like lobe of the ATPase domain. This region 

is nearly homologous to that of Swi2p, with the exception of a central, 52 amino 

acid divergent region.  A C-terminal, TAP-tagged version of Swi2-Δ10R was then 

expressed in yeast from its normal promoter on a low-copy CEN/ARS plasmid, 

and SWI/SNF complex (SWI/SNF-Δ10R) that harbors Swi2p-Δ10R was isolated 

by tandem affinity purification. The concentration of active enzyme was 

determined by ATPase assays, and equal ATPase units of wild-type and 

SWI/SNF-Δ10R complexes were analyzed by SDS-PAGE and silver staining. 

The subunit composition of the SWI/SNF-Δ10R complex was nearly identical to 

that of wild-type SWI/SNF, with the exception of a ~2-fold depletion of the Arp7p 

and Arp9p subunits (Figure 9A). Since Arp subunits have been implicated in the 

regulation of ATPase kinetic parameters (Shen et al., 2003), we characterized 

the ATPase activity of the SWI/SNF-Δ10R complex. Importantly, the SWI/SNF- 
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Figure 9: Swi2p-Sir3p contacts are required for eviction of Sir3p from 

nucleosomes. (A) SDS PAGE analysis of SWI/SNF and SWI/SNF-Δ10R 

complexes, visualized by silver staining. Equal levels of ATPase activity were 

loaded for each enzyme. (B) DNA-stimulated ATPase kinetics of SWI/SNF and 

SWI/SNF-Δ10R are equivalent. ATPase reactions were performed with varying 

concentrations of DNA cofactor, and hydrolysis rates were fit to Michaelis-

Menten kinetic parameters. (C) Mononucleosome mobilization by SWI/SNF and 

SWI/SNF-Δ10R enzymes is equivalent. Varying concentrations of enzymes were 

incubated with a mononucleosome positioned in the center of a radiolabeled, 

282bp DNA fragment harboring a 601 positioning sequence. Predicted positions 

of mononucleosomes are indicated to the left. Top: gel; bottom: quantification 

(error bars reflect standard deviation). (D) Schematic of the chromatin capture 

assay. Biotinylated nucleosomal arrays are bound to Sir3p, incubated with 

chromatin remodeling enzyme and ATP, and captured on streptavidin-coated 

magnetic beads. Chromatin-bound ‘B’ and unbound ‘U’ are assayed by western 

blotting. (E) SWI/SNF-Δ10R is defective for Sir3p eviction from nucleosomes. 

Increasing amounts of chromatin remodeling enzyme were incubated with Sir3p-

bound nucleosomal array, and Sir3p eviction into the chromatin-unbound fraction 

‘U’ was measured by western blotting. Left: representative blots; right: 

quantification.  
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Δ10R complex exhibited kinetic parameters for DNA-stimulated ATPase activity 

indistinguishable from the wild-type complex (Figure 9B).  

The activity of the SWI/SNF-Δ10R complex was also monitored in several 

chromatin remodeling assays. First, equal ATPase units of wild-type and 

SWI/SNF-Δ10R complexes were incubated with mononucleosomes positioned in 

the center of a radiolabelled 282bp DNA fragment by a 601 nucleosome 

positioning sequence. The ATP-dependent movement of the nucleosome 

towards the DNA ends leads to faster mobility on native PAGE, and in this assay, 

the SWI/SNF-Δ10R enzyme was equivalent to wild-type (Fig. 9C). Chromatin 

remodeling was also assessed by a nucleosomal array accessibility assay (Logie 

and Peterson, 1997). This quantitative assay uses a positioned array of 11 

nucleosomes, where the central nucleosome of the array occludes a unique SalI 

restriction enzyme recognition site. As the array is remodeled by SWI/SNF, this 

central nucleosome is repositioned or removed, increasing the rate of SalI 

cleavage. Similar to the ATPase and mononucleosome remodeling assays, the 

SWI/SNF-Δ10R enzyme showed equivalent activity compared to the wild-type 

complex (Figure 10). 

Finally, we assayed the ability of the SWI/SNF-Δ10R enzyme to catalyze 

the ATP-dependent eviction of Sir3p protein from nucleosomal arrays (Fig. 9D). 

In this assay, 12-mer nucleosomal arrays were assembled with recombinant 

histone octamers, and ~15% of the octamers contained histone H2A biotinylated 

at an engineered cysteine within the exposed C-terminal domain  



66 
 

Figure 10: SWI/SNF-Sir3p contact disruption does not influence array 

remodeling. SWI/SNF and SWI/SNF-Δ10R were assayed for nucleosome array 

remodeling activity via the restriction enzyme accessibility assay.  Experiment 

was done in triplicate; error bars denote sample standard deviation. 
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(Sinha and Peterson, 2008). Purified Sir3p protein was bound to these arrays at 

a ratio of two Sir3p monomers per nucleosome (Swygert et al., 2014), and then 

incubated with chromatin remodeling enzyme in the presence of ATP. Reactions 

were captured on streptavidin-coated magnetic beads, and chromatin-bound (B) 

and unbound (U) fractions were subjected to western blotting, probing for both 

histone H3 and Sir3p. In these reactions, wild-type SWI/SNF was able to evict 

~35% of the Sir3p into the unbound fraction, whereas the SWI/SNF-Δ10R 

complex was defective at Sir3p eviction (Fig. 9E). Indeed, the SWI/SNF-Δ10R 

complex resembled the activity of RSC, in that it only evicted small amounts of 

Sir3p at high concentrations (Fig. 9E). We conclude that the Sir3p interaction 

surfaces within Swi2p are dispensable for chromatin remodeling, but they are 

required for Sir3p eviction. 

 

SWI/SNF-Sir3p Interactions are important in vivo 

To identify potential phenotypes for the swi2-Δ10R allele that might be 

linked to Sir3p function, a plasmid-borne copy of swi2-Δ10R was introduced into 

swi2Δ and swi2Δ sir3Δ strains, and growth was assayed by spot dilution on 

several media.  In the absence of SWI2, cells grow poorly on rich media or on 

media containing galactose or raffinose as carbon sources (Neigeborn and 

Carlson, 1984). In these cases, the swi2-Δ10R allele fully complemented these 

phenotypes, behaving like a wild-type strain (Fig. 11A). In contrast, the swi2-

Δ10R allele showed a marked sensitivity to the replication stress agent  
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Figure 11: SWI/SNF-Sir3p interactions regulate resistance to replication 

stress and the establishment of telomeric silencing. (A) Growth assays. 

CEN/ARS plasmids containing either SWI2 (CP1410), swi2-Δ10R (CP1413), or 

no insert (CP1250; pRS410) were introduced into swi2Δ or swi2Δ sir3Δ strains. 

WT and swi2-Δ10R complement swi2Δ growth and transcriptional defects, but 

swi2-Δ10R does not complement HU sensitivity. Five-fold serial dilutions of yeast 

cultures were spotted onto the indicated plates and allowed to grow for three 

days (YPD) or six days (all others) at 30°C. (B) Schematic of the subtelomeric 

silencing establishment assay. CY1755 (L1088; swi2Δ TELVR::URA3) was 

transformed with plasmids containing either SWI2 (CP1410) or swi2-Δ10R 

(CP1413), and transformant colonies were grown on SD-URA+G418 plates to 

select for Ura+ cells. Colonies were then cultured in media lacking uracil for the 

indicated times, and then plated on 5-FOA plates to score establishment of 

silencing (Ura-). Right: representative 5-FOA plates after 24 hours of growth on 

5-FOA. (C) Quantitation of the assay from (B); five independent transformants 

were analyzed; error bars reflect standard deviation. 
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hydroxyurea (HU; Fig. 11A). Previous studies have suggested that the HUs 

phenotype of swi/snf mutants may be due to a defect in transcriptional induction 

of ribonucleotide reductase (RNR) genes (Sharma and Reese, 2003); however, 

the swi2-Δ10R strain exhibited wild-type levels of RNR3 transcriptional induction 

(Fig. 12A). Indeed, no significant changes in RNA expression were observed 

between wild-type and swi2-Δ10R strains when assayed by RNA-seq (Figs. 12B, 

12C, Dataset 1).  Consistent with previous work (Lenstra et al., 2011), swi2-Δ10R 

did not affect SIR2 or SIR3 expression (Fig. 12D, Dataset 1).  Interestingly, the 

HUS phenotype of the swi2-Δ10R is suppressed by deletion of SIR3, consistent 

with a functional interaction between SWI/SNF and Sir3p during replication 

stress.   

To test whether SWI/SNF regulates the dynamics of heterochromatin 

assembly, wild-type and swi2-Δ10R strains were assayed in a transcriptional 

silencing establishment assay (Dror and Winston, 2004). This assay was 

performed in strains with a URA3 gene integrated adjacent to the telomere on 

right arm of chromosome V (TELVR::URA3). In this location, URA3 expression is 

repressed by the spreading of adjacent subtelomeric heterochromatin, creating a 

biphasic population of Ura- and Ura+ cells. To monitor the establishment of the 

silenced state, cells were first grown in media lacking uracil, to enrich for cells in 

which URA3 is in the ON state (Ura+). Cells were then grown in the presence of 

uracil for increasing time, then plated onto plates that contain 5-FOA, scoring for 

cells that have silenced URA3 (Ura-). Compared to the wild-type, the swi2-Δ10R  
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Figure 12: swi2-Δ10R has no major transcriptional effects. (A) swi2Δ yeast, 

with either SWI2 (CP1410) or swi2-Δ10R(CP1413), and with or without SIR3 

(labels as in Fig. 5A), was exposed to 200mM HU. Expression of RNR3 relative 

to ACT1 expression in each strain was quantified by RT-qPCR before and after 

exposure to HU. Experiment was done in biological triplicate; error bars 

represent sample standard deviation. (B) Scatterplot of gene expression in SWI2 

and swi2-Δ10R as measured by RNA-seq. Each gene is represented by a point. 

(C) Jensen-Shannon distance between SWI2 and swi2-Δ10R RNA-seq 

replicates. (D) SIR2 and SIR3 transcript levels are not affected in the swi2-Δ10R 

mutant strain. 
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mutant had a delayed onset of silencing and achieved a lower final level of 

silencing (Fig. 11D). Furthermore, the swi2-Δ10R strain formed much smaller 

colonies, suggesting that silencing is inherited less stably (Fig. 11D). Thus, these 

results suggest that interactions between SWI/SNF and Sir3p impact 

heterochromatin dynamics in vivo. 

 

SWI/SNF is not required for heterochromatic recombinational repair 

Yeast mating type switching requires that a double strand break (DSB) 

induced at the MAT locus is repaired by homologous recombination with 

sequences from a heterochromatic HM locus (Pâques and Haber, 1999). 

Previously, in vivo studies suggested that SWI/SNF is essential for mating type 

switching, and that SWI/SNF promotes repair only when the donor sequences 

are heterochromatic (Chai et al., 2005; Sinha et al., 2009). As an initial test for 

whether the swi2-Δ10R allele impacts heterochromatic mating type switching, a 

plasmid expressing a galactose-inducible HO endonuclease was introduced into 

isogenic wild-type, swi2Δ, and swi2-Δ10R strains. The strand invasion step of 

mating type switching was then assayed by a PCR-based assay following a 

switch to galactose media (Sugawara and Haber, 2012). Surprisingly, neither the 

swi2-Δ10R or swi2Δ strains showed a significant defect in strand invasion (Fig. 

13A). 

To confirm this observation, a swi2Δ strain was created by tetrad 

dissection in a strain harboring a chromosomal, galactose-inducible HO gene.  
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Figure 13: SWI2 is dispensible for yeast mating type switching. (A) swi2Δ 

yeast (CY2041) were transformed with pGAL-HO and either pRS410 alone, 

CP1410 or CP1413. HO endonuclease expression was induced with galactose, 

then repressed with glucose to allow repair.  Kinetics of HO-induced DSB 

formation and HR strand invasion were measured by qPCR. Averages of 

biological duplicates are shown. (B) Diploid yeast heterozygous for SWI2 were 

sporulated and the resultant tetrads were dissected into haploid spores. Of the 

spores shown, 1C, 1D, 2B, 2C, 3A, and 3C are SWI2; the rest (triangles) are 

swi2Δ. (C) swi2Δ strains as from panel B were shifted into galactose to induce 

mating-type switching, then diluted, plated on rich media, and subjected to 

mating type testing. Shown are representative plates where before galactose, all 

yeast are MATα, and after galactose, approximately 60% of yeast have become 

MATA. (D) Top: a timecourse showing degradation of AID-tagged Swi2p by A. 

thaliana Tir1 E3 ligase in the presence of a synthetic auxin analog. Bottom: 

kinetics of DSB formation and repair; experiments done as in (A), but galactose 

was only added after cultures had been treated with or without 1-NAA. 
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Notably, this is the same background as used in previous studies (Chai et al., 

2005). Multiple swi2Δ segregants from independently created diploids showed 

severe growth defects (Fig. 13B) and delayed galactose induction kinetics that 

precluded kinetic analyses of strand invasion. However, following growth for 4 

hours in galactose media, swi2Δ strains were competent to switch mating types 

with efficiencies similar to the wild-type strain (Fig. 13C). To circumvent the 

galactose induction defects of a swi2Δ and to study the kinetics of strain 

invasion, an auxin-inducible degron system was used to conditionally deplete 

Swi2p (Nishimura et al., 2009). Following a 2-hour treatment with synthetic auxin 

(NAA) to deplete Swi2p, galactose was added to cultures, and PCR was used to 

monitor DSB formation and strand invasion. Consistent with the results from the 

swi2Δ strain, depletion of Swi2p did not alter DSB repair kinetics (Fig. 13D).  

Since the Swi2p ATPase is essential for SWI/SNF function, these results indicate 

that SWI/SNF is dispensable for mating type switching, even with a 

heterochromatic donor. 

 

Discussion 

 

 Here, we have defined two distinct protein-protein interfaces between the 

Sir3p heterochromatin protein and the Swi2p subunit of the SWI/SNF chromatin 

remodeling enzyme.  The HSA domain from Swi2p interacts with a region of 

Sir3p that contains its AAA+ domain, and an N-terminal portion of the Swi2p 
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ATPase domain interacts with the nucleosome binding, BAH domain of Sir3p.  

Intriguingly, Sth1p, the related ATPase from the RSC remodeling enzyme, can 

also bind to the Sir3p BAH domain, but only after elimination of flanking 

sequence elements. Furthermore, both Swi2p and Sth1p are able to bind to the 

central core of the Rsc2p and Orc1p BAH domains, suggesting that SWI/SNF-

like ATPase domains may harbor a general affinity for BAH domains. Importantly, 

elimination of Sir3p interaction surfaces within Swi2p (Swi2p-Δ10R) disrupts the 

ability of SWI/SNF to catalyze the ATP-dependent eviction of Sir3p from 

nucleosomal arrays in vitro, without impairing its ATPase or more canonical 

chromatin remodeling activities. Furthermore, these alterations led to specific 

phenotypes in vivo, consistent with functional interactions between SWI/SNF and 

Sir3p-dependent heterochromatin structures.    

 What is the functional role for Sir3p eviction by SWI/SNF?  A previous 

study from Laurent and colleagues (Chai et al., 2005) was consistent with this 

activity playing an essential role in recombinational repair events that involve 

heterochromatin.  Specifically, they used strains harboring a galactose-inducible 

HO endonuclease to create a single DNA double strand break (DSB) at the 

euchromatic MAT locus. The recombinational repair of this DSB requires a 

successful homology search and strand invasion of a homologous, but 

heterochromatic, HM locus. In these assays, they reported that inactivation of the 

Snf5p subunit of SWI/SNF had no effect on early steps of HR, but that snf5Δ 

eliminated capture of the heterochromatic donor sequences, and repair was 
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blocked (Chai et al., 2005). Subsequently, we showed that SWI/SNF is not 

required for recombinational repair of these same sequences when they are 

euchromatic, suggesting that this role for SWI/SNF might be specific for the 

heterochromatic context (Sinha et al., 2009). To our surprise, however, our 

studies presented here do not support this key role for SWI/SNF in 

heterochromatic recombinational repair. We created swi2Δ strains that harbor a 

GAL-HO gene by tetrad dissection, and we find that these strains are competent 

to repair an HO-induced DSB, leading to mating type switching with efficiencies 

similar to wild-type. Furthermore, we employed an inducible degron strategy to 

remove Swi2p from these GAL-HO strains, but in this case as well, the loss of 

Swi2p, and thus SWI/SNF, had no impact on repair of a DSB at the MAT locus. 

Why our results differ from that of Laurent and colleagues in not clear. 

Unfortunately, the original snf5Δ strain is no longer available (B. Laurent, 

personal communication). The most likely explanation is that the previously 

observed phenotype was specific to this particular snf5Δ isolate that was created 

by direct cell transformation, rather than tetrad dissection. Alternatively, it could 

represent a phenotype that is unique to a snf5Δ mutant and does not reflect a 

role for SWI/SNF per se.  

 Yeast strains that lack SWI/SNF show a variety of phenotypes, including 

growth defects on rich media or media containing alternative carbon sources 

(e.g. galactose or raffinose), inositol auxotrophy (Neigeborn and Carlson, 1984; 

Peterson and Herskowitz, 1992), and sensitivity to DNA damaging and 
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replication stress agents (Chai et al., 2005; Sharma and Reese, 2003). 

Consistent with the intact chromatin remodeling activities of the SWI/SNF-Δ10R 

enzyme, strains harboring the swi2-Δ10R allele showed normal growth on nearly 

every condition tested. The lone exception, however, was sensitivity to the 

replication stress agent, hydroxyurea. Furthermore, this phenotype was 

suppressed by deletion of the SIR3 gene, consistent with a role for ATP-

dependent Sir3p eviction during replicative stress. This phenotype was not due to 

a defect in transcriptional induction of the RNR genes, nor did the swi2-Δ10R 

allele lead to significant transcriptional changes that could be detected by RNA-

seq. Thus, this HU phenotype is likely to reflect a transcription-independent role 

of SWI/SNF action in antagonizing Sir3p during DNA replication. One simple 

model posits that SWI/SNF is required for efficient replication through SIR 

heterochromatin, and that HU-induced fork stress heightens the need for 

SWI/SNF to remove Sir3p. Alternatively, work from Taddei and colleagues have 

shown that Sir proteins can be recruited to stalled replication forks (Dubarry et 

al., 2011). Perhaps SWI/SNF plays a role in removing Sir proteins from stalled 

forks, alleviating the negative consequences of this Sir recruitment. This model 

may also provide an explanation for the defect in heterochromatin establishment 

observed in the swi2-Δ10R strain, as an accumulation of Sir3p at stalled forks 

may titrate Sir proteins from heterochromatic domains, interfering with 

heterochromatin assembly. 
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 The ATP-dependent eviction of Sir3p from chromatin is reminiscent of the 

ability of the yeast Mot1p ATPase to catalyze the eviction of the general 

transcription factor, TBP from DNA.  Mot1p is a member of the Swi2p/Snf2p 

family of DNA-stimulated ATPases and DNA translocases, and the ability of 

Mot1p to disrupt TBP-DNA interactions appears to be key for re-distributing TBP 

from TATA-containing binding sites to less preferred, TATA-less promoter 

elements (Auble, 2009; Zentner and Henikoff, 2013). Similar to SWI/SNF-

dependent eviction of Sir3p from nucleosomes, Mot1p evicts TBP from a 

preformed TBP-DNA complex in an ATP-dependent reaction. Mot1p binds to 

TBP using two distinct interaction domains—a region containing multiple HEAT 

domains binds to the convex surface of the TBP-DNA complex, whereas a 

distinct “latch” domain interacts with the surface of TBP that is bound to DNA 

(Wollmann et al., 2011). These structural studies have led to a model in which 

Mot1p binds to DNA adjacent to the TBP-DNA complex, allowing its HEAT 

domain to make extensive contacts with the exposed, convex surface of TBP. As 

Mot1p hydrolyzes ATP, DNA translocation leads to removal of TBP from DNA, 

and the latch domain of Mot1p interacts with the DNA-binding surface of TBP, 

preventing re-association with promoter DNA (Wollmann et al., 2011). By 

analogy, we propose that the HSA domain of Swi2p may interact with the Sir3p-

nucleosome complex, facilitating Sir3p removal during the DNA translocation 

reaction. Likewise, sequences within the N-terminal lobe of the ATPase domain  
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Figure 14: Model for eviction of Sir3p from nucleosomes by SWI/SNF. See 

text for description. Sir3p is in red, Swi2p is in blue. 
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may function as a “latch” that binds the Sir3 BAH domain, preventing re-

association with the nucleosome (Fig. 14). 

 Although the Swi2 ATPase domain is uniquely able to interact with the 

Sir3p BAH, the ATPase domains from both Swi2p and Sth1p can interact with 

the yeast Orc1p BAH domain. Likewise, both the SWI/SNF and RSC complexes 

can bind to the BAH domain of human Orc1.  These latter interactions are 

surprising given that the primary sequence of the yeast and human Orc1 BAH 

domains have diverged considerably, though the overall structures are 

homologous (Fig. 15A). Orc1p is a highly conserved member of the Origin 

Recognition Complex that is essential for cell viability and important for DNA 

replication (Fox et al., 1995; Klemm et al., 1997; Bell, 2002). Orc1p and Sir3p are 

paralogs, and as such they display domain and primary sequence conservation, 

particularly in their N-terminal BAH domains (47% identical sequence). In K. 

lactis, Orc1p has been shown to function analogously to the role of Sir3 in 

heterochromatin formation, in addition to its traditional role in replication 

(Hickman and Rusche, 2010). We postulate that the binding interaction between 

SWI/SNF-family enzymes and Orc1-like BAH domains is ancestral, and that 

specificity for Sir3p and Swi2p arose following the silencing sub-functionalization 

of Sir3p. Indeed, the sequences within the Swi2p ATPase domain that diverge 

from Sth1p, and that appear to provide specificity for Sir3p, are not well 

conserved in mammalian Swi2p/Snf2p homologs (Fig. 15B).  The specificity for 

different BAH domains seems to be imparted by regions within BAH domains that  
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Figure 15: Conservation of Orc1 BAH domains and SWI/SNF ATPase 

domains. (A) Primary sequence alignment of S. cerevisiae Orc1p and H. 

sapiens Orc1 BAH domains (left). Structural alignment of M. musculus (4DOV) 

and S. cerevisiae (1M4Z) Orc1 BAH domains (right). (B) Top: sequence 

alignment of the N-terminal ATPase lobes of Snf2p, Sth1p, hBRM and BRG1. 

The Snf2p variable region highlighted in red is also colored red in the structural 

prediction of the Snf2p N-terminal ATPase lobe below. 
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surround and regulate access to the core BAH fold. In line with this hypothesis, 

we found that the truncated, core BAH domains of Rsc2p and Sir3p were able to 

interact with both the SWI/SNF and RSC enzymes, but inclusion of C-terminal 

regions that wrap about the folds inhibited RSC and SWI/SNF binding. Given the 

plethora of BAH domains associated with chromatin (Callebaut et al., 1999), this 

theme of BAH accessibility and gating might help regulate ATP-dependent 

chromatin remodeling enzyme activities in a context-dependent manner. 

 

Materials and Methods 

 

Protein Purification  

Tandem affinity purification of SWI/SNF, RSC, SWI/SNF-Δ10R and 

Sir2p/Sir4p was performed as described previously (Smith et al., 2003; 

Buchberger et al., 2008). FLAG purification of Isw2 and Sir3p was performed as 

described previously for Sir3p-FLAG (Buchberger et al., 2008), except that 

350mM NaCl (no KCl) was used during the entire purification, and that following 

elution with 3XFLAG peptide, the protein was concentrated to ~3µM with a 

10,000 PES MWCO Vivaspin 500 concentrator (Sartorius #VS0101). 

Concentrated Sir3p was dialyzed (Pierce #69570) for two hours at 4°C into 

storage buffer (20mM Hepes pH=7.5, 80mM NaCl, 10% glycerol, 0.1% TWEEN-

20) and frozen in liquid nitrogen. 
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Concentrations of Sir3p and Sir2p/4p were calculated by ImageJ 

quantification (http://imagej.nih.gov/ij/) of coomassie-stained SDS-PAGE gel 

image intensities, using purified fraction V BSA for known protein mass 

standards. Concentration of active chromatin remodeling enzyme was calculated 

by measuring rates of ATP hydrolysis (see below) at saturating concentrations of 

dsDNA nucleic acid cofactor. These ATPase concentrations and Sir2p/Sir4p 

concentrations were used to load equimolar amounts of protein for SDS-PAGE 

analysis. Silver stain, immunodetection of Arp9p (for RSC and SWI/SNF), and 

immunodetection of the TAP tag, resulted in intensities that were equivalent 

between complexes. 

GST fusion proteins were expressed using the pGEX-3X vector in 

RosettaTM 2 BL-21 (DE3) cells (EMD #71397). E. coli were grown at 28°C to an 

OD600 of 0.5, in 50mL LB with 50µg/mL carbenicillin and 17µg/mL 

chloramphenicol, then protein expression was induced by addition of IPTG to a 

final concentration of 0.2mM. After one hour of protein expression, E. coli were 

harvested by centrifugation at 2500g at 4°C for 15 minutes, in a Beckman J-6B 

centrifuge with a JS-4.2 rotor. Cell pellet was stored at -80°C, then thawed on ice 

and resuspended in 7.5mL lysis buffer (1x PBS with 1% Triton, 1mM DTT, and 

protease inhibitors [.17µg/mL aprotinin, 2µg/mL leupeptin, 2µg/mL pepstatin, 

100µg/mL PMSF, and 1mM benzamidine]). After transfer to a 40mL centrifuge 

tube, cells were lysed via four fifteen-second pulses of sonication (setting 5, 

Fisher 550 sonic dismembrator) interspersed with incubations on ice to prevent 
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heat accumulation. Lysed cells were incubated on ice for 15 minutes, then 

bacterial debris was removed by centrifugation for 25 minutes at 27000g, at 4°C, 

in a Beckman J2-HC centrifuge with a JA-17 rotor. Clear supernatant lysate was 

frozen in liquid nitrogen and stored at -80°C.  

Prior to each experiment, lysate aliquots were thawed on ice, and volumes 

of lysate containing equivalent amounts of each fusion protein (judged from 

lysate SDS-PAGE) were each brought to a final volume of 1.2 mL by addition of 

lysis buffer in a 1.5mL eppendorf microcentrifuge tube. These lysates were 

incubated with 15µL of glutathione sepharose 4B resin slurry (GE # 17-0756-01) 

at 4°C on a nutator for 1 hour. The resin was washed once in lysis buffer, twice in 

wash-350 buffer (1xPBS with [NaCl] @ 350mM, 0.1% TWEEN-20, 1mM DTT, 

100µg/mL PMSF), and twice in wash buffer (1xPBS, 0.1% TWEEN-20, 1mM 

DTT, 100µg/mL PMSF). Each wash consisted of a five-minute incubation at 4°C 

on a nutator with 1mL of the appropriate buffer. Resin was collected by 

centrifugation for two minutes at 2000g, and supernatant was removed. Fusion 

protein concentration and purity was verified by SDS-PAGE, as for Sir3p and 

Sir2p/Sir4p above. 

FLAG-fusion domains were purified from E. coli in a manner similar to 

GST fusion proteins, except post-clarification lysate was directly incubated with 

M2 anti-flag affinity resin (Sigma A2220). Once the resin was washed, protein 

was eluted with 0.2mg/mL 3xFLAG peptide (Sigma F4799) in 1xPBS. Fusion 

protein concentration and purity was verified by SDS-PAGE, as above. 
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Analysis of Enzyme ATP Hydrolysis Kinetics 

ATP hydrolysis assays were performed as described previously (Yang et 

al., 2007), except that quantification of images was performed using ImageJ (see 

the radiolabel quantification section below). For experiments to measure enzyme 

Km, 10nM enzyme was used. As a nucleic acid cofactor, supercoiled pUC19 

(NEB #N3041S) plasmid DNA was present, at appropriate concentrations of 

calculated 200bp DNA equivalent  (13.43 per 2686bp plasmid). Microsoft Excel 

2010 linear regression was used to calculate the initial velocity of each ATP 

hydrolysis reaction. This velocity was plotted as a function of 200bp-mer 

concentration via Graphpad Prism 6. Nonlinear fitting to the Michaelis-Menten 

equation yielded Vmax and Km parameters. Experiments were performed in 

triplicate, and error bars represent sample standard deviation. 

 

Chromatin Reconstitution and Remodeling Assays 

Recombinant X. laevis H2A, H2AS113C, H2B, H3 and H4 histones were 

expressed from pET vectors in BL-21(DE3) E. coli. Histones were purified and 

reassembled into octamers as described previously (Luger et al., 1997b). 

Octamer containing H2AS113C was biotinylated as described previously 

(Swygert et al., 2014), and biotinylation was confirmed by western blot analysis 

with HRP-Streptavidin. Histone octamers were reconstituted onto purified 

template DNA by the step salt dialysis method (Hansen et al., 1991) at a 



91 
 

nucleosome positioning sequence (NPS) to octamer molar ratio of ~0.94-1.0. For 

biotinylated chromatin, one sixth of the octamer added to the reconstitution 

contained biotinylated H2AS113C—the rest of the octamer was wild-type. After 

reconstitution, a fraction of each array was digested with EcoRI and 

electrophoresed on a 4% Native PAGE gel, in 0.5xTBE buffer, to resolve 

nucleosomal and free DNA and estimate nucleosomal saturation. 

Milligram quantities of 208-11 and 208-12 L. variegatus 5S NPS array-

containing plasmid DNA (CP589 and CP426, respectively) were purified from E. 

coli (QIAGEN #12191). DNA was digested with a combination of HhaI, NotI, and 

HindIII restriction enzymes, and the array DNA molecule was subsequently 

separated and purified via a 120mL Sephacryl S-500 gel filtration column (GE 

#17-0613-01). 282bp-Mid601 DNA was amplified via PCR using Taq polymerase 

(NEB #M0273L) from plasmid pGEM-3Z lower strand 601 (CP1024) using 

primers GATCCTCTAGAGTCGGGAGCTC and 

TGACCAAGGAAAGCATGATTCTTCAC. DNA was purified by phenol/chloroform 

extraction and ethanol precipitation, then digested with XbaI restriction 

endonuclease. 208-11 array DNA and 282bp-Mid601 DNA were radiolabeled by 

an end fill-in reaction using Klenow Fragment (NEB #M0212S) with alpha-32P 

dCTP, then purified by phenol/chloroform extraction and G-25 resin spin 

columns. 

Mononucleosome sliding assays were performed in 25mM Hepes pH=7.5, 

50mM NaCl, 5mM MgCl2, 0.05% Tween-20, 1mM ATP, 1% glycerol, 100µg/mL 
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BSA and 1mM DTT. Given amounts of chromatin remodeling enzyme were 

incubated with 12nM 282bp-Mid601 mononucleosome at 30°C for 10 minutes. To 

stop the reaction, 10µL of the reaction was added to 2.4µL of stop buffer (50mM 

EDTA, 20% glycerol, 1mg/mL supercoiled plasmid DNA), mixed, and quenched 

on ice. These quenched aliquots were subjected to native PAGE for 45 minutes 

at 120V, in a 4% gel, in 0.5xTBE. Prior to visualization, these gels were dried 

under vacuum for 45 minutes at 80°C on a Bio-Rad model 583 gel dryer. 

Restriction enzyme accessibility assays were performed as described 

(Logie and Peterson, 1997), except that 0.5U/mL SalI-HF (NEB #R3138T) was 

used in place of HincII enzyme, and that 5nM chromatin remodeling enzyme and 

1.25nM radiolabeled 208-11 array were used. After phenol/chloroform extraction, 

cut and uncut DNA were separated by electrophoresis in a 1% agarose gel. Prior 

to visualization, these gels were dried under vacuum for 90 minutes at 60°C. 

 

Radiolabeled Gel and TLC Plate Quantification 

Dried TLC plates, acrylamide gels, and agarose gels were exposed to 

Molecular Dynamics storage phosphor screens (generally, 3 hours for ATPase 

assays, and overnight for mononucleosome sliding or restriction enzyme 

accessibility assay gels). The screens were scanned on a Storm 820 scanner, 

then quantitated in ImageJ after processing with the Linearize GelData plugin 

(http://rsb.info.nih.gov/ij/plugins/linearize-gel-data.html). For ATPase assays, 

intensity of free phosphate signal was measured and normalized to the sum of 
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free phosphate plus unhydrolyzed ATP signal. For mononucleosome sliding 

assays, the intensity of the band corresponding to a centrally positioned 

nucleosome was measured and normalized to whole-lane intensity. For 

restriction enzyme accessibility assays, intensity of uncut array DNA signal was 

normalized to the sum of cut and uncut DNA signal. Experiments were performed 

in triplicate, and error bars represent sample standard deviation. 

 

Sir3 Eviction Assay 

8nM biotinylated nucleosomal array (96nM nucleosomes) was incubated 

with 96nM Sir3p (unless experimentally varied) in binding buffer (25mM Hepes 

pH=7.5, 50mM NaCl, 1.75mM MgCl2, 0.05% Tween-20, 1mM DTT) for 25 

minutes at 22°C. Then, an equal volume of 2x enzyme mix (double concentration 

of chromatin remodeling enzyme listed in figure; 2mM MgATP, 25mM Hepes 

pH=7.5, 100mM NaCl, 1.75mM MgCl2, 0.05% Tween-20, 1mM DTT) was added, 

and the reaction proceeded for 10 minutes at 22°C. 

This reaction was then incubated with 10µg/µl Streptavidin-coated 

magnetic beads (Invitrogen™ Cat# 11205D) for 5 minutes at 22°C. The magnetic 

beads had been washed twice in pulldown buffer and blocked for 15 minutes at 

22°C in pulldown buffer supplemented with 100µg/mL BSA. During blocking and 

array binding, beads were kept continually suspended by constant rotation. After 

binding the array to beads, the beads were magnetically captured and the 

supernatant “unbound” fraction was removed. The beads were resuspended in 



94 
 

1x SDS-PAGE sample buffer, heated for 5’ at 95°C, and care was taken to 

magnetically extract the stripped beads from the supernatant “bound” fraction. 

These fractions were subjected to SDS-PAGE, electroblotted onto nitrocellulose 

membrane. Sir3 was immunodetected by HRP-FLAG (Sigma-Aldrich® Cat# 

A8592) immunoblotting, and H3 was detected by immunoblotting with Abcam 

antibody #1791. For quantification, the blot in ECL was photographed on a 

Fujifilm LAS 3000 CCD apparatus, and quantified with ImageJ using the ISAC 

plugin (http://rsb.info.nih.gov/ij/plugins/isac.html). Experiments were performed in 

triplicate, and error bars represent sample standard deviation. 

 

Protein Capture Assays 

2-10µg of resin-bound protein (equal masses were used of all proteins 

within the same experiment) of either Sir3p-FLAG (on anti-FLAG resin, from right 

after the wash steps in the purification protocol), SWI/SNF (on calmodulin affinity 

resin) or recombinant GST fusion protein (on glutathione sepharose resin) was 

incubated with 20µL free partner protein (20nM SWI/SNF, RSC, or ISW2; 100nM 

Sir3; ~100µM domain flag fusion) in wash buffer (1xPBS with 0.1% TWEEN-20, 

1mM DTT, 100µg/mL PMSF) for 30’at 22°C with continuous gentle rotation. 

Resin was washed twice with 200µL wash buffer, then resuspended in 12uL 

1xSDS-PAGE sample buffer, heated to 95°C for 5’, centrifuged at 14krpm in a 

tabletop microcentrifuge; the resultant supernatant was subjected to SDS-PAGE. 

These gels were electroblotted onto a nitrocellulose membrane, and equal resin-
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bound protein loading was confirmed by Ponceau staining. Protein was detected 

by western analysis with the denoted antibodies. αArp9p Santa Cruz yN-19 goat 

polyclonal IgG was used to detect Arp9p in westerns, and tap-tagged proteins 

were detected by probing for CBP (Millipore #07-482). 

 

Far Western Assays 

~300nmol each of each purified complex was subjected to SDS-PAGE 

and electroblotting via wet transfer onto PVDF membrane. Insufficient protein 

was loaded to visualize by Ponceau staining, so an identical gel was visualized 

by silver stain (Life Technologies #LC6070) to confirm equal amounts of complex 

were used. Far western analysis was performed as previously described 

(Edmondson and Dent, 2001), with 3mL 10nM purified Sir3p-FLAG solution in 

1xPBS and 3mg/mL BSA as the probe solution. Sir3p-bound peptide bands were 

subsequently detected with HRP-conjugated anti-FLAG antibody (Sigma 

#A8592) and visualized with ECL (Thermo #34087). 

 

Structural Modeling 

A predicted structure for the SWI/SNF ATPase domain was created by the 

Phyre2 protein fold prediction server 

(http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index) (Kelley and 

Sternberg, 2009). PDB files were visualized for figures using PyMOL 1.3 

(http://www.pymol.org/). For structural alignment, crystal structures of S. 
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cerevisiae (1M4Z) and M. musculus (4DOV)Orc1 (Connelly et al., 2006; Kuo et 

al., 2012)  were aligned using the RCSB PDB Protein Comparison Tool 

(http://www.rcsb.org/pdb/workbench/workbench.do?action=menu) and visualized 

in Jmol (http://jmol.sourceforge.net/). Orc1 BAH domain sequences were aligned 

using EMBOSS Needle (http://www.ebi.ac.uk/Tools/psa/emboss needle/), and 

Snf2p homolog N-terminal ATPase lobes were aligned using Clustal Omega 

(http://www.ebi.ac.uk/Tools/msa/clustalo/). 

 

Plasmids 

Plasmid for expressing GST-fusion human Orc1 BAH domain was a kind 

gift of Dr. Or Gozani (Kuo et al., 2012). Molecular cloning via PCR, restriction 

digestion, plasmid ligation and transformation into E. coli was performed by 

standard methods. Phusion polymerase was used for PCR amplification during 

cloning (NEB #M0530S). For GST fusion protein cloning, coding sequences were 

cloned into the BamHI and EcoRI restriction sites on pGEX-3X; recombinant flag-

domains were cloned into pET expression vectors. Site-directed mutagenesis 

was used to generate the HSAΔ10 mutation (Agilent #200523). Oligonucleotides 

used in cloning are listed on the supplemental oligonucleotide table (Appendix 1). 

For cloning details, see the supplemental plasmid table (Appendix 2).  

 

Yeast Strains and Genetic Methods 
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For yeast strains used, see the supplementary yeast strains table 

(Appendix 3).  Standard genetic methods were used for yeast sporulation and 

tetrad dissection. One copy of the SWI2 gene was deleted in a diploid strain by 

standard PCR-based method (Goldstein and McCusker, 1999).  

Yeast transformations were performed using the lithium 

acetate/PEG/ssDNA carrier method (Schiestl and Gietz, 1989). Oligonucleotides 

and plasmids used for deletion cassette amplification and deletion confirmation 

are listed in the supplementary oligonucleotide (Appendix 1) and plasmid 

(Appendix 2) tables. Yeast genomic DNA preparations were performed using the 

glass bead/phenol method (Sugawara and Haber, 2012). Yeast protein extracts 

were prepared by the standard TCA/glass beads method. Ab5154 and ab1791 

antibodies (Abcam) were used for western blots to detect Swi2p-AID and H3 

(input), respectively, according to manufacturer recommendations.  

For galactose-induced HO endonuclease expression and mating type 

switching assays, cells were incubated in appropriate lactate/glycerol medium to 

maintain selective pressure (synthetic URA dropout media for CY2041 + pGal-

HO experiments in fig. 13A, and YP otherwise; both contained 3% glycerol, 2% 

lactate, .05% dextose, G418, media at pH=6.6). At mid-log phase (OD600~0.4), 

galactose was added to a final concentration of 2% to induce HO expression, 

leading to double-strand break formation at the MAT locus. After one hour (four 

hours for swi2Δ in the plate-based mating type switching assay in fig. S4C), 

glucose was added to a final concentration of 2% to begin glucose repression of 
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HO transcription. For plate-based mating type switching, cells were diluted at this 

point to yield 100-200 colonies per plate (dilution empirically determined), and 

plated onto YPD. After five days of growth at 22°C, colonies were replica plated 

onto YPD plates with mating type tester lawns. After growth overnight at 22°C, 

mating plates were replica plated onto synthetic total dropout plates to score 

colonies with successful mating events.  

For yeast genomic DNA preparations to assay DSB formation and repair 

kinetics via qPCR, samples were taken by collecting ~107 cells at the appropriate 

time intervals and centrifuging them at 2500g for 5 minutes, 4°C, in a Beckman 

J6-B (JS-4.2 rotor). Cell pellets were washed once with ice-cold dH2O before 

storing at -80°C, until processing as above. For inducible degradation of Swi2p-

AID, CY1766 yeast culture was grown at 25°C in YP-lactate until it reached an 

OD600 of 0.25. At that point, the culture was split in half, and either 1-Naphthalene 

Acetic Acid (1-NAA; dissolved at a concentration of 100mM in 100% ethanol) 

was added to a final concentration of 1mM, or an equal amount of just 100% 

ethanol. After two hours, galactose was added to induce MAT locus DSBs, and 

the experimental timecourse was started (see above). Once added, cells were 

kept in 1-NAA throughout the experiment. 

For serial dilution spot plate assays, CY57 background yeast cells were 

cultured to saturation at 30°C in 5mL YPD + G418 (two overnights for SWI2 and 

swi2-Δ10R cells, three overnights for swi2Δ cells). Yeast were diluted to an 

OD600 of 1.0 in sterile dH2O, and serially 4.64-fold diluted six times more.  7µL of 
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each of these seven dilutions was spotted onto plates of the indicated media. 

Where used, raffinose was at 2% w/v, galactose was 2% w/v, hydroxyurea was 

at 50mM, and antimycin A was at 2µg/mL. 

For the silencing establishment assay, single colonies of CY1755 (swi2Δ 

TELVR::URA3) that were freshly transformed with either CP1410 or CP1413 

were picked off of transformation plates and streaked out onto SD-URA+G418 

plates. Biological replicates were performed from separate CP1410/CP1413 

transformant colonies. After two days at 30°C, colonies were picked off the -URA 

plate and inoculated into SC+G418. Cells were kept at an OD600 between 0.05 

and 0.60 at 30°C for three days by repeated dilution into fresh, prewarmed 

SC+G418. Timepoints were taken during those three days by diluting cells to an 

OD600 where 200µL of the cell dilution yielded ~150-400 colonies when plated on 

5-FOA+G418. These dilutions were determined empirically, both for strain, and 

for time since beginning growth in SC+G418 (prior to five population doublings, 

undiluted culture was used). Another portion of the cell culture was contemporally 

diluted 1:3000 and plated on SC+G418 to count total cells. After three days, 

colonies were counted. The number of colonies for each strain and for each 

timepoint was normalized both to dilution (above) and to the number of cells that 

grew on SC+G418. The experiment was biologically repeated five times, and 

error bars are sample standard deviation. 
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For RNR induction, yeast cells were grown to mid-log, a 0 hour timepoint 

was taken, then hydroxyurea was added to a final concentration of 200mM. After 

two hours, the 2 hour timepoint was taken. 

 

qPCR 

Primers were designed with Primer3Plus (http://primer3plus.com/cgi-

bin/dev/primer3plus.cgi) with qPCR server settings enabled, except primers for 

monitoring MAT locus breakage and repair, which were obtained from prior 

literature (Sugawara and Haber, 2012). Reactions were carried out at 25U/mL 

NEB Taq (NEB #M0273), in NEB Standard TAQ buffer (10mM Tris, 50mM KCl, 

1.5mM MgCl2, pH=8.3 @ RT) supplemented with an additional 1.5mM MgCl2, 

200µM of each dNTP, 200nM of each primer, SYBR Green (Invitrogen S-7563; 

diluted 1:2000 from stock into DMSO, then diluted 33.33-fold into reaction), and 

50-fold diluted Rox dye (BIO-RAD #172-5858). Thermocycling was performed in 

an Applied Biosystems 7300 RT-PCR system, using Rox as the passive 

reference dye. Plates were held at 50°C for 2 minutes, then held at 95°C for 10 

minutes, then cycled forty times between 95°C for 15 seconds and 61°C for 1 

minute, and finally subjected to dissociation curve analysis. CT values were 

obtained via the “auto analyze” feature of the AB 7300 software. Standard curves 

for each primer pair were used to derive slope and intercept values that were 

subsequently used to calculate quantities of nucleic acid from CTs. Locus 

quantities were normalized to the ACT1 quantity for their respective nucleic acid 
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prep. All qPCRs were performed in technical duplicate and averaged to give a 

value for each biological replicate. Three biological replicates were performed for 

all experiments, except for figure 13A, which was performed in biological 

duplicate and averaged. All error bars represent standard deviation of the sample 

calculated from the three biological replicate values. 

 

RNA Isolation 

RNA was extracted and purified by the hot phenol method, as previously 

described (Collart and Oliviero, 2001), from 10-50mL CY57 background cultures 

(at OD~0.4-0.6) grown in YEPD , followed by contaminant DNA removal using 

RNAse-free DNAseI (Ambion #1907). RNA concentration and purity was 

measured on a Nanodrop spectrophotometer. For qRT-PCR analysis, 100ng of 

total RNA was subjected to reverse transcription (Invitrogen #11746) with locus-

specific qPCR primers for 30 minutes at 50°C, prior to qPCR as above. 

For RNA-seq analysis, three biological replicates each of CY57-

background yeast cultures, containing either CP1410 or CP1413, were grown to 

mid-log and processed as above. Each replicate was derived from a different 

transformant colony. 25µg samples of RNA were processed for 90bp paired-end 

sequencing by BGI International (HK). Data was filtered to remove adaptors, 

contamination, and low-quality reads from the raw reads. Each sample yielded 

28.8-36.4 million reads. These reads were all mapped to the Ensembl EF4 

Saccharomyces cerevisiae genome build via Tophat 2.0.9 and Bowtie 2.1.0.0, 
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using Samtools 0.1.18.0. Relative gene expression was quantified by Cufflinks 

2.1.1, and the resultant data was visualized by CummeRbund 2.6.1 in R 2.15.1 

(all as in (Trapnell et al., 2012)). 
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Chapter III: Sir2p/Sir4p-Dependent Histone Eviction by SWI/SNF 

 

Summary 

 

Heterochromatin has many roles in vivo, from transcriptional silencing to 

recombinational repression. In spite of being contained within such a repressive 

structure, heterochromatic DNA must at the least still be repaired and replicated, 

creating a need for regulated dynamic access into silent heterochromatin. In prior 

work, we characterized activities used by SWI/SNF complex to displace the Sir3p 

heterochromatin protein. Here, we discover that SWI/SNF can also disrupt 

heterochromatin structures containing all three Sir proteins: Sir2p, Sir3p and 

Sir4p. This new disruption activity requires nucleosomal contacts that are 

essential for silent chromatin formation in vivo. We find that SWI/SNF evicts all 

three heterochromatin proteins off of chromatin. Surprisingly, we also find that 

the presence of Sir2p and Sir4p on chromatin stimulates SWI/SNF to evict 

histone proteins H2A and H2B from nucleosomes. Apart from discovering a new 

potential mechanism of heterochromatin dynamics, these data establish a new 

paradigm of chromatin remodeling enzyme regulation by nonhistone proteins 

present on the substrate. 
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Introduction 

 

 Incorporation of eukaryotic genomes into the nucleoprotein structure of 

chromatin is central to the proper regulation of all forms of DNA metabolism, from 

gene transcription control to genome replication and repair (Papamichos-

Chronakis and Peterson, 2012; Rando and Winston, 2012; Rivera et al., 2014). 

The base unit of chromatin, the nucleosome, consists of 147bp of DNA wrapped 

approximately 1.7 times around an octamer of histone proteins—two H2A/H2B 

heterodimers flanking a central heterotetramer of H3 and H4 (Luger et al., 

1997a). Despite sharing this common base unit, genomic loci can exhibit very 

distinct sets of emergent properties. The cell imposes these distinct states onto 

the chromatin fiber by targeting three key activities to genomic loci: ATP-

dependent chromatin remodeling (Clapier and Cairns, 2009), histone variant 

incorporation (Bönisch and Hake, 2012), and histone post-translational 

modification (Bannister and Kouzarides, 2011). Other chromatin-associated 

proteins can read the resulting chromatin landscape and specifically bind to loci, 

thereby associating their own unique properties with the locus (Musselman et al., 

2012).  

 One paradigm for such a chromatin state is silent heterochromatin. First 

discovered cytologically by the density of its nucleic acid staining, 

heterochromatin is a generally repressive domain (Heitz E., 1928). 

Heterochromatin contains genomic loci that are less transcriptionally active, less 
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frequently recombined, less sterically accessible, and replicated later during S 

phase than their euchromatic counterparts (Grewal and Jia, 2007). 

Heterochromatin plays key roles in organismal development, by repressing 

expression of certain developmental and cell identity loci (Laugesen and Helin, 

2014). Heterochromatin also promotes genome stability, by repressing 

recombination between the repetitive sequences it often contains (Peng and 

Karpen, 2007, 2009). 

The most well-studied heterochromatin system is budding yeast Sir (silent 

information regulator) heterochromatin. There are three main Sir proteins: Sir2p, 

Sir3p, and Sir4p. Sir2p is the founding member of the sirtuin class of NAD-

dependent histone deacetylase enzymes (Imai et al., 2000). Sir4p forms a stable 

heterodimer with Sir2p, and via Sir4p’s locus-specific interactions with sequence-

specific binding factors, Sir4p helps Sir2p deacetylate histones at 

heterochromatic loci (Luo et al., 2002; Hsu et al., 2013). This deacetylation 

creates a high-affinity binding site for the third Sir protein, Sir3p (Onishi et al., 

2007; Buchberger et al., 2008). Chromatin bound by purified Sir2p, Sir3p and 

Sir4p is repressed for both recombination and transcription in vitro (Johnson et 

al., 2009; Sinha et al., 2009; Johnson et al., 2013). While much work has been 

done on the molecular biology of heterochromatin proteins (Simon and Kingston, 

2009; Grunstein and Gasser, 2013), not much is known about cellular means to 

circumvent heterochromatin structure—for example, when a cell must repair or 

replicate its genome. 
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 Prior work from our lab has identified physical interactions between the 

SWI/SNF core ATPase subunit Swi2p and the heterochromatin structural protein 

Sir3p. These interactions are required for the ability of SWI/SNF to evict Sir3p 

from a chromatin fiber, an ability that is involved in DNA replication and silent 

chromatin establishment in vivo (Manning and Peterson, 2014). However, 

establishment of silent Sir chromatin domains in vivo requires Sir2p and Sir4p in 

addition to Sir3p. Sir4p in particular exhibits strong interactions with both Sir3p 

and Sir2p (Chang et al., 2003; Liou et al., 2005), can bind to histones H3 and H4 

(Hecht, Andreas et al., 1995), and interacts with DNA exiting the nucleosome 

(Kueng et al., 2012). Disruptions of several of these Sir4p interactions weaken 

heterochromatin silencing in vivo. These data suggest a structural role for Sir4p, 

and by extension its associated Sir2p, in the heterochromatin fiber. Therefore, a 

more relevant heterochromatin substrate for SWI/SNF activity would be a 

chromatin fiber bearing all three Sir proteins.  

In this work, we find that SWI/SNF complex exhibits a novel 

heterochromatin disruption activity when faced with a Sir2p/Sir4p-bound 

chromatin substrate. This activity results in the eviction of Sir proteins from 

chromatin, and separates Sir3p and Sir2p from Sir4p. Furthermore, this activity 

stimulates the eviction of histone dimers from nucleosomes. We discover that 

this activity involves SWI/SNF subunits outside of the Swi2p catalytic core. 

Finally, we find that SWI/SNF requires a heterochromatin substrate with higher 

levels of Sir proteins and functional H4 tail nucleosomal contacts, resembling in 
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vivo Sir heterochromatin, in order to perform this heterochromatin disruption 

activity. 

 

Results 

 

SWI/SNF disrupts Sir-nucleosome structure 

 In order to investigate the effect of SWI/SNF on chromatin that bears all 

three core Sir proteins, we first sought to recreate a Sir2p/Sir3p/Sir4p-

nucleosome substrate in vitro. First, purified recombinant histone octamers were 

reconstituted by stepwise salt dialysis onto DNA templates bearing nucleosome 

positioning sequences (Dechassa et al., 2010). We generated dinucleosomes 

separated by a 30bp linker as well as core mononucleosomes bearing no 

flanking DNA. Then, purified Sir2p/4p and Sir3p were mixed at equimolar ratios, 

and preincubated together. These Sir proteins were titrated on to the chromatin 

substrates. The binding reactions were subjected to native PAGE analysis, and 

the DNA was visualized by fluorescent staining. At an equimolar nucleosome: Sir 

protein ratio, chromatin substrates are bound by Sir proteins and migrate as 

discrete complexes (Figure 16A). 

 Next, we asked what effect SWI/SNF enzyme had on these Sir-

nucleosome complexes. Chromatin substrates, either with or without equimolar 

ratios of Sir proteins as described above, were incubated in the presence and 

absence of SWI/SNF and ATP, then subjected to native PAGE. In the absence of  



108 
 

Figure 16: SWI/SNF disrupts Sir nucleosome structure. (A) Increasing 

amounts of Sir proteins were bound to mononucleosome or dinucleosome 

templates, then subjected to Native PAGE. Nucleic acid was visualized by 

fluorescent stain. (B) Nucleosomes were either bound to Sir proteins as above, 

or not bound to Sir proteins, then incubated with SWI/SNF in the presence or 

absence of ATP. These reactions were then subjected to Native PAGE. Nucleic 

acid was visualized by fluorescent stain. (C) Radiolabeled mononucleosome was 

treated as in the left half of panel (B), but was incubated with 1µg competitor 

supercoiled plasmid DNA prior to loading and running on Native Page. 

Radiolabel was exposed and visualized.  
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Sir proteins, SWI/SNF does not significantly shift core mononucleosomes, 

regardless of whether or not ATP is also present (Figure 16B, lanes 2 and 3). 

Similarly, dinucleosome substrates are largely unshifted by SWI/SNF in the 

absence of Sir proteins, although evidence of chromatin remodeling is visible in 

the presence of ATP (Figure 16B, lanes 7 and 8). The absence of a SWI/SNF-

dependent shift in these assays is consistent with two factors: the 

substoichiometric concentration of SWI/SNF (5nM) compared to nucleosomes 

(30nM), and the absence of linker DNA on the core mononucleosomes to allow 

nucleosome repositioning. Even in the presence of Sir proteins, no SWI/SNF-

dependent shift is seen in the absence of ATP (Figure 16B, lanes 4 and 9). 

However, inclusion of both SWI/SNF and ATP disrupts Sir-nucleosome 

complexes (Figure 16B, lanes 5 and 10).  

 We hypothesized that this disruption activity incurs changes in the 

underlying chromatin template. To investigate this possibility, core 

mononucleosome DNA was radiolabeled by end-fill prior to nucleosomal 

reconstitution. Then, following reaction as above, an excess of unlabeled 

supercoiled plasmid DNA was added to compete SWI/SNF and Sir proteins off of 

chromatin. These reactions were subjected to native PAGE analysis; after, the 

gels were dried, exposed to a storage phosphor screen, and scanned on a Storm 

scanner. There is no apparent change in the core mononucleosome in the 

presence of SWI/SNF complex, whether or not ATP is present (Figure 16C, lanes 

1 and 2). The presence of SWI/SNF and Sir proteins without ATP (Figure 16C, 
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lane 3) has no effect, however, once ATP and Sir proteins are present, SWI/SNF 

catalyzes formation of a faster-migrating chromatin species (Figure 16C, lane 4). 

 

SWI/SNF evicts Sir proteins and histone proteins from chromatin 

 In line with our prior work on SWI/SNF and Sir3p, we hypothesized that 

components of the Sir heterochromatin fiber were being evicted by SWI/SNF 

complex during this ATP-dependent disruption activity. To test this hypothesis, 

we modified the biotinylated chromatin capture assay. Purified Sir3p and 

Sir2p/4p were preincubated together, then bound to nucleosomal array 

molecules. These arrays were made of recombinant histone octamers 

reconstituted by salt dialysis onto DNA molecules containing twelve tandem 

copies of the 208bp ‘5S’ nucleosome positioning sequence. Included in these 

reconstitutions were a low proportion of octamers (15%, approximately two 

octamers per array) that contained biotinylated H2A C-terminal tails. The Sir-

nucleosome array was then incubated with chromatin remodeling enzyme in the 

presence of ATP. Reactions were captured on streptavidin-coated magnetic 

beads as before. Supernatant (U) and bead-bound (B) fractions were subjected 

to SDS-PAGE and western blotting. Strikingly, SWI/SNF, but not RSC, evicts 

Sir2p, Sir3p and Sir4p into the supernatant in a concentration-dependent manner 

(Figure 17A). Histone H3 is also detected in the supernatant; this contrasts with 

our prior work, where no histone eviction is seen in heterochromatin eviction 

assays with Sir3p alone (Manning and Peterson, 2014). 
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Figure 17: SWI/SNF subunits are required for Sir disruption. (A) Chromatin 

capture assay where Sir2p/4p+Sir3p-bound biotinylated chromatin molecules 

were incubated with increasing amounts of the given chromatin remodeling 

enzyme and ATP, then captured on streptavidin-coated magnetic beads. The 

resulting bead-bound “B” and unbound “U” fractions were subjected to SDS-

PAGE and western analysis. (B) As in A, but with different SWI/SNF complexes. 

(C) Chromatin capture assay where Sir3p-bound biotinylated chromatin 

molecules were incubated with increasing amounts of the chromatin remodeling 

enzymes from (B) and ATP, then captured on streptavidin-coated magnetic 

beads. 
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To determine which components of SWI/SNF complex are required for this 

novel Sir-histone eviction activity, we repeated this assay using various SWI/SNF 

complexes. First, we tested the SWI/SNF-Δ10R complex, which prior work 

established was competent for chromatin remodeling, but specifically defective at 

Sir3p protein eviction (Figure 17C right). Surprisingly, SWI/SNF-Δ10R was able 

to evict Sir proteins and histones from the bead-bound fraction (Figure 17B right), 

albeit at a slightly slower rate than wild-type SWI/SNF complex. Next, we tested 

the “Minimal SWI” core subcomplex, which contains Swi2p, Arp7p, Arp9p and 

Rtt102p, and is purified from swi3ΔSANT (where Swi3p lacks aa555-565) mutant 

yeast strains (Boyer et al., 2002; Yang et al., 2007). This complex is competent 

for chromatin remodeling activities and Sir3p eviction (Figure 17C left), but is 

unable to evict any proteins from the Sir chromatin fiber (Figure 17B left). Taken 

together, these data imply that a SWI/SNF subunit outside of the Minimal SWI 

subcomplex plays a role that is crucial to this Sir-chromatin disruption activity. 

 To test whether a non-core subunit SWI/SNF was acting as a histone 

chaperone, we next asked whether DNA leaves the bead-bound fraction along 

with Sir and histone proteins. We found that Sir3p and Sir2p are the first 

molecules to leave the bead-bound fraction; later, Sir4p, histone H3, and DNA 

leave the bead-bound fraction (Figure 18A). However, Sir4p and histone H3 

leave the bead-bound fraction earlier than DNA does. These data are consistent 

with a model wherein Sir proteins and histone proteins are evicted from DNA  
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Figure 18: SWI/SNF evicts Sir proteins and histones sequentially from DNA. 

(A) Repeat experiment of Figure 17A, where half of each fraction was also 

phenol/chloroform extracted and ethanol precipitated, then visualized on an 

agarose gel by fluorescent staining for nucleic acid. (B) Chromatin capture assay 

with Sir2p/4p+Sir3p where the DNA template either is not (left) or is (right) 

covalently biotinylated, in addition to the biotinylated H2A in the chromatin 

molecule. 
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throughout the reaction, but a DNA molecule only leaves the bead-bound fraction 

once all biotinylated H2A molecules on it have left.  

To test this model, the chromatin capture assay was repeated with 

different chromatin substrates. Linear pUC19 DNA and biotinylated linear pUC19 

generated by PCR were reconstituted with octamers as before. Notably, more Sir 

protein is captured in the bead-bound fraction when the DNA is biotinylated 

(Figure 8B, right set of lanes). While Sir protein is still seen in the unbound 

supernatant fraction, no appreciable histone H3 eviction is seen in the reactions 

with biotinylated DNA. These findings argue against whole octamer eviction, and 

suggest that Sir proteins promote the H2A/H2B dimer eviction activity of 

SWI/SNF complex (Vicent et al., 2004; Yang et al., 2007). 

Sir nucleosomes might stimulate SWI/SNF’s dimer eviction activity by 

tightly binding to SWI/SNF complex and increasing the time wherein SWI/SNF is 

translocating DNA into a nucleosome. Processive SWI/SNF translocation on the 

linear chromatin substrates used here might then result in translocation of 

chromatin off of the end of the DNA (Dechassa et al., 2010). To test this model, 

identical biotinylated chromatin reconstitutions were made on either linearized or 

supercoiled pUC19 DNA, bound to Sir proteins, reacted with SWI/SNF complex 

and captured on streptavidin beads. Both linearized and supercoiled chromatin 

templates were competent substrates for this reaction (Figure 19), demonstrating 

that SWI/SNF removes histones and Sir proteins from topologically continuous 

DNA. 
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Figure 19: Sir disruption activity does not require DNA ends. Chromatin 

capture assay with Sir2p/4p+Sir3p where the DNA template either is linearized 

plasmid (left) or supercoiled plasmid (right). 
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Sir2p and Sir4p are required for Sir and histone eviction by SWI/SNF 

Next, we sought to characterize how the Sir proteins contribute to this 

reaction. First, we hypothesized that a critical amount of Sir proteins was 

required in order for the reaction to occur. By titrating increasing amounts of Sir 

proteins into the chromatin capture assay, we found that low concentrations of 

Sir proteins are unable to induce this reaction. Strikingly, increasing the amount 

of Sir proteins present, from one Sir2p/4p+Sir3p per six nucleosomes up to one 

per three nucleosomes, sharply stimulates the eviction reaction (Figure 20A). 

This apparently cooperative stimulation implies that the relevant substrate for this 

reaction is a higher-order superstructure of consecutive Sir-bound nucleosomes. 

We postulated that, if heterochromatin superstructure was a prerequisite 

to stimulate this SWI/SNF eviction activity, then disrupting heterochromatin 

superstructure should prevent the activity (Ling et al., 1996). To test this 

hypothesis, we constructed biotinylated chromatin arrays as before, with 

octamers that either contained or lacked the N-terminal tail of histone H4. This 

histone tail is absolutely required for heterochromatic silencing in vivo. 

Surprisingly, Sir proteins bind well to nucleosomal arrays lacking the H4 tail, 

however no Sir or histone eviction activity is observed in the absence of the H4 

tail (Figure 20B). To determine which of the Sir proteins were required for this 

evicrion reaction to happen, the chromatin capture assay was repeated in the 

presence and absence of Sir3p and Sir2/4p. Sir3p is dispensible for this 

SWI/SNF-catalyzed reaction, but Sir2p/4p is absolutely required (Figure 20C). 
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Figure 20: Sir chromatin requirements for SWI/SNF disruption. (A) 

Chromatin capture where increasing amounts (0, 1, 2, 4 molecules of 

Sir2p/4p+Sir3p per 12-nucleosome chromatin molecule) of Sir proteins were 

bound to chromatin, reacted with a fixed concentration of SWI/SNF complex, 

then captured on beads. (B) Chromatin capture assay with Sir2p/4p+Sir3p where 

the nucleosomes contain H4 that either has (left) or lacks (right) its N-terminal 

tail. (C) Chromatin capture assay with the indicated presence ‘+’ or absence ‘-’ of 

the indicated proteins. 
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Our prior work with SWI/SNF and Sir3p identified novel physical 

interactions between Sir3p and Swi2p that were required for SWI/SNF-catalyzed 

Sir3p eviction. Given this new reaction’s requirement for Sir2p/4p, we 

hypothesized that physical interactions also exist between Sir2p/4p and Swi2p. 

To test this hypothesis, regions of Swi2p (Figure 21A top panel) were 

recombinantly expressed as GST-fusion proteins, then assayed for their ability to 

interact with purified Sir2p/4p complex. First, we found that the HSA domain 

(aa588-663) of Swi2p could interact with Sir2p/4p (Figure 21A middle panel). 

Notably, the 10-amino acid deletion “Δ10,” which ablates interaction of the Swi2p 

HSA domain with the Sir3p AAA+ domain, has no effect on binding Sir2p/Sir4p 

(Figure 21A bottom panel). Second, the N-terminal ATPase lobe (aa836-924) of 

Swi2p was able to interact with Sir2p/4p (Figure 21A top panel, Figure 21B). An 

additional interaction was detected between Sir2p/4p and the C-terminal 

bromodomain (aa1321-1703) of Swi2p. 

 

Discussion 

 

 Sir heterochromatin that bears all three necessary Sir proteins presents a 

significant barrier to metabolic processes, such as transcription or DNA repair, 

that must access heterochromatic DNA (Johnson et al., 2009; Sinha et al., 2009). 

Here, we discover and characterize a novel heterochromatin disruption activity 

present in the chromatin remodeling enzyme SWI/SNF. Unlike our prior work with  
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Figure 21. Regions of Swi2p interact with Sir2p/4p. (A) Top: schematic of the 

Swi2p protein regions used as GST-fusions below. Middle: equal mass of each 

Swi2p region’s GST fusion was assayed for ability to pull down Sir2p/4p onto 

glutathione beads by incubation, coprecipitation, followed by SDS-PAGE and 

western analysis to detect Sir2p/4p. Bottom: as middle, but with various regions 

of the Swi2p HSA domain. (B) As above, but assaying GST-fusion fragments of 

the Swi2p ATPase domain for interaction with Sir2p/4p.  
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Swi2p and Sir3p, we find this disruption activity displaces both Sir proteins and 

histones from chromatin. It is also contingent upon the presence of ATP and 

holo-SWI/SNF complex, and is activated on chromatin bound by Sir2p and Sir4p.  

Substrate requirements for this heterochromatin disruption also include 

the H4 N-terminal tail, which is required for silencing in vivo (Ling et al., 1996), 

and a cooperative sensitivity to the concentration of Sir proteins on the substrate. 

Surprisingly, the Sir proteins bind very well even to nucleosomes lacking the H4 

tail. This result, of Sir binding well to a substrate that is ultimately unable to 

silence, resembles what is seen at subtelomeric heterochromatin. There, H3K79-

methylated nucleosomes bind to Sir proteins, and Sir proteins ChIP at these loci, 

but the chromatin remains actively transcribed both in vivo and in vitro (Kitada et 

al., 2012; Xue et al., 2015). These data are all consistent with Sir proteins being 

competent to bind nucleosomes in more than one manner, where not all of the 

potential binding modes can establish a silent structure. For example, Sir2p/4p 

complex can bind to acetylmimic H4K16Q nucleosomes (Oppikofer et al., 2011), 

but Sir3p cannot (Buchberger et al., 2008). However, Sir3p might still associate 

with the H4K16Q chromatin through its interactions with Sir2p/4p, although not in 

a manner that is compatible with transcriptional silencing. Taken together, these 

substrate requirements mimic what SWI/SNF might encounter at properly 

silenced Sir-regulated loci in vivo. 

 One model for the SWI/SNF heterochromatin disruption activity that is 

consistent with our data (figure 18A) begins when SWI/SNF interacts with a Sir-
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bound nucleosome. SWI/SNF complex forms multiple interactions with the Sir 

proteins and with the nucleosome. Following ATP hydrolysis and DNA 

translocation, SWI/SNF complex evicts Sir3p and Sir2p from chromatin. Then, 

after further DNA translocation, the nucleosome is sufficiently destabilized for 

Sir4p and the H2A/H2B dimer to be evicted by SWI/SNF (Figure 22).  

An alternative model that circumvents a two-step eviction mechanism is 

the simultaneous eviction of all three Sir proteins and the H2A/H2B dimer, 

followed by rebinding of Sir4p to DNA via its N-terminal DNA binding domain 

(Kueng et al., 2012). At some rate, Sir3p and Sir2p may rebind to Sir4 as well. If 

Sir4p or Sir3p molecules on separate arrays dimerize (Chang et al., 2003), then 

arrays whose biotinylated histone dimers had been evicted by SWI/SNF would 

still be captured on the streptavidin beads by bridging with arrays that retain 

biotinylated histone dimers. Such array-array bridging explains the delayed 

apparent histone H3 eviction. Furthermore, this would also provide an 

explanation for the inability of the reaction products in Figure 16B to enter the 

gel, which is notable because Sir-nucleosome complexes on their own enter the 

gel. SWI/SNF binding alone is unlikely to explain this phenomenon, since 

SWI/SNF is present at a fivefold lower concentration than Sir nucleosomes in 

those reactions.  

Association of Sir2p/4p with nucleosomes regulates how SWI/SNF 

remodels nucleosomes, as seen in the chromatin mobility shift in lane 4 of Figure 

16C. This shift most likely represents altered position of the nucleosome along  
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Figure 22: Model for Sir chromatin disruption by SWI/SNF. See text for 

description. ATP hydrolysis and DNA translocation are indicated by the 12-

pointed star.  
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DNA, which on the core mononucleosomes used here would mean the 

nucleosome is partially translocated off of the DNA fragment. Alternatively, this 

remodeled product might migrate faster in the gel because it lacks one histone 

dimer, and thereby has a larger net negative charge.  

Many chromatin remodeling reactions are regulated by cues hidden in the 

chromatin substrate (Clapier and Cairns, 2012; Watanabe et al., 2013; Swygert 

and Peterson, 2014; Hwang et al., 2014), however, this would be the first 

example of a chromatin-bound nonhistone protein acting as such a reaction-

instructing substrate cue. There are three models that can explain how Sir2p/4p 

direct histone dimer eviction by SWI/SNF. First, while SWI/SNF has been shown 

in some cases to evict dimers from the nucleosome it is remodeling (Vicent et al., 

2004; Yang et al., 2007), other data has shown that SWI/SNF has the ability to 

disrupt and evict histones from neighboring nucleosomes (Dechassa et al., 

2010). Perhaps neighboring nucleosomes that are held together in the silencing 

structure of Sir proteins represent a more stable barrier than free nucleosomes. 

When SWI/SNF binds to these Sir proteins and remodels the underlying 

chromatin, more destabilization could build up than would occur with free 

nucleosomes, resulting in the energy necessary to displace multiple histones and 

Sir proteins simultaneously. As a second model, since Sir2p/4p interacts with 

regions on Swi2p that are known to regulate SWI/SNF activity (Figure 21) (Smith 

et al., 2003; Szerlong et al., 2008), perhaps Sir2p/4p directs the outcome of the 
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remodeling reaction toward dimer eviction. Finally, Sir2p/4p might act as a 

chaperone to stabilize histone dimers away from the nucleosome. 

 Another interesting result from this Sir disruption reaction is the state of 

the remodeled heterochromatin. First, Sir3p and Sir2p are evicted from 

chromatin, and Sir2p appears to be separated from Sir4p as well. Since Sir4p 

has been shown to stimulate Sir2p’s deacetylase activity (Hsu et al., 2013), the 

resulting Sir2p would be less catalytically active, and also would no longer be 

tethered to loci by Sir4p’s interactions. Second, Sir4p and H2A/H2B dimers are 

also evicted from chromatin. As a result, the underlying chromatin would be 

comprised of hexamers and/or tetramers. The DNA and proteins within 

incomplete nucleosome structures are more accessible than those within 

octameric chromatin. These two conditions in the remodeled product would 

presumably inhibit immediate full repressive heterochromatin formation, 

increasing the dynamic accessibility of the underlying DNA to cellular processes. 

 

Materials and Methods 

 

Protein purification 

 Proteins for the experiments in this chapter, including Sir2p-HA/Sir4p-TAP 

and Minimal Swi2p-TAP, were all purified, modified, and assembled as described 

in Chapter II of this thesis. Tailless Xenopus H4 octamer was a kind gift of Dr. 
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Nicholas Adkins (University of Massachusetts Medical School). GST fusion 

protein pulldown was performed as described in Chapter II of this thesis. 

 

DNA generation 

DNA substrates were generated as described in Chapter II of this thesis. 

Mononucleosome and dinucleosome template DNA were generated by NEB Taq 

PCR (Chapter II of this thesis) using the plasmid 601b-30-603 (see Appendix 2, 

gift from Dr. Blaine Bartholomew, University of Texas MD Anderson Cancer 

Center) and the primers listed in Appendix 1. Radiolabeled mononucleosome 

was generated by digesting mononucleosome PCR product with EcoRI followed 

by Klenow end fill-in (Chapter II of this thesis). Linear pUC19 plasmid templates 

with or without biotinylation were generated by NEB Phusion PCR (Chapter II of 

this thesis) using linearized pUC19 plasmid (NEB #N3041S) and the primers 

listed in Appendix 1.  

 

Sir chromatin gel shift assay 

 All native PAGE minigels were poured in 0.5XTBE, 4% 37.5:1 

acrylamide:bis, and run in 0.5XTBE at 120V for 30 minutes. Samples were all 

loaded in 5% v/v glycerol (final). 

Equimolar purified Sir2p/Sir4p and purified Sir3p were preincubated in 

buffer ‘TTF’ (two three four;’ 25mM Tris pH=7.4, 50mM NaCl, 1.75mM MgCl2, 

1mM DTT, 0.05% TWEEN-20) for 10 minutes at 22°C. Then, equal volumes of 
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Sir2p/Sir4p in TTF buffer and chromatin in TTF buffer (stoichiometry as given in 

Figure 16A) were mixed and incubated for 10 minutes at 22°C as 10µl reactions. 

Where appropriate, Sir chromatin in TTF buffer was subsequently mixed 

four parts to one with purified chromatin remodeling enzyme (buffer TTF, ±25nM 

SWI/SNF, ±5mM MgATP) at final concentrations of 5nM enzyme, 1mM MgATP, 

and 30nM nucleosome. Reaction proceeded for 10 minutes at 22°C. For figure 

1C, prior to gel loading, reactions were stopped by supplementing 1ug of 

supercoiled competitor plasmid DNA and 50mM EDTA, and incubating for 10 

minutes at 22°C prior to loading. 

 

Sir chromatin capture assay 

 Biotinylated arrays were constructed as described (Swygert et al., 2014). 

Unless otherwise noted, 208 5S-12 DNA templates were used for reconstitutions. 

Sir nucleosome binding and remodeling reaction proceeded exactly as for the 

native gel shift experiments, except at final concentrations of 30nM nucleosome, 

15nM Sir proteins (unless experimentally varied), and a 0/1/2/4nM gradient of 

chromatin remodeling enzyme (2nM/4nM enzyme for two-point gradient, 2nM 

enzyme if no gradient is varied). Following remodeling, arrays were captured and 

samples were subjected to SDS-PAGE and western blotting (as performed in 

Chapter II of this thesis). 
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Chapter IV: Conclusions 

 

The context of this research 

 The proper function and preservation of the eukaryotic genome require 

that the genome be stored within chromatin. Chromatin fundamentally alters the 

accessibility of DNA sequences to the cellular machineries that carry out the 

transcription, repair and replication of DNA (Papamichos-Chronakis and 

Peterson, 2012; Rando and Winston, 2012; Venkatesh and Workman, 2015). 

While all chromatin shares the common core nucleosome subunit, even simple 

microscopy readily reveals the heterogeneity of nuclear chromatin (Heitz E., 

1928). Cells create this heterogeneity via a plethora of molecular mechanisms 

that modify the chromatin fiber. Histones and DNA are post-translationally 

modified (Bannister and Kouzarides, 2011); histones are translocated along 

DNA, evicted, or exchanged for variant versions (Clapier and Cairns, 2009). The 

resulting variegated chromatin landscape is read by other factors, which bind to 

loci of interest and associate their own activites with those loci (Musselman et al., 

2012). The genomic locations of these molecular mechanisms and chromatin 

landscapes can vary from organism to organism, and even between different 

cells within the same organism (Steffen and Ringrose, 2014). Importantly, these 

diverse aspects of the chromatin fiber serve to regulate the activity and 

modification of genes contained within the underlying DNA (Woodcock and 

Ghosh, 2010). 
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With the development of genome-wide data generation and analysis 

techniques, detailed pictures can be drawn concerning the chromatin state, 

associated proteins, and spatial proximity of gene loci. While some chromatin 

features signify process-relevant information—H3K36 methylation over active 

gene bodies (Carrozza et al., 2005), or DNA damage-induced phosphorylation of 

serine 129 on the H2A C-terminal tail (Downs et al., 2000)—many chromatin 

features speak to the existence of overarching regulatory chromatin 

superstructures. Indeed, Hidden Markov model analysis of chromatin features 

and associated proteins predict that five to six distinct chromatin environments 

exist in vivo (Filion et al., 2010; Rao et al., 2014). These distinct chromatin 

environments correlate with transcriptional and replicative regulation of the 

underlying gene loci (Pope et al., 2014). While these types of chromatin are 

constrained in a linear sense to contiguous domains by boundary factors like 

CTCF, two chromatin domains that share common features and proteins are 

more likely to share spatial proximity with one another than two dissimilar but 

linearly adjacent loci are (Lieberman-Aiden et al., 2009; Rao et al., 2014). This 

proximity potentially reflects these domains’ common association with the various 

self-interacting molecules responsible for creating these domains. 

 These five or six chromatin environments are congruent with prior data if 

they are considered as subclasses of the two main types of chromatin domains 

that had already been extensively characterized: active and open euchromatin, 

and repressive and closed heterochromatin. An additional feature captured as 
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two of these chromatin environments is the existence of both constitutive and 

facultative heterochromatin. Constitutive heterochromatin is present in all cell 

types, whereas facultative heterochromatin may silence gene loci in one cell type 

but not another. Both types of heterochromatin, despite employing different 

molecular machinery, rely upon the themes of heterochromatin establishment 

that were discussed in the introduction to this thesis. First, chromatin modifying 

enzymes are recruited to a nucleation site. Then, iterative binding of proteins that 

read this modification, and their protein-protein interactions that increase the 

range of the modifying enzyme, result in spreading of the heterochromatin 

domain in a DNA sequence-independent manner. These domains spread 

outwards until they encounter boundary factors or activities (Grewal and Jia, 

2007; Hathaway et al., 2012; Grunstein and Gasser, 2013). 

 Heterochromatic loci are transcribed less, undergo recombination less, 

and replicate later during S phase than their euchromatic counterparts. 

Heterochromatin plays key roles in the maintenance of genome stability, during 

organism development and cell differentiation, maintaining cell type identity, and 

restricting the activity of transposable genetic elements. These roles are thought 

to be filled by a repressive superstructure formed by heterochromatin proteins 

bound to chromatin. Key to this repressive superstructure are abundant protein-

protein interactions—between heterochromatin proteins themselves, via 

homodimerization or heterodimerization, as well as between the heterochromatin 

proteins and their optimally modified chromatin substrates. 
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The most well-understood model system for heterochromatin formation 

and regulation is the Sir heterochromatin of S. cerevisiae. Here, the three main 

Sir proteins Sir2p, Sir3p, and Sir4p direct silent chromatin formation at both the 

silent HM loci and at telomeres. Sir4p interacts with proteins at silencer elements, 

and stimulates the Sir2p histone deacetylase to deacetylate histone lysines 

around the silencer locus. Deacetylation of H4K16 creates a high-affinity binding 

site for Sir3p, whose N-terminal BAH domain interacts with a large region on the 

surface of the nucleosome (Armache et al., 2011). Sir3p can also bind to Sir4p, 

and in so doing is thought to increase the range of Sir2p’s catalytic activities. 

Iterative deacetylation and binding thus directs Sir spreading outwards. Sir3p is 

thought to be the primary structural determinant of Sir heterochromatin, as its 

overexpression alone results in the expansion of silent chromatin domains, 

whereas overexpression of Sir4p disrupts silencing (Hecht et al., 1996; Strahl-

Bolsinger et al., 1997; Cockell et al., 1998). 

Despite the heritable stable, repressive nature of heterochromatin, there 

are events that necessitate quick access of trans factors to the underlying DNA. 

At least once per cell cycle, all heterochromatic DNA must be replicated. 

Moreover, genomic lesions that damage the fidelity or stability of heterochromatic 

DNA must be made accessible to the myriad of repair pathways a cell employs if 

they are to be repaired. Such access must be thorough enough to grant access, 

yet transient and dynamic such that the silent chromatin state is not lost. The 

only such means of access discovered thus far are post-translational 
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modifications on heterochromatin proteins that remove them from chromatin in 

response to stresses (Ai et al., 2002; Bolderson et al., 2012). However, unless 

the activity of the corresponding modifying enzyme is spatially or temporally 

restricted, such activity would affect heterochromatin stability globally. 

There is also circumstantial evidence suggesting that ATP-dependent 

chromatin remodeling enzymes are tools that cells use to access 

heterochromatic DNA. These large, multi-subunit enzymes use the power of ATP 

hydrolysis to translocate DNA, reposition nucleosomes along DNA, exchange or 

evict histone dimers, or evict histone octamers from DNA. These enzymes were 

first discovered and studied in the context of transcriptional activation, but 

subsequently have been implicated in regulating many aspects of chromatin 

structure and the majority of a cell’s DNA molecular biology. By nature, these 

enzymes function to regulate chromatin structure in order to change the primary 

effect of chromatin, differential DNA accessibility. These enzymes adapt a 

common DNA translocation mechanism into a variety of application-specific 

outcomes via regulatory domains and subunits that recognize substrate cues or 

chaperone reaction intermediates (Clapier and Cairns, 2009; Narlikar et al., 

2013). 

In particular, the SWI/SNF chromatin remodeling enzyme family has a 

number of ties to heterochromatin regulation. This conserved enzyme complex is 

a potent tumor suppressor in humans (Kadoch et al., 2013), and acts 

biochemically via nucleosome sliding and histone dimer and octamer eviction 
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(Liu et al., 2011). As a member of the transcriptionally activating trithorax group 

of developmental chromatin regulators, SWI/SNF complex represents an 

opposing phenotype to the heterochromatic Polycomb group proteins (Steffen 

and Ringrose, 2014). This opposition is borne out at floral patterning genes in A. 

thaliana, where SWI/SNF is required to inactivate Polycomb-mediated 

transcriptional silencing (Wu et al., 2012; Li et al., 2015). Polycomb group 

proteins and SWI/SNF-B complex cooperate in human cells to silence 

transcription around genomic lesions (Kakarougkas et al., 2014). In S. cerevisiae, 

SWI/SNF has been implicated in nucleotide excision repair at Sir loci (Gong et 

al., 2006), and ectopically tethered SWI/SNF complex is sufficient to act as a 

barrier against Sir heterochromatin spreading (Oki et al., 2004). Finally, earlier 

work implied that SWI/SNF was required for yeast mating type switching, for 

recombination into heterochromatin (Chai et al., 2005; Sinha et al., 2009), and 

not just for transcriptional activation of the HO endonuclease (Stern et al., 1984). 

The most direct evidence for SWI/SNF disrupting the repressive structure 

of heterochromatin is in vitro work that reconstitutes the early steps of 

homologous recombination. In these assays, the recombinase Rad51p was 

sufficient to search through a chromatinized donor plasmid for homology to an 

oligonucleotide, and to form a protein-stabilized joint at the locus (Sinha and 

Peterson, 2008). However, prebinding Sir3p to the chromatin substrate was 

sufficient to block this homology search reaction. SWI/SNF complex was 

uniquely able to revert the Sir3p-stimulated inhibition, and even able to rescue 
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homology search in the presence of all three Sir proteins. Central to this rescue 

appeared to be an ATP-dependent Sir3p eviction activity that was also unique to 

SWI/SNF complex (Sinha et al., 2009). However, no mechanistic details, 

substrate requirements, or in vivo contexts were known for this Sir antagonism. 

 

Insight, speculation, and next steps for this research 

We set out to uncover the mechanism behind the Sir3p eviction activity of 

SWI/SNF complex. Using coprecipitation and far western blotting techniques, we 

succeeded in identifying and characterizing a pair of interactions between Sir3p 

and the core ATPase subunit of SWI/SNF, Swi2p. We found that the extended 

alpha-helical HSA region of Swi2p contacts the C-terminal end of the Sir3p AAA+ 

domain. The interaction regions in these domains are immediately adjacent to 

numerous other protein-protein interaction sites. According to structural data, the 

ten HSA amino acids that are required for Sir3p binding lie immediately between 

the HSA binding sites for the two regulatory Arp proteins (Schubert et al., 2013). 

Similarly, the region of the AAA+ domain required to bind the HSA sits structurally 

adjacent to Sir3p alpha helices that bind to the Sir4p C-terminus (Ehrentraut et 

al., 2011). Moreover, this region of Sir3p is immediately followed by a wH 

homodimerization domain (Oppikofer et al., 2013a). We speculate that this HSA-

AAA+ interaction could facilitate disruption of protein-protein interactions in both 

SWI/SNF and Sir chromatin. Indeed, in chapter three of this thesis, there is 

notable eviction of Sir3p from chromatin prior to eviction of Sir4p. Destabilizing 
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the Sir3p-Sir3p/Sir4p interactions would weaken heterochromatin superstructure, 

assisting SWI/SNF in remodeling heterochromatin. 

The second interaction between Swi2p and Sir3p occurs between their 

respective functional nucleosome-binding domains: the Swi2p ATPase domain, 

and the Sir3p BAH domain. This interaction is intriguing because both of these 

domains seem to be in the same place on the nucleosome at the same time. The 

BAH domain binds atop the H4 tail two superhelical turns from the nucleosomal 

dyad, right where strong crosslinking is seen between the ATPase domain of 

SWI/SNF and nucleosomal DNA (Dechassa et al., 2008; Armache et al., 2011). 

The first RecA-like fold of the Swi2p ATPase domain is involved in binding Sir3p, 

specifically by a relatively divergent sequence patch at its N-terminal face. 

Swapping these residues with the corresponding residues from the Sth1p 

ATPase is sufficient to break this interaction. 

Interestingly, the same residues from Sth1p that are unable to interact with 

the Sir3p BAH domain are able to interact with the BAH domain of Orc1p, 

whereas the Swi2p sequence interacts with both Orc1p and Sir3p BAH domains. 

This specificity can be traced to a feature of the BAH domains—the poorly 

conserved gating regions that surround the evolutionarily conserved core fold 

(Callebaut et al., 1999; Oliver et al., 2005). By sequentially deleting the gating 

regions of the Sir3p BAH, interaction with Sth1p was restored. Since the 

silencing properties of the Sir3p BAH domain subfunctionalized after its 

divergence from ancestral Orc1p (Hickman and Rusche, 2010; Hickman et al., 
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2011), we postulate that the gating modules of the Sir3p BAH domain and the N-

terminal residues of the Swi2p ATPase domain might have co-evolved to 

generate this specificity. We wondered whether this ‘core fold gating’ model was 

present not only in the Orc1p-like class of BAH domains, but also in the 

PBRM1/Rsc1p/Rsc2p-like class as well. We found that deleting the gating 

regions of the Rsc2p BAH domain also allowed that domain to interact with 

SWI/SNF.  

BAH domains are quite abundant in chromatin-associated proteins. In 

addition to RSC/hSWI/SNF-B remodeling enzymes, mammalian NuRD chromatin 

remodeling enzymes—members of the CHD family—possess BAH domain-

containing MTA1/2/3 subunits. The NuRD complex functions in many aspects of 

genome regulation, and overexpression the MTA1 subunit is found in high-grade 

cancers (Lai and Wade, 2011). The silencing-associated BAHD1 and DNMT1 

proteins also bear BAH domains, as does the trithorax-group histone 

methyltransferase Ash1 (Byrd and Shearn, 2003; Song et al., 2011). Given the 

ubiquity of BAH domains in chromatin-associated proteins, it is possible that 

Swi2p-like ATPase domains have evolved to recognize BAH domains as protein 

motifs that regulate their activities.  

Consistent with this hypothesis, H3 tail peptides are known to bind to 

Rsc2p BAH domains, and this association affects the 3D conformation of the 

whole RSC complex (Leschziner et al., 2007; Skiniotis et al., 2007; Chambers et 

al., 2013). Evidence also exists that BAH domains dictate particular activities of 
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RSC complexes in vivo (Chambers et al., 2012). A model for BAH-ATPase 

regulation, based on the ISWI AutoN regulation model, is consistent with these 

data: when an H3 tail is not present, the Rsc2p BAH domain binds the Sth1p 

ATPase domain and holds RSC in a closed conformation that precludes 

nucleosome remodeling. Inclusion of the H3 tail competes the Rsc2p BAH 

domain away from its ATPase contact, opening up the complex for nucleosome 

binding. This mechanism would allow the BAH domain of Rsc1p/Rsc2p to direct 

activities of the RSC complex as a whole; indirect evidence suggesting this has 

already been published (Chambers et al., 2012). While such modes of regulation 

are speculative at this point, given the central role of BAH-domain containing 

proteins in transcriptional control, development, genome stability and tumor 

suppression, research remains to be done on BAH-directed chromatin regulation. 

Interaction of Sir3p with both the HSA domain and the ATPase domain 

suggests that these Sir3p interactions may directly regulate the Swi2p ATPase. 

Evidence reinforcing this suggestion comes from study of HSA domains and 

chromatin remodeling activity. Both SWI/SNF and Ino80 family remodeling 

enzymes have HSA domains, and both families have actin or actin-related 

proteins that bind to these domains (Szerlong et al., 2008). In the context of the 

Ino80 family, inactivation of the HSA-Arp module confers defects in DNA binding 

(Shen et al., 2003; Watanabe et al., 2015). Disruption of this module in SWI/SNF 

family results in defective ATPase activity, but this defect can be suppressed by 

other mutations in the ATPase subunit, specifically in the region following the 
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HSA domain and at a region within the ATPase domain (Szerlong et al., 2008). 

These data suggest that the HSA module may function in SWI/SNF family 

enzymes to relieve an intrinsic ATPase autoinhibition activity. Sir3p’s contacts in 

the HSA domain and ATPase domain suggest that Sir3p can directly regulate 

SWI/SNF activities, but additional work must be done to investigate this 

hypothesis. 

We also generate a mutant allele of SWI2, swi2-Δ10R, that disrupts both 

of the Swi2p-Sir3p contacts. We validate that this mutant allele is a surprisingly 

faithful separation-of-function mutant using a combination of biochemistry and 

yeast genetics. With the exception of a 50% reduction in Arp7p/Arp9p/Rtt102p 

content following complex purification via a stringent TAP protocol, the SWI/SNF-

Δ10R complex possessed identical subunit composition to wild-type SWI/SNF 

complex. More importantly, the SWI/SNF-Δ10R ATPase properties and 

chromatin remodeling activities were indistinguishable from normal SWI/SNF. 

Importantly, we showed that SWI/SNF-Δ10R complex demonstrated a specific 

defect in evicting Sir3p from chromatin. 

SWI/SNF complex is involved in a myriad of chromatin regulatory 

pathways, and as a result full null mutants of SWI/SNF subunits have complex, 

severe growth phenotypes (Neigeborn and Carlson, 1984; Peterson and 

Herskowitz, 1992). Our separation-of-function mutant is uniquely able to reveal 

which specific processes require SWI/SNF to regulate heterochromatin in vivo. 

Validating this logic, we found no large transcriptional defects in swi2-Δ10R 
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mutants either by RNA-seq or by RT-qPCR. Instead, we found that swi2-Δ10R 

cells grew slower than wild-type cells in the presence of the RNR inhibitor 

hydroxyurea. This defect was not due to defective RNR gene expression in 

response to HU (Sharma and Reese, 2003), but it could be rescued by also 

deleting Sir3p. Together with data showing that Sir proteins ChIP to and 

transcriptionally silence impaired replication forks (Dubarry et al., 2011), we 

hypothesize that SWI/SNF is required to evict Sir proteins in order for replication 

to proceed normally. Future work could illuminate the mechanism by which 

SWI/SNF is brought to these replication forks. 

Another result that we found was, consistent with earlier full swi2Δ data, 

SWI/SNF is required for the proper establishment of subtelomeric 

heterochromatin (Dror and Winston, 2004). Our data shows that eviction of Sir3p 

by SWI/SNF is involved in this process. This involvement could be either direct or 

indirect. If indirect, then SWI/SNF actively evicts Sir3p elsewhere in the 

genome—for example, at ectopic loci or stressed replication forks (Dubarry et al., 

2011; Radman-Livaja et al., 2011). The stability of subtelomeric silencing is 

impaired by the shortage of Sir3p that results when Sir3p stays at these other 

loci. If direct, then SWI/SNF may be required to evict Sir3p in order for the 

underlying chromatin to achieve a state compatible with silencing. For example, 

Sir3p binding may impair enzymes that generate silencing-compatible 

nucleosome spacing. 



146 
 

We began this research with the hypothesis, based on context above, that 

SWI/SNF would be required to disrupt Sir heterochromatin during the 

homologous recombination phase of yeast mating type switching. Consistent with 

prior literature (Neigeborn and Carlson, 1984; Peterson and Herskowitz, 1992; 

Stern et al., 1984), but contradicting one specific study (Chai et al., 2005), we 

found that swi2Δ mutants were very slow growing and had severe galactose 

induction defects, but were ultimately able to switch mating types in systems with 

ectopically expressed HO endonuclease. One explanation for these data is that 

the original, lost snf5Δ isolate used in the aforementioned study (Chai et al., 

2005) possessed suppressor mutations as a byproduct of its haploid PCR 

transformation method of generation. However, this is not the only viable 

explanation. In an earlier figure in the same paper, an independently created 

snf5Δ strain was compared to a swi2Δ strain, and the snf5Δ strain was 

significantly more defective at general euchromatic HR repair than the swi2Δ 

strain. In this explanation, deletion of SNF5 would result in disassembly of 

SWI/SNF complex into subcomplexes, including the minimal 

Swi2p/Arp7p/Arp9p/Rtt102p subcomplex. Minimal SWI/SNF subcomplex might 

function as a dominant negative regulator of HR repair in vivo, and it would not 

form if the SWI2 gene were deleted instead. Further research would need to be 

done to clarify this situation, the simplest test being testing whether additional 

deletion of SWI2 is sufficient to rescue the HR defect of snf5Δ yeast. 
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Properly silenced Sir chromatin in vivo requires all three main Sir proteins, 

Sir2p, Sir3p, and Sir4p. In this work, we also discovered and characterized a 

novel Sir disruption activity that SWI/SNF activates when its substrate bears 

Sir2p and Sir4p. This activity requires the H4 tail and is cooperatively activated 

by Sir proteins, both of which are hallmarks of silent chromatin in vivo as well. 

This disruption activity ejects all three Sir proteins from chromatin, and appears 

to separate Sir2p and Sir3p from Sir4p. Finally, this disruption activity drives 

eviction of histone H2A/H2B dimers from chromatin. 

Surprisingly, the Sir2p/4p heterodimer appears to interact with the same 

regions of Swi2p that Sir3p interacts with—the first RecA lobe of the ATPase 

domain, and the HSA domain. Deletion of the ten HSA amino acids that disrupt 

Sir3p binding has no effect on Sir2p/4p binding to the HSA, which could explain 

why the SWI/SNF-Δ10R mutant complex was still competent for Sir2p/4p-

stimulated Sir disruption. As with Sir3p, there is a possibility that Sir2p/4p binds 

to regulatory regions on Swi2p in order to direct reaction outcome, in this case 

also activating SWI/SNF’s H2A/H2B dimer eviction activity. In contrast to the 

Sir3p eviction activity, the Sir2p/4p-stimulated Sir disruption activity requires 

SWI/SNF subunits outside of the minimal SWI subcomplex. Identifying which 

subunits are responsible for this new eviction activity could create new 

paradigms for chromatin remodeling mechanism. 

The existence of multiple activities for SWI/SNF, and the dependence of 

these activities on the Sir proteins that are present on the substrate, may indicate 
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that different forms of heterochromatin exist in the nucleus (Strahl-Bolsinger et 

al., 1997). It is easy to imagine that Sir3p BAH domain binding to the H4 tail is 

mutually exclusive with Sir2p binding the H4 tail to deacetylate H4K16Ac. Indeed, 

purification of endogenous Sir2p/4p from yeast yields very little Sir3p (Moazed et 

al., 1997; Ghidelli, 2001). Similarly, the influence of H3K79Me on Sir3p BAH 

domain and AAA domain nucleosome binding happens independent of one 

another (Armache et al., 2011; Ehrentraut et al., 2011). Overexpression of Sir3 

reveals preferential binding to some heterochromatin loci over others (Radman-

Livaja et al., 2011). Particular aspects of Sir heterochromatin—silencing 

dependence on Sir1p, Abf1p, or the ORC complex, for example—vary depending 

on whether heterochromatin is telomeric or silencer-nucleated (Grunstein and 

Gasser, 2013; Oppikofer et al., 2013b). Finally, binding of Sir proteins to H4 

tailless nucleosomes here, or to H3K79Me nucleosomes in vivo, results in 

structures that are competent for binding but incompetent for spreading (Kitada 

et al., 2012). Perhaps each of these putatively distinct heterochromatin contexts 

requires different activities from SWI/SNF—just Sir3p eviction, or Sir2p/4p-

dependent histone dimer eviction, or both activities, might be applied depending 

on the Sir context of the locus. 

Sir2p/4p also interacts with the bromodomain of Swi2p. This interaction 

could indicate the presence of acetylated lysines on Sir2p/4p. As an alternative, 

speculative hypothesis, it has been shown that acetylation of Swi2p, near its AT-

hooks DNA binding region, by the Gcn5p histone acetyltransferase stimulates 
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dissociation of SWI/SNF from chromatin (Kim et al., 2010; Dutta et al., 2014). 

Perhaps Sir2p/Sir4p can bind to the region of Swi2p containing this acetylation 

site. Then, in the cases where Swi2p is acetylated, Sir2p can deacetylate Swi2p 

to antagonize SWI/SNF dissociation. The exact mechanism of the Sir disruption 

reaction warrants further investigation, as identifying its mechanism would 

provide keys for identifying other substrate cues that grant chromatin remodeling 

enzymes alternate activities. 

Why would a yeast cell specifically employ SWI/SNF complex to 

dynamically regulate access to Sir heterochromatin? As mentioned above, after 

the yeast whole genome duplication, duplication of Orc1p and Snf2p afforded 

extra copies of these loci that might have subfunctionalized together to regulate 

silent genetic information. Additionally, SWI/SNF complex is present at a much 

lower copy number in the cell than other enzymes like RSC, Ino80 or ISWI 

(Ghaemmaghami et al., 2003), therefore there is less SWI/SNF that could 

aberrantly derepress heterochromatic loci. Moreover, the SWI/SNF family of 

chromatin remodeling enzymes is the only family that is known to evict histone 

dimers and octamers from chromatin (Vicent et al., 2004; Yang et al., 2007; 

Dechassa et al., 2010; Brown et al., 2011), implying that this particular family of 

enzymes might have the unique amount of applicable power necessary to disrupt 

heterochromatin superstructure. Finally, a factor might exist that serves to recruit 

SWI/SNF to heterochromatin when needed. 
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While Sir heterochromatin is not conserved in metazoans, the basic 

themes of heterochromatin as discussed in this thesis are conserved, albeit 

manifested in different proteins. SWI/SNF complex is absolutely conserved in 

metazoans. There is circumstantial evidence that metazoan SWI/SNF acts to 

antagonize facultative heterochromatin during development, as described in the 

first section of this chapter. There is also evidence that SWI/SNF interacts with 

components of constitutive heterochromatin—the human core subunit’s HSA 

domain interacts with the chromoshadow domain of heterochromatin protein 1, a 

protein-protein interaction domain vaguely analogous to the C-terminus of Sir3p 

(Lavigne et al., 2009). Therefore, future research may bear out that the themes of 

dynamically regulating heterochromatin outlined here are evolutionarily 

conserved. 

 

Concluding Remarks 

 Many rules have exceptions for practical purposes. In this work, we have 

characterized mechanisms that sidestep the static repressive rule of 

heterochromatin. We identified physical interactions between heterochromatin 

proteins and ATP-dependent chromatin remodeling enzymes, and investigated 

how these physical interactions guide the remodeling reaction to novel outcomes. 

We disrupted these physical interactions, and used these disruption mutants to 

discern novel roles for the SWI/SNF complex in genome regulation. I am 

optimistic that continuing these veins of research will lead to new conserved 
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paradigms of chromatin regulation. These paradigms will augment our 

appreciation, both in terms of flexibility and power, of the structure that houses 

our genomes. 
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Appendix 1: Oligonucleotide Sequences 
 

Name Description Sequence 

Making 282bp-Mid601 from CP1024 

282-601MID UP  GATCCTCTAGAGTCGGGAGCTC     

282-601MID DOWN  TGACCAAGGAAAGCATGATTCTTCAC 

Making Mononucleosomes and Dinucleosomes from CP1462 

601-603 F Common UP GCCAGTGAATTCCAGGATGT 

601-603 DI R Dinuc DOWN GATCTGCCCAGTTCGCG 

601 MO R Mono DOWN CCGAGAGAATCCCGGTG 

Linear pUC19 DNA PCR, ±Biotinylated End 

pUC19 Biot  Biotinyl UP /5Bio/AACGTCGTGACTGGGAAAAC 

pUC19 F Normal UP AACGTCGTGACTGGGAAAAC 

pUC19 R Common DOWN AGCTTGGCGTAATCATGGTC 

Mating Type Confirmation: 

MAT DOWN   AGTCACATCAAGATCGTTTATGG 

ALPHA UP  GCACGGAATATGGGACTACTTCG 

A UP  ACTCCACTTCAAGTAAGAGTTTG 

HML DOWN  TGGAACACAGAAAAGAGCAGTG 

HMR DOWN  GATTAAGAGAAAATGTCACTACA 

MAT qPCR Primers: 

MAT Down  GGTTAAGATAAGAACAAAGAATGATGCT 

DSB MATa UP  CTTTTAGTTTCAGCTTTCCG 

SI MATα UP  GCAGCACGGAATATGGGACT 

SI MATa UP  GTCGGGTTTTTCTTTTAGTTTCA 

ACT1 F  CTTTCAACGTTCCAGCCTTC 

ACT1 R  CCAGCGTAAATTGGAACGAC 

RNR3 F MR226 TGAACAAAAGGCGGCATCTG 

RNR3 R MR227 TGTTTCCGTTGGAACTGCTG 

Deletion Primers: 

MR030 up for sir3Δ TTAAGAAAGTTGTTTTGTTCTAACAATTGGATTAGCTAAAcggatccccgggttaat

taa 

MR031 down for sir3Δ CATAGGCATATCTATGGCGGAAGTGAAAATGAATGTTGGTGGgcataggccact

agtggatc 

MR045 MX down GTATTCTGGGCCTCCATGTC 

MR078 SIR3 3`UTR R ACATCTAGTCATTTTGGGTATATTATCGCG 

MR079 SIR3 C term F TTGTTGTGGTGCTCGAGGAGCCCAGTGC  

MR011 up for swi2Δ TCAGCTATTCTGTTGTTTCTCTAATCGCGACTTTCTGCTATTTTCACGACTTTC

GATTAATTATCTGCCCGGATCCCCGGGTTAATTAA 

MR012 down for swi2Δ ATAAAAAAAAGAGGGATTAATGTTTGTCTACGTATAAACGAATAAGTACTTA

TATTGCTTTAGGAAGGTAGAATTCGAGCTCGTTTAAAC 

MR074 SWI2 5`UTR F CCTGAGGCGGTAGGACAATA 

MR075 SWI2 ORF R TTGCTAAATTGACGCTGTGG 

Generating GST Fusion Proteins: 

GST-SIR3BAH-UP  CAGATAGGATCCCCATGGCTAAAACATTGAAAG 

GST-SIR3BAH-

DOWN 

 CGGTAGGAATTCCCTGGTACAGATACTCTTTTC 

SIR3U1UP  CAGATAGGATCCCCGTGAGTGGGCAGAAGACA 

SIR3U1DOWN  CGGTAGGAATTCCCAGATGTCTTCTCTGGCTT 

SIR3U2UP  CAGATAGGATCCCCTCACCTACAGATTCTTCG 

SIR3U2 DOWN  CTGGGAATTCCAGGTTTTCC 

GST-SIR3AAA-UP  CAGATAGGATCCCCAACGCTGATATAAATTTAG 

GST-SIR3AAA-  CGGTAGGAATTCCCTCCGTTAATAGCTTCTGAG 
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DOWN 

GST-SIR3MID-UP  CAGATAGGATCCCCCCAAAGATGATTGATTTCGC 

GST-SIR3MID-

DOWN 

 CGGTAGGAATTCCCCAATTCATTCTTGTCCACC 

GST-SIR3END-UP  CAGATAGGATCCCCAAGAACGTAGCCAACGTAAG 

GST-SIR3END-

DOWN 

 CGGTAGGAATTCCCTTCATCCATCGAAAAGGCG 

SWI2N-UP  CAGATAGGATCCCCAACCGCTGCTATTTAAGA 

SWI2N-DOWN  CGGTAGGAATTCCCCGATTCTGTTTGCGTGAT 

SWI2HSA-UP   CAGATAGGATCCCCGGTCCATCTAGTGTACAT 

SWI2HSA-N-DOWN  CGGTAGGAATTCCCATCGTTCGCCTTTAAAGC 

SWI2HSA-C-UP  CAGATAGGATCCCCCATGAATTACTTAAGTTAG 

SWI2HSA-DOWN  CGGTAGGAATTCCCCGAAACCATCCACTGTAA 

SWI2ATP-UP  CAGATAGGATCCCCGCGAAATGGGCTCCTACC 

SWI2ATP-DOWN  CGGTAGGAATTCCCAACTTCATTCTTCTGACC 

SWI2C-UP  CAGATAGGATCCCCTCAGTTGAAGAAGTTATC 

SWI2C-DOWN  CGGTAGGAATTCCCAGACAAGAAATCATCGTC 

SWI2BROMO-UP  CAGATAGGATCCCCAGTGAATTACCTGATATT 

SWI2BROMO-

DOWN 

 CGGTAGGAATTCCCCTATACACTCGCTTCTGT 

HSAC1 UP  CAGATAGGATCCCCGCCAGATTAAAGTCGATG 

HSAC2 UP  CAGATAGGATCCCCAGAAGACAAGATAAAAAG 

HSAC3 UP  CAGATAGGATCCCCCTCATTGCTACGCATACT 

HSAC4 UP  CAGATAGGATCCCCGCTGAAAAAAAGGCAAAAG 

HSAN1 DOWN  CGGTAGGAATTCCCAGCTCTCTTTTGCTCATC 

HSAN2 DOWN  CGGTAGGAATTCCCGAGTCTATGGCCAAACTTC 

HSAN3 DOWN  CGGTAGGAATTCCCTCTATTATATTGATTGATG 

HSAN4 DOWN  CGGTAGGAATTCCCGGCCACTGCCTCAGTCTTC 

SWI2ATP2UP  CAGATAGGATCCCCGTTCTGACTACCTTTGAG 

SWI2ATP3UP  CAGATAGGATCCCCCATGCAGATTATAGATTA 

SWI2ATP4UP  CAGATAGGATCCCCCGTCGTCTTTTTATCGGT 

SWI2ATP5UP  CAGATAGGATCCCCGCTGGTAAATTTGAACTA 

SWI2ATP1DOWN  CGGTAGGAATTCCCCTTGGATAAAAGTGCTCT 

SWI2ATP2DOWN  CGGTAGGAATTCCCACCTGTCAAAATTAATCT 

SWI2ATP3DOWN  CGGTAGGAATTCCCACCGATAAAAAGACGACG 

SWI2ATP4DOWN  CGGTAGGAATTCCCTCTATCTAATAGTTCAAA 

SIR3BAHΔ187DOW
N 

 CGGTAGGAATTCCCAATTGGTACAAACTTTTCCG 

SIR3BAHΔ153DOW
N 

 CGGTAGGAATTCCCTATCTGTCCAACTGCAATG 

SIR3BAHΔ128DOW
N 

 CGGTAGGAATTCCCTACTTCGTTGAAAAATTTATC 

SIR3BAHΔ98DOWN  CGGTAGGAATTCCCTTTGAGTTCAAACCATCTCA 

STH1ATP1UP  CAGATAGGATCCCCTGGACTTTAGAATTTGAA 

STH1ATP1DOWN  CGGTAGGAATTCCCTTTTGATAAAAGAGATTT 

ORC1BAH UP  CAGATAGGATCCCCATGGCAAAAACGTTGAAGG 

ORC1BAH DOWN  CGGTAGGAATTCCCCTTTTGAGGACCTCTTTTG 

RSC2BAH UP  CAGATAAGATCTCCGATGAAGTCATTGTAAATAATATATC 

RSC2BAH DOWN  CGGTAGCAATTGCCGGGGGAAGGATATTTGAAG 

RSC2CT1 DOWN  CGGTAGCAATTGCCAAGAGCATTTGCTGTTG 

Amplification of FLAG-tagged domains: 

SWI2HSAFLAGUP  CAGATACATATGCATGAATTACTTAAGTTAG 

SWI2HSAFLAGDOW  CGGTAGGGATCCTTACTTATCGTCATCGTCTTTATAATCCTTGTCATCGTCATC
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N TTTGTAGTCATCGTTCGCCTTTAAAGCCTG 

BAH-FLAGUP  CAGATACATATGGCTAAAACATTGAAAG 

BAH-FLAGDOWN  CGGTAGGGATCCTTACTTATCGTCATCGTCTTTATAATCCTTGTCATCGTCATC

TTTGTAGTCCCCACTCACTGGTACAGA 

STH1 ATPase lobe 1 amplification: 

STHATP123UP  GATTCGGGTACCTTAAAAGAGTATCAATTACGA 

STHATP123DOWN  CACAGGCACCGGTGTTGGCAAATGGAGTATTAAACC 

Site-directed mutagenesis of SWI2: 

SWI2HSA-10 S  CGATGAATAAATCCGCCAAGAATAAAAGGTTG 

SWI2HSA-10 AS  CAACCTTTTATTCTTGGCGGATTTATTCATCG 

C-terminal TAP tag for CP1414: 

TAP-Xho UP  CAGATACTCGAGCATGGAAAAGAGAAGATGGAAAAAG 

TAP-Xho DOWN  CGGTAGCTCGAGGTTGACTTCCCCGCGGAATTC 

 

Appendix 2: Plasmids 

ID # Backbone Description 

CP126 pGEX-3X Plasmid for IPTG-inducing expression of N-terminally GST-tagged fusion proteins in DE3 E. 

coli 

CP137 YCp50 pGAL-HO; Gal-inducible HO endonuclease expression from YCp50 (GAL10 promoter->HO; 

CEN/ARS, URA3) 

CP337 pRS315 SWI2 in pRS315 (~6300bp Sau3AI-partial piece with ~1kb 5`UTR, ORF, and  ~300bp 3`UTR) 

CP426 pBS SK- 208-12 array; cut out with HhaI to digest backbone 

CP589 pBS SK- 208-11 array; cut out with NotI, HindII, and use HhaI to digest backbone 

CP717 pET xH2A expression 

CP718 pET xH2B expression 

CP719 pET xH3 expression 

CP720 pET xH4 expression 

CP967 pFA6a pAG25; for cerevisiae gene deletion cassette template; NatMX4 cassette 

CP969 pFA6a pAG32; for cerevisiae gene deletion cassette template; HphMX4 cassette 

CP999 pFA6a Plasmid for c-terminally tap-tagging  

CP1024 pGEM-3Z 601 NPS mono plasmid 

CP1109 pET xH2AS113C expression 

CP1163 pDM641 pGal1-HA-Sir2/Leu plasmid derived from pRS315 

CP1164 pDM654 pGal1-TAP-Sir4/Ura plasmid derived from pRS315 

CP1165 pDM1009 pGal1/10-Sir3-FLAG/Leu plasmid derived from pRS425 

CP1210 pMK43 C-terminal AID-tag with KanMX 

CP1211 pMK76 StuI-Linearizable URA3-integrable AtTIR1 

CP1250 pRS410 Yeast CEN/ARS Plasmid; KanMX; Addgene # 11258 

CP1253 pMK43 C-terminal AID-tag with HphMX 

CP1406 pRS410 pRS410 cut KpnI-SalI, SWI2 C-terminus inserted (CP337 KpnI-SalI) 

CP1407 pRS410 CP1406 cut KpnI-AgeI, STH1 ATPase lobe I inserted (aa#468-665; KpnI-SgrAI; 52 divergent 

AAs converted) 

CP1408 pRS410 pRS410 cut NgoMIV-KpnI, SWI2 N-terminus inserted (CP337 NgoMIV-KpnI) 

CP1409 pRS410 CP1408, site-directed mutagenesis HSAΔ10 (aa#613-622 deleted) 

CP1410 pRS410 SWI2 in pRS410 CP1408 cut KpnI-SalI, SWI2 C-terminus inserted (CP337 KpnI-SalI) 

CP1413 pRS410 SWI2 ‘Δ10R’ in pRS410 CP1409 cut KpnI-SalI, STH1-SWI2 chimera ATPase C-term inserted 

(CP1407 KpnI-SalI) 

CP1414 pRS410 CP1407 cut XhoI-BamHI with 4xpA-CTAP inserted (PCR from CP999 with in-frame XhoI 

inserted; XhoI-BglII) 

CP1415 pRS410 SWI2 ‘Δ10R’-TAP in pRS410 CP1414 cut NaeI-AgeI with SWI2 HSA10 N-terminus inserted 
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(CP1413 NaeI-AgeI) 

CP1416 pGEX-3X GST-SWI2 N (aa#1-390) 

CP1417 pGEX-3X GST-SWI2 HSA (aa#361-780) 

CP1418 pGEX-3X GST-SWI2 HSAN (aa#316-663) 

CP1419 pGEX-3X GST-SWI2 HSAC (aa#588-780) 

CP1420 pGEX-3X GST-SWI2 ATP (aa#836-1206) 

CP1421 pGEX-3X GST-SWI2 C (aa#1216-1440) 

CP1422 pGEX-3X GST-SWI2 BROMO (aa#1321-1703) 

CP1423 pGEX-3X GST-SWI2 HSA (aa#588-663) 

CP1424 pGEX-3X GST-SWI2 HSAN1 (aa#588-648) 

CP1425 pGEX-3X GST-SWI2 HSAN2 (aa#588-633) 

CP1426 pGEX-3X GST-SWI2 HSAN3 (aa#588-618) 

CP1427 pGEX-3X GST-SWI2 HSAN4 (aa#588-603) 

CP1428 pGEX-3X GST-SWI2 HSAC1 (aa#603-663) 

CP1429 pGEX-3X GST-SWI2 HSAC2 (aa#618-663) 

CP1430 pGEX-3X GST-SWI2 HSAC3 (aa#633-663) 

CP1431 pGEX-3X GST-SWI2 HSAC4 (aa#648-663) 

CP1432 pGEX-3X GST-SWI2 HSAΔ10 (CP1423 with 613- 622 deleted) 

CP1433 pGEX-3X GST-SWI2 ATP1 (aa#836-885) 

CP1434 pGEX-3X GST-SWI2 ATP2 (aa#869-924) 

CP1435 pGEX-3X GST-SWI2 ATP3 (aa#915-1035) 

CP1436 pGEX-3X GST-SWI2 ATP4 (aa#1028-1094) 

CP1437 pGEX-3X GST-SWI2 ATP5 (aa#1086-1206) 

CP1438 pGEX-3X GST-STH1 ATP1 (aa#539-588) 

CP1439 pGEX-3X GST-SIR3 BAH (aa#1-214) 

CP1440 pGEX-3X GST-SIR3 U1 (aa#214-350) 

CP1441 pGEX-3X GST-SIR3 U2 (aa#300-440) 

CP1442 pGEX-3X GST-SIR3 MID (aa#460-730) 

CP1443 pGEX-3X GST-SIR3 AAA (aa#530-845) 

CP1444 pGEX-3X GST-SIR3 END (aa#790-970) 

CP1445 pGEX-3X GST-SIR3 BAH1 (aa#1-186) 

CP1446 pGEX-3X GST-SIR3 BAH2 (aa#1-152) 

CP1447 pGEX-3X GST-SIR3 BAH3 (aa#1-127) 

CP1448 pGEX-3X GST-SIR3 BAH4 (aa#1-97) 

CP1449 pGEX-3X GST-ORC1 BAH (S. cerevisiae aa#1-214) 

CP1450 pGEX-3X GST-RSC2 BAH (aa#401-557) 

CP1451 pGEX-3X GST-RSC2 BAHCT-1 (aa#401-642) 

CP1452 pET3a SIR3 BAH-FLAG (aa#1-214) 

CP1453 pET3a SWI2 HSA-FLAG (aa#588-663) 

CP1460 pGEX6P-1 GST-ORC1 BAH (H. sapiens aa#1-185) 

CP1461 pGEM-3Z 601b NPS - 6bp linker – 603 NPS - GAL4
P
 

CP1462 pGEM-3Z 601b NPS - 30bp linker – 603 NPS - GAL4
P
 

CP1463 pGEM-3Z 601b NPS - 50bp linker – 603 NPS - GAL4
P
 

CP1464 pGEM-3Z 601b NPS - 70bp linker – 603 NPS - GAL4
P
 

 

Appendix 3: Yeast Strains 

Strain # Source MAT Genotype 

CY57  MATα swi2Δ::His
+
 lys2-801

A
 ade2-101

o
 trp1-Δ1 his3-Δ200 leu2-Δ1 ura3-52 

CY118  MATA  swi2Δ::His
+
 from CY57 background BUT Trp

+
 

CY384  MATA  α tester 
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CY385  MATα A tester 

CY915 JKM179 MATα Δho Δhml::ADE1 Δhmr::ADE1 ade1-100 leu2,3-112 lys5 trp1::hisG ura3-52 

ade3::GAL::HO 

CY924 JKM154 MATA Δho ade1-100 leu2,3-112 lys5 trp1::hisG ura3-52 ade3::GAL::HO 

CY971 W303 MATa  swi2Δ::HIS3 leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 

CY1274 WDHY66

8 

MATA/α ura3-52 trp1 leu2-Δ1 his3-Δ200 pep4Δ::HIS3 prb1-Δ1.6R can1 

CY1496  MATA/α CY1274 with [CP1165] 

CY1497  MATA/α CY1274 with [CP1163 and CP1164] 

CY1503 BY4741 MATA RSC2-TAP 

CY1504 BY4741  MATA ISW2-FLAG 

CY1552 BY4741 MATA SWI2-TAP 

CY1752 W303 MATA/α swi2Δ::HIS3/SWI2 sir3Δ::HphMX/SIR3 

CY1754 L1088 MATA ura3Δ0 leu2Δ0 TEL-VR::URA3 

CY1755 L1089 MATA ura3-52 leu2Δ0 snf2Δ::LEU2 TEL-VR::URA3 

CY1760  MATA/α CY915 and CY924 mated; swi2Δ::NatMX/SWI2 

CY1761  MATα swi2Δ::NatMX segregant from CY1760 with HMLα HMRA 

CY1762  MATα swi2Δ::NatMX segregant from CY1760 with HMLα HMRA 

CY1765  MATA CY924 with URA3::atTIR1 (CP1211 StuI-linearized) 

CY1766  MATA CY1765 with SWI2-AID::HphMX 

CY2041   swi2Δ::HIS3 segregant from CY1752 

CY2332  MATα CY57 with sir3Δ::HphMX [CP1410 (SWI2 in pRS410)]  
CY2333  MATα CY57 with sir3Δ::HphMX [CP1413 (Δ10R in pRS410)] 
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