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ABSTRACT Forest fire is becoming one of the most significant natural disasters at the expense of ecology

and economy. In this article, we develop an effective SqueezeNet based asymmetric encoder-decoder

U-shape architecture, Attention U-Net and SqueezeNet (ATT Squeeze U-Net), mainly functions as an

extractor and a discriminator of forest fire. This model takes attention mechanism to highlight useful features

and suppress irrelevant contents by embedding Attention Gate (AG) units in the skip connection of U-shape

structure. In this way, salient features are emphasized so that the proposed method could be competent at

forest fire segmentation tasks with a small number of parameters. Specifically, we first replace classical

convolution layer by a depthwise one and engage a Channel Shuffle operation as a feature communicator in

the Fire module of classical SqueezeNet. Then, this modified SqueezeNet is employed as a substitution of

the encoder of Attention U-Net and a corresponding DeFire module designed is combined into the decoder

as well. Finally, to classify true fire, we take use of a fragment of the encoder in ATT Squeeze U-Net. The

experimental results of modified SqueezeNet integrated Attention U-Net show that a competitive accuracy

at 0.93 and an average prediction time at 0.89 second per image are achieved for reliable real-time forest fire

detection.

INDEX TERMS Forest fire detection and recognition, attention U-Net, SqueezeNet, fire module,

light-weight network.

I. INTRODUCTION

Early detection and identification of forest fire can

avoid damaging disaster. Fire detection methods such as

satellite-based detection, optical sensing, wireless sensing

and remote sensing gain notable improvements to forest fire

alarm. In this study, we focus on monitoring fire detection

driven by computer vision. Computer vision mechanisms for

fire detection could be mainly classified into two categories,

traditional image processing method and deep Convolutional

Neural Network (CNN)method. Existing conventional detec-

tion algorithms mainly operate based on visual properties of

fire, such as color, spectral, texture, motion and geometric

features. Despite the low cost and simplicity, traditional

methods strongly rely on appropriate feature description of

fire. Some natural phenomena, such as sunset and fog would

cause false alarm and missing report to these approaches

occasionally. To solve these problems, a more advanced fire

detection scheme proposing the use of CNN technology
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instead of feature description has attracted more and more

attention. Meanwhile, recent development of GPU allows the

use of CNN-basedmethods for flame detection. Common dis-

advantage of them seems to be that large datasets are required

to learn the best features. As a result of this, the model would

over-fitted under huge training dataset, whereas applying a

small number of dataset for learning would be insufficient.

Recently, some lightweight compression networks [1] that

could achieve real-time processing have been introduced

when reasonable mistakes are allowed.

In this article, we propose an efficient neural network

architecture for forest fire detection and recognition based on

Attention U-Net and SqueezeNet (ATT Squeeze U-Net). The

proposed framework consists of two stages, a segmentation

module extracting the shape of forest fire, and a classification

module identifying whether the detected fire area is true or

not. We remove the encoder of conventional Attention U-Net

[2] and place our modified SqueezeNet with new designed

Fire modules at the contraction path. Besides, some imple-

mentations are carried out on traditional Fire module [3]

in SqueezeNet. We replace the original 3 × 3 convolution
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layer with a Depthwise Convolution (DWConv) kernel, and a

Channel Shuffle operation is added to have feature communi-

cation enhanced. We design corresponding DeFire modules

for ATT Squeeze U-Net model and embed them into the

decoder for better up-sampling. We then develop a new clas-

sification framework for fire identification by reusing a part

of the encoder of ATT Squeeze U-Net. A discussion of how

many output feature maps of the encoder layers are chosen

is raised to reach a most effective selection for subsequent

fire recognition. We evaluated the ATT Squeeze U-Net on

some publicly available datasets, and the results demonstrate

that the proposed framework can produce better fire area

extraction results than some existing algorithms.

The main contributions of this study are summarized as

follows:
• Fire segmentation and recognition could both be

achieved at one time by the proposed ATT Squeeze

U-Net.

• The SqueezeNet fragment firstly substituted in the

encoder of Attention U-Net by this article significantly

decrease model parameters.

• We first set DWConv and Channel Shuffle operation in

Fire modules and DeFire modules of SqueezeNet, and

thus improve feature learning ability while suppressing

computation.

• The architecture of this proposed network may benefit

other segmentation and recognition studies as well as

more complex fire detection tasks.

The rest of this article is arranged as follows:

Section 2 introduces related works on forest fire detec-

tion in recent years. Section 3 describes the datasets used.

In Section 4, we demonstrate the proposed network archi-

tecture in detail. We discuss and analyze some experimental

results in Section 5. In the last section, the main conclusions

of this study and future research direction are raised.

II. RELATED WORKS

Literatures indicate that forest fire detection techniques

have mainly three branches nowadays, sensor-based meth-

ods, feature-based extraction methods and deep CNN-based

schemes. Previous studies are more likely to rely on the strat-

egy of features, such as fire specific chromatograms, shape

and textures, fire motion, etc. A major issue of these methods

is the complex manual feature extraction tasks. Hence, recent

researches extensively develop the use of deep CNN on early

flame detection and have shown increasing accuracy with

greatly minimized false alarm rates.

A. SENSOR BASED FIRE DETECTION

Current sensor-based fire detection designs have been intro-

duced to early stages of the detection and provide suppres-

sion for monitoring system. These fire alarm sensors mainly

include temperature sensors [4], smoke sensors [5], infrared

sensors [6], optical sensors [7], gas sensors [8], etc. Qiu et al.

[5] proposed a fire detection system using laser spectroscopic

carbon monoxide sensor. They adopted a highly effective

micro-controller and simple digital lock-in amplifier (DLIA)

for early fire warning. Li et al. [4] raised a early fire detection

study called long-range Raman distributed fiber temperature

sensor (RDFTS), which achieved maximum sensing distance

at 30km and a spatial resolution of 28m. Although temper-

ature sensor could provide single-point measurement, it is

not available for long-distance sensing. A photoacoustic gas

sensor adopting a near-infrared tunable fiber laser based on

wavelength modulation spectroscopy technique is reported

by Wang and Wang [8]. This sensor provides rapid and con-

centrated measurements of combustion products, especially

C2H2, CO, and CO2 under atmospheric pressure. Besides,

chemical gas sensors tend to respond quicker than smoke par-

ticle detectors. However, sensor-based fire detection system

is impractical due to the requirement of regular distributed

sensors in close proximity.

B. FEATURE BASED FIRE DETECTION

The forest fire detection algorithms by means of color fea-

ture are widely reported in literatures. Marbach et al. [9]

investigated YUV color space and motion features for fire

detection. This method cannot obtain real-time detection due

to numerous parameters and high computational complexity.

Foggia et al. [10] combined color, shape and motion features

for real-time fire detection. Generally, color-driven methods

are not effective enough since the equivalent sensitive to

cloud and brightness as well, and are prone to confusemoving

targets similar to flame color with real flame.

Texture description operators, especially local binary pat-

tern (LBP), are often used to analyze texture images with

flame. The success of these methods strongly relies on the

identification of effective forest fire texture features. For

example, Yuan [11] connected histogram sequence of LBP

with local binary pattern variance pyramid and extracted fire

texture feature for flame detection. Another dynamic texture

descriptor with hidden Markov tree and surfacelet transform

was presented by Ye et al. [12] as well.

Apart from the literatures considering color and texture

features mentioned above, some other previous wide-fire

detection algorithmswere built based on features of fire shape

and fire-color moving objects. A recent algorithm considered

the use of shape invariant features [13]. Generally, shape vari-

ant features used in the methods may result in the reduction of

generalization performances. Motion of flame exist in forest

fire, hence detection algorithms based on motion behavior

of fire have been reported. For instance, in [14], Yu et al.

addressed a video fire detection algorithm using color and

motion features. Mueller et al. [15] proposed a computational

vision-based flame detection model via exploring motion

features based on motion estimators. Different from rigid

objects with clear contour, forest fire has diverse shape, color

and moving direction varying throughout time. As a result,

it is difficult for those detection algorithms to build based on

the features of extracted from fire.

C. DEEP CNN BASED FIRE DETECTION

In recent years, deep CNN has been successfully applied

to forest fire detecting and identifying, and has demon-
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strated superior performance on detection tasks. Yin et al.

[16] used Recurrent Neural Network (RNN) architecture

to capture smoke area and motion context information.

Muhammad et al. [17] introduced a fire detection CNN

model for surveillance videos. Frizzi et al. [18] investigated a

nine-layer CNN structure for fire or smoke detection. A num-

ber of variations of CNN algorithms have been proposed for

fire detection tasks, including Region-based Convolutional

Neural Network (R-CNN) method [19] and Faster R-CNN

[20], etc. With the rise of target detection approaches, fire

detection is no longer satisfied with determining fire, but

rather locate and extract exact areas. For example, a Faster

R-CNN network proposed by Barmpoutis et al. [21] was

used to locate candidate regions for fire detection. In [22],

Jiao et al. reported a forest fire detection model by applying

YOLOv3 to UAV-based aerial images. Recently, Dunnings

and Breckon [23] introduced the automatic detection sys-

tem of fire region in video imagery using AlexNet [24] and

superpixels. Because AlexNet uses five convolution kernels

and adds three fully connected layers at the end of the net-

work, the network contains a total of 61 million parameters.

Matlani and Shrivastava [25] presented a deep feature syn-

thesis method based on VGG-Net for the classification of

smoke. VGG-Net family [26] is a series of network archi-

tectures which different depth of layers are engaged respec-

tively. For example, VGG-19 has 19 layers and 138 million

parameters, which is even larger than AlexNet. Increasing

number of convolution layers is becoming a general trend

of neural network design, since detection accuracy could be

improved to some extent. However, high computational and

large memorial cost greatly hinder deep networks from appli-

cations. More recently, some light-weight CNN architectures

have been reported in fire detection systems. SqueezeNet

[3] is a very successful example for wild-fire and smoke

detection. Peng and Wang et al. [27] presented a novel CNN

liked compression model SqueezeNet that reduces parame-

ters by replacing convolutional layer with Fire module, while

classification accuracy remains similar to AlexNet. Apart

from SqueezeNet, many other studies on light-weight net-

works have raise concerns. Muhammad et al. [28] introduced

an effective MobileNet-based early fire detection frame-

work for surveillance networks. MobileNet applied depth-

wise separable convolutions to construct light-weight deep

neural network, and is employed for mobile and embedded

vision applications [29]. Other notable light-weight networks

include ShuffleNet [30], DenseNet [31] and its follow-up

work CondenseNet [32].

Classical U-Net [33] has become a standard method

for image segmentation. U-Net adopts an encoder-decoder

structure extracting features and mapping low-resolution fea-

tures to high-resolution space with a skip connection fus-

ing multi-features to enhance segmentation detail. Recently,

some works have attempted to use attention mechanism for

U-Net architecture in image segmentation and so far pro-

moted more precise segmentation [2]. The goal of AG is

to obtain detailed information of the target while supressing

useless information. Therefore, in the last few years, attention

mechanism has been added in different deep neural networks

for various tasks, including ScleraSegNet [34], Attention

Dense-U-Net [35], etc.

III. FOREST FIRE IMAGE DATASETS

For the purpose of experiment, we established two new

datasets for segmentation and classification respectively

based on four widely used public databases Corsican,1 Fog-

gia [10], Cair2 and Bilkent.3 Corsican fire dataset contains

1135 fire images captured under different environments, all

images have been segmented manually as ground truth. This

fire dataset can be downloaded for research purposes via a

customized interface. Foggia is a video dataset consisting

of 14 fire and 17 non-fire ones. Cair dataset contains normal

images and images with fire from a variety of scenarios

and different fire situations, such as intensity, luminosity,

size, environment, etc. The Bilkent dataset is a collection

of 40 video clips including 13 fire videos that can be accessed

publicly and has been commonly applied to benchmark fire

detection framework.

Dataset I: This dataset is used for segmentation experi-

ments, therefore we select some fire images provided with

ground truth among all datasets. In this dataset, a total

of 1135 fire images from Corsican fire dataset are engaged,

and 5000 images are randomly selected from the 17 non-fire

videos of Foggia. In general, the 6135 images for segmenta-

tion adopted here are divided into training and testing sets by

ratio 7:3.

Dataset II: This dataset is used for classification exper-

iments. A collection of 3690 training images including

110 fire images and 110 non-fire images from Cair dataset,

455 fire images and 1880 non-fire images fromFoggia dataset

are engaged. For testing phase, 1631 input images are ran-

domly selected from 40 Bilkent videos by resampling using

linear interpolation with a resolution of 224 × 224 pixels.

IV. METHODOLOGY

A. PROPOSED NETWORK FRAMEWORK

Many researches attempted to achieve higher detection accu-

racy by increasing the depth of network. However, deep

CNN architecture requires a large number of network param-

eters, which are not suitable for fire detection and other

real-time applications. In addition, another barrier of estab-

lishing CNN-based architecture is the large number of train-

ing data required. However, accessing forest fire images

for fire detection is even more challenging than common

tasks. Inspired by these two analyses, squeeze architecture

that only require a few model parameters and U-Net with

attention mechanism that could highlight regions-of-interest

(ROI) while suppressing irrelevant features could be regarded

as good candidates for real-time fire detection. Therefore,

this study incorporates SqueezeNet structure into Attention

1http://cfdb.univ-corse.fr/
2https://github.com/UIA-CAIR/Fire-Detection-Image-Dataset
3http://signal.ee.bilkent.edu.tr/VisiFire/Demo/SampleClips.html
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FIGURE 1. This is the architecture of our proposed ATT Squeeze U-Net. There is a contracting path which uses a SqueezeNet
architecture with eight modified Fire modules, and an expansion path incorporating three DeFires modules that take the same
ideology as our modified Fire module. Three AGs at the skip connection concatenate encoder and decoder where the dotted
arrows in three colors represent three signals. The solid black arrows represent the route of feature maps.

U-Net architecture [2] to enhance local feature expression and

improve the performance of fire detection. The architecture of

ATT Squeeze U-Net is shown in Fig. 1.

1) MODIFIED SQUEEZENET WITH NOVEL FIRE MODULE

Classical SqueezeNet [3] is a less complex model which

is composed of a basic structure called Fire module. Small

convolution kernels have been used to reduce parameter size

and memory demand while accuracy maximized. Conv1 is

the first layer of SqueezeNet, followed by eight Fire modules

and ended with a final convolution layer. Fire module is the

main block of SqueezeNet, and is composed of a squeeze

layer and an expand layer that has a concatenation of 1 × 1

and 3 × 3 filters. However, the 3 × 3 filters generate a large

number of parameters with only basic functions are played

through the whole Fire module.

Based on the above analysis, we design a new Fire module

that could reduce the number of parameters and increase

learning ability effectively. Fig. 2 shows the structure of this

modified Fire module, where the 1 × 1 kernel that trains

simultaneously with the original 3 × 3 filter still remain as

conventional Fire module design. However, the original 3×3

filters in the expand layer are replaced here by an 3 × 3

DWConv kernel and a Channel Shuffle operation due to the

following two reasons: (i) The depthwise separable convolu-

tion is a form of divided convolution which divides a standard

convolution into a depthwise convolution and a pointwise

convolution of 1 × 1 kernel size [29]. The use of depthwise

separable convolution can reduce network complexity with

fair precision maintained by keeping the number of training

weight parameters needed at a low level. Depthwise separable

convolution can make it possible to separate channels from

convolution region, as well as connect input and output fea-

ture maps one-to-one through convolution operation; (ii) the

Channel Shuffle [30] can solve the problem that the output

FIGURE 2. The structure of the proposed Fire module.

of a channel is only related to its corresponding input, so that

information exchange between channels and feature descrip-

tion could be enhanced. It divides the channels in each group

into several sub-groups and feed each group with different

subgroups in the next layer. In this way, Channel Shuffle

ensures information exchange between different groups of

channels and improves the accuracy of feature description.

2) ATT SQUEEZE U-NET

In this study, we remove the encoder of Attention U-Net by

our modified SqueezeNet for more effective feature extract-

ing. In order to match channel numbers of our SqueezeNet

with initial U-Net layer, channel numbers in the first convolu-

tion layer of the modified SqueezeNet is changed from 96 to

64. After that, the prediction and classification functions of

SqueezeNet realized by average pooling layer and softmax

classifier at the end could be abandoned while embedding in

our Attention U-Net. Finally, we add another 3 × 3 convolu-

tion layer between modified SqueezeNet and the decoder to
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FIGURE 3. The architecture of the proposed DeFire module.

FIGURE 4. Schematic of additive Attention Gate.

improve extracting accuracy. By these designs, the replace-

ment of SqueezeNet enables only limited calculation and

storage space required for the proposed ATT Squeeze U-Net.

Also, the DWConv replaced and Channel Shuffle added

in Fire module could improve feature communication and

reduce computational cost. The whole encoder of Attention

U-Net (a contracting path on the left side) is shown in Fig. 1.

After modifying Firemodule in SqueezeNet by two aspects

and integrating it into the encoder of Attention U-Net, a cor-

responding DeFire module and an AG connection is also

adopted in the whole network architecture as shown in Fig. 1.

Reverse to the Fire modules incorporated in encoding path,

another DeFire module would be designed to replace tradi-

tional up-sampling step of Attention U-Net decoder as shown

in Fig. 3. The proposed DeFire module consists of an extend

layer and a squeeze layer, in which the extend layer is built

of 1× 1 and 3× 3 convolutional filters and the squeeze layer

is made of a 1 × 1 convolutional filter, a re-sampling layer

and a 3 × 3 convolutional layer. In this way, we can expand

feature maps in an equivalent efficient way as the encoding

Fire module using DeFire module.

The use of AG [2] as shown in Fig. 4 in skip connection also

contribute to more focusing information transmission. In this

figure, xl denotes feature maps generated by the encoder from

current scale, and gl is gating signal collected from a coarser

scale. AG takes xl and gi as the input of attention to achieve

attention coefficient α

α = σ2(ψ
T (σ1(W

T
x xl +W T

g gi + bg)) + bψ ), (1)

where σ1 is often chosen as ReLU function, e.g. σ1(x) =

max(0, x), and σ2 adopts a Sigmoid function defined as

FIGURE 5. The classification structure of training module.

σ2(x) = 1/(1 + e−x). Wx , Wg and ψ are weights of linear

transformations in the form of channel-wise 1 × 1x1 convo-

lutions, while bg and bψ are bias terms of linear transforma-

tions. The output of AG is the element-wise multiplication of

xl and α.

xlout = xl × α. (2)

Finally, the results of the last DeFire module is then fed into

3×3 convolution followed by a final 1×1 convolutional layer.

The last 1 × 1 convolution layer is used to map 64-channel

feature vector to the desired number of classes to predict each

pixel.

3) M4 FOR CLASSIFICATION
Since the segmentation module could only segment areas

suspected as fire, while the incorrectness of identifying fire

from similar objects still remains. Therefore, we adopt an

advanced classification technique to identify real fire images

from network predicted results. The encoding fragment of

our ATT Squeeze U-Net can be regarded as an efficient

classifier of fire image recognition task. After a general con-

sideration of the effectiveness and number of parameters, this

article adopts the classification architecture namedM4 shown

in Fig. 5. Specifically, all feature maps after Fire module

(F6) with size of 27 × 27×384 are fed to the following two

Fire modules, followed by a 3 × 3 maxpooling layer. After a

Fire module is applied again, the result would be convoluted

with a 1 × 1 kernel. Finally, the avgpool of 13 × 13 is

applied. The corresponding information of this is tabulated

in Table 1, and 131470 parameters are needed. Discussions

on the selection of classification modules are provided in

experiment subsection.

B. FOREST FIRE DETECTION AND RECOGNITION

The proposed approach attempts to segment all fire like areas,

and then identify whether they are fire or not by the classifi-

cation module. Fig. 6 presents the schematic flow diagram

of the training module, which consists of three major steps.

In the first step, input images from Dataset I are fed into

ATT Squeeze U-Net for training. The obtained segmentation

model would then be trained by Dataset 2 for achieving fea-

ture maps in step 2. Then the feature map would be selected

to train our classification moduleM4. Finally, a softmax layer

for classification [29] set after fully connected layer is used

to generate category probability of fire existence.

Fig. 7 shows the testing process on this whole proposed

work. In actual testing process, images would first be deliv-

ered into segmentation and classification procedures as Fig. 6
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TABLE 1. The architecture of our classification module (M4).

FIGURE 6. The architecture of the proposed training module.

FIGURE 7. The architecture of the proposed test module.

inputting from the ‘‘Model After Training’’ module. Some

testing results operated by the segmentation model in Step

2 would be illustrated in Fig. 8. Having passed through

all remaining procedures in the ‘‘Training Module’’, some

following processes for results presentation are continued as

shown in Fig. 7. Then, category probability by softmax layer

of every test image would be conveyed into ‘‘Fire Judge-

ment’’ module. Classification results with category probabil-

ities larger than 0.8 would be identified as fire existed and

have their segmentation results output with an alarm. Those

segmentation images with classification results as fire absent

would be abandoned, continuing with the next test image.

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. PERFORMANCE ENVIRONMENT AND EVALUATION

METRICS

The proposed model is investigated using Python 3.7 and

verified over Datasets I and II. The network architecture is

built based on a publicly available Tensorflow framework

and implemented on a small server with Intel (R) Core (TM)

i7-7700K CPU (4.5 GHz) with 32GB memory, NVIDIA

GeForce GTX 1070 (GPU) with 8GB of memory.

The performance of this proposed approach is evaluated

by Sensitivity (SE), Specificity (SP), Accuracy (ACC), Dice

Similarity Coefficient (DSC), Precision and Recall. They are

defined as follows

SE =
TP

TP+ FN
, (3)

SP =
TN

FP+ TN
, (4)

ACC =
TP+ TN

TP+ FP+ FN + TN
, (5)

DSC =
2 × TP

2 × TP+ FP+ FN
, (6)

Precison =
TP

TP+ FP
, Recall =

TP

TP+ FN
, (7)

where TP,TN ,FP,FN denote the amount of true positive,

true negative, false positive, and false negative, respectively.

In addition, the performance has also been examined in terms

of standard indexes, such as AUC (area under the curve) and

ROC (receiver operating characteristic curve). AUC values

are calculated using the trapezoidal rule. The closer the AUC

value is to 1, the better performance the corresponding forest

fire segmentation algorithm achieves. The ROC curve plots

the change of SE versus 1-SP by varying the threshold on

probability map.

B. CLASSIFICATION MODULE SELECTION

To choose the best classification module with few network

parameters, this article discusses five cases of classification

modules and compares the effect of different modules, which

are shown in Fig. 9. In order to know which part of the

encoder of our ATT Squeeze U-Net architecture would be

the best performing classification modules, we combine these

classification modules with the subsequent fully connected

layers one by one, as shown in Fig. 6. We compare the

accuracy of different classification modules when applying

separately to fire detection and recognition. The results pre-

sented in accuracy metrics plotted against the number of

parameters needed are shown in Fig. 10. It could be seen

from the results that M4, M5 could bring the accuracy of fire

identification to a considerably high level. However, adopt-

ing M4 as the classifier, relatively few network parameters

are needed to achieve the similar recognition rate as M5.
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FIGURE 8. Results form trained segmentation module, up: original test images, down: segmentation results using the
proposed segmentation framework.

FIGURE 9. The architectures of five implementations of the classification
modules, the solid black arrows represent the route of feature maps.

FIGURE 10. Fire recognition performance using different classification
modules.

From above experiments,M4 stands out to be the best suitable

classification module.

C. FIRE LOCATION AND SEGMENTATION EVALUATION

To evaluate the segmentation performance of the pro-

posed framework, we compare it against five different

deep neural network models, U-Net4 [33], Attention U-Net5

[2], DenseNet6 [31], R2U-Net7 [36], SegNet8 [37]. The

implementation of these models is based on publicly

4https://github.com/ternaus/robot-surgery-segmentation
5https://github.com/ozan-oktay/Attention-Gated-Networks
6https://github.com/SimJeg/FC-DenseNet
7https://github.com/LeeJunHyun/Image_Segmentation#2u-net
8https://github.com/tkuanlun350/Tensorflow-SegNet

FIGURE 11. The loss curves and ACC of the proposed ATT Squeeze U-Net
as the number of iterations increases during training stage.

available codes. In order to adapt the images to different

network architectures, we adjust input images to the size

required by each network. We first train the proposed seg-

mentation framework using the training set from Dataset I,

and then use the testing images of this dataset to test

the trained model. The 1137 Corsican images with ground

truth distributed in both training and testing sets would

meet requirements for both segmentation network learning

and quantitative analysis. Specifically, input images through

down-sampling using linear interpolation with a resolution of

224 × 224 pixels are fed into the ATT Squeeze U-Net. The

network parameters are optimized using the Adam optimizer

[38]. Taking batch size as 12 during training and the verified

batch size as 6, the initial learning rate is set to 1 × 10−4

and the learning decay rate is 0.99. The training accuracy

and loss curves of ATT Squeeze U-Net in Fig. 11 shows that

this model is stable and converges rapidly with the increase

of the number of iterations. Fig. 11 demonstrates a quick

convergence and a flat curve for the rest of the iteration, which

indicates the stability throughout training and the efficient

obtainment of optimal solution. Therefore, a relatively high

reliability as a novel proposed network aiming at achieving

real-time fire detection is shown.

Fig. 12 shows the qualitative comparisons of ATT Squeeze

U-Net with other deep networks. The qualitative results show

good capability of our model in extracting fire details. R2U-

Net shows superior performance as compared to SegNet

and DenseNet. After observing the segmented fire areas,

AttentionU-Net performs better than traditional U-Netmodel

obviously.

To validate the introduced scheme, we compared the per-

formance of ATT Squeeze U-Net with other existing net-

works. All predicted results using the testing set of Dataset I
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FIGURE 12. Visual comparison of various fire detection modules. From left to right: original fire images, ground truth, DenseNet,
Attention U-Net, U-Net, SegNet, R2U-Net, and Ours, respectively.

TABLE 2. Comparison results of various deep convolution models for fire
extraction on Dataset I, highlighted value represents the best result.

are compared with ground truth, and final evaluation scores

are listed in Table 2. As can be seen from this table, the SE

and SP values of R2U-Net both stay at a relatively good level,

whereas our model is slightly more specific than the other

five methods. R2U-Net however is slightly more sensitive at

capturing any suspicious fire region. This is mainly due to the

advanced feature accumulation process by recurrent residual

layers that enable better representation for segmentation. The

attention mechanism contributes to higher performance of

Attention U-Net compared to classical U-Net apparently.

Both U-Net and SegNet show generally less competitive

performance than the other four networks. At the same time,

it could be seen that the SP of our model is more superior than

SE, while ACC and DSC of the proposed framework are the

highest among all discussed models. Our figures are within a

relatively high position among all models, as well as a notable

increase especially on SE and DSC compared to classical

Attention U-Net is seen by the incorporation of our modified

Fire module in SqueezeNet. Besides, model parameters are

also measured to testify computational complexity. It could

be seen that our method uses 7.96M parameters, slightly

less than 8.42M of Attention U-net. This is mainly due

to the substituted SqueezeNet fragment significantly reduce

parameters than original Attention U-Net. For comprehen-

sive consideration on segmentation results and computational

cost, this exceeding parameter number is reserved for trade-

off. However, our method is still relatively less complicated

compared to 8M parameters on average of most experiment

approaches and SegNet, where more than 14M parameters

are engaged. In general, demonstrate the effectiveness of

the proposed lightweight network on forest fire location and

extraction.

For a more comprehensive validation, the ROC curve is

also introduced to evaluate fire extraction of our network.

In this experiment, the ROC plots SE against 1-SP, and the

corresponding average values of area under ROC curves for

Dataset I are illustrated in Fig. 13. AUC evaluates the balance

of fire segmentation when SE arrived at the detriment of SP.

It can be seen that the ROC curve of our model is notably

closer to the upper left corner. Fig. 13 also displays the pre-

cision evaluation for ROC curve and AUC values on testing

images for forest segmentation.

D. FIRE RECOGNITION EVALUATION

Feeding training images of Dataset II into ‘‘Model after

Training’’ module shown as Step 2 of Fig. 6, all feature maps

could be obtained. Then, the proposed classification module
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FIGURE 13. ROC curve analysis of the proposed network for fire
extraction.

FIGURE 14. The loss and ACC curves of the proposed classification
network (see Step 3 in Fig. 6) as the number of iterations increases during
training process.

(M4) is trained on these feature maps using Adam optimizer.

We set the parameters during training to a specific value,

batch size as 16, initial learning rate as 0.0001, and learn-

ing decay rate as 0.99. Fig. 14 shows that the classification

network can converge quickly in training process, and the

loss value rapidly stay controlled. We can also observe from

the accuracy curve from Fig. 14 that our method achieves

convergence performance approaches to one. Fig. 15 shows

some examples of the prediction score of our recognition

model. It can be seen that our algorithm can correctly dis-

tinguish fire and non-fire images. It can be seen that category

probabilities show a relatively certain degree of classification,

and the dominant scores match with actual existence of fire.

Sunset images are also classified as Non-fire even though

a lower score of Non-fire probability appears compared to

other non-fire images. To exam the robustness of the proposed

TABLE 3. Fire recognition results using the proposed framework on
testing set of Dataset II.

M4model, we use the testing set fromDataset 2 for classifica-

tion. Since the fire varies slowly in video frames, successive

frames are highly similar. To reduce computation cost, we use

one frame every 20 frames from the video clip for processing.

Table 3 lists some fire detection results of our framework

in six video scenes. It can be noted from this table that our

method achieves qualified accuracy in recognizing forest fire.

To further evaluate the recognition performance of our

network model, we compare it against four different deep

convolutional networks SqueezeNet9 [3], ResNet 5010 [39],

VGG 1611 [25], BLS12 [40], MobileNet-Fire [41], EMN-Fire

[28] and Muhammad et al. [17]. The testing set from Dataset

II is used to compare all these models, and the results in

terms of three evaluation metrics FN, FP, and ACC are listed

in Table 4. Table 4 shows that deep convolutional models

achieve generally superior value on ACC. This is proba-

bly because convolutional neural network-based frameworks

9https://github.com/DeepScale/SqueezeNet
10https://github.com/liangyihuai/my_tensorflow/tree/master/com/huai/
converlution/resnets

11https://github.com/dhuQChen/VGG16
12http://broadlearning.ai/download-bls/

FIGURE 15. Category probability results of our fire classification model.
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TABLE 4. Comparison of our method on Dataset II using different
metrics, highlighted value represents the best result.

obtaining features in universal pattern instead of selecting

manually. In addition, the FN metric of ResNet50 shows

the best FN rates at 0, which indicates high reliability of

ResNet50 if results shown as non-fire. However, ResNet50 is

of higher possibility raising mistaken fire recognition as indi-

cated by its high FP (9.57). Similarly, SqueezeNet, VGG

16 and BLS all seem to be too sensitive to fire-like images,

which generally high FP results in their decreasing ACC.

MobileNet-Fire tends to have lower FN ratio (3.98) than

ours, which is mainly due to the advanced channel multi-

plier network architecture that is highly sensitive to specific

color. Therefore, FP ratio for MobileNet-Fire is higher due

to their color-based mechanism as well (4.49). MobileNet-

Fire, EMN-Fire and network proposed in [17] all achieve

relatively competitive ACC and overall lower FN and FP,

however parameters engaged are tenfold more than ours.

As a lightweight network, our approach employs a total

of 120768 parameters second only to 116872 by BLS. BLS

engage less computation than other CNN networks mainly

due to its broad structure, but a slightly lowerACC is achieved

by BLS at 0.9025. Our model shows a relatively better

trade-off by achieving the highest accuracy at 0.9321 and

reducing computational cost based on recent advanced archi-

tecture. This is mainly because of the DWConv replaced

in Fire module that decreases computation while preserv-

ing good feature learning ability. The channel shuffle oper-

ation added in Fire module increases inter-channel feature

communication that would bring higher accuracy in general.

We also evaluate all approaches through a true positive

fraction (SE) verses false positive fraction (1-SP) point dia-

gram as shown in Fig. 16. Methods as close as to point

(0, 1) are regarded as comprehensively advanced among

networks. It could be seen that latest recognition networks

[17], [41] [28] seem to enhance SE and SP to a large extent.

Compared to Mobile-Net, EMN-Fire and framework pro-

posed by Muhammad et al. [17], our network tends to bring

improvement in terms of specificity.

E. SEGMENTATION AND RECOGNITION FOR SMALL FIRE

In order to evaluate the performance of our approach on

tiny fire detection, several images with insignificant fire are

selected for a further quantitative analysis. Visual compar-

isons with other approaches as shown in Fig. 17. It could be

seen that while Attention U-Net, U-Net and SegNet obtain

segmentation contours very different from ground truth,

FIGURE 16. Comparison of various fire classification models.

TABLE 5. Quantitative segmentation comparison for tiny fire images from
Dataset I, highlighted value represents the best result.

DenseNet, R2U-Net and our approach gain relatively reliable

results. However, our approach is slightly more competitive

in terms of fire shapes and details. Recognition results of our

approach are shown in Fig. 18, where a reliable probability

of fire existed is detected under tiny fire circumstance.

Quantitative results in Table 5 show that our approach is

relatively sensitive and is of high specificity while detect-

ing inapparent fire. Besides, we achieve the highest ACC

and DSC among all comparison methods at 0.8582 and

0.7866 respectively. Similar to our qualitative comparison,

DenseNet and R2U-Net also gain reliable accuracy. In terms

of classification performance listed in Table 6, our approach

shows a relatively good trade-off between FN and FP at

5.01 and 6.01. In general, all methods present a slightly

higher false detection rate in tiny fire detection. Although

SqueezeNet, ResNet 50 and VGG 16 have FN controlled

within 1, their FP increase to about 10. Recent studies [28],

[41] [17] are relatively prudent on small fire detection, which

a slightly higher FP ratio than us is obtained. Due to the

advanced structure proposed by MobileNet-Fire [41], FN is

maintained at the lowest level among all methods which is

0.06 less than ours. Similar to previous quantitative com-

parisons, our approach shows a comparably better tradeoff

between FN and FP and obtain a slightly better ACC at

92.07. Although accuracy for tiny fire detection decrease for

about 0.01, overall recognition for the network still remains

acceptable.

F. DISCUSSION OF TRAINING TIME

From the calculation point of view, less calculating

time during training indicates better effectiveness of the

model. Therefore, in this experiment, we report the train-

ing and prediction time of segmentation and recognition

processes.
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FIGURE 17. Qualitative comparison for tiny fire segmentation. From left to right: original fire images, ground truth, DenseNet,
Attention U-Net, U-Net, SegNet, R2U-Net, and Ours, respectively.

TABLE 6. Quantitative recognition comparison for tiny fire images from
Dataset I, highlighted value represents the best result.

FIGURE 18. Category probability results for tiny fire using our fire
classification model.

It could be seen from the operation time comparison of

six models from Table 7 that U-Net obtains competitive

results comparing with other models. DenseNet performed

for 2729.38 seconds, which is 1.45 times faster than the slow-

est 3965.87 seconds of SegNet. Due to the addition of AG,

it can be seen that training time of Attention U-Net is longer

than U-Net. Our proposed model consumes 2638.15 sec-

onds, which is 293.29 seconds less than Attention U-Net

due to the modified SqueezeNet applied. In addition, test-

ing time for a single image shows that there is no signifi-

cant difference between each method, whereas our approach

uses slightly fewer time compared to most methods at

1.54 seconds.

Table 8 shows the training time and testing time of these

five classification models using Dataset II. From this table,

we can see that BLS architecture generally takes less time

to process a large number of training data comparing to

other methods. The relatively few computational costs of

BLS could be explained as the only two layers engaged

in training. Our system trained for 400 seconds, which is

TABLE 7. Training time and prediction time of various segmentation
networks on Dataset I, highlighted value represents the best result.

TABLE 8. Training and prediction time of various classification models on
Dataset II, highlighted value represents the best result.

approximately 30 times faster than 12290 and 12874 seconds

of SqueezeNet and MobileNet-Fire. In addition, VGG 16,

ResNet 50 and EMN-Fire need more time-consuming deep

structures to ensure their accuracies. Generally, the proposed

lightweight network processes for significantly fewer time

than most of the current recognition methods. In addition,

Table 8 depicts that the predicting time by all models in test

phase is similar, whereas our method uses slightly fewer time

compared to most methods at 0.89 seconds.

VI. CONCLUSION

In this article, we firstly proposed ATT Squeeze U-Net for

segmentation and recognition. The incorporated SqueezeNet

architecture with modified Fire module on ATTU-Net, which

enabled more effective feature learning based on limited data.

Subsequently, another recognition model adopting a portion

of the newly established encoding path was utilized for clas-

sification. Apart from providing existing segmentation and

recognition frameworks with a more efficient alternative, this

study also verified its effectiveness on fire recognition where
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high sensitivity was required and limited training data could

be obtained. Experiments showed that the proposed architec-

ture achieved relatively competitive segmentation accuracy

and reliable recognition. However, there might still be some

limitations in terms of comprehensive fire detection even

though relatively accurate fire circumstances were alarmed

and fire regions could be segmented in precise detail.

Temporal factors such as flame development, fire spread

and color variance may be difficult to evaluate which is

also considered valuable in fire detection. Besides, various

weather conditions such as foggy and snowing may also hin-

der network recognition. For future researches, video analysis

and network modifications on segmentation and recognition

might be made based on the proposed architecture. We may

also focus on adjusting the proposed network architecture and

fire detection under specific scenarios.
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