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There is a longstanding effort to parcellate brain into areas based on micro-structural,

macro-structural, or connectional features, forming various brain atlases. Among them,

connectivity-based parcellation gains much emphasis, especially with the considerable

progress of multimodal magnetic resonance imaging in the past two decades. The

Brainnetome Atlas published recently is such an atlas that follows the framework of

connectivity-based parcellation. However, in the construction of the atlas, the deluge of

high resolution multimodal MRI data and time-consuming computation poses challenges

and there is still short of publically available tools dedicated to parcellation. In this paper,

we present an integrated open source pipeline (https://www.nitrc.org/projects/atpp),

named Automatic Tractography-based Parcellation Pipeline (ATPP) to realize the

framework of parcellation with automatic processing and massive parallel computing.

ATPP is developed to have a powerful and flexible command line version, taking multiple

regions of interest as input, as well as a user-friendly graphical user interface version for

parcellating single region of interest. We demonstrate the two versions by parcellating

two brain regions, left precentral gyrus and middle frontal gyrus, on two independent

datasets. In addition, ATPP has been successfully utilized and fully validated in a variety of

brain regions and the human Brainnetome Atlas, showing the capacity to greatly facilitate

brain parcellation.

Keywords: parcellation, brain atlas, neuroimaging pipeline, diffusion tractography, parallel computing

INTRODUCTION

From the well-known Brodmann atlas (Brodmann, 1909), which was released over 100 years ago,
to the recently published Brainnetome Atlas (Fan et al., 2016) and HCP parcellation (Glasser et al.,
2016), brain parcellations or atlases are in transition from purely ex vivo histology-based printed
atlases to powerful neuroimaging-based digital brain maps with multimodal in vivo information.
Massive and continuous efforts to parcellate the brain into areas have been made based on micro-
structural, macro-structural or connectional features (Toga et al., 2006; Amunts and Zilles, 2015).
Early parcellation efforts aimed at defining regional boundaries relied on post-mortem macro- or
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micro-architecture using limited number of samples. In the
past two decades, information extracted from advanced brain
mapping technologies, in particular multimodal magnetic
resonance imaging (MRI), including structural, functional, and
diffusion-weightedMRI, has offered alternative ways to tackle the
challenge of cortical cartography (Fan et al., 2016).

Among them, connectivity-based parcellation has gained
more and more weights in the community. A considerable
number of studies have already used connectivity-based
parcellation to form cartographic maps of specific regions of
the brain or the entire cortex (Behrens et al., 2003; Johansen-
Berg et al., 2004; Cohen A. L. et al., 2008; Cohen M. X. et al.,
2008; Kim et al., 2010; Eickhoff et al., 2011; Chen et al., 2012;
Craddock et al., 2012; Moreno-Dominguez et al., 2014; Fan
et al., 2016; Glasser et al., 2016). It is a well-accepted concept
that each cortical area having a unique pattern of inputs and
outputs (“connectional fingerprint”), together with the local
infrastructure characterized by micro-structural properties,
represents the major determinant of the function of that area
(Passingham et al., 2002). Connectivity-based parcellation is
based on the assumption that those voxels/vertices belonging to a
given brain area share similar connectivity profiles, characterized
by structural (Behrens et al., 2003; Cohen M. X. et al., 2008;
Moreno-Dominguez et al., 2014), functional (Cohen M. X. et al.,
2008; Kim et al., 2010; Craddock et al., 2012), or meta-analytic
connectivity (Eickhoff et al., 2011; Yang et al., 2016), as well
as genetic correlation (Chen et al., 2012; Cui et al., 2016).
In turn, brain areas should thus be definable by aggregating
voxels/vertices showing similar connectivity patterns into larger
clusters.

The Brainnetome project was launched to investigate the
hierarchy in the human brain from genetics to neuronal circuits
to behaviors (Jiang, 2013), conceptualizing the two components
(nodes and connections) forming networks as the basic research
unit. One of the main goals of the Brainnetome is to set
up and optimize the framework for connectivity-based brain
parcellation, and to produce a new human brain atlas. The
resulting human Brainnetome Atlas (Fan et al., 2016), delineating
210 cortical and 36 subcortical subregions based on structural
connectional architecture, is an in vivo atlas with not only more
fine-grained functional subregions than traditional atlases but
also connectional patterns of each area. The enriched region-
specific information could help researchers to describe the
locations of the activation or connectivity in the brain at much
higher accuracy.

Structural connectivity-based parcellation for a specific brain
region or the entire cortex, such as in the human Brainnetome
Atlas, requires processing substantial amount of data, including
high resolution multimodal MRI raw data and intermediate
results. For instance, the volume of unprocessed raw data
from recently released Human Connectome Project (Van Essen
et al., 2012) S900 is nearly 12 TB. Besides, the computation
consisting of multiple steps is time-consuming and error-
prone, calling for efficient software engineering framework and
automated algorithms. Both the data and the computational
load pose challenges to researchers in the field. However,
there is still short of available tools dedicated to parcellation

in the community. In the course of building the human
Brainnetome Atlas, we developed an integrated pipeline, named
Automatic Tractography-based Parcellation Pipeline (ATPP),
as an implementation of the framework of connectivity-based
parcellation. ATPP features highly automated processing and
massive parallel computing. It is conveniently scalable to run on
desktop computers and high performance computing clusters,
which is suitable for parcellating a specific region of interest
(ROI) once or multiple ROIs simultaneously, respectively. ATPP
has been successfully utilized and fully validated in parcellating a
variety of brain regions (Xu et al., 2015; Genon et al., 2016; Zhang
et al., 2016; Zhuo et al., 2016) and the human Brainnetome Atlas
(Fan et al., 2016).

FRAMEWORK OF ATPP

Overview
The framework of tractography-based brain parcellation
(Figure 1) accepts the defined ROI(s) and some parameters
configured by users and automatically produce the final
parcellation results with log information after a series of
connected processing steps. Key steps are described in detail
below.

Registration
For each subject in a cohort, the skull-stripped T1-weighted
image is co-registered to the corresponding non-diffusion-
weighted images (b = 0 s/mm2, b0 images) using spatial
parametric mapping (SPM81), resulting in a co-registered T1
(rT1) images in the space of diffusion-weighted images. Then the
rT1 images of the cohort are transformed to a standard template
(e.g., MNI 152 structure template) using two-step spatial
normalization, i.e., linear affine registration (Ashburner et al.,
1997) and non-linear deformations (Ashburner and Friston,
1999), in SPM8. Finally, forward and inverse transformations
between the individual diffusion space and the standard space
are derived. Given the predefined ROI in a standard template,
which is either extracted from a known atlas or drawn manually,
an inverse transformation is performed to transform the ROI into
a seed mask in the diffusion space for each subject. In addition,
the forward transformation is used again in the subsequent step
where the parcellated clusters of a seed mask in the diffusion
space are transformed into the standard space.

Probabilistic Tractography
For each voxel in a seed mask, the probability distributions are
estimated for multiple fiber directions (Behrens et al., 2007)
using bedpostx tool. Probabilistic tractography is then applied
by sampling many (e.g., 5,000, default value in probtrackx)
streamlines to estimate the connectivity probability, resulting in
an image file that represents each voxel’s connectivity profile at
whole-brain level. In such an image, the connectivity probability
from the seed voxel i to another voxel j is defined by the
number of streamlines passing through voxel j divided by the
total number of streamlines sampled from voxel i. To compensate

1http://www.fil.ion.ucl.ac.uk/spm/software/spm8
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FIGURE 1 | Framework of tractography-based brain parcellation. Based on T1w and DTI images of the same subjects, two given ROIs, left Precentral Gyrus (PrG)

and left Inferior Parietal Lobule (IPL), are parcellated simultaneously. After a series of processing steps, mainly including registration, probabilistic tractography, matrix

generation, and clustering, both the individual parcellations and the group-level parcellations of with a maximum probabilistic map and probabilistic maps of each

subregion of left PrG and left IPL are produced.

for the distance-dependent bias, probability counts are corrected
by the length of the pathway (Tomassini et al., 2007). A
small threshold value is used to threshold the path distribution
estimates (e.g., connectivity probability value p > 0.04%, i.e.,
2 out of 5,000 samples) (Makuuchi et al., 2009). By using this
fixed threshold, the images not only have fewer false-positive
connections (random noise), but also retain enough sensitivity to
not miss true connections (Heiervang et al., 2006; Johansen-Berg
et al., 2007).

Individual Parcellation
To facilitate data storage and analysis, the whole-brain
connectivity profile at each voxel in a seed ROI is down-sampled
(e.g., 5 mm isotropic voxels) (Johansen-Berg et al., 2004) and

formed into a native connectivity matrix. Based on this matrix,
a cross-correlation matrix between the connectivity profiles of
all voxels in the seed mask is calculated and used for automatic
parcellation. The (i,j)th element of the cross-correlation matrix
is the correlation between the connectivity profile of seed i and
the connectivity profile of seed j (Johansen-Berg et al., 2004).
To define distinct clusters, the cross-correlation matrix is then
processed using normalized-cut spectral clustering (Ng et al.,
2001) without spatial constraint (Fan et al., 2014) to group voxels
with similar connectivity profiles together. It should be noted that
the number of clusters kmust be determined by the experimenter
when using this method. To facilitate making such decisions, k
can be set as a range (e.g., from 2 to 12) in ATPP to generate
multiple solutions in one go.
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Consistent Relabeling
For each solution with the same k from different subjects,
corresponding clusters are all warped into the standard template
by the forward transformation produced previously. To resolve
the cluster label mismatch issue caused by the random labeling
of clustering algorithms across subjects, we try to find the most
consistent labeling scheme across subjects by the following steps.
First, the labeling schemes of all subject’s clusters are pooled into
a thresholded group-level cross-correlation matrix where each
entry represents the connectional similarity of any two voxels
in ROI. Then, the spectral clustering algorithm is applied again
on this similarity matrix and a group-level labeling scheme is,
thus, yielded. Last, the labeling scheme is propagated back to
each subject’s clusters by maximization of spatial overlap using
an assignment algorithm (Munkres, 1957). In addition, Due to
convergent evidences from different studies (Brodmann, 1909;
Petrides and Pandya, 2002; Chen et al., 2012; Bludau et al., 2014;
Cui et al., 2016) that support the topological homology across
the hemispheres, if two ROIs representing the corresponding
regions across hemispheres are given, the label consistency
across hemispheres is ensured before propagation of the labeling
scheme.

Probabilistic Maps and Maximum
Probability Maps
For each solution, the voxelwise probabilistic map of each
cluster, i.e., the subregion of the ROI under parcellation,
in the standard space is calculated. At each voxel, such a
map represents the relative number of subjects classifying the
voxel into the given cluster. Therefore, it indicates the inter-
individual variability of that subregion, specifically, higher value
at that voxel indicates lower inter-individual variability for that
subregion. Furthermore, the maximum probability map (MPM)
is created for each solution across all the subjects. The MPM
is calculated by assigning each voxel in the standard space to
the subregion in which it is most likely to be located. If two or
more subregions show the same probability at a particular voxel,
this voxel is assigned to the area with the highest probabilities
averaged over the 26 voxels directly adjacent (Eickhoff et al.,
2005). As a post-processing step, noisy voxels whose labels are
different from the majority label of the 6-connected neighbors
in the clusters, especially around the boundaries, are corrected
(Wang et al., 2012).

Validity Indices
To avoid arbitrary choice of the number of subregions, ATPP
offers various validity indices for determining k of the optimal
solution. These indices are generally grouped according to
the following three criteria: (1) consistency across parcellations
criterion: Cramer’s V (Hoel et al., 1947), Dice coefficient (Dice,
1945), normalizedmutual information (Witten and Frank, 2005),
and variation of information (Meila, 2003); (2) consistency within
parcellation criterion: averaged silhouette value (Rousseeuw,
1987) and continuity index; (3) consistency of topology criterion:
hierarchical index (Kahnt et al., 2012), and topological distance
index (Tungaraza et al., 2015).

Consistency across Parcellations Criterion
To highlight the reproducibility of parcellation, the solution that
yields optimal consistency across subjects is assumed to contain
the optimal number of clusters. The first three indices (Cramer’s
V, Dice coefficient, and normalized mutual information) as
aforementioned reflect the degree of cluster overlap between two
parcellations. The forth index, variation of information, measures
the amount of information lost and gained in changing between
two parcellations. These indices are calculated on the following
datasets generated using three resampling techniques: (1) split-
half, where subjects are equally divided into two random groups
with many (e.g., 100) repetitions, in each repetition, the MPMs of
the two groups are used for calculation; (2) pairwise, for each pair
of subjects, their parcellations are directly used for calculation;
(3) leave-one-out, the parcellation of one subject and the MPMs
of the remaining subjects are used. The calculation and meaning
of the four indices are described in detail below.

Cramer’s V (CV)
CV measures the strength of association between two
parcellations. Given the frequency table T in which entry
Tij (i = 1...m; j = 1...n) represents the degree of overlap
between two clusters Ai and Bj located in parcellation A and B,
respectively. Then, the Cramer’s V is calculated as follows:

V =

√

χ2

N ·min(m− 1, n− 1)
(1)

where N is grand total of the frequency table and χ2 is the
chi-squared statistic:

χ2 =
∑

i,j

(

Tij −
Ti.T.j
N

)2

Ti.T.j
N

(2)

CV has values in the interval [0, 1], where high values indicate
good consistency with a value of 1 indicating a perfect match.

Dice coefficient (Dice)
Given the parcellation A and B with k clusters, then Dice
coefficient:

Dice =
1

K

∑K

i

2 (Ai ∩ Bi)

|Ai| + |Bi|
(3)

is calculated to measure the similarity of two parcellations and it
ranges between 0 and 1, with 1 indicating the same parcellation.

Normalized mutual information (NMI)
From the information theoretical perspective, the similarity
between the two parcellations could be measured by the mutual
information. Specifically, the mutual information quantifies
the “amount of information” obtained about one parcellation
through the other parcellation.

NMI(A,B) = 2
I (A;B)

H (A) +H(B)
= 2

∑

i,j Tijlog
Tij

Ti.T.j

−
∑

i Ti.logTi. −
∑

j T.jlogT.j

(4)
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where I(A;B) is the mutual information between parcellation A
and B, andH(A) andH(B) are the entropies of parcellation A and
B, respectively. Here, we use [H (A)+H(B)]/2 for normalization
to get a tight upper bound on the mutual information. The value
of NMI ranges from 0 to 1, and the more similar to each other,
the higher value is obtained.

Variation of information (VI)
The VI measures the amount of information lost and gained in
changing between two parcellations, thus, indicating the stability
of parcellations. The calculation of VI is described as:

VI (A,B) = H (A) +H (B) − 2I(A;B) (5)

From the definition of VI, we can conclude that low VI values
indicate high stability between two parcellations, and vice versa.
It is worth noting that the upper limit value of VI is not 1 but
H (A) + H(B). Moreover, when comparing two solutions with
different number of clusters, VI is an intrinsically convenient and
efficient index to determine a stable number of clusters. Several
empirical confirmation of the stable number were recently
proposed (Kelly et al., 2010; Kahnt et al., 2012; Bzdok et al., 2015),
similarly, here in ATPP, the k clusters solution is considered stable
when there is a considerable increase from k to k+ 1 solution and
there is no significantly increase from k− 1 to k solution.

Consistency within Parcellation Criterion
Intuitively, for an optimal solution of clusters, the clusters
themselves should be widely separated (separation) and the
voxels of each cluster should be as close to each other as possible
(compactness). Here, we adopt two simple indices to depict
separation and compactness.

Averaged silhouette value
The silhouette value for each voxel is a measure of how similar
that voxel is to voxels in its own cluster, when compared to voxels
in other clusters. The silhouette value for the ith voxel is defined
as:

Si =
bi − ai

max(ai, bi)
(6)

where ai is the average distance from the ith voxel to the other
voxels in the same cluster, and bi is the minimum average
distance from the ith voxel to voxels in a different cluster. Then
an averaged silhouette value across all voxels is obtained for a
solution. The distance metric used here is cosine distance derived
from the native connectivity matrix. The value ranges from−1 to
1, and the k solution with higher value compared to k− 1 solution
seems to be a good solution.

Continuity index
We propose a simple index to depict the extent of how voxels
connect to each other, i.e., continuity, within a cluster. The
continuity index is the averaged proportion of the maximum
continuum with 6/18/26-connected neighbors in a cluster. The
value ranges from 0 to 1, with 1 indicating a solution where
clusters are compact without any discrete voxels.

Consistency of Topology Criterion
An optimal solution for parcellation is also assumed to contain
inherent consistent topological structure, which reflects the brain
organization. The following two indices depict the consistency of
topology to some extent.

Hierarchical index (HI)
HI reflects the hierarchical structure of the different solutions by
the average probability that a given cluster in k solution has only
one “parent-cluster” in k− 1 solution (Kahnt et al., 2012). For the
k solution, HI is computed according to:

HIk =
1

k

∑k

i=1

maxj(xij)

xi
(7)

where xi =
k−1
∑

j=1
xij, and for each k, x is a matrix whose elements

xij reflect the number of voxels in cluster ji=1...k stemming from
cluster jj=1...k−1 in k− 1 cluster solution. HI= 1 means a perfect
hierarchical structure.

Topological distance (TpD)
TpD specifically measures the similarity of the topological
arrangement of putative homologous brain areas between
hemispheres and across subjects. For a paired solution, in the
matrix of each hemisphere, the (i,j) entry of denotes the number
of voxels from regions i that are spatially in contact (26-
nearest neighbors) with voxels from region j and each row of
the matrix is normalized (Tungaraza et al., 2015). The TpD
between the left and right given region per hemisphere is
defined as the cosine distance of the two normalized matrices
after vectoring them. The TpD score ranges from 0 to 1. A
score close to 0 suggests that two hemispheres have similar
topology.

Determination of the Optimal K Solution
There remains a great challenge to determine the optimal
solution for brain parcellation, since the underlying clustering is
inherently an ill-posed problem where the goal is to partition the
data into some unknown number of clusters based on intrinsic
information alone (Jain, 2010). While there is no ground-truth
parcellation of human brain, the practical “optimal” solution
emerges depending on the different aims of investigations, i.e.,
cluster validity criteria. ATPP offers various validity indices
both in the form of text and graph from the above three
different perspectives. Users are recommended to carefully
investigate the trends of those indices, especially the local extrema
(peaks and valleys) where the good solution for each index
putatively exist (Kelly et al., 2010; Bzdok et al., 2015). The
comprehensive optimal k solution is indicated by majority vote
of those good solutions (Bzdok et al., 2015). Furthermore, we
can make a comprehensive decision by combining the results
from the above data-driven approaches with the findings from
other modalities including, but not limited to, cyto-/myelo-
architectonics, functional MRI, cross-species evidence (Eickhoff
et al., 2015).
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IMPLEMENTATION OF ATPP

Overview
We implemented the workflow of tractography-based brain
parcellation based on a series of in house Linux shell scripts
and MATLAB (version R2009a or above, the MathWorks
Inc.) functions, combining FMRIB’s Diffusion Toolbox2 (FDT)
included in FSL 5.0 and SPM8, both of which are well-known and
widely used in the neuroimaging community. Specifically, FDT
is used for probabilistic tractography, SPM8 is applied for image
registration, and the rest of the functions aremainly implemented
by in house MATLAB functions. All of these functional modules
are glued together by Linux shell scripts into a hierarchical
platform, called ATPP. ATPP utilizes Grid Engine (previously
known as Sun Grid Engine (SGE), later owned by Oracle and
now by Univa Corporation) and MATLAB Parallel Computing
ToolboxTM (PCT) for parallel computing across and within
machines. Both command line (CLI) version and graphical user
interface (GUI) version are available. The CLI version is multi-
ROI oriented and can be used to parcellate many brain regions
simultaneously. While, the GUI version, designed by virtue of
GTK-server3, is single-ROI oriented, and it is user-friendly to
modify some parameters for parcellating a specific brain region.

From the implementation point of view, the tractography-
based brain parcellation pipeline is mainly split into the following
steps (Figure 2):

0. The working directory and some essential files are generated.
1. ROI is registered from standard space to individual diffusion

space.
2. For each registered ROI in diffusion space, a plain text which

comprises the xyz coordinates of all non-zero voxels in the
seed mask is generated.

3. Probabilistic tractography at each voxel in the registered ROIs
is performed for each subject.

4. A cross-correlation matrix for each registered ROI is
generated.

5. Clustering algorithm is applied in the cross-correlation matrix
from the registered ROI.

6. The registered ROIs are inversely transformed from individual
diffusion space to the standard space.

7. A consistent group-level labeling scheme is generated.
8. The labeling scheme is propagated back to individual

parcellations for each subject.
9. Probabilistic maps for each subregion and the maximum

probability map for each ROI across subjects are produced.
10. Some noise voxels of the MPM are removed.
11. Various validity indices are calculated.
12. The diagrams that depict the trends of various validity indices

are produced.

With the given ROIs and configurations, ATPP can automatically
process all the above 13 steps, which consist of registration,
tractography, clustering, labeling, and validation, and accelerate
the progress by massive parallel computing within and across

2http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT
3http://www.gtk-server.org/

FIGURE 2 | Flowchart for the implementation of ATPP. In a computer cluster,

multiple given ROIs are distributed to different machines for executing a series

of parcellation steps with paralleling computing within and across machines.

machines. Eventually, the pipeline can not only generate
parcellation results with different number of subregions and
some validity indices, but also supply related processing logs for
users to debug and examine the results.

Prerequisites
Before running ATPP, users must check the following
prerequisites. (1) Input data. ATPP requires skull-stripped
T1-weighted (T1w) image and non-diffusion-weighted (b0)
image as well as those images preprocessed by bedpostx (included
in FSL) for each subject. (2) Environment and tools. Due to
the programming language and dependencies of third-party
programs, ATPP is designed to run on Linux operating system.
There are several tools that are required to be installed in
advance, such as FDT (included in FSL) and SPM8. In addition,
for ATPP CLI version, SGE is required to be well configured.
Other necessary tools are all included or integrated in the
ATPP. In particular, the included GTK-server and related
libraries need to be installed before running ATPP GUI
version.
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Directory Structure and File Naming
Conventions
It is important for pipeline software to maintain simple,
consistent, and scalable directory structure and file naming
conventions. Without exception, ATPP has its own file
and directory naming conventions. We commonly create an
initial working directory for each ROI that contains: (1)
a ROI subdirectory including the predefined ROIs, (2) a
log subdirectory including the running logs, (3) subject_id
subdirectories comprising T1w image and b0 image for each
subject. There is an exemplar shell script in ATPP which is
responsible for creating and organizing these working directories.
A series of intermediate results and logs which have their specific
and unified names will be generated during the running of
pipeline.

Hierarchical and Modular Structure of the
Implementation
The hierarchical structure of the implementation is initially
inspired by the processing scripts of 1,000 Functional
Connectome Project4. A top-level script (in CLI version) or
callback functions (in GUI version), like the role of dispatchers,
are responsible for reading configuration parameters and
submitting jobs within or across machines. A second-level
script, like the role of switchboard, is used to trigger a series
of predefined steps and generate running logs. Third-level
scripts are triggered to executing specific jobs either using in
house MATLAB functions or third-party programs. The core
algorithms implemented in each step are modular, thus can be
easily and incrementally improved.

Parallel Computing
ATPP implements parallel computing across and within
machines by means of SGE and MATLAB PCT, respectively.
SGE is a job queuing system suitable for cluster computing or
cloud computing that is in charge of scheduling, monitoring,
and accounting jobs and load balancing. ATPP automatically
distributes massive jobs via SGE to appropriate machines across
the cluster. MATLAB PCT is toolbox that allows for executing
code using multi-core processors with minimal modification
to existing code. ATPP comprehensively utilizes PCT in the
implementation code of each step to reduce the actual elapsed
time.

CLI Implementation Details
ATPP CLI version (Figure 3) consists of a series of hierarchical
bash shell scripts that glue in house MATLAB functions and/or
third-party programs. Fed into a list file that defines the
information (data directory, list of subjects, working directory,
region name, andmaximumnumber of subregions) of one region
in each row, the top script, ATPP.sh, submits jobs that each
contains a second-level script, pipeline.sh, and the information
of one region as well as the configuration file, config.sh, to
appropriate machines across the cluster. The second-level script
triggers and logs a series of predefined third-level scripts, each
representing a specific step, to execute specific tasks either using

4http://fcon_1000.projects.nitrc.org

FIGURE 3 | Command line (CLI) version of ATPP. CLI version is multi-ROI

oriented, thus, users can parcellate multiple brain regions simultaneously. The

figure shows a user hli submitted three concurrent tasks on parcellation of

subthalamic nucleus (STN), primary visual cortex (V1), and middle frontal gyrus

(MFG) at the same time.

in house MATLAB functions or third-party programs according
the configuration parameters. CLI version is multi-ROI oriented,
thus is suitable for parcellating many regions simultaneously.
It rests on a computing cluster, especially high performance
computing cluster, and it is therefore efficient for the advanced
users with projects that require processing multiple regions with
massive computing.

GUI Implementation Details
Some users with few programming skills prefer to a graphical
panel that is easy-to-use and controls the whole running pipeline.
ATPP GUI version (Figure 4) meets the demand. It is designed
by virtue of GTK-server, an open source project that enables
to access graphical user interfaces for shell scripts using GTK,
to offer a user-friendly graphical panel. There are three tabs,
the “Main Panel” tab with indispensable and basic parameters
including input files and directories as well as configuration
parameters regarding to steps selection and parallel computing,
the “Advanced Settings” tab with advanced parameters including
the paths of some commands and files as well as specific
parameters in some steps, and the “About” tab with the
information related to the developer and license, where users
can input or modify various basic and advanced research-specific
parameters. There is also a fixed area that contains buttons
to allow users to control the startup and shutdown of jobs,
triggering the status bar to circularly show “Ready,” “Running,”
“Stop,” and “Done,” as well as examine the real-time running
progress and detailed logs. Besides, ATPP GUI version offers
parallel computing both within machine and across machines.
Compared to CLI version, GUI version is single-ROI oriented,
thus users can focus on a specific region and expediently modify
some parameters to test different processing conditions.
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FIGURE 4 | Graphical User Interface (GUI) version of ATPP. (A) The “Main Panel” tab includes indispensable and basic parameters including input files and directories

as well as configuration parameters regarding to steps selection and parallel computing. (B) The “Advanced Settings” tab with advanced parameters including the

paths of some commands and files as well as specific parameters in some steps. GUI version is single-ROI oriented, thus users can focus on a specific region and

easily modify some parameters to test different processing conditions.

RESULTS AND DISCUSSION

In this study, we developed an integrated pipeline named ATPP
realizing tractography-based brain parcellation with automatic
processing and massive parallel computing. ATPP offers a
powerful CLI version for parcellating multiple brain regions
simultaneously and a user-friendly GUI version for parcellating
a single brain region.

We tested ATPP on two datasets in a local 10-node high
performance computing cluster, where each node has 12 cores
of Intel Xeon E5-2630@2.3 GHz and 128 GB memory. One
dataset (Fan et al., 2016) has 40 normal participants (20 males;
age range 17–20 years; diffusion MRI (dMRI) images with 2
mm isotropic voxels) recruited in Chengdu, China. The other
dataset (Fan et al., 2016) has 40 normal subjects (18 males;
age range 18–35 years; dMRI images with 1.25 mm isotropic
voxels) selected from Human Connectome Project (HCP) Q1-
Q3 data. The multimodal MRI data were preprocessed by the
minimal preprocessing pipeline (Glasser et al., 2013). All subjects
in Chengdu andHCP data provided written informed consent on
forms approved by the Institutional Review Board of University
of Electronic Science and Technology of China and Washington
University in St. Louis, respectively. We used the GUI version
of ATPP to parcellate left precentral gyrus (PrG) on Chengdu
data and the CLI version of ATPP to parcellate left middle
frontal gyrus (MFG) on HCP data. Figures 5, 6 shows the
parcellation results of left PrG and left MFG, respectively, with
optimal number of subregions and some stability indices. The
time consumed of the entire pipeline was 30 h and nearly 114 h,
respectively.

In general, from the perspective of implementation, there
are two categories (Cui et al., 2015) of parallel workflow
tools: (1) flexible workflow tools that allow users to customize

automated workflows for any purpose, e.g., Laboratory of Neuro
Imaging (LONI) Pipline (Rex et al., 2003), Java Image Science
Toolkit (JIST) (Lucas et al., 2010), and Nipype (Gorgolewski
et al., 2011); (2) fixed workflow tools that provide a completely
established data processing workflow for a particular purpose,
such as CIVET5, Configurable Pipeline for the Analysis of
Connectomes6 (C-PAC), Pipeline for Analyzing braiN Diffusion
imAges (PANDA) (Cui et al., 2013), Data Processing andAnalysis
for Brain Imaging (DPABI) (Yan et al., 2016). ATPP belongs
to the second category. In some research fields, especially
the rapidly developing connectivity-based parcellation, it is
required that sufficient understanding on various concepts and
algorithms, specific implementation details, and programming
skills. A complete, ready-to-use, and optimized solution seems
more suitable for interested users. Therefore, fixed workflow
tools, like ATPP, exactly offer users dedicated and optimized
solutions to focus on their research and offer developers more
freedom to select and test appropriate components to some
extent.

In recent years, a large number of studies related to
connectivity-based parcellation were published, while there
is still short of public parcellation tools in the community.
pyClusterROI (Craddock et al., 2012) and SLIC (Wang and
Wang, 2016) are tools dedicated to parcellating regions using
resting-state functional MRI data, however, ATPP focuses
on parcellation using diffusion MRI data with tractography.
The constellation toolbox in BrainVISA7, which is not yet
publicly released, is an implementation of groupwise parcellation
using tractography on cortical surface (Lefranc et al., 2016),

5http://www.mcin-cnim.ca/neuroimagingtechnologies/civet/
6https://fcp-indi.github.io/
7http://www.brainvisa.info/web/index.html
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FIGURE 5 | Parcellation results of left Precentral Gyrus (PrG.L) based on Chengdu data. (A) Maximum probability maps of PrG.L with 2-12 clusters solution. Note that

there is no correspondence among subregions with the same color in different solution. (B) Probabilistic maps for each subregion in 6 clusters solution. The value of 1

indicates that the voxel belongs to the putative subregion across all subjects, i.e., there is low inter-subject variability at that voxel. Similarly, the lower values indicate

higher inter-subject variability. (C) Validity indices of PrG.L in split-half resampling technique with 100 repetitions. The relative higher value of Dice, NMI, and CV and

relative lower value of VI denote the more consistent parcellation across solutions. Error bars denote standard deviation. The optimal 6 clusters solution seems most

reasonable according to those indices.

while ATPP is a publicly available implementation of volume-
based parcellation at both individual-level and group-level.
Until now, in contrast to the rich concepts and rapid
progress of connectivity-based parcellation in these years,
the number of available tools seems much fewer, partially
because of a certain number of undocumented algorithms or
inaccessible implementations. Due to an increasing number
of neuroscientists, psychologists, or clinical investigators with
few computational backgrounds devoting themselves to rapidly
developing neuroimaging, publicly available and easy-to-use
tools, e.g., parcellation workflow tools, deserve more attention in
the community.

Compared to those existing parcellation tools, several
advantages of ATPP arise. Above all, ATPP, to the best of
our knowledge, is the first connectivity-based parcellation tool
combined with massive parallel computing within and across
machines, which has great advantages in the face of large volume
of high resolution multimodal MRI raw and intermediate data
and a large number of computing-intensive tasks. ATPP makes
full use of available computing resources with whether pervasive
multi-core desktop computers or multi-node high performance
computing clusters which are increasingly popular in laboratories
around the world. ATPP can greatly accelerate the reliable and

reproducible research for users with more tests and validations
due to the reduced computational time and effort. It has been
extensively tested and greatly speeded up the construction of
human Brainnetome Atlas.

Secondly, the modular structure of ATPP is easy to be
modified and improved. In the current release, we realized
the framework of tractography-based brain parcellation using
selected modules, e.g., the registration accomplished by function
modules in SPM8 and the clustering method realized by
spectral clustering. With the rapid development of neuroimaging
methods related to parcellation, these modules could be
constantly upgraded or easily replaced by other implementations.
In future versions, ATPP will add in modules with different
implementations to provide more options for users, such as
incorporating characteristics from other connectional modalities,
implementing more clustering algorithms and validity indices.
In addition, ATPP offers a user-friendly and continuously
optimized GUI for users who prefer point-and-click interaction
to command line operation.

Thirdly, plenty of intermediate results and abundant log
information generated by ATPP play a critical role for
users to control quality and increase reproducibility. Note
that although ATPP fully automates all the processing steps,
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FIGURE 6 | Parcellation results of left Middle Frontal Gyrus (MFG.L) based on HCP data. (A) Maximum probability maps of MFG.L with 2–12 clusters solution. Note

that there is no correspondence among subregions with the same color in different solution. (B) Probabilistic maps for each subregion in 7 clusters solution. The value

of 1 indicates that the voxel belongs to the putative subregion across all subjects, i.e., there is low inter-subject variability at that voxel. Similarly, the lower values

indicate higher inter-subject variability. (C) Validity indices of MFG.L in split-half resampling technique with 100 repetitions. The relative higher value of Dice, NMI, and

CV and relative lower value of VI denote the more consistent parcellation across solutions. Error bars denote standard deviation. The optimal 7 clusters solution shows

most reasonable according to those indices.

manual intervention, e.g., stopping and visually inspecting the
intermediate results with unified and consistent names in some
specific steps, is necessary for quality control to get correct
or better results. For example, when after registration from
one space to another space, it is strongly recommended that
users carefully check the registered images and perform manual
modification if necessary. In recent years, calls to improve the
transparency and reproducibility of scientific research have risen
in frequency and fervor (Nichols et al., 2016). During the running
of ATPP, detailed logs including the executing hosts, the start
and elapsed time, and abundant indication messages from core
algorithms as well as the configuration files make users to
easily reproduce findings with the same data processing and
conveniently disseminate information.

Finally, ATPP completely follows the scientific cultural
shift to open science, which aims at making scientific research
including journal papers, lab notes, data, and, of course,
workflow tools, accessible and transparent to all levels
of society. ATPP is publicly accessible in Neuroimaging
Informatics Tools and Resources Clearinghouse8 (NITRC)
(https://www.nitrc.org/projects/atpp). Its source codes are

8https://www.nitrc.org

hosted in GitHub9 (https://github.com/haililihai/ATPP_CLI;
https://github.com/haililihai/ATPP_GUI), under the GNU
generic purpose license version 310 (GPLv3), and are welcome to
download and fork. The Digital Object Identifiers (DOIs)
providing a persistent way to make digital data easily
and uniquely citable was created from Zenodo11 platform
with those GitHub repositories (ATPP CLI v2.0.0, doi:
https://doi.org/10.5281/zenodo.239702; ATPP GUI v2.0.0,
doi: https://doi.org/10.5281/zenodo.239705). Besides, to
promote Resource Identification Initiative (Bandrowski et al.,
2016), which aims to promote research resource identification,
discovery, and reuse, Research Resource Identifier (RRID) was
curated (RRID:SCR_014815) by SciCrunch Resource Registry12

to avoid ambiguities on the tool name in addition to its version
(Nichols et al., 2016).

The above features of ATPP make it a promising tool
for brain parcellation. In addition to the application in some
brain regions and the human Brainnetome Atlas, ATPP shows
great capability to facilitate brain parcellation from various

9https://www.github.com
10https://www.gnu.org/licenses/gpl-3.0.html
11https://www.zenodo.org
12https://www.scicrunch.org/resources
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perspectives. For example, since the majority of already existed
atlases were generated from an individual subject or a specific
group of subjects, e.g., healthy adults in most cases, it is
interesting to utilize ATPP to investigate the specific regions
or atlases derived from those subjects with different age or
suffering from a variety of psychological, neurodevelopmental,
or neurodegenerative disorders. As another example, the slightly
adapted version of ATPP with some modules replaced is also
promising in the parcellation for non-human (e.g., primate)
brain.

The current version of ATPP mainly focus on the
implementation of structural connectivity-based parcellation
for specific brain regions or the entire cortex. There are
more connectional features, such as resting-state functional
connectivity (Cohen A. L. et al., 2008; Kim et al., 2010),
structural covariance (Cohen M. X. et al., 2008), meta-analysis-
based functional co-activation (Eickhoff et al., 2011), and
genetic correlation (Chen et al., 2012), in the framework of
connectivity-based parcellation. Several studies indicate that
resting-state connectivity (Honey et al., 2009; Van Den Heuvel
et al., 2009) and meta-analytic co-activations (Eickhoff et al.,
2010) reflect the underlying anatomical connectivity architecture
of the human brain to some degree. Hence, in the future
version of ATPP, whose modular structure make it easy to
be modified and improved, it is an interesting and important
direction to implement such multimodal connectivity-based
parcellation. Moreover, these multimodal parcellations in turn
contribute more information to the determination of optimal
solution.

In summary, we developed an open source workflow tools
named ATPP dedicated to tractography-based brain parcellation
with automatic processing and massive parallel computing. Fully
validated in the published parcellation of several brain regions,

especially in the construction of the human Brainnetome Atlas,
ATPP shows the capability to greatly facilitate brain parcellation.
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