
MINI REVIEW
published: 07 April 2015

doi: 10.3389/fpls.2015.00210

Edited by:
Dibyendu Talukdar,

University of Calcutta, India

Reviewed by:
Ruediger Hell,

University of Heidelberg, Germany
Stanislaus Francis D’Souza,

BMG Bhabha Atomic Research
Centre, India

*Correspondence:
Sarvajeet S. Gill,

Stress Physiology and Molecular
Biology Lab, Centre for

Biotechnology, Maharshi Dayanand
University, Rohtak 124 001, India

ssgill14@yahoo.co.in

Specialty section:
This article was submitted to Plant
Physiology, a section of the journal

Frontiers in Plant Science

Received: 03 November 2014
Accepted: 16 March 2015

Published: 07 April 2015

Citation:
Anjum NA, Gill R, Kaushik M,

Hasanuzzaman M, Pereira E, Ahmad
I, Tuteja N and Gill SS (2015)

ATP-sulfurylase, sulfur-compounds,
and plant stress tolerance.

Front. Plant Sci. 6:210.
doi: 10.3389/fpls.2015.00210

ATP-sulfurylase, sulfur-compounds,
and plant stress tolerance
Naser A. Anjum1, Ritu Gill2, Manjeri Kaushik2, Mirza Hasanuzzaman3, Eduarda Pereira1,
Iqbal Ahmad1,4, Narendra Tuteja5 and Sarvajeet S. Gill2*

1 Centre for Environmental and Marine Studies & Department of Chemistry, University of Aveiro, Aveiro, Portugal, 2 Stress
Physiology and Molecular Biology Lab, Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India, 3 Department
of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh, 4 Centre for Environmental
and Marine Studies & Department of Biology, University of Aveiro, Aveiro, Portugal, 5 Plant Molecular Biology Group,
International Centre for Genetic Engineering and Biotechnology, New Delhi, India

Sulfur (S) stands fourth in the list of major plant nutrients after N, P, and K. Sulfate
(SO 2

4
−), a form of soil-S taken up by plant roots is metabolically inert. As the

first committed step of S-assimilation, ATP-sulfurylase (ATP-S) catalyzes SO 2
4

−-
activation and yields activated high-energy compound adenosine-5′-phosphosulfate
that is reduced to sulfide (S2−) and incorporated into cysteine (Cys). In turn, Cys acts as
a precursor or donor of reduced S for a range of S-compounds such as methionine
(Met), glutathione (GSH), homo-GSH (h-GSH), and phytochelatins (PCs). Among S-
compounds, GSH, h-GSH, and PCs are known for their involvement in plant tolerance to
varied abiotic stresses, Cys is a major component of GSH, h-GSH, and PCs; whereas,
several key stress-metabolites such as ethylene, are controlled by Met through its
first metabolite S-adenosylmethionine. With the major aim of briefly highlighting S-
compound-mediated role of ATP-S in plant stress tolerance, this paper: (a) overviews
ATP-S structure/chemistry and occurrence, (b) appraises recent literature available on
ATP-S roles and regulations, and underlying mechanisms in plant abiotic and biotic
stress tolerance, (c) summarizes ATP-S-intrinsic regulation by major S-compounds, and
(d) highlights major open-questions in the present context. Future research in the current
direction can be devised based on the discussion outcomes.

Keywords: ATP-sulfurylase, sulfur assimilation, organic S-compounds, stress tolerance

Introduction

Abiotic and biotic stresses (in isolation and/or combination) are known to cause severe decline in
crop productivity globally as a result of their impact on plant growth, development, andmetabolism
(Suzuki et al., 2014). Maintenance of plant-mineral nutrients status has been extensively evi-
denced to significantly improve the crop-productivity and -resistance to various stresses (Anjum
and Lopez-Lauri, 2011; Gill and Tuteja, 2011). Sulfur (S) stands fourth in the list of major plant-
nutrients after N, P, and K, and its importance is being increasingly emphasized in agriculture (Yi
et al., 2010) and plant stress tolerance (Gill and Tuteja, 2011; Nazar et al., 2011). Nevertheless, S-
deficiency in agricultural-soils is becoming widespread globally (Anjum et al., 2012a). Thus far,
adopted approaches such as increased S-fertilization, -remobilization, and -uptake/accumulation
may not be sufficient for S-deficiency-alleviation. Nevertheless, plant harbored-S is metabolically
inert and is of no significance if it is not efficiently assimilated into physiologically/biochemically
exploitable organic forms that is performed by the process of S-assimilation.
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As the first committed step of primary S-assimilation in
plants, ATP-sulfurylase (ATP-S; Adenylsulfurylase/ATP:sulfate
adenylyltransferase; E.C. 2.7.7.4) catalyzes the activation of
sulfate (SO4

2−) and yields adenosine-5′-phosphosulfate (APS)
that is reduced to sulfide (S2−) and incorporated into cys-
teine (Cys). Having thiol (S2−)-residue and due to its strong
nucleophilic-characteristics, Cys performs important metabolic-
functions and actively mediates redox-reactions (Hell and Wirtz,
2011). Notably, as a major component of predominant thiol-
peptide found in plants and as a direct/indirect precursor, Cys
is involved in the synthesis of S-containing compounds includ-
ing glutathione (GSH, γ-glutamyl-cysteinyl-glycine) and its ana-
log homo-GSH (h-GSH, γ-glutamyl-cysteinyl-β-Ala), reported in
several genera within Fabaceae; phytochelatins (PCs; γ-glutamyl-
cysteinyl)nx; n = 2−11; x represents (Gly, Ser, β-Ala, Glu, Gln,
or no residue), and metallothioneins (MTs), Cys-rich gene-
encoded low-molecular-weight peptides. Previous S-compounds
are known for their involvement in plant-tolerance to varied
abiotic–biotic stresses, and metal/metalloid-homeostasis as well
(Rausch and Wachter, 2005; Verbruggen et al., 2009; Anjum
et al., 2010, 2012b, 2014a,b; Na and Salt, 2011; Seth et al., 2012;
Gill et al., 2013). Additionally, in secondary SO4

2−-assimilation,
where instead of entering the reductive S-assimilation pathway
after ATP-S-mediated activation, APS is phosphorylated in a
APS kinase-catalyzed reaction to produce 3′-phosphoadenosine
5′-phosphosulfate (PAPS). PAPS is involved in the produc-
tion of other S-containing methionine-derived (aliphatic) or
tryptophan-derived (indolic) secondary metabolites such as glu-
cosinolates (GSs). GSs (particularly indolic type) are reported
to protect plants mainly against several biotic stress-factors
such as herbivory and pathogenesis, and are required for plant-
immunity (Frerigmann and Gigolashvili, 2014). Therefore, S-
assimilation pathway-enzymes including ATP-S are the major
target of current plant-nutrition research to achieve maximum
benefits including improved productivity of crops and their resis-
tance to multiple stresses with less S-input (Herrmann et al.,
2014).

Thus, to briefly highlight S-compound-mediated role of ATP-
S in plant stress tolerance, ATP-S structure/chemistry and occur-
rence are overviewed, recent literature available on ATP-S roles,
regulations and underlying major mechanisms in plant abiotic
and biotic stress tolerance is appraised, ATP-S intrinsic regu-
lation by major S-compounds is summarized, and important
open-questions in the topic considered are highlighted herein.

ATP-S: Structure/Chemistry and
Occurrence

Described as monomers or homo-oligomeric complexes (which
do not require GTPase for activation), plant-ATP-S has been
reported to be a homotetramer of 52–54 kDa polypeptides, or
a mono-functional, non-allosteric homodimer (100 kDa, formed
by two ∼48 kDa monomers; Phartiyal et al., 2006; Ravilious
et al., 2013; Bohrer et al., 2014; Koprivova and Kopriva, 2014;
Prioretti et al., 2014). Photosynthetic organisms can exhibit a
variable number of ATP-S isoforms (Koprivova and Kopriva,

2014; Prioretti et al., 2014). X-ray crystal structure of Glycine
max ATP-S isoform 1 in complex with APS revealed the exhi-
bition of several highly conserved substrate-binding motifs in
the active site and a distinct dimerization interface compared
with other ATP-S (Herrmann et al., 2014). Enzymes involved
in S-assimilation are not equally expressed in all plant cell-
types/ organelles. In particular, ATP-S, APS kinase, serine acetyl-
transferase, and O-acetylserine-(thiol)-lyase are present in both
plastids and cytosol but APS reductase and sulfite reductase
are localized only in plastids for catalyzing the reduction steps
(Lopez-Martin et al., 2008; Bohrer et al., 2014; Koprivova and
Kopriva, 2014). Occurrence of SO4

2−-activation in cytosol and
plastids also supports the presence of ATP-S in these loca-
tions (Koprivova and Kopriva, 2014). Seed-plants possess mul-
tiple ATP-S-isoforms. Four ATP-S genes (ATPS1, -2, -3, and -4)
reported inArabidopsis thaliana haveN′-terminal extensions typ-
ical of plastid-transit-peptides, and are located on different chro-
mosomes; however, one of them can also be cytosolic (Rotte and
Leustek, 2000; Prioretti et al., 2014). Genetic-identity of cytosolic-
ATP-S has been verified recently (Bohrer et al., 2015). A. thaliana
ATPS2 was evidenced to be dually encode plastidic and cytosolic
forms, where translational-initiation at AUGMet1 and AUGMet52

or AUGMet58 produced ATPS2 in plastid and cytosol, respec-
tively (Bohrer et al., 2015). Oryza sativa has two ATP-S genes
(ATPS1-2; Kopriva et al., 2007). Plastidic and/or mitochondrial
localization of ATP-S genes (Glyma10g38760, Glyma20g28980,
Glyma13g06940; Glyma19g05020) was reported in G. max (Yi
et al., 2010).

ATP-S: Roles and Regulations in Plant
Abiotic Stress Tolerance

ATP-sulfurylase can be involved in plant-tolerance to several
abiotic stresses via different S-compounds. GSH, a non-protein
S-containing tripeptide acts as a storage and transport form of
reduced-S. Significant induction of GSH-based defense-system,
its role in reactive oxygen species (ROS)-scavenging, and in the
maintenance of reduced cellular-redox environment have been
extensively evidenced in plants under various abiotic stresses
including metal/metalloids (Anjum et al., 2010, 2012b, 2014a,b;
Gill and Tuteja, 2010; Noctor et al., 2012; Talukdar, 2012; Gill
et al., 2013; Talukdar and Talukdar, 2014) and salinity (Ruiz
and Blumwald, 2002; Kocsy et al., 2004; Gill and Tuteja, 2010;
Table 1). Cys-rich metal-chelating proteins – MTs and PCs
maintain homeostasis of varied metals/metalloids and mitigate
major detrimental effects of their elevated concentrations (Na
and Salt, 2011; Anjum et al., 2014a). h-GSH is an effective
antioxidant in Fabaceae plants, where it is argued to scavenge
ROS, act as PCs-precursor, and found to be involved in xeno-
biotic defenses via GSH-sulfotransferases (Frendo et al., 2013).
GSs provide plant-tolerance to varied abiotic stresses including
drought/salinity, metals/metalloids, and nutritional-deficiencies
(Martínez-Ballesta et al., 2013).

Varied abiotic stresses differentially regulate ATP-S activ-
ity/expression in plants (Table 1). Among metals/metalloids,
literature is full on Cd-accrued enhanced ATP-S activity and
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TABLE 1 | Summary of representative studies on ATP-S activity or
expression modulation/regulation in abiotic and biotic stressed plants.

Plant species Response Reference

Abiotic stresses

Sulfate starvation

Arabidopsis thaliana – Liang et al. (2010)

A. thaliana + Lappartient et al. (1999)

Brassica napus + Lappartient and
Touraine (1997)

Nicotiana tabacum cultured
cells

+ Reuveny et al. (1980)

Zea mays + Hopkins et al. (2004)

Z. mays + Schiavon et al. (2007)

Cadmium

A. thaliana + Harada et al. (2002),
Weber et al. (2006)

A. thaliana + Bashir et al. (2013)

B. juncea + Lee and Leustek (1999)

B. juncea + Masood et al. (2012)

B. juncea + Asgher et al. (2014)

B. juncea + Heiss et al. (1999)

B. juncea + Khan et al. (2009a)

Lepidium sativum + Gill et al. (2012)

Sedum alfredii Hance + Guo et al. (2009)

Thlaspi caerulescens + van de Mortel et al.
(2008)

Triticum aestivum + Khan et al. (2007)

Salinity

B. juncea + Nazar et al. (2011)

B. juncea – Khan et al. (2009b)

B. napus + Ruiz and Blumwald
(2002)

Light (irradiation)

A. thaliana – Huseby et al. (2013)

Avena sativa, Hordeum
vulgare
and Z. Mays

+ Passera et al. (1989)

H2O2

B. napus – Lappartient and
Touraine (1997)

Glutathione

B. napus – Lappartient and
Touraine (1996)

Lemna gibba and Salvinia
minima

+ Leao et al. (2014)

Chilling/Cold stress

Glycine max + Phartiyal et al. (2006)

Z. mays + Nussbaum et al. (1988),
Brunner et al. (1995)

Biotic Stress

Infection by Phytopthora infestans and/or Botrytis cinerea

A. thaliana and B. juncea + Matthewman (2010)

+, – signs indicate increase or decrease, respectively.

increased pools of Cys and GSH (Guo et al., 2009; Khan et al.,
2009a; Masood et al., 2012; Bashir et al., 2013; Asgher et al.,
2014). Up-regulation of ATP-S transcripts was reported in Cd-
exposed Brassica juncea (Heiss et al., 1999) and A. thaliana

(Harada et al., 2002). Enhanced ATP-S activity was evidenced
in several Cd/Zn-hyperaccumulators including Sedum alfredii
(Guo et al., 2009), A. halleri (Weber et al., 2006), and Thlaspi
caerulescens (van de Mortel et al., 2008). Lower ATP-S activity-
exhibiting Brassica juncea cv. (SS2) was reported to be salt-
sensitive (Khan et al., 2009b). Chilling-stress can also mediate
modulation of levels and also intercellular-distribution of ATP-
S mRNAs (Kopriva et al., 2001). Reports also indicate the ATP-S
activity/expression-regulation by light-regimes. Forty four hours
of dark was reported to down-regulate ATPS1–ATPS3; whereas,
ATPS4 was not affected (Huseby et al., 2013). However, after 3-h
of re-illumination, ATPS1, ATPS3, and ATPS4 were induced by
light but only ATPS2 reached the levels in control plants (Huseby
et al., 2013).

Unknown for its essential-function in higher plants, Se, taken-
up as selenate (SeO2

−4)/or selenite (SeO2
−3) was reported to

enhance plant growth and antioxidant activity (Pilon-Smits and
Quinn, 2010). ATP-S is also involved in Se-reductive-assimilation
pathway and activates SeO2

−4 to organic-metabolite, seleno-Cys
(El Kassis et al., 2007; Pilon-Smits and Quinn, 2010). Recently,
ability to hyperaccumulate and hypertolerate Se in Stanleya pin-
nata (Se-hyperaccumulator) was considered due to its potential
to exhibit higher transcript levels of APS1, APS2, and APS4
(vs. Brassica juncea, a non-Se-hyperaccumulator; Schiavon et al.,
2015). Additionally, under Se-exposure and S-deficiency, S. pin-
nata hyperaccumulates and tolerates Se due to its ability to con-
vert SeO2

−4 to non-toxic organic-seleno-compounds by down-
regulating APS1, APS2, and APS4. However, under S-sufficient
and Se-exposure, adoption of different types of regulatory mech-
anisms and subcellular-localization were revealed in S. pinnata
and Brassica juncea, where Se up-regulated APS1 and APS4 but
was not able to affect APS2 in S. pinnata (Schiavon et al., 2015).
Earlier, compared to Camellia sinensis grown on Se un-enriched
soil, young (or mature) leaves and roots were reported to exhibit a
lower and higherAPS1 andAPS2 expression levels in Se-enriched
soil-grown C. sinensis (Tao et al., 2012).

Extensive reports are available on S-depletion-mediated reg-
ulation of ATP-S activity/expression. ATP-S isoforms can be
differentially expressed by S-depletion. AtAPS3 increased in S-
deprived A. thaliana (Liang et al., 2010; Kawashima et al., 2011).
However, response of AtAPS2 (a putative cytosolic-isoform)
to S-depletion is inconsistent between different studies (Logan
et al., 1996; Takahashi et al., 1997; Kawashima et al., 2011).
Plant-ontogeny/developmental-stages can also modulate ATP-
S-activity/expression under S-depleted conditions (Rotte and
Leustek, 2000; Honsel et al., 2012). Confirmed by ATP-S protein-
immunoblotting, ATP-S-activity exhibited a linear, threefold
decline between 14 and 61 days after germination in S-depleted
A. thaliana (Rotte and Leustek, 2000). Compared to young
leaves, higher transcript-levels of PtaATPS3/4 were reported in
Populus tremula × Populus alba after 21 days of S-depletion
(Honsel et al., 2012). Contrarily, S-depletion did not lead any
change in PtaATPS1/2-expression in young leaves; whereas, this
ATP-S isoform increasingly expressed after 9 days in mature
leaves (Honsel et al., 2012). In A. thaliana, both S-deficiency
(−S/−Cd) and Cd (+S/+Cd) regulated APT-S activity (Bashir
et al., 2013).
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ATP-S gene-regulation has been discussed in different SO4
2−-

starved plants. APS1, APS3, and APS4 genes can be targeted
to regulate root-shoot-SO4

2−-accumulation by miR395 (small
conserved non-coding RNAs with 20–24 nucleotides, specific
sizes, and dedicated functions; Liang and Yu, 2010; Liang et al.,
2010). In APS4-RNAi transgenic A. thaliana, loss-of-function of
APS1 or/and APS4-genes can lead to 5-times higher SO4

2−-
accumulation in shoot (vs. wild-type plants). Additionally,
enhanced miR395-expression in the absence of APS4 was con-
sidered as an indicator of a negative-feedback-loop between
miR395 and APS4 (Liang et al., 2010). Moreover, unlike APS1
and APS4-mRNA, both miR395 and APS3 can exhibit a sim-
ilar response to SO4

2− starvation; however, APS1 and APS3-
expression can be regulated via miR395 (Liang and Yu, 2010).
MiRNA395 can also cleave mRNAs encoding ATPS1 and ATPS4-
isoforms (Jones-Rhoades and Bartel, 2004; Kawashima et al.,
2009). Nevertheless, ATPS1 and ATPS4 were evidenced as the
major targets of miRNA (miR395), in both leaves and roots
(Kawashima et al., 2009). In a similar report, SO4

2−-limitation
decreased ATPS4-transcript-levels; whereas, ATPS1 levels were
unaffected (Kawashima et al., 2011). It was argued in previous and
other studies that for the SO4

2−-limitation-mediated decreased
ATPS4-transcripts that ATPS4 can undergo a canonical regula-
tion by miR395 because its mRNA levels can decrease following
miR395-induction (Kawashima et al., 2009, 2011; Liang et al.,
2010). SO4

2−-deficiency cannot affect (Kawashima et al., 2011)
or can bring a slight decrease in the levels of ATPS1 mRNA
(Liang et al., 2010). ATP-S activity/expression can also be con-
trolled/modulated by S-Limitation 1 (SLIM1), a TF identical
to Ethylene-Insensitive3-Like (EIL3) TF in Arabidopsis and the
regulator of many S-deficiency responsive genes (Wawrzynska
and Sirko, 2014). ATP-S-relation with ethylene is supported
by the role of EIN3 and EIL1, two members of EI3/EIL TF
family as central regulators of ethylene signaling (Maruyama-
Nakashita et al., 2006). Relation among ATP-S-activity, GSH-
content, ethylene-level, and decreased Cd-impacts was reported
in Se-supplemented Cd-exposed Triticum aestivum (Khan et al.,
2015). Nevertheless, a joint action of miR395 and SLIM 1 TF can
maintain optimal-levels of ATP-S-transcripts in S-starved plants
(Kawashima et al., 2011).

ATP-S: Roles and Regulations in Plant
Biotic Stress Tolerance

Through different S-compounds such as Cys, GSH, and GSs,
ATP-S is also involved in plant-tolerance to several biotic stresses.
Free-Cys and cytosolic Cys-homeostasis can orchestrate plant-
pathogen responses (Gullner and Kömives, 2001; Álvarez et al.,
2012). Pathogen-infection can trigger accumulation of GSH
and also the modulation of transient changes in its redox-state
(Noctor et al., 2012). Elevated GSH and Cys were reported to
suppress and delay virus-symptoms, and decrease virus-content
in zucchini yellow mosaic virus (ZYMV)-infected Cucurbita pepo
(Zechmann et al., 2005, 2007; Zechmann and Müller, 2008;
Király et al., 2012). Decreased GSH-pool and its redox-state
in Lycopersicon esculentum signify their role against Botrytis

cinerea infection (Kuźniak and Skłodowska, 2005). Elevated GSH
metabolism can also counteract infection in plants with tobacco
mosaic virus (Höller et al., 2010; Király et al., 2012), Pseudomonas
syringae (Großkinsky et al., 2012) and B. cinerea (Simon et al.,
2013). Zechmann (2014) recently reviewed the compartment-
specific importance of GSH in biotic stressed plants.

Evidences confirm the requirement of a certain level of GSH
for disease-resistance via synthesis of pathogen defense-related
molecules such as camalexin, an indole-phytoalexin contain-
ing one S-atom per molecule with partly Cys-derived thiazole-
ring (Noctor et al., 2012). A link between GSH-deficiency and
plant-susceptibility to pathogens such as Pieris brassicae was
reported in A. thaliana phytoalexin deficient 2-1 (pad2-1)mutant
(Dubreuil-Maurizi and Poinssot, 2012). Earlier, a higher sus-
ceptibility of previous GSH-deficient-mutant to insect-herbivore
Spodoptera littoralis was related with a lower GSs-accumulation
therein (Schlaeppi et al., 2008). GSH (and also numerous GSH-
sulfotransferases) is required for wound-induced resistance to B.
cinerea (Chassot et al., 2008; Consonni et al., 2010). Expression
of defense-related genes including PATHOGENESIS-RELATED1
(PR1) can be activated by exogenous-GSH-mediated mimick-
ing of fungal-elicitors (reviewed by Noctor et al., 2012). Inner
chloroplast-envelope-transporters export GSH across the chloro-
plast envelope. In Arabidopsis, CLT1, CLT2, and CLT3 genes
encode these transporters (Maughan et al., 2010). Decreased
PR1-expression and also lower resistance to the oomycete Pieris
brassicae were reported in CLTs-defective Arabidopsis-mutants
(Maughan et al., 2010). Numerous reports support an increased
S-requirement in plants infected with Phytopthora infestans
and/or B. cinerea and was advocated to be met, at least in part,
by increased transcription of ATPS1, ATPS3, and ATPS4 genes
(Matthewman, 2010). To this end, in A. thaliana, ATP-S genes
namely ATPS1 and ATPS3 were reported to be linked with the
regulation of biosynthetic networks of aliphatic and indolic GSs,
respectively (Yatusevich et al., 2010). P. infestans and B. cinerea-
infection in A. thaliana resulted in a similar increase in the
transcript levels of ATPS1, ATPS3 and ATPS4 (Matthewman,
2010). Earlier, B. cinerea, P. Infestans, and aphid Myzus persicae
were reported to induce a GSs-response in Arabidopsis (Kim and
Jander, 2007; Rowe et al., 2010).

ATP-S: Intrinsic Regulations by
S-Compounds

Literature is scarce on insights into S-compounds-mediated
regulation of ATP-S activity/expression in plants. Among the
thiol-compounds, GSH, rather than Cys can be used as a sig-
nal for regulating ATP-S (Lappartient et al., 1999; Vauclare
et al., 2002). Externally supplied GSH-mediated increase in
Cys and GSH accumulation can control both ATP-S activ-
ity and SO4

2−-uptake (Vauclare et al., 2002). Compared to
its lower level (up to 1.0 mM), Cys can significantly decrease
ATP-S-activity at its higher level (2.0 mM). However, further
increase in Cys-concentration can cause an additional accu-
mulation of GSH that in turn can cause a decrease in ATP-
S-mRNA, -protein, and -activity (Lappartient et al., 1999;

Frontiers in Plant Science | www.frontiersin.org 4 April 2015 | Volume 6 | Article 210

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Anjum et al. ATP-sulfurylase and plant stress tolerance

Vauclare et al., 2002). ATP-S enzymatic activity might be
sensitive to redox regulation in plants, where it can be a tar-
get for thioredoxins (reviewed by Prioretti et al., 2014). As
a major redox regulator, GSH feeds into glutaredoxin system

and subsequently into the thiol-redox-network (Dietz, 2008).
Referring to the studies of Lappartient and Touraine (1996,
1997), cellular-redox-conditions and also that of GSHwere advo-
cated to modulate ATP-S-activity (reviewed by Yi et al., 2010).

FIGURE 1 | Schematic representation of pathway of sulfate assimilation,
reaction catalyzed by ATP-sulfurylase (ATP-S), and its regulation by
major factors. Role of ATP-S in plant stress tolerance through sulfur/cysteine
rich and sulfated compounds is outlined. Positive and negative regulation of
ATP-S is indicated by arrows and blunt ends, respectively, [1Kawashima et al.
(2011); 2Yatusevich et al. (2010); 3Hopkins et al. (2004); 4Schiavon et al. (2007);
5van de Mortel et al. (2008); 6Guo et al. (2009); 7Gill et al. (2012); 8Bashir et al.

(2013); 9Asgher et al. (2014); 10Leao et al. (2014); 11Phartiyal et al. (2006);
12Ruiz and Blumwald (2002); 13Nazar et al. (2011); 14Passera et al. (1989);
15Huseby et al. (2013); 16Rotte and Leustek (2000); 17Takahashi et al. (1997);
18Liang et al. (2010); 19Lappartient and Touraine (1997); 20Lappartient and
Touraine (1996); 21Vauclare et al. (2002)]. (APS, adenosine 5′-phosphosulfate;
Cys, cysteine; AsA, ascorbate; GSH, reduced glutathione; PCs, phytochelatins;
MTs, metallothioneins; ROS, reactive oxygen species).
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However, the authors suggested further biochemical- and
structural-analysis of ATP-S to determine how, and to what
extent, ATP-S responds to redox-changes. MiR395 is related
with ATP-S-genes such as APS1, APS3, and APS4 (Liang et al.,
2010). Recently, GSH-supplementation was reported to block
accumulation of S-deprivation-inducible miR395 in S-deprived
A. thaliana (Jagadeeswaran et al., 2014). Declined GSH-pools
and induced miR395-levels in S-deprived A. thaliana were cross-
talked (Kawashima et al., 2011; Matthewman et al., 2012).
Nevertheless, biosynthesis of indolic-GSs in A. thaliana is reg-
ulated by MYB34, MYB51, and MYB122 TFs (Frerigmann and
Gigolashvili, 2014). In A. thaliana, expression of both ATPS1 and
ATPS3 isoforms was reported to be controlled by all six GSs-
related MYB TFs namely MYB28, MYB29, and MYB76; MYB51,
MYB34, andMYB122 (Yatusevich et al., 2010). ATPS1 andATPS3
were expected to be strongly associated with the control of
synthesis of aliphatic and indolic GSs, respectively. A. thaliana
overexpressing or disruption in MYB51-gene showed alterations
in ATP-S-transcript-levels and -activity (Matthewman, 2010;
Figure 1).

Conclusion and Open Questions

S-containing compounds such as Met, GSH, h-GSH, PCs, and
GSs, directly or indirectly modulated/regulated by ATP-S are
involved in plant tolerance to both biotic and abiotic stresses.
Much has been achieved on the subject considered herein; there
remain numerous aspects to be enlightened and open-questions
to be answered. Ample scope exists for getting more molecular-
genetic insights into the energetically unfavorable-reaction that
yields APS from SO4

2− and ATP with ATP-S-catalytic-function.
Notably, compared to APR enzyme and its encoding genes,
much less amplitude and significance has been given to ATP-
S in mutant-experiments. Hence, molecular-genetic dissection
of so far neglected significance of ATP-S as a major control in
the initial step of S-assimilation pathway is required. ATPS has

been evidenced as an integral part of GS-biosynthesis-regulatory
network (Matthewman, 2010); however, unveiling insights into
interrelationship of ATP-S transcripts with other secondary S-
assimilation products will be rewarding. Though picture is
clear regarding the relationship of ATPS1 and ATPS3-expression
with MYB TFs (Yatusevich et al., 2010) effort is required to
unveil potential relationships of MYB TFs with ATPS2 and
ATPS4-expression (Prioretti et al., 2014). If done, these stud-
ies may shed light on the complexity of regulatory interac-
tions between primary and secondary S-metabolism. Efforts
are also required to dissect the molecular biology/genetics of
interaction of ATP-S with ratios of oxidized and reduced GSH
(GSSG/GSH) and that of oxidized (dehydroascorbate, DHA)
and reduced ascorbate (AsA; DHA/AsA) in stressed plants since
DHA can be recycled back to AsA at the expense of GSH
(or NADPH) by the AsA–GSH cycle-enzymes (Anjum et al.,
2010). Role of miR395 family of micro-RNAs in the regula-
tion of ATPS1-4 is known (Maruyama-Nakashita et al., 2006;
Kawashima et al., 2011); however, picture is unclear in context
with functions and effects of miR395 on ATPS3 and ATPS4-
expression. A cross-talk among GSH-pools, miR395-levels and
ATP-S-transcripts/activity particularly under deprived condition
of interdependent nutrients S and N can also be significant for
the maintenance of the status of S-compounds, and S-N home-
ostasis.
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