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Abstract. Auctions are becoming an increasingly popular method for transact-

ing business, especially over the Internet. This paper presents a general approach

to building autonomous bidding agents to bid in multiple simultaneous auctions

for interacting goods. The core of our approach is learning a model of the empir-

ical price dynamics based on past data and using the model to analytically cal-

culate, to the greatest extent possible, optimal bids. This approach is fully imple-

mented as ATTac-2001, a top-scoring agent in the second Trading Agent Com-

petition (TAC-01). ATTac-2001 uses boosting techniques to learn conditional

distributions of auction clearing prices. We present experiments demonstrating

the effectiveness of this predictor relative to several reasonable alternatives.

1 Introduction

Auctions are becoming an increasingly popular method for transacting business, espe-

cially over the Internet. In an auction for a single good, it is straightforward to create

automated bidding strategies—an agent could keep bidding until reaching a target re-

serve price, or it could monitor the auction and place a winning bid just before the

closing time (known as sniping).

When bidding for multiple interacting goods in simultaneous auctions, however,

agents must be able to reason about uncertainty and make complex value assessments.

For example, an agent bidding for a camera and a flash may end up buying the flash and

then not being able to find an affordable camera. Alternatively, if bidding for the same

good in several auctions, it may purchase two flashes when only one was needed.

This paper presents ATTac-2001, a top-scoring agent1 in the second Trading Agent

Competition (TAC-01), which was held in Tampa Bay, FL on October 14, 2001. We

present details of the agent as well as underlying principles that we believe have appli-

cations in a wide variety of bidding situations.

ATTac-2001 bids simultaneously for multiple interacting goods. We start with the

observation that the key challenge in auctions is the prediction of eventual prices of

goods: with complete knowledge of eventual prices, there are direct methods for deter-

mining the optimal bids to place. Our guiding principle is to have the agent model its

uncertainty in eventual prices and, to the greatest extent possible, analytically calculate

optimal bids. ATTac-2001 uses a predictive, data-driven approach to bidding based on

1 Top-scoring by one metric, and second place by another.



expected marginal values of all available goods. A price-predictor based on boosting

techniques is at the heart of the algorithm.

In this paper, we present empirical results demonstrating the robustness and effec-

tiveness of ATTac-2001’s adaptive strategy. We also report on ATTac-2001’s perfor-

mance at TAC-01 and reflect on some of the key issues raised during the competition.

The remainder of the paper is organized as follows. In Section 2, we present our general

approach to bidding for multiple interacting goods in simultaneous auctions. In Sec-

tion 3, we summarize the substrate domain for our work, TAC. In Section 4, we give

the details of ATTac-2001, with special emphasis on the machine-learning-based price-

predictor. In Section 5, we present empirical results including a summary of ATTac-

2001’s performance in TAC-01; controlled experiments isolating the successful aspects

of ATTac-2001; and controlled experiments illustrating some of the lessons learned

during the competition. Section 6 presents related work and concludes.

2 General Approach

In a wide variety of decision-theoretic settings, it is useful to be able to evaluate hypo-

thetical situations. In computer chess, for example, a static board evaluator is used to

heuristically measure which player is ahead and by how much in a given board situation.

ATTac-2001 uses a situation evaluator, analogous to the static board evaluator, which

estimates the agent’s expected profit in a hypothetical future situation. This “profit-

predictor” has a wide variety of uses in the agent. For example, to determine the value

of an item, the agent compares the predicted profit assuming the item is already owned

to the predicted profit assuming that the item is not available.

Given prices for goods, one can compute a set of purchases and an allocation that

maximizes profit.2 Similarly, if closing prices are known, they can be treated as fixed

and optimal bids can be computed (bid high for anything you want to buy). So one

natural profit predictor is simply to calculate the profit of optimal purchases under fixed

predicted prices.

A more sophisticated approach to profit-prediction, used in our agent, is to construct

a model of the probability distribution over possible future prices; stochastically sample

possible prices; and compute a profit prediction, as above, for each sampled price. This

more sophisticated form of profit-prediction is important for modeling uncertainty and

the value of gaining information, i.e., reducing the price uncertainty. In short, the guid-

ing principle in ATTac-2001 is to make decision-theoretically optimal decisions given

profit-predictions for hypothetical future situations3.

Our approach to profit-prediction is based upon four simplifying assumptions:

2 The problem appears computationally difficult in general, but was solved effectively in practice

in TAC-00 [7, 19].
3 An alternative approach would be to abstractly calculate the Bayes-Nash equilibrium [8] for

the game and play the optimal strategy. We dismissed this approach because of its intractabil-

ity in situations as complex as TAC. Furthermore, even if we were able to approximate the

equilibrium strategy, it is reasonable to assume that our opponents would not play their opti-

mal strategy either. Thus we could gain additional advantage by tuning our approach to our

opponents’ actual behavior as observed in the earlier rounds.



1. Closing prices are somewhat, but only somewhat, predictable.
2. Our own bids do not have an appreciable effect on the economy.
3. The agent is free to change existing bids in auctions that have not yet closed.
4. Future decisions are made in the presence of complete price information.

While these assumptions are not all true in general, they can be reasonable enough

approximations to be the basis for an effective strategy.

By Assumption 2, the price-predictor can generate predicted prices prior to consid-

ering one’s bids. Thus, we can sample from these distributions to produce complete sets

of closing prices of all goods.

For each good under consideration, we assume that it is the next one to close. If a

different auction closes first, we can then revise our bids later (Assumption 3). Thus,

we would like to bid exactly the good’s expected marginal utility to us. That is, we bid

the difference between the expected utilities attainable with and without the good. To

compute these expectations, we simply average the utilities of having and not having

the good under different price samples. This strategy rests on Assumption 4 in that we

assume that bidding the good’s current expected marginal utility cannot adversely affect

our future actions.

Note that as time proceeds, the price distributions change in response to the ob-

served price trajectories, thus causing the agent to continually revise its bids. By using

this strategy, provided that the price is right, the agent automatically buys contingency

goods to guard against the possibility of the most desired goods becoming too expen-

sive: for price samples in which the most desired goods are expensive, the contingency

goods will have marginal value, thus leading to a positive expected marginal value.

A more detailed description of the agent is given in Section 4.

3 TAC

We instantiated our approach as an entry in the second Trading Agent Competition

(TAC), as described in this section. Building on the success of TAC-00 held in July

2000 [21], TAC-01 included 19 agents from 9 countries. A key feature of TAC is that

it required autonomous bidding agents to buy and sell multiple interacting goods in

auctions of different types. It is designed as a benchmark problem in the complex and

rapidly advancing domain of e-marketplaces, motivating researchers to apply unique

approaches to a common task. By providing a clear-cut objective function, TAC also

allows the competitors to focus their attention on the computational and game theoretic

aspects of the problem and leave aside the modeling and model validation issues that

invariably loom large in real applications of automated agents to auctions (see [15]).

Another feature of TAC is that it provides an academic forum for open comparison of

agent bidding strategies in a complex scenario, as opposed to other complex scenar-

ios, such as trading in real stock markets, in which practitioners are (understandably)

reluctant to share their technologies.

A TAC game instance pits eight autonomous bidding agents against one another.

Each TAC agent is a simulated travel agent with eight clients, each of whom would like

to travel from TACtown to Tampa and back again during a 5-day period. Each client is

characterized by a random set of preferences for the possible arrival and departure dates;



hotel rooms; and entertainment tickets. To satisfy a client, an agent must construct a

travel package for that client by purchasing airline tickets to and from TACtown and

securing hotel reservations; it is possible to obtain additional bonuses by providing

entertainment tickets as well. A TAC agent’s score in a game instance is the difference

between the sum of its clients’ utilities for the packages they receive and the agent’s

total expenditure. We provide selected details about the game next; for full details on

the design and mechanisms of the TAC server and TAC game, see http://tac.

eecs.umich.edu.

TAC agents buy flights, hotel rooms and entertainment tickets through auctions,

run from the TAC server at the University of Michigan. Each game instance lasts 12

minutes and includes a total of 28 auctions of 3 different types.

Flights (8 auctions): There is a separate auction for each type of airline ticket: to

Tampa (inflights) on days 1–4 and from Tampa (outflights) on days 2–5. There is

an unlimited supply of airline tickets, and their ask price changes randomly every

30 seconds or so, with an increasing bias upwards. When the server receives a bid

at or above the ask price, the transaction is cleared immediately at the ask price and

no resale is allowed.
Hotel Rooms (8): There are two different types of hotel rooms—the Tampa Towers

(TT) and the Shoreline Shanties (SS)—each of which has 16 rooms available on

days 1–4. The rooms are sold in a 16th-price ascending (English) auction, meaning

that for each of the 8 types of hotel rooms, the 16 highest bidders get the rooms at

the 16th highest price. For example, if there are 15 bids for TT on day 2 at $300,

2 bids at $150, and any number of lower bids, the rooms are sold for $150 to the

15 high bidders plus one of the $150 bidders (earliest received bid). The ask price

is the current 16th-highest bid and transactions clear only when the auction closes.

No bid withdrawal or resale is allowed, though the price of bids may be lowered

provided the agent does not reduce the number of rooms it would win were the

auction to close. One randomly chosen hotel auction closes at minutes 4–11 of the

12-minute game.
Entertainment Tickets (12): Alligator wrestling, amusement park, and museum tick-

ets are each sold for days 1–4 in continuous double auctions. Here, agents can buy

and sell tickets, with transactions clearing immediately when one agent places a

buy bid at a price at least as high as another agent’s sell price. Unlike the other auc-

tion types in which the goods are sold from a centralized stock, each agent starts

with a (skewed) random endowment of entertainment tickets.

In addition to unpredictable market prices, other sources of variability from game

instance to game instance are the client profiles assigned to the agents and the random

initial allotment of entertainment tickets. Each TAC agent has eight clients with ran-

domly assigned travel preferences. Clients have parameters for ideal arrival day, IAD ;

ideal departure day, IDD ; hotel premium, HP ; and entertainment values, EV for each

type of entertainment ticket.

The utility obtained by a client is determined by the travel package that it is given

in combination with its preferences. To obtain a non-zero utility, the client must be

assigned a feasible travel package consisting of an inflight on some arrival day AD, an

outflight on a departure day DD, and hotel rooms of the same type (TT or SS) for the



days in between. At most one entertainment ticket of each type can be assigned, and

no more than one on each day. Given a feasible package, the client’s utility is defined

as

1000 − travelPenalty + hotelBonus + funBonus

where

– travelPenalty = 100(|AD − IAD | + |DD − IDD |)
– hotelBonus = HP if the client is in the TT, 0 otherwise.
– funBonus = sum of EVs for assigned entertainment tickets.

A TAC agent’s score is the sum of its clients’ utilities in the optimal allocation of

its goods (computed by the TAC server) minus its expenditures.

TAC-01 was organized as a series of four competition phases, culminating with the

semifinals and finals on 14 October 2001 at the EC-01 conference in Tampa, Florida.

First, the qualifying round, consisting of about 270 games per agent, served to select the

16 agents that would participate in the semifinals. Second, the seeding round, consisting

of about 315 games per agent, was used to divide these agents into two groups of eight.

After the semifinals, on the morning of the the 14th consisting of 11 games in each

group, four teams from each group were selected to compete in the finals during that

same afternoon. The finals are summarized in Section 5.

4 ATTac-2001

This section presents the details of ATTac-2001’s algorithm. We begin with a brief de-

scription of the goods allocator, which is used as a subroutine throughout the algorithm.

We then present the algorithm in a top-down fashion.

4.1 Starting Point

A core subproblem for TAC agents is the allocation problem: finding the most profitable

allocation of goods to clients, G∗, given a set of owned goods and prices for all other

goods. We denote the value of G∗ (i.e. the score one would attain with G∗) as v(G∗).
The general allocation problem is NP-complete, as it is equivalent to the set-packing

problem [5]. However it can be solved tractably in TAC via integer linear program-

ming [19].

The solution to the integer linear program is a value-maximizing allocation of owned

resources to clients along with a list of resources that need to be purchased. Using the

linear programming package “LPsolve”, ATTac-2001 is usually able to find the globally

optimal solution in under less than 0.01 seconds on a 650 MHz Pentium II. However,

since integer linear programming is an NP-complete problem, some inputs can lead to

a great deal of search over the integrality constraints, and therefore significantly longer

solution times. When only v(G∗)is needed (as opposed to G∗itself), the upper bound

produced by LPsolve prior to the search over the integrality constraints, known as the

LP relaxation, can be used as an estimate. The LP relaxation can always be generated

very quickly4.

4 The LP is described in full detail in [19].



Note that this is not by any means the only possible formulation of the allocation.

[7] studied a fast, heuristic variant and found that it performed extremely well on a

collection of large, random allocation problems. [19] used a randomized greedy strategy

as a fallback for the cases in which the linear program took too long to solve.

Table 1 shows a high-level overview of ATTac-2001. The italicized portions are

described in the remainder of this section.

When the first flight quotes are posted:

• Compute G∗with current holdings and expected prices

• Buy the flights in G∗for which expected cost of postponing commitment exceeds the ex-

pected benefit of postponing commitment

Starting 1 minute before each hotel close:

• Compute G∗with current holdings and expected prices

• Buy the flights in G∗for which expected cost of postponing commitment exceeds ex-

pected benefit of postponing commitment (30 seconds)

• Bid hotel room expected marginal values given holdings, new flights, and expected hotel

purchases (30 seconds)

Last minute: Buy remaining flights as needed by G∗

In parallel (continuously): Buy/sell entertainment tickets based on their expected values

Table 1: ATTac-2001’s high-level algorithm. The italicized portions are described in the re-

mainder of this section.

4.2 Hotel Price Prediction

As discussed earlier, a central part of our strategy depends on the ability to predict

hotel prices at various points in the game. To do this as accurately as possible, we

used machine-learning techniques that would examine the hotel prices actually paid in

previous games to predict prices in future games.

There is bound to be considerable uncertainty regarding hotel prices since these

depend on many unknown factors, such as the time at which the hotel room will close,

who the other agents are, what kind of clients have been assigned to each agent, etc.

Thus, exactly predicting the price of a hotel room is hopeless. Instead, we regard the

closing price as a random variable that we need to estimate conditional on our current

state of knowledge (i.e., number of minutes remaining in the game, ask price of each

hotel, flight prices, etc.). We might then attempt to predict this variable’s conditional

expected value. However, our strategy requires that we not only predict expected value,

but that we also be able to estimate the entire conditional distribution so that we can

sample hotel prices.

To set this up as a learning problem, we gathered a set of training examples from

previously played games. We defined a set of features for describing each example that

together are meant to comprise a snap-shot of all the relevant information available

at the time each prediction is made. We used the following basic features: number of

minutes remaining in the game; the current ask price for rooms that have not closed



or the actual selling price for rooms that have; the closing time of each hotel room;5

all flight prices. To this basic list, we added a number of redundant variations that we

thought might help the learning algorithm. During the semifinals and finals when we

knew the identities of all our competitors, we also added features indicating the number

and identities of each of the players.

We trained specialized predictors for predicting the price of each type of hotel room.

We also created separate predictors for predicting in the first minute after flight prices

had been quoted but prior to receiving any hotel price information. We trained our

predictors to predict not the actual closing price of each room per se, but rather how

much the price would increase, a quantity that we thought might be more predictable.

From each of the previously played games, we were able to extract many examples,

in particular, for each minute of the game and for each room that had not yet closed, the

values of all of the features described above at that moment in the game, plus the actual

closing price of the room.

We solved this learning problem by first reducing to a multiclass, multi-label clas-

sification problem (or alternatively a multiple logistic regression problem), and by then

applying boosting techniques developed by Schapire and Singer [16] combined with a

modification of boosting algorithms for logistic regression proposed by Collins, Schapire

and Singer [2]. The resulting technique turns out to be a new supervised learning algo-

rithm for solving conditional density estimation problems. Full details of this machine

learning algorithm are presented in [17].

4.3 Cost of Additional Rooms

Our hotel price predictor described above assumes that ATTac-2001’s bids do not affect

the ultimate closing price (Assumption 2). This assumption holds in a large economy.

However in TAC, each hotel auction involved 8 agents competing for 16 hotel rooms.

Therefore, the actions of each agent had an appreciable effect on the clearing price:

the more hotel rooms an agent attempted to purchase, the higher the clearing price

would be, all other things being equal. This effect needed to be taken into account when

solving the basic allocation problem.

The simplified model used by ATTac-2001 assumed that the nth highest bid in

a hotel auction was roughly kc−n (over the appropriate range of n) for a universal

constant c ≥ 1 that was the same for all auctions, and another constant k which was

different for each room auction. Thus, if the predictor gave a price of p, ATTac-2001

only used this for purchasing two hotel rooms (the “fair” share of a single agent of the

16 rooms), and adjusted prices for other quantities of rooms by using c. For example,

if ATTac-2001 wanted to obtain 4 rooms, it would consider the predicted price to be

p = kc−16, the sixteenth highest price, and would take the clearing price to be kc−14 =

5 Although there is no problem extracting closing times of all rooms during training, during

actual play, we do not know closing times of rooms that have not yet closed. However, we

do know the exact distribution of closing times of all of the rooms that have not yet closed.

Therefore, to sample a vector of hotel prices, we can first sample according to this distribution

over closing times, and then use our predictor to sample hotel prices using these sampled

closing times.



pc2, since with the extra two units of demand from ATTac-2001, the clearing price will

be the the former fourteenth highest price (the total cost for all four rooms is of course

4pc2).

The constant c was calculated from the data of several hundred games during the

seeding round. In each hotel auction, the ratio of the 14th and 18th highest bids (reflect-

ing the most relevant range of n) was taken as an estimate of c4, and the (geometric)

mean of the resulting estimates was taken to obtain c = 1.35.

The LP allocator takes these price estimates into account when computing G∗, thus

tending to spread out ATTac-2001’s demand over the different hotel auctions.

4.4 Hotel Expected Marginal Values

Using the hotel price prediction module modified as described above, ATTac-2001 is

equipped to determine its bids for hotel rooms.

Every minute, for each hotel auction that is still open, ATTac-2001 assumes that

that auction will close next and computes the marginal value of that hotel room given

the predicted closing prices of the other rooms. If the auction does not close next, then

it assumes that it will have a chance to revise its bids. Since these predicted prices

are represented as distributions of possible futures, ATTac-2001 samples from these

distributions and averages the marginal values to obtain an expected marginal value.

Using the full minute between closing times for computation (or 30 seconds if there are

still flights to consider too), ATTac-2001 divides the available time among the different

open hotel auctions and generates as many price samples as possible for each hotel

room. In the end, ATTac-2001 bids the expected marginal values for each of the rooms.

The algorithm is described precisely and with explanation in Table 2.

– For each hotel (in order of increasing expected price):

– Repeat until time bound

1. Generate a random hotel closing order (only other open hotels)

2. Sample closing prices from predicted hotel price distributions

3. Given these closing prices, compute V0, V1, . . . Vn

− Vi ≡ v(G∗)if owning i of the hotel

− Estimate v(G∗)with LP relaxation

− Assume that no additional hotel rooms of this type can be bought

− For other hotels, assume outstanding bids above sampled price are already owned

(i.e. they cannot be withdrawn).

− Note that V0 ≤ V1 ≤ . . . ≤ Vn: the values are monotonically increasing since

having more goods cannot be worse in terms of possible allocations.

– The value of the ith copy of the room is the mean of Vi − Vi−1 over all the samples.

– Note further that V1 − V0 ≥ V2 − V1 . . . ≥ Vn − Vn−1: the values differences are mono-

tonically decreasing since each additional room will be assigned to the client who can derive

the most value from it.

– Bid for one room at the value of the ith copy of the room for all i such that the value is at

least as much as the current price. Due to the monotonicity noted in the step above, no matter

what the closing price, the desired number of rooms at that price will be purchased.

Table 2: The algorithm for generating bids for hotel rooms.



One additional complication regarding hotel auctions is that, contrary to one of our

assumptions, bids are not fully retractable: they can only be changed to $1 above the

current ask price. In the case that there are current active bids for goods that ATTac-

2001 no longer wants that are less than $1 above the current ask price, it may be ad-

vantageous to refrain from changing the bid in the hopes that the ask price will surpass

them: that is, the current bid may have a higher expected value than the best possible

new bid. To address this issue, ATTac-2001 samples from the learned price distribution

to find the average expected values of the current and potential bids, and only enters a

new bid in the case that the potential bid is better.

4.5 Expected Cost/Benefit of Postponing Commitment

ATTac-2001 makes flight bidding decisions based on a cost-benefit analysis: in partic-

ular, ATTac-2001 computes the incremental cost of postponing bidding for a particular

flight versus the value of delaying commitment. ATTac-2001 took the cost of post-

poning commitment to be the average predicted cost of the flight over the next flight-

lookahead whole minutes. It computed this cost based on a knowledge of the general

form of the price adjustment function and the observed price points thus far in the cur-

rent game. During TAC-01, ATTac-2001 started with the flight-lookahead parameter

set to 3 (i.e., cost of postponing is the average of the predicted flight costs 1, 2, and

3 minutes in the future). However, this parameter was changed to 2 by the end of the

finals in order to cause ATTac-2001 to delay its flight commitments further.

Fundamentally, the benefit of postponing commitments to flights is that additional

information about the eventual hotel prices becomes known. Thus, the benefit of post-

poning commitment is computed by sampling possible future price vectors and deter-

mining, on average, how much better the agent could do if it bought a different flight

instead of the one in question. If it is optimal to buy the flight in all future scenarios,

then there is no value to delaying the commitment and the flight is purchased immedi-

ately. However, if there are many scenarios in which the flight is not the best one to get,

the purchase is more likely to be delayed.

The algorithm for determining the benefit of postponing commitment is similar to

that for determining the marginal value of hotel rooms. It is detailed in Table 3.

4.6 Entertainment Expected Values

The core of ATTac-2001’s entertainment-ticket-bidding strategy is again a calculation

of the expected marginal values of each ticket. For each ticket, ATTac-2001 computes

the expected value of having one more and one fewer of the ticket. These calculations

give bounds on the bid and ask prices it is willing to post. The actual bid and ask prices

are a linear function of time remaining in the game: ATTac-2001 settles for a smaller

and smaller profit from ticket transactions as the game goes on. Details of the functions

of bid and ask price as a function of game time and ticket value remained unchanged

from the previous year’s agent [19].



– Assume we’re considering buying n flights of a given type

– Repeat until time bound

1. Generate a random hotel closing order (open hotels)

2. Sample closing prices from predicted price distributions (open hotels)

3. Given these closing prices compute V0, V1, . . . Vn

− Vi = v(G∗)if forced to buy i of the flight

− Estimate v(G∗)with LP relaxation

− Assume more flights can be bought at the current price

− Note that V0 ≥ V1 ≥ . . . ≥ Vn since it is never worse to retain extra flexibility.

– The value of waiting to buy copy i is the mean of Vi −Vi−1 over all the samples. If all price

samples lead to the conclusion that the ith flight should be bought, then Vi = Vi−1 and there

is no benefit to postponing commitment.

Table 3: The algorithm for generating value of postponing flight commitments.

5 Results

5.1 TAC-01 Competition

Of the 19 teams that entered the qualifying round, ATTac-2001 was one of eight agents

to make it to the finals on the afternoon of October 14th, 2001. The finals consisted

of 24 games among the same eight agents. Right from the beginning, it became clear

that livingagents [4] was the team to beat in the finals. They jumped to an early lead

in the first two games, and by eight games into the round, they were more than 135

points per game ahead of their closest competitor (SouthamptonTAC [9]). 16 games

into the round, they were more than 250 points ahead of their two closest competitors

(ATTac-2001 and whitebear).

From that point, ATTac-2001 which was continually retraining its price-predictors

based on recent games, began making a comeback. By the time the last game was to

be played, it was only an average of 22 points per game behind livingagents. It thus

needed to beat livingagents by 514 points in the final game to overtake it, well within

the margins observed in individual game instances. As the game completed, ATTac-

2001’s score of 3979 was one of the first scores to be posted by the server. The other

agents’ scores were reported one by one, until only the livingagents score was left. After

agonizing seconds (at least for us), the TAC server posted a final game score of 4626,

enough for livingagents to retain the lead.

After the competition, the TAC team at the University of Michigan conducted a

regression analysis of the effects of the client profiles on agent scores. Using data from

the seeding rounds, it was determined that agents did better when their clients had:

1. fewer total preferred travel days;
2. higher total entertainment values; and
3. a higher ratio of outer days (1 and 4) to inner (2 and 3) in preferred trip intervals.

Based on these significant measures, the games in the finals could be handicapped based

on each agent’s aggregate client profiles. Doing so indicated that livingagents’ clients

were much easier to satisfy than those of ATTac-2001, giving ATTac-2001 the highest

handicapped score. The final scores, and the handicapped scores, are shown in Table 4.

Complete results and affiliations are at http://tac.eecs.umich.edu.



Agent Mean Handicapped score

ATTac-2001 3622 4154

livingagents 3670 4094

whitebear 3513 3931

Urlaub01 3421 3909

Retsina 3352 3812

CaiserSose 3074 3766

SouthamptonTAC 3253∗ 3679

TacsMan 2859 3338

Table 4: Scores during the finals. Each agent played 24 games. ∗SouthamptonTAC’s score was

adversely affected by a game in which it crashed, leading to a loss of over 3000 points. Discount-

ing that game would have led to an average score of 3531.

5.2 Controlled Experiments

ATTac-2001’s success in the competition demonstrates its effectiveness as a complete

system. However, since the different agents differ along several dimensions, the com-

petition results cannot isolate the successful approaches. In this section we report on

controlled experiments designed to test the efficacy of ATTac-2001’s machine-learning

approach to price prediction.

Varying the Predictor In the first set of experiments, we attempted to determine how

the quality of ATTac-2001’s hotel price predictions affects its performance. To this

end, we devised seven price prediction schemes, varying considerably in sophistication

and inspired by approaches taken by other TAC competitors, and incorporated these

schemes into our agent. We then played these seven agents against one another repeat-

edly, with regular retraining as described below.

Following are the seven hotel prediction schemes that we used, in decreasing order

of sophistication:

– ATTac-2001s: This is the “full-strength” agent based on boosting that was used

during the tournament.

– ConditionalMeans: This agent samples prices from the empirical distribution of

prices from previously played games, conditioned on the closing time of the hotel

room. In other words, it collects all historical hotel prices and breaks them down

by the time at which the hotel closed (as well as room type, as usual). The price

predictor then simply samples from the collection of prices corresponding to the

given closing time.

– SimpleMean
s
: This agent samples prices from the empirical distribution of prices

from previously played games, without regard to the closing time of the hotel room

(but still broken down by room type).

– ATTac-2001ns ConditionalMeanns, SimpleMean
ns

: These agents predict in the

same way as their corresponding predictors above, but instead of returning a ran-

dom sample from the estimated distribution of hotel prices, they deterministically

return the expected value of the distribution.



– CurrentBid: This agent uses a very simple predictor that always predicts that the

hotel room will close at its current price.

In every case, whenever the price predictor returns a price that is below the current

price, we replace it with the current price (since prices cannot go down).

In our experiments, we added as an eighth agent EarlyBidder, inspired by the livin-

gagents agent. EarlyBidder used SimpleMean
ns

, determined an optimal set of pur-

chases, and then, right after the first flight quotes, placed bids for these goods at suffi-

ciently high prices to ensure that they would be purchased. It never revised these bids.

Each of these agents require training, i.e., data from previously played games. How-

ever, we are faced with a sort of “chicken and egg” problem: to run the agents, we need

to first train the agents using data from games involving the agent, but to get this kind

of data, we need to first run the agents. To get around this problem, we ran the agents

in phases. In Phase I, consisting of 126 games, we used training data from the seeding,

semifinals and finals rounds of TAC-01. In Phase II, lasting 157 games, we retrained the

agents once every six hours using all of the data from the seeding, semifinals and finals

rounds as well as all of the games played so far during the course of the experiment.

Finally, in Phase III, lasting 622 games, we continued to retrain the agents once every

six hours, but now using only data from games played during the course of the experi-

ment, and not including data from the seeding, semifinals and finals rounds. Note that

the although each game involves the same agents, most of the agents are continuously

adapting their price predictors. Thus the economy does not necessarily stabilize.

Agent Relative Score

Phase I Phase II Phase III

ATTac-2001ns 105.2 ± 49.5 (2) 131.6 ± 47.7 (2) 166.2 ± 20.8 (1)

ATTac-2001s 27.8 ± 42.1 (3) 86.1 ± 44.7 (3) 122.3 ± 19.4 (2)

EarlyBidder 140.3 ± 38.6 (1) 152.8 ± 43.4 (1) 117.0 ± 18.0 (3)

SimpleMean
ns

−28.8 ± 45.1 (5) −53.9 ± 40.1 (5) −11.5 ± 21.7 (4)

SimpleMean
s

−72.0 ± 47.5 (7) −71.6 ± 42.8 (6) −44.1 ± 18.2 (5)

Cond’lMeanns 8.6 ± 41.2 (4) 3.5 ± 37.5 (4) −60.1 ± 19.7 (6)

Cond’lMeans −147.5 ± 35.6 (8) −91.4 ± 41.9 (7) −91.1 ± 17.6 (7)

CurrentBid −33.7 ± 52.4 (6) −157.1 ± 54.8 (8) −198.8 ± 26.0 (8)

Table 5: The average relative scores for eight agents in the three phases of a controlled experiment

in which the hotel prediction algorithm was varied. The relative score of an agent is its score

minus the average score of all agents in that game. The agent’s rank within each phase is shown

in parentheses.

Table 5 shows how the agents performed in each of these phases. Much of what we

observe in this table is consistent with our expectations. As expected, the more sophisti-

cated boosting-based agents (ATTac-2001s and ATTac-2001ns) clearly dominated the

agents based on simpler prediction schemes. Moreover, with continued training, these

agents improved markedly relative to EarlyBidder. We also see the performance of the

simplest agent, CurrentBid, which does not employ any kind of training, significantly

decline relative to the other data-driven agents.



On the other hand, there are some phenomena in this table that were very surprising

to us. Most surprising was the failure of sampling to help. Our strategy relies heavily

not only on estimating hotel prices, but also on taking samples from the distribution

of hotel prices. Yet these results indicate that using expected hotel price, rather than

price samples, consistently performs better. We speculate that this may be because an

insufficient number of samples are being used (due to computational limitations) so that

the numbers derived from these samples have too high a variance. Another possibility

is that the method of using samples to estimate scores consistently overestimates the

expected score because it assumes the agent can behave with perfect knowledge for each

individual sample—a property of our approximation scheme. Finally, as our algorithm

uses sampling at several different points (computing hotel expected values, deciding

when to buy flights, pricing entertainment tickets, etc.), it is quite possible that sampling

is beneficial for some decisions while detrimental for others. In ongoing research, we

are conducting experiments to isolate these issues.

We were also surprised that ConditionalMeans and ConditionalMeanns eventually

performed worse than the less sophisticated SimpleMean
s

and SimpleMean
ns

. One

possible explanation is that the simpler model happens to give predictions that are just

as good as the more complicated model, perhaps because closing time is not terribly

informative, or perhaps because the adjustment to price based on current price is more

significant. The simpler model has the additional advantage that its statistics are based

on all of the price data, regardless of closing time, whereas the conditional model makes

each prediction based on only an eighth of the data (since there are eight possible clos-

ing times, each equally likely).

In addition to agent performance, it is possible to measure the inaccuracy of the

eventual predictions, at least for the non-sampling agents6. For these agents, we mea-

sured the root mean squared error of the predictions made in Phase III. These were:

56.0 for ATTac-2001ns, 66.6 for SimpleMean
ns

, 69.8 for CurrentBid and 71.3 for

ConditionalMeanns. Thus, we see that the more accurate the predictions (according

to this measure), the higher the score.

ATTac-2001 vs. EarlyBidder There is an interesting contrast between the two agents

that finished at the top of the standings in TAC-01. livingagents uses a simple open-loop

strategy, committing to a set of desired goods right at the beginning of the game, while

ATTac-2001 uses a closed-loop, adaptive strategy.

The open-loop strategy relies on the other agents to stabilize the economy and create

consistent final prices. In this sense, the open-loop strategy is a parasite strategy. Table 6

shows the results of running 27 games with 7 copies of the open-loop EarlyBidder.

In the experiments, one copy of ATTac-2001s is included for comparison. The price

predictors are all from Phase I in the preceding experiments. EarlyBidder’s high bidding

strategy backfires and it ends up overpaying significantly for its goods.

Compared to the open-loop strategy, ATTac-2001’s strategy is relatively stable against

itself. Its main drawback is that as it changes its decision about what goods it wants and

6 It is not clear how to measure the accuracy of the sampling agents’ predictors since they gen-

erate distributions, while only a single actual measurement (final price) is available.



Agent Score Utility

ATTac-2001 2431 ± 464 8909 ± 264

EarlyBidder(7) -4880 ± 337 9870 ± 34

Table 6: The results of running ATTac-2001 against 7 copies of EarlyBidder over the course

of 27 games.

as it may also buy goods to hedge against possible price changes, it can end up getting

stuck paying for some goods that are ultimately useless to any of its clients.

Table 7 shows the results of 7 copies of ATTac-2001 playing against each other and

one copy of the EarlyBidder7. Again, training is from the seeding round and finals of

TAC-01: the agents don’t adapt during the experiment. Included in this experiment are

three variants of ATTac-2001, each with a different flight-lookahead parameter (from

the section on “cost of postponing flight commitments”). There were three copies each

of the agents with flight-lookahead set to 2 and 3 (ATTac-2001(2) and ATTac-2001(3)

respectively), and 1 ATTac-2001 agent with flight-lookahead set to 4.

Agent Score Utility

EarlyBidder 2869 ± 69 10079 ± 55

ATTac-2001(2) 2614 ± 38 9671 ± 32

ATTac-2001(3) 2570 ± 39 9641 ± 32

ATTac-2001(4) 2494 ± 68 9613 ± 55

Table 7: The results of running the EarlyBidder against 7 copies of ATTac-2001 over the

course of 197 games. The three different versions of ATTac-2001 had slightly different flight-

lookaheads.

From the results in Table 7 it is clear that ATTac-2001 does better when committing

to its flight purchases later in the game (ATTac-2001(2) as opposed to ATTac-2001(4)).

In comparison with Table 6, the economy represented here does significantly better

overall. That is, having many copies of ATTac-2001 in the economy does not cause

them to suffer. However, in this economy, EarlyBidder is able to invade. It gets a sig-

nificantly higher utility for its clients and only pays slightly more than the ATTac-2001

agents (as computed by utility minus score)8.

The results in this section suggest that the variance of the closing prices is the largest

determining factor between the effectiveness of the two strategies (assuming nobody

else is using the open-loop strategy). We speculate that with large price variances, the

closed-loop strategy (ATTac-2001) should do better, but with small price variances,

the open-loop strategy could do better. The dynamics of TAC-01 seem to have been

7 EarlyBidderis somewhat reminiscent of the high-bidder agent in [19] in that it commits to an

itinerary and bids high enough to ensure its purchase. For expeiments involving 2–6 copies of

such bidders, see [19].
8 We suspect that were the agents allowed to retrain over the course of the experiments, ATTac-
2001 would end up improving as occurred in Phase III of the previous set of experiments. Were

this to occur, it’s possible that EarlyBidderwould no longer be able to invade.



somewhere in the middle ground. Both livingagents and ATTac-2001 had some good

games and some bad games, with their eventual scores being almost identical.

6 Related and Future Work

Although there has been a good deal of research on auction theory, especially from

the perspective of auction mechanisms [11], studies of autonomous bidding agents and

their interactions are relatively few and recent. TAC is one example. FM97.6 is another

auction test-bed, which is based on fishmarket auctions [14]. Automatic bidding agents

have also been created in this domain [6]. There have been a number of studies of agents

bidding for a single good in multiple auctions [10, 1, 12].

TAC-01 was the second iteration of the Trading Agent Competition. The rules of

TAC-01 are largely identical to those of TAC-00, with three important exceptions:

1. In TAC-00, flight prices did not tend to increase;

2. In TAC-00, hotel auctions usually all closed at the end of the game;

3. In TAC-00, entertainment tickets were distributed uniformly to all agents

While minor on the surface, these changes significantly enriched the strategic complex-

ity of the game. Nonetheless, the agent strategies put forth in TAC-00 [18] were impor-

tant precursors to the second year’s field, for instance as pointed out in Section 4.1.

Having demonstrated ATTac-2001’s success at bidding in simultaneous auctions

for multiple interacting goods in the TAC-01 domain, our ongoing research agenda

includes applying our approach to other similar domains. We particularly expect the

boosting approach to price prediction and the decision-theoretic reasoning over price

distributions to transfer to other domains.

One candidate domain is the U.S. Federal Communications Commission (FCC)

spectrum auctions [20]. Indeed, we have already begun exploring agent strategies in

this domain [3, 13]. Other candidate real-world domains include electricity auctions

and perhaps even travel booking on public e-commerce sites.
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