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Abstract

Safe and effective pharmacologic management of atrial fibrillation (AF) is one of the greatest

challenges facing an aging society. Currently available pharmacologic strategies for rhythm control

of AF are associated with ventricular arrhythmias and in some cases multi-organ toxicity.

Consequently, drug development has focused on atrial-selective agents such as IKur blockers. Recent

studies suggest that IKur block alone may be ineffective for suppression of AF and may promote AF

in healthy hearts. Recent experimental studies have demonstrated other important electrophysiologic

differences between atrial and ventricular cells, particularly with respect to sodium channel function,

and have identified sodium channel blockers that exploit these electrophysiologic distinctions. Atrial-

selective sodium channel blockers, such as ranolazine and amiodarone, effectively suppress and/or

prevent the induction of AF in experimental models, while producing little to no effect on ventricular

myocardium. These findings suggest that atrial-selective sodium channel block may be a fruitful new

strategy for the management of AF.
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Introduction

Effective and safe treatment of atrial fibrillation (AF) remains a major unmet medical need in

our society and the problem is growing as the prevalence of AF continues to increase with the

aging of the baby boomgeneration. AF is the most prevalent sustained clinical arrhythmia

associated with increased morbidity and mortality. Its prevalence is 0.4–1% in the general

population and greater than 8% in individuals >80 years of age. An estimated 2.5 million

individuals in North America and 4.5 million in Europe are affected by AF.1 These numbers

are projected to increase to 15 million in North America alone by 2050, largely due to aging

of the population.

Despite significant progress in ablation therapy, antiarrhythmic drugs (AADs) remain first-

line therapy for rhythm control of AF.1,2 However, the effectiveness and/or safety of agents

available for the treatment of AF are not optimal. Currently available pharmacologic strategies

for the rhythm control of AF include: (1) sodium channel blockers, such as propafenone and

flecainide; (2) potassium channel blockers (largely IKr), such as sotalol and dofetilide; and (3)

mixed ion channel blockers, such as amiodarone and dronedarone.
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Electrophysiologic distinctions between atrial and ventricular cells

Because of the proclivity of currently available drugs to induce ventricular arrhythmias, new

drug development has focused atrial-selective drugs, with the goal of avoiding the ventricular

proarrhythmic effects of currently available agents. In order to fully appreciate the basis for

atrial-selective actions of these agents, it would be helpful to review the electrophysiologic

differences between atrial and ventricular cells under normal and pathophysiologic conditions.

The normal action potential in atria differs from that of the ventricle with respect to ion channel

currents that contribute to resting membrane potential (RMP), phase 1, and phase 3 of the action

potential (Fig. 1).3,4

RMP in atria is more depolarized than in the ventricle, in large part because of a smaller inward

rectifier potassium current, IK1. Phase 1 is more prominent in atria because of the presence of

a prominent transient outward current (Ito) and a current that is exclusive to atria, known as

the ultra-rapid delayed rectifier potassium current, IKur. Another current that is exclusive to

atria is the acetylcholine-activated potassium current, IK–ACh. Phase 3 of the action potential

is much slower to repolarize in atria because of weaker repolarizing currents, including the

rapidly and slowly activating delayed rectifier currents (IKr and IKs) and IK1.

Initiation of AF involves the development of both a substrate and a trigger. The electrical

substrate develops as a consequence of a reduction in wavelength largely due to an abbreviation

of the effective refractory period (ERP). The maintenance of AF often is facilitated by electrical

and structural remodeling that is the result of the rapid activation of the atria (AF begets AF).
5 The electrical remodeling further abbreviates ERP by abbreviating the atrial action potential

(Fig. 2).

Rapid activation of the atria during AF results in a decrease in ICa, IKur, and Ito, but to an

increase in IK1 and constitutively active IK–ACh. The abbreviation of action potential duration

(APD) is principally due to the decrease in ICa and the increase in IK1 and constitutively active

-IK–ACh.6

Atrial-selective drugs

One of the principal goals of rhythm control therapy is to prolong the ERP, thus eliminating

the substrate for development of AF. Sodium channel blockers accomplish this by reducing

excitability and promoting post-repolarization refractoriness (PRR). Potassium channel

blockers do this by prolonging the atrial APD, and mixed ion channel blockers achieve this

through a combination of both actions. Because all three classes of drug have an inclination to

induce ventricular arrhythmias, recent drug development for the management of AF has

focused on agents that selectively affect the atria, but not the ventricles of the heart.

Inhibition of IKur, present in atria, but not ventricles, is an example of an atrial-selective

approach.7,8 Design of selective IKur blockers has been a great challenge because these agents

often block other currents (e.g., INa by vernakalant and AZD7009 and Ito/IKACh/CA-IKACh by

AVE0118).9–12 A number of studies indicate that the relative contribution of IKur to atrial

repolarization in remodeled hearts maybe relatively low. IKur density is known to be

progressively reduced with acceleration of activation rates13 and IKur density is decreased in

cells isolated from chronic AF atria.12,14 Selective IKur reduction produces only minor

APD90 prolongation in human remodeled atria or canine acetylcholine-treated atria (both

showing a triangular action potential morphology and proneness to develop AF).15,16 Although

IKur block may contribute to the antiarrhythmic efficacy of the IKur blockers, IKur block alone

may be insufficient to effectively suppress AF, and inhibition of additional currents maybe

required (e.g., INa, Ikr, Ito, IK–ACh, CA-IK–ACh).17,18
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Interestingly, recent studies have shown that loss-of-function mutations in KCNA5, the gene

that encodes the α subunit of the IKur channel is associated with the development of AF,

suggesting that a reduction in IKur may promote the development of AF in humans.19 Indeed,

inhibition of IKur has been shown to be capable of permitting the induction of AF in

experimental models consisting of coronary-perfused canine right atrial preparations.16

Atrial-selective sodium channel block

We recently introduced the concept of atrial-selective sodium channel block as a novel strategy

for the management of AF.20–23 Two agents identified as atrial-selective sodium channel

blockers are ranolazine and amiodarone. Ranolazine produces a much greater depression of

atrial versus ventricular sodium channel-dependent parameters and suppresses AF at

concentrations that produce little to no effect in the ventricles.20

Chronic amiodarone likewise exerts atrial-selective depression of INa-dependent parameters,

which prevent the induction of AF in experimental models.21 Ranolazine and chronic

amiodarone reduce maximum rate of rise of the action potential upstroke (Vmax), prolong

conduction time (CT), increase diastolic threshold of excitation (DTE), and induce PRR

specifically or predominantly in the canine isolated atrial versus ventricular coronary-perfused

preparations (Figs. 3 and 4).20,21 Induction of PRR is a unique feature of INa blockers, occurring

when ERP is prolonged beyond the end of repolarization of the action potential. In contrast,

propafenone depresses Vmax and CT, decreases DTE, and induces PRR in a chamber-

independent manner at a pacing cycle length of 500 ms, but becomes slightly more atrial-

selective at a BCL of 300 ms.24

Ranolazine, first recognized as an antianginal and then as an antiarrhythmic agent, blocks early

INa, late INa, IKr, and late ICa at concentration within the therapeutic range (2–8 μM)20,25

Amiodarone has likewise been shown to inhibit multiple cardiac ion channel currents (IKr,

IKs, INa, late INa, Ito, ICa–L, ICa–T, IK1) as well as to block α- and β-adrenoceptors.26,27

Although AZD7009 is considered to be an atrial-selective agent on account of inhibition of

IKur, its IC50 to block this current is many times greater than its IC50 to inhibit IKr and INa

(27,0.6, and 4.2 μM, respectively).28,29 AZD7009 decreases excitability (i.e., DTE) and

conduction velocity preferentially in atria of dogs in vivo,30 indicating that its atrial selectivity

is due in part to its inhibition of INa giving rise to an atrial-selective prolongation of ERP.10,

30 Vernakalant, another IKur blocker, also potently blocks INa.
9 ISQ-1 and TAEA, two more

IKur blockers, slow conduction velocity in atria, suggesting an ability to block INa.
31

Interestingly, in non-remodeled atria, IKur blockers abbreviate or produce no change in

APD70–90
,15,16,32,33 but apparently always prolongs ERP in both non-remodeled and

remodeled atria,8 which can be explained by the induction of sodium-channel dependent PRR.

Differences in the response of atrial and ventricular cells to INa blockers are not well defined

and relatively poorly investigated. A semi-quantitative appraisal of atrial selectivity of INa

blockers is presented in Figure 5.

The “atrial-selective” properties of sodium channel blockers are due to atrioventricular

differences in the biophysical properties of the sodium channel and differences in the

morphology of atrial and ventricular action potentials.20,21,23 As previously discussed, RMP

is intrinsically more depolarized in atrial versus ventricular myocytes.34 Steady-state

inactivation of INa is more negative in atrial cells; half-inactivation voltage (V0.5) in atrial cells

is 9–14 mV more negative than in ventricular myocytes.20,35,36 As a consequence of the more

depolarized RMP and more negative V0.5, a large fraction of sodium channels are inactivated

at the normal resting membrane potential in atrial cells. The fraction of resting channels is

therefore smaller in atrial versus ventricular cells at RMP. As much of the recovery from

sodium channel block commonly occurs during the resting state of the channel,37,38 atrial cells
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show a greater accumulation of use-dependent sodium channel block. Atrial-selective APD

prolongation (due to IKr block) may also importantly promote atrial-selective depression of

sodium channel-dependent parameters.

Atrial selectivity of sodium channel block at rapid activation rates is believed to be due to

several factors working in concert: (1) The fraction of inactivated sodium channels is greater

in atrial cells because of the more negative half-inactivation voltage; (2) RMP is more

depolarized in atrial cells, thus further reducing the availability of sodium channel and

potentiating the effect of sodium channel blockers; (3) Drug-induced atrial selective slowing

of the already slow phase 3 in atria (due to IKr block) results in failure of the action potential

to achieve maximum resting potential at rapid rates, thus leading to a depolarized take-off

potential, further reducing the availability of sodium channels (Fig. 3); (4) The slower phase

3 also leads to elimination of the diastolic interval in atria, but not ventricles, thus reducing the

rate of dissociation of sodium blockers from the channel; and (5) Recovery from inactivation

of the sodium channel is slower in atrial cells.36

It is noteworthy that INa density is much greater in atrial versus ventricular cells.20,36 The

higher density of INa in atrial cells20,36 may offset the lower availability of sodium channels

in atrial versus ventricular cells. Time constants for sodium channel activation and inactivation

are also twice as rapid in atrial as in ventricular myocytes,36 indicating that the total open time

of the sodium channels during each action potential should be shorter in atrial cells.

The promise of selective ion channel block for the management of AF is attractive in theory;

however, clinical experience and experimental evidence suggest that mixed ion channel

blockers, such as amiodarone, are generally more effective. Clinical data indicate that relatively

pure INa blockers, such as lidocaine or mexiletine (Class IB agents), which have rapid binding/

unbinding kinetics, are not very effective in suppressing AF.1 All clinically effective anti-AF

Class I agents inhibit multiple currents (such as IKr, IKs, Ito, etc.) and have relatively slow

binding/unbinding kinetics from the sodium channel (e.g., flecainide or propafenone, Class IC;

and quinidine, Class IA).

Ranolazine, propafenone, and chronic amiodarone are effective in suppression of acetylcholine

(ACh)-mediated canine isolated coronary-perfused right atria.20,21,24 Figure 6 shows an

example of the effect of ranolazine to suppress AF in two experimental models. A major

difference between ranolazine and propafenone is that at clinically relevant concentrations,

which effectively suppress AF (10.0 and 1.5 μM, respectively), ventricular electrophysiologic

parameters are strongly affected by propafenone, but not ranolazine. Ranolazine has been also

shown to potently suppress isoproterenol-mediated AF associated with ischemia and

reperfusion in canine isolated right atria.20 Chronic amiodarone (40 mg/kg/day for 6 weeks)

prevents ACh-mediated AF, while causing moderate electrophysiologic changes in canine

isolated coronary-perfused left ventricular preparations.21 The antiarrhythmic efficacy of

lidocaine (at 21 μM, also a clinically relevant concentration) in this ACh-mediated AF model

is relatively poor and its electrophysiologic effects in the ventricles are much greater than those

of ranolazine.20

The actions of ranolazine to suppress AF in experimental models is consistent with the results

of the MERLIN-TIMI 36 clinical study, in which ranolazine treatment was associated with

reduced incidence of supraventricular arrhythmias and a 30% reduction in new onset AF in

patients with non-ST segment elevation acute coronary syndrome.39 In a recent single-center

study, ranolazine was effective in maintaining sinus rhythm in a cohort of AF patients (most

of them with structural heart diseases) in whom more established AADs had failed.40
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Ranolazine and amiodarone both demonstrate antiarrhythmic efficacy and have a low

proarrhythmic potential in the ventricles, likely due to their ability to significantly block late

INa.
41,42

Conclusion

Experimental and clinical evidence suggests that atrial-selective sodium channel blockers may

offer a safe and effective strategy for the management of AF. These agents, including ranolazine

and amiodarone, are effective in suppressing AF and preventing its reinduction, without the

risk of VT/VF or TdP. Two principal factors contributing to atrial selectivity appear to be (1)

rapid dissociation of the drug from the sodium channels and (2) atrial APD prolongation

secondary to inhibition of IKr, IKur, and/or Ito. These data suggest that additional studies

specifically designed to evaluate atrial-selective sodium channel blockers for the management

of AF are warranted.
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Figure 1.

Ion channel differences between atrial and ventricular action potentials. The normal action

potential in atria differs from that of the ventricle with respect to ion channel currents that

contribute to resting membrane potential (RMP), phase 1, and phase 3 of the action potential.

RMP in atria is more depolarized than in the atrial on account of a smaller IK1. Phase 1 is more

prominent in atria due to the presence of a prominent Ito and IKur. Both IKur and IK–ACh are

exclusive to atria. Phase 3 of the action potential is much slower to repolarize in atria because

of weaker repolarizing currents IKr, IKs, and IK1.

Antzelevitch and Burashnikov Page 8

Ann N Y Acad Sci. Author manuscript; available in PMC 2011 February 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 2.

Ion channel currents in remodeled atria. Electrical remodeling of the atrial action potential.

Rapid activation of the atria during AF results in a decrease in ICa, IKur, and Ito, but to an

increase in IK1 and constitutively active IK–ACh. The abbreviation of action potential duration

is due principally to the decrease in ICa and the increase in IK1 and constitutively active -

IK–ACh.
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Figure 3.

Atrial-selective depression of maximal action potential upstroke velocity (Vmax) by ranolazine.

Ranolazine produces a much greater rate-dependent inhibition of the maximal Vmax in atria

than in ventricles. (A) Normalized changes in Vmax of atrial and ventricular cardiac

preparations paced at a cycle length (CL) of 500 ms. (C) Ranolazine prolongs late repolarization

in atria, but not ventricles and acceleration of rate leads to elimination of the diastolic interval,

resulting in a more positive take-off potential in atrium and contributing to atrial selectivity of

ranolazine. The diastolic interval remains relatively long in ventricles. *P < 0.05 versus control.

† P < 0.05 from respective values of M cell and Purkinje (n = 7–21). (From Burashnikov et al.
20 Reproduced by permission.)
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Figure 4.

Atrial-selective development of post-repolarization refractoriness after exposure to ranolazine.

Ranolazine-induced prolongation of effective refractory period (ERP) is much greater than

prolongation of action potential duration (APD), resulting in the development of post-

repolarization refractoriness in atria (PRR) but not ventricles. PRR is defined as the difference

between ERP and APD75 in atria and between ERP and APD90 in the ventricles; ERP

corresponds to APD75 in atria and APD90 in ventricles). *P < 0.05 versus control. ‡ = P < 0.05

versus APD75 values in atria and APD90 in ventricles; (n = 5–18). (From Burashnikov et al.
20 Reproduced by permission.)
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Figure 5.

Ranolazine suppresses AF and/or prevents its induction in two experimental models involving

isolated arterially perfused right atria at concentrations producing little to no effects in

ventricles. Persistent acetylcholine (ACh)-mediated AF (A) and isoproterenol (Iso)- induced

AF (C) are suppressed by ranolazine. In both models, ranolazine causes prominent use-

dependent reduction of excitability and induction of PRR. (From Burashnikov et al.20

Reproduced by permission.)
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Figure 6.

Sodium channel block. A semi-quantitative assessment of atrial selectivity of INa blockers

based on studies conducted in atrial and ventricular coronary-perfused (Cor-perfused) and

superfused (Tissues) preparations, isolated myocytes, and in vivo. (From Burashnikov and

Antzelevitch.23 Reproduced by permission.)
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