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Townsend’s model of attached eddies for boundary layers is revisited within a quasi-linear
approximation. The velocity field is decomposed into a mean profile and fluctuations.
While the mean is obtained from the nonlinear equations, the fluctuations are modelled
by replacing the nonlinear self-interaction terms with an eddy-viscosity-based turbulent
diffusion and stochastic forcing. Under this particular approximation, the resulting
fluctuation equations remain linear, enabling solutions to be superposed, the same
theoretical idea used in the original attached eddy model. By leveraging this feature,
the stochastic forcing is determined self-consistently by solving an optimisation problem
which minimises the difference between the Reynolds shear stresses from the mean and
fluctuation equations, subject to a constraint that the averaged Reynolds shear-stress
spectrum is sufficiently smooth in the spatial wavenumber space. The proposed quasi-
linear approximation is subsequently applied to channel flow for Reynolds number Reτ
ranging from 500 to 20,000. The best result is obtained when the Reynolds stress is
calculated by retaining only the two leading POD (proper orthogonal decomposition)
modes, which further filters out the modelling artifact caused by the unphysical stochastic
forcing. In this case, the resulting turbulence intensity profile and energy spectra exhibit
the same qualitative behaviour as DNS data throughout the entire wall-normal domain,
while reproducing the early theoretical predictions of the original attached eddy model
within a controlled approximation to the Navier-Stokes equations. Finally, the proposed
quasi-linear approximation reveals that the peak streamwise and spanwise turbulence
intensities may deviate slightly from the logarithmic scaling with the Reynolds number
for Reτ & 10, 000, and the supporting evidence is presented using the existing DNS data.

1. Introduction

A growing body of recent theoretical, numerical and experimental evidence has con-
sistently supported the notion that wall-bounded turbulent shear flows, such as channel,
pipe and boundary-layer flows, at high Reynolds numbers are composed of self-similar
energy-containing motions throughout the logarithmic region (see a recent review by
Marusic & Monty 2019): for example, statistical evidence supporting the theoretical
predictions of the original attached eddy model and its extensions (Marusic & Kunkel
2003; Tomkins & Adrian 2003; Jiménez & Hoyas 2008; Marusic et al. 2013; Baars &
Marusic 2020a,b), direct confirmations on the existence of self-similar energy-containing
motions (del Álamo et al. 2006; Hwang & Cossu 2010c, 2011; Lozano-Durán & Jiménez
2014; Hwang 2015; Hwang & Bengana 2016; Hellstöm et al. 2016; Hwang & Sung 2018)
and supporting mathematical evidence from analysis of the linearised and full Navier-
Stokes equations (del Álamo & Jiménez 2006; Hwang & Cossu 2010b; Klewicki 2013;
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Moarref et al. 2013; Hwang et al. 2016; Hwang 2016; Vadarevu et al. 2019; McKeon
2019; Eckhardt & Zammert 2018; Yang et al. 2019; Doohan et al. 2019).
All these features are consistent with the ‘attached eddy hypothesis’ of Townsend

(1956, 1976), which was introduced with the earlier observation of the linearly growing
mixing length for the logarithmic mean velocity (von Kármán 1930). Under this hypoth-
esis, Townsend (1956, 1976) developed a theoretical model predicting the wall-normal
distribution of turbulence intensity in the logarithmic region, which has been extended by
Perry, Marusic and co-workers (Perry & Chong 1982; Perry et al. 1986; Perry & Marusic
1995; Marusic & Kunkel 2003; Woodcock & Marusic 2015; Marusic & Monty 2019, and
many others). The two key steps of the original theoretical model of Townsend (1976)
are: 1) prescription of a model for the second-order cumulant of self-similar individual
energy-containing motions (i.e. attached eddies); 2) linear superposition of the cumulant
of attached eddies subject to constant Reynolds shear stress, an important asymptotic
feature in the logarithmic layer. Here, the most crucial modelling element for the resulting
theoretical prediction is the near-wall behaviour of the second-order cumulant of the
attached eddies. In the original theory, each of the attached eddies was assumed to
behave like an inviscid fluid motion. Therefore, a slip boundary condition was applied at
the wall for the wall-parallel velocity components, whereas a zero boundary condition was
employed for wall-normal velocity and Reynolds shear stress. This boundary behaviour
ultimately determines the wall-normal dependence of turbulence intensities (Perry &
Chong 1982): the ones for wall-parallel components show a logarithmically decaying wall-
normal dependence, whereas that for wall-normal component remains constant along the
wall-normal direction.
With the aforementioned evidence, the attached eddy hypothesis emerges as a central

platform for the statistical description of wall-bounded turbulence at high Reynolds num-
bers. Nevertheless, it should be realised that the original model of Townsend (1976) has
some important limitations. First, the theoretical development is based on a ‘prescribed
model’ for the second-order cumulant of individual attached eddies, and the prescription
was made with a ‘conceptual sketch’ of the experimental measurement availables at the
time: for example, the double-cone vortex model (Townsend 1976), the hairpin vortex
model (Perry & Chong 1982) and the spanwise alternating streamwise velocity structure
model (Woodcock & Marusic 2015). Ideally, such modelling would benefit from the
exact solutions to the Navier-Stokes equations recently found for individual self-similar
attached eddies (Eckhardt & Zammert 2018; Yang et al. 2019; Doohan et al. 2019).
However, these solutions cannot be combined with the original modelling approach of
Townsend (1976), because the nonlinear nature of the Navier-Stokes equations does not
admit any linear superposition of them to build another solution to the equations. Second,
the theoretical predictions of the attached eddy model are supposed to be valid only in
an approximate manner. This is essentially because the constant Reynolds shear stress
used in Townsend (1976) is only an asymptotic feature of the logarithmic layer in the
limit of infinite Reynolds number. In this respect, precisely to what extent the theoretical
predictions for the wall-normal profiles of turbulence intensities would quantitatively be
valid still remains an open question. Also, for the same reason, the extension of the theory
to viscous near-wall and wake outer regions is not straightforward. Finally, the previous
attached models (e.g. Townsend 1976; Perry & Chong 1982; Perry et al. 1986) assume
each attached eddy as an inviscid fluid motion. However, the lower half of the logarithmic
layer (also called the ‘mesolayer’) is under non-negligible influence of fluid viscosity (Afzal
1982; Sreenivasan & Sahay 1997; Wei et al. 2005), implying that Townsend’s theoretical
prediction would not be precisely valid in and below this region. Indeed, the logarithmic
wall-normal dependence of turbulence intensities of wall-parallel velocity components has
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been observed only in the upper half of the logarithmic layer (e.g. Marusic et al. 2013;
Lee & Moser 2015).
The objective of the present study is to revisit the attached eddy model of Townsend

(1976) by employing a controlled approximation to the Navier-Stokes equations, with a
hope to address the inherent limitations mentioned above. An ideal tool to achieve this
objective is quasi-linear approximation (QLA). In this approach, the given velocity field
is typically decomposed into two groups: one in which all nonlinear terms are kept, and
the other in which nonlinear self-interactions are ignored or suitably modelled (e.g. with
a stochastic forcing). In the earliest works, such as Malkus (1954, 1956) and Herring
(1963, 1964, 1966), the Reynolds decomposition was employed, and the nonlinear self-
interaction terms in the second group for fluctuations were simply ignored. The solution
to the quasi-linear system is then sought by requiring marginal stability for the linearised
equations of the second group. Similar ideas are shared by modern counterparts, but the
details of the decomposition and the required closure (like the marginal stability) have
been dealt with in a much more flexible manner, depending on the nature of the flow
considered. Such examples include stochastic structural stability theory (S3T) (Farrell &
Ioannou 2007, 2012), direct statistical simulation (DSS) (Marston et al. 2008; Tobias &
Marston 2013), self-consistent approximations (Mantic-Lugo et al. 2014; Mantic-Lugo &
Gallaire 2016), restricted nonlinear model (RNL) (Thomas et al. 2014, 2015; Bretheim
et al. 2015; Farrell et al. 2016), a quasilinear approximation applied to exact coherent
states (Pausch et al. 2019), and generalised quasi-linear approximations (GQL) (Marston
et al. 2016; Tobias & Marston 2017).
The central idea of the present study is to formulate a quasi-linear approximation in a

way that it can be directly comparable to the attached eddy model of Townsend (1976).
For this purpose, we consider a turbulent channel flow, a well-studied parallel wall-
bounded shear flow. The velocity is first decomposed into mean and fluctuations (i.e.
Reynolds decomposition). As in Malkus (1956), the nonlinear equations for the mean are
then fully retained, whereas those for the fluctuations are linearised around the mean.
However, unlike Malkus (1956), the typical mean velocity of turbulent channel flow is
linearly stable (Butler & Farrell 1993; Pujals et al. 2009), and, as such, his marginal
stability criterion is no longer applicable to this case. Instead, here, the nonlinear self-
interaction terms in the fluctuation equations are replaced with a minimal model which
mimics the driving mechanism of turbulent velocity fluctuation and the role of energy
cascade for turbulent dissipation. In particular, we consider a simple model given in
the form of an eddy-viscosity-type linear diffusion and a stochastic forcing, similarly to
previous linear analyses (Hwang & Cossu 2010a,b). We then determine the colour and
amplitude of the stochastic forcing such that a physically sound mean velocity, featured
with a logarithmic law, is obtained by formulating an optimisation problem (see §2.3).
The quasi-linear model formulated in the present study shares an important similarity

to the attached eddy model of Townsend (1976). The response of the linear fluctuation
model to isotropic stochastic forcing was previously shown to exhibit self-similar POD
(proper orthogonal decomposition) modes throughout the logarithmic region (Hwang
& Cossu 2010b). Given the ‘linear nature’ of the fluctuation equations in the quasi-
linear model, this implies that the colour and amplitude of the stochastic forcing can be
determined with a suitable ‘superposition’ of the responses to many stochastic forcings,
each of which is responsible for the generation of individual self-similar POD mode in the
logarithmic region. Further to this similarity, the proposed quasi-linear model provides
two important improvements for the original attached eddy model of Townsend (1976)
and its refinements (e.g. Perry & Chong 1982; Perry et al. 1986; Perry & Marusic 1995):
one is that the physical and statistical form of individual attached eddies is directly
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obtained from the Navier-Stokes equations within a controlled approximation, and the
other is that the theoretical formulation encompasses the entire wall-normal domain,
including the viscous inner and wake outer regions.

Despite these merits, the implementation of the proposed quasi-linear model needs
some extra care. This is essentially because the model for the self-interacting nonlinear
term, given in the form of an eddy-viscosity-type diffusion and a stochastic forcing,
induces an unphysical artefact. Indeed, the eddy viscosity model is only a crude approxi-
mation made to mimic the energy cascade and turbulent dissipation, and the spectrum of
the fluctuations induced by the delta-correlated stochastic forcing for the self-interacting
nonlinear term is evidently far from the one observed in the typical inertial subrange
of any turbulent flow. Therefore, to deliberately remove the unphysical artefact from
the considered model, we further employ the proper orthogonal decomposition (POD)
and construct the Reynolds stress by retaining a few leading POD modes, which better
represent energy-containing motions (i.e. attached eddies scaling with distance from the
wall). We note that all previous attached eddy models similarly ignore the contribution
to the energy cascade and turbulent dissipation from the wall-detached motions (Marusic
& Monty 2019). With this improvement, we shall see that the turbulence intensity and
spectra of the quasi-linear model show exactly the same qualitative behaviour as obtained
using direct numerical simulation (DNS) (see §3.2).

Finally, it should be stressed that the quasi-linear model proposed in the present study
is primarily aimed to improve the classical attached eddy model using the Navier-Stokes
equations, while preserving its core theoretical structure (i.e. superposition of self-similar
attached eddies subject to the given Reynolds shear stress). The present quasi-linear
model therefore only offers a description for ‘statistically steady turbulent states’ like
the original attached eddy model and its variants (e.g. Townsend 1976; Perry & Chong
1982; Perry et al. 1986). In this respect, it should not be directly compared to the
previous quasi-linear models such as S3T, RNL and GQL in terms of the dynamics,
as these models are designed to offer a description for ‘statistical state dynamics’ of
‘self-sustaining’ turbulent flows.

The paper is organised as follows. In §2, the quasi-linear model is introduced, and the
optimisation problem for the stochastic forcing is subsequently formulated. In §3, the
turbulence intensity and spanwise wavenumber spectra obtained by numerically solving
the optimisation problem are shown and compared with those from DNS of Hoyas &
Jiménez (2006) and Lee & Moser (2015). The paper concludes in §4 with some remarks
on the proposed QLA in comparison with the attached eddy model of Townsend (1976).

2. Problem formulation

2.1. Quasi-linear approximation

We consider a pressure-driven turbulent flow within a infinitely long and wide plane
channel, in which x, y and z are the streamwise, wall-normal, and spanwise directions,
respectively. The height of the channel is 2h, and the lower and upper walls are located
at y = 0 and y = 2h, respectively. The velocity is denoted by u = (u, v, w), where u, v,
and w are its streamwise, wall-normal and spanwise components, respectively. For the
purpose of applying a quasi-linear approximation, the velocity is decomposed into mean
and fluctuations (i.e. Reynolds decomposition): u = U+u′, where U = (U(y), 0, 0) is the
time-averaged mean velocity and u′ = (u′, v′, w′) is the fluctuating velocity. The equation
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for the mean streamwise velocity U(y) is then given by

ν
dU

dy
− u′v′ =

τw
ρ

(
1−

y

h

)
, (2.1a)

where the overbar denotes the time average, ν is the kinematic viscosity, τw the mean
wall shear stress and ρ the fluid density. The equations for fluctuating velocity are written
as

∂u′

∂t
+ (U · ∇)u′ + (u′ · ∇)U = −

1

ρ
∇p′ + ν∇2u′ +N (2.1b)

with

N = −∇ ·
(
u′u′ − u′u′

)
, (2.1c)

where t is the time and p′ the pressure fluctuation.
It is evident that the Reynolds decomposition itself does not alleviate the technical

difficulties in dealing with the original equations of motion. Therefore, we now proceed
by making an approximation to (2.1b). In the early work of Malkus (1956), the nonlinear
term N in (2.1b) was simply ignored, and it was subsequently hypothesized that the
solution to (2.1) is determined in a way that (2.1b) becomes marginally stable with
the mean from (2.1a). However, the marginal stability criterion is not applicable in the
present study because (2.1b) with its mean velocity of turbulent channel flow is linearly
stable (Butler & Farrell 1993; Pujals et al. 2009). Furthermore, if N in (2.1b) is ignored
completely, (2.1b) does not provide any mathematical mechanisms for inter-scale energy
transport (e.g. interactions between Fourier modes). Indeed, it has been shown that the
most crucial inter-scale energy transport mediated by N is the energy cascade (Cho
et al. 2018; Lee & Moser 2019), the fundamental mechanism of turbulence dissipation
(Kolmogorov 1941, 1991).
In the present study, we therefore consider a model for N which incorporates the role

of energy cascade as well as the driving mechanism of non-trivial fluctuating velocity in
a minimal manner:

N = ∇ · (νt∇u′) + f ′, (2.2a)

where νt is given by

νt(η) =
ν

2

{
1 +

κ2Re2τ
9

(1− η2)2(1 + 2η2)2 × {1− exp[(|η| − 1)Reτ/A]}
2
}1/2

−
ν

2
(2.2b)

with η = (y − h)/h, κ = 0.426 and A = 25.4 (del Álamo & Jiménez 2006), following
the empirical expression of Cess (1958), and f ′ is a stochastic forcing, the colour and
amplitude of which will be determined in §2.3. This model was originally introduced to
examine the response of the linear part of (2.1b) (Hwang & Cossu 2010a,b; Willis et al.
2010). The eddy viscosity here is essentially ad hoc, as it is introduced to mimic the
nonlinear interactions primarily related to energy cascade and turbulent dissipation (for
a detailed discussion, see Hwang 2016). Depending on the problem of interest, it may
not be adopted (e.g. McKeon & Sharma 2010), but recent studies have shown that its
use considerably improves the linear-operator-based descriptions for turbulence statistics
and spectra (Hwang 2016), flow-control modelling (Moarref & Jovanović 2012), state
estimations (Illingworth et al. 2018; Morra et al. 2019; Madhusudanan et al. 2019; Towne
et al. 2020) and impulse response (Vadarevu et al. 2019) at high Reynolds numbers.

2.2. Stochastic response of the linear model for turbulent fluctuation

Before the problem of interest is formulated, it is useful to briefly review the stochastic
response of the linear model for fluctuating velocity. First, let us start from the compu-
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Figure 1. Scaling of the model mean velocity: (a) U+(y+); (b) ∆U+(y/h)(≡ U+
c − U+(y/h)).

Here, Reτ = 500, 1000, 2000, 5000, 10000, 20000. Here, the dashed line indicates a log-law given
by U+(y+) = 1/0.426 log y+ + 5.2.

tation of mean velocity. In the present study, the eddy viscosity in (2.2b) is given for the
fluctuation equations, but it was originally introduced to model the Reynolds shear stress
in the mean equation (2.1a) (e.g. Cess 1958). Therefore, assuming that the eddy viscosity
in (2.2b) can also be used for the mean equation (2.1a) with the following closure,

−u′v′ = νt
dU

dy
, (2.3)

the mean velocity U(y) is obtained by solving (2.1a). Here, it should be noted that the
closure (2.3) provides information only for the shear component of Reynolds stress. In
§2.3, we shall utilise this feature to recover the other components of Reynold stress and
their spanwise wavenumber spectra with the fluctuation equations (2.1b). Figure 1 shows
the computed mean velocity in a range of the friction Reynolds number Reτ (≡ uτh/ν
where uτ =

√
τw/ρ). Although the computed mean velocity is obtained with a crude

model for Reynolds shear stress (2.3), it firmly satisfies the law of the wall (figure 1a)
and the velocity defect law (figure 1b) with a well-developed logarithmic layer.

Once the mean velocity U(y) is obtained, the stochastic response of (2.1b) with the
model of N in (2.2) can be computed. Let us consider the following stochastic forcing,
white in both time and space:

〈f ′(t, x, y, z)f ′
H
(t′, x′, y′, z′)〉 = Iδ(x − x′)δ(y − y′)δ(z − z′)δ(t− t′), (2.4)

where I ∈ R
3×3 (R is the set of real numbers) denotes the identity matrix, 〈·〉 an ensemble

average, and the superscript H the complex conjugate transpose. Since (2.1b) with the
model in (2.2) are linear and autonomous in the wall-parallel directions, it is convenient
to take the following Fourier transform: i.e.

û′(t, y; kx, kz) =

∫ ∞

−∞

∫ ∞

−∞

u′(t, x, y, z)e−i(kxx+kzz)dxdz, (2.5)

f̂ ′(t, y; kx, kz) =

∫ ∞

−∞

∫ ∞

−∞

f ′(t, x, y, z)e−i(kxx+kzz)dxdz,

where the superscript ·̂ indicates the Fourier-transformed state, and kx and kz are the
streamwise and spanwise wavenumbers, respectively. In the Fourier space, (2.4) is then
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Figure 2. Response of the linear model to white noise in (2.4) at Reτ = 104

(Hwang & Cossu 2010b): (a) premultiplied energy of all the POD modes, kzhV (kz)/u
2
τ

(kxh = 0.0, 0.1, 0.2, 0.5, 1, 2, 5; the arrow indicates the increasing direction of kx);
(b-d) cross-streamwise view of the leading POD mode at k+

z = 0.001, 0.002, 0.005
(λ+

z = 6283, 3141, 1256) from left to right. In (b-d), the contours indicate streamwise velocity, and
the vectors are cross-streamwise velocities. The velocity field of each POD mode is normalised
by its maximum streamwise velocity.

written as

〈f̂ ′(t, y; kx, kz)f̂ ′
H
(t′, y′; kx, kz)〉 = Iδ(y − y′)δ(t− t′). (2.6)

Once (2.1b) is solved in the Fourier space with the stochastic forcing (2.6), the power- and
cross-spectral densities of velocity fluctuations are computed from the following spectral
covariance matrix:

Φuu(y, y
′, kx, kz) ≡ 〈û′(t, y; kx, kz)û′

H
(t, y′; kx, kz)〉. (2.7)

Here, we note that the time dependence in Φuu is now dropped because the ensemble
average is equivalent to a time average in a statistically stationary setting, such as the
present turbulent channel flow. The covariance matrix of velocity fluctuations is finally
obtained by integrating the spectral covariance matrix over the Fourier space:

〈u′u′H〉(y, y′) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞

Φuu(y, y
′; kx, kz) dkxdkz , (2.8)

from which the Reynolds stress from the stochastic response is given with y = y′. We note
that, in (2.8), the dependence of the covariance matrix on the streamwise and spanwise
coordinates is dropped with the ensemble average.
The spectral covariance matrix of velocity fluctuations offers an important physical

insight into the nature of the stochastic response. Let us compute POD modes in the
Fourier space from the spectral covariance matrix:

∫ 2h

0

Φuu(y, y
′, kx, kz)ũj,POD(y

′; kx, kz) dy
′ = σj(kx, kz)ũj,POD(y; kx, kz), (2.9)
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where σj(kx, kz) represents the energy of each POD mode sorted in descending order.
The energy of all the POD modes, obtained by integrating over the wall-normal direction,
is given by

V (kx, kz) =

∫ 2h

0

trace[Φuu(y, y, kx, kz)] dy =

∞∑

j=1

σj(kx, kz). (2.10)

The energy V and the leading POD mode for each kx and kz are shown in figure 2
by replotting the data at Reτ = 10, 000 in Hwang & Cossu (2010b). In figure 2(a), the
premultiplied energy kzV for several kx is plotted to show its density over the logarithmic
kz-axis. The premultiplied energy exhibits two peaks at λz(≡ 2π/kz) = 3.5h and λ+

z = 80
(the superscript + denotes normalisation made with uτ and δν(≡ ν/uτ )), which scale well
in outer and inner units, respectively. The outer peak is associated with the generation
of very-large-scale motions (Kim & Adrian 1999; del Álamo & Jiménez 2003; Hutchins
& Marusic 2007), whereas the inner peak well represents the near-wall streaks (Kline
et al. 1967). Between the two, the premultiplied energy is approximately constant, and
the leading POD modes obtained in this range of spanwise wavenumbers are self-similar
with respect to λz , as shown in figures 2(b-d). Each of the leading POD modes are in the
form of strong streamwise velocity streaks with weak streamwise vortices due to the lift-
up effect (see also Hwang & Cossu 2010b). More quantitative scaling of these self-similar
POD modes can be found in figure 4 of Hwang & Cossu (2010b). We also note that
the leading POD modes here are almost identical to linear transient-growth modes and
the resolvent modes (see Hwang & Cossu 2010a,b), and a comprehensive discussion on
the scaling of the linear modes related to the logarithmic region can be found in Hwang
(2016).

2.3. Self-consistent determination of stochastic forcing

While the stochastic response discussed in §2.2 provides a useful physical insight into
the origin of coherent structures in turbulent channel flow, the linearised fluctuation
equations (2.1b) with the stochastic forcing of (2.4) do not necessarily generate the
Reynolds shear stress given by the mean equation (2.1a). However, it is important to
realise that the mean and fluctuation equations (2.1a) and (2.1b) should share the same
Reynolds shear stress, because they are derived from the same equations (i.e. the Navier-
Stokes equations). This issue was evidently ignored in §2.2 as well as in the previous
studies (e.g. Hwang & Cossu 2010b).
Perhaps the easiest way to resolve this issue would be to prescribe a carefully-designed

set of colour and amplitude of the stochastic forcing and then solve (2.1a) and (2.1b)
simultaneously. However, in practice, there are too many possible choices for the colour
and amplitude of the forcing to construct a statistically informative quasi-linear model. To
overcome this difficulty, here we formulate an inverse problem under the assumption that
the physically desirable mean velocity is available from an experimental measurement or
from an empirical model shown in figure 1. With this setting, the Reynolds shear stress
is obtained from the given mean velocity by solving (2.1a). Then, for the fluctuation
dynamics to be consistent with the mean equation (2.1a), this Reynolds shear stress
must be identical to the one from the fluctuation equations (2.1b). This naturally builds
a necessary condition for the physically desirable stochastic forcing. Using this condition,
we will now formulate an optimisation problem, which minimises the difference between
the Reynolds shear stresses from (2.1a) and (2.1b), to determine the colour and amplitude
of the stochastic forcing.
For simplicity, we start by considering a stochastic forcing with the following form of
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Reτ Ny Nkz Nβ γopt
∥

∥u′v′ − 〈u′v′〉
∥

∥

2

Q

∥

∥u′v′ − 〈u′v′〉
∥

∥

2

L2

NPOD

500 129 60 100 4.9 × 10−7 6.1× 10−6 6.4 × 10−5 2
1000 257 66 100 2.8 × 10−7 2.7× 10−6 4.6 × 10−5 2
2000 257 71 100 2.3 × 10−7 1.7× 10−6 4.6 × 10−5 2
5000 385 76 100 2.0 × 10−7 1.5× 10−5 2.3 × 10−3 1149 (all)
5000 385 76 100 1.2 × 10−7 1.2× 10−5 5.8 × 10−3 8
5000 385 76 100 7.4 × 10−8 1.0× 10−6 4.7 × 10−5 2
10000 513 87 100 3.8 × 10−8 1.0× 10−6 3.2 × 10−5 2
20000 769 91 100 1.7 × 10−8 1.1× 10−6 2.9 × 10−5 2

Table 1. Computational parameters and the optimisation errors in the present study: Ny

is the number of wall-normal grid points, Nkz the number of spanwise wavenumbers spaced
logarithmically along the kz axis, and ‖·‖L2

is the standard L2 norm.

spectral covariance matrix:

〈f ′(t, y; kx, kz)f
′H(t′, y′; kx, kz)〉 = 2πδ(kx)W (kz)Iδ(y − y′)δ(t− t′), (2.11)

where W (kz) > 0 is a ‘unknown’ real-valued weight function, through which the colour
in the spanwise direction and amplitude of the stochastic forcing will be determined.
Here, δ(kx) is introduced to consider the streamwise Fourier modes for kx = 0 only.
It should be mentioned that the assumption of considering only such Fourier modes
is expected to yield highly anisotropic turbulence intensities strongly skewed to the
streamwise component (see §3.1). This is because the ignored streamwise Fourier modes
with kx 6= 0 plays the primary role in transporting turbulent kinetic energy from the
streamwise to cross-streamwise components through the streamwise pressure-strain term
(Cho et al. 2018). In real flow, this mechanism involves streak instability (or related
transient growth), which has a strong correlation with activation of the streamwise
pressure strain (Cho et al. 2016), and it is the key process for the generation of the cross-
streamwise velocity components in the self-sustaining process (Hwang & Bengana 2016;
de Giovanetti et al. 2017). While it would be ideal to incorporate this mechanism into the
present quasi-linear framework, the task does not appear to be simple to achieve, because
the streak instability is a nonlinear process which requires coupling between the Fourier
modes through (2.1c). If this nonlinear coupling is implemented, the superposition made
available through the model of nonlinearity in (2.2) would not be possible, breaking the
entire quasi-linear framework purposely developed to mimic the original attached eddy
model. However, this does not imply that the streamwise Fourier modes for kx 6= 0 cannot
be used for the modelling purpose – they can still be used simply to mimic the statistical
features of the streak instability without properly resolving its dynamics, although this
modelling effort will be left for a future study to retain the simplicity of the present
quasi-linear framework.

Since (2.1b) with N in (2.2) is linear, the Reynolds stress tensor from the stochastic
forcing of (2.11) is given by

〈u′u′H〉(y) =
1

2π

∫ ∞

−∞

W (kz)Φuu(y, y; kx = 0, kz) dkz, (2.12)
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and the resulting Reynolds shear stress is

〈u′v′〉(y) =
1

π

∫ ∞

0

W (kz)Φuv(y, y; kx = 0, kz) dkz, (2.13)

=
1

π

∫ ∞

−∞

eβW (β)Φuv(y, y; kx = 0, β) dβ,

where β ≡ log(kz) and Φuv is the cross-spectral density component of Φuu for the
Reynolds shear stress. In turbulent channel flow, the smallest coherent structures are
typically characterised by the spanwise length scale of λ+

z ≃ 100 (Kline et al. 1967),
whereas the largest ones are featured with λz/h ≃ 1.5 (del Álamo & Jiménez 2003).
To capture the wide range of the length scales of interest, the weight function W (kz) is
defined for λz ∈ [10δν, 10h], while setting it to be zero at the boundaries. Without loss
of generality, the weight function in the β-coordinate is written as

W (kz(β)) =

Nβ∑

n=1

an sin(nπξ(β)) with ξ(β) =
β − βl

βu − βl
, (2.14)

where Nβ is the number of the sine polynomials, an the polynomial coefficient, βl =
log(π/(5δν)) and βu = log(π/(5h)). The Reynolds shear stress generated by (2.1b) is
then given by

〈u′v′〉(y) = Ha, (2.15a)

where a = [a1 a2 a3 ... aNβ
]T and

H =
1

π

∫ ∞

−∞

eβ




sin(πξ(β))Φuv(y, y; kx = 0, β)
sin(2πξ(β))Φuv(y, y; kx = 0, β)

...
sin(Nβπξ(β))Φuv(y, y; kx = 0, β)




T

dβ. (2.15b)

Now, let us formulate the optimisation problem to determine W (β), the minimiser of
the difference between u′v′(y) from (2.1a) and 〈u′v′〉(y) from (2.15a). Here, it is important
to note that a physically relevant W (β) must be sufficiently smooth. To ensure this
property of W (β), the following optimisation problem is solved first:

min
a

∥∥u′v′(y)−Ha
∥∥2
Q
+ γaTMa (2.16a)

subject to

W (kz(β)) > 0 for all β ∈ [βl, βu], (2.16b)

where γ > 0 is the optimisation penalty balancing the first and second terms in (2.16a),

M = diag[eζ e2ζ e3ζ .... eNβζ ] with ζ = 0.5 chosen empirically, and ‖·‖2Q =
∫ 2h

0
(·)2Q(y) dy

with Q(y) = (y/h− 1)6 introduced for a better optimisation result in the near-wall and
logarithmic regions (for a detailed discussion on the choice of ζ and Q(y), see Appendix
A). Here, it is evident that, if γ → ∞, the solution to (2.16) would ensure an exponential
decay of |an| with increasing n, resulting in a sufficiently smooth W (kz(β)) with respect

to kz (or β). However, in this case,
∥∥u′v′(y)−Ha

∥∥2

Q
in (2.16a) can easily be large,

thereby not achieving the desired goal of the optimisation. By contrast, if γ → 0, the

solution to (2.16) would yield a sufficiently small
∥∥u′v′(y)−Ha

∥∥2
Q
, but it would not

necessarily guarantee a sufficiently smooth W (kz(β)) – such a situation can emerge
especially if Nβ → ∞. In practice, it has been found that setting γ → 0 with finite

Nβ also results in a unsatisfactorily large value of
∥∥u′v′(y)−Ha

∥∥2
Q

(see also figure 3b).
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(NPOD = 2): (a) |an| for W (β) with respect Nβ (ζ = 0.5); (b) J vs γ where J =
∥

∥u′v′ −Ha
∥

∥

2

Q
.

In (a), - - - -, Nβ = 30; , Nβ = 50; , Nβ = 100.

Based on this observation, here we solve another auxiliary optimisation problem which
seeks the minimiser γ for the difference between u′v′(y) and 〈u′v′〉(y): i.e.

γopt = argmin
γ

∥∥u′v′(y)−Ha
∥∥2
Q
. (2.17)

The weight function W (kz) in (2.11) is finally obtained from the solution to (2.16) for
γ = γopt.
The overall solution procedure for the entire optimisation problem defined in (2.16)

and (2.17) is given as follows:
(i) Choose γ and solve the optimisation problem (2.16);

(ii) For the chosen γ, evaluate the value of
∥∥u′v′(y)−Ha

∥∥2
Q
with the solution obtained

from (i);
(iii) Guess a new γ and repeat (i) and (ii), until γopt is found by monitoring the value

of
∥∥u′v′(y)−Ha

∥∥2
Q

at each iteration step (see also §2.4 and figure 3b).

Here, the steps (ii) and (iii) solve the optimisation problem (2.17). The details of the
numerical method for each step will be presented in §2.4.

2.4. Numerical methods

The computation of the spectral covariance matrix is carried out by formulating the
linearised Navier-Stokes equations (2.1b) with the model (2.2) in Fourier space in the
form of the Orr-Sommerfeld-Squire system:

∂q̂′

∂t
= Aq̂′ +Bf̂ ′, (2.18a)

where q̂′ = [v̂′, ω̂′
y]

T and

A =

[
∆−1LOS 0
−iβDU LSQ

]
, B =

[
−ikx∆

−1D −k2∆−1 −ikz∆
−1D

ikz 0 −ikx

]
(2.18b)

with

LOS = −ikx(U∆−D2U) + νT∆
2 + 2(DνT )∆D + (D2νT )(D

2 + k2), (2.18c)

LSQ = −ikxU + νT∆+ (DνT )D. (2.18d)
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Here, ω̂y is the wall-normal vorticity of û(y, t), ∆ = D2 − k2, k2 = k2x + k2z , D denotes

∂/∂y. Using q̂′, the velocity fluctuation is obtained from

û′ = Cq̂′, C =
1

k2




ikxD −ikz
k2 0

ikzD ikx


 . (2.18e)

Following the adjoint-based formulation in Balakrishnan (1981), the spectral covariance
matrix of the stochastic response is given as the solution to the following algebraic
Lyapunov equation (for further details on this approach, see also the recent review by
Zare et al. 2020):

AX∞ +X∞A† +BB† = 0 (2.19a)

with

X∞ŝ =

∫ 2h

0

〈q̂′(t, y; kx, kz)q̂′
H
(t, y′; kx, kz)〉ŝ(y

′) dy′, (2.19b)

where ŝ is an arbitrary two-dimensional complex vector function, † indicates the adjoint

with respect to the standard inner product,
∫ 2h

0
m̂H(y)n̂(y)dy with m̂ and n̂ being

arbitrary three-dimensional complex vector functions. The solution to (2.19) yields the
following form for the spectral covariance matrix:

∫ 2h

0

Φuu(y, y
′, kx, kz)m̂(y′)dy′ = CX∞C†m̂. (2.20a)

It is also useful to write the spectral covariance matrix in terms of the POD modes:

Φuu(y, y
′, kx, kz) =

NPOD∑

j=1

σj(kx, kz)ũj,POD(y; kx, kz)ũ
H
j,POD(y

′; kx, kz), (2.20b)

whereNPOD is the number of the PODmodes used. In §3.1, we shall see that (2.20b) offers
an extra design choice for the spectral covariance matrix. In particular, this expression
conveniently enables the suppression of an unphysical artefact in the spectral covariance
matrix of the present quasi-linear model caused by the crude representation of N in (2.2).
The spectral covariance matrix is computed using the numerical solver developed in

Hwang & Cossu (2010a,b). The wall-normal direction is discretised with a Chebyshev
collocation method (Weideman & Reddy 2000). The resulting discretised Lyapunov
equation in (2.19) is solved using the function lyap in MATLAB. The sampling of
the spanwise wavenumber is made to be spaced logarithmically in the kz-coordinate
(i.e. uniformly in the β-coordinate), and the integrals in (2.15b) are evaluated in the β-
coordinate using the trapezoidal rule. The sampling resolution is maintained to be lower
than ∆β = 0.05, so that the errors from the numerical integrations do not exceed more
than O(∆β2). The numbers of the wall-normal grid points and the sampling points in
the spanwise wavenumber space are summarised in table 1.
It is not difficult to recognise that the optimisation (2.16) is a standard quadratic

programming problem (Luenberger & Ye 2016) and is solved using the function quadprog

in MATLAB. The effect of the number of sine polynomials Nβ is also tested, as reported
in figure 3(a). As expected from the form of B in (2.16a), the absolute value of the
polynomial coefficients |an| decays exponentially with n. Good convergence of W (kz) is
typically obtained for Nβ & 30, and Nβ = 100 is used in the present study. The effect
of γ in the penalty term is also examined, as shown in figure 3(b). As discussed in §2.3,

there exists an optimal value of γ (i.e. γopt) which minimises
∥∥u′v′ −Ha

∥∥2
Q
. The value

of γopt is found using a simple line search over the logarithmic γ-axis.
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Figure 4. Quasi-linear approximations at Reτ = 5000: (a) W (kz) computed with (2.16) and
(2.17); (b) comparison of the Reynolds shear stress from the mean equation (2.1a) and the
fluctuation equations (2.1b). Here, , −u′v′ from (2.1a); - - - -, −〈u′v′〉 from (2.13) with
NPOD = 2; , with NPOD = 8; , with NPOD = 1149.

3. Results and discussion

3.1. Quasi-linear approximation at Reτ = 5000

The proposed QLA model is solved at Reτ = 5000, and its performance is first assessed
with the DNS data of Lee & Moser (2015) at Reτ = 5186. The computed weight function
W (kz) and the resulting Reynolds shear stress are shown in figure 4. The weight function
W (kz) is found to be sufficiently smooth and well manifested within the interval between
λ+
z = 10 and λz/h = 10 (figure 4a), indicating that the domain of W (kz) is sufficiently

wide in the kz-axis. The effect ofNPOD used for the construction of the spectral covariance
matrix (see (2.20b)) is also examined for NPOD = 2, 8, 1149 (note that NPOD must
be an even number for sufficietly small NPOD because the even symmetry about the
midplane yields two symmetric POD modes located in the lower and upper part of the
channel, respectively; see Hwang & Cossu 2010b). It is seen that NPOD does not affect
the smoothness of W (kz) (figure 4a) nor its overall shape. For all NPOD considered, the
Reynolds shear stress obtained with the computed W (kz) also exhibits good agreement
with the one from the mean equation (2.1a). In particular, the best agreement is obtained
when NPOD = 2 (table 1).
Figure 5 compares the Reynolds stresses of the present QLA with those of DNS by Lee

& Moser (2015). For all the cases of NPOD considered, the Reynolds shear stress from
the fluctuation equations (2.1b) shows good agreement with that of DNS (figure 5a),
indicating that the model mean velocity shown in figure 1 is a reasonable approximation
to the real one at least aroundReτ = 5000 (note that the model mean velocity is originally
tuned to have the best match with DNS data at Reτ = 2003; see del Álamo & Jiménez
2006). As expected, the velocity fluctuations of the present QLA show non-negligible
differences from those of DNS. In particular, they exhibit the typical features observed
in different types of QLAs, such as S3T (Farrell & Ioannou 2012) and RNL (Thomas et al.
2015; Farrell et al. 2016): the streamwise velocity fluctuation of the present QLA tends
to be larger than that of DNS (figure 5b), whereas its wall-normal and spanwise ones are
smaller than those of DNS (figures 5c,d). This is, however, not surprising at least in the
present QLA because this appears to be a consequence of ignoring all the streamwise
varying Fourier modes (see (2.11)). Indeed, in real flow, the ignored streamwise Fourier
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′
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′

rms/uτ . Here, , DNS;
- - - -, NPOD = 2; , NPOD = 8; , NPOD = 1149 (all).

modes for kx 6= 0 are responsible for resolving the streak instability in the self-sustaining
process (Hwang & Bengana 2016; Cassinelli et al. 2017; de Giovanetti et al. 2017),
and they play a key role in transferring the turbulent kinetic energy produced at the
streamwise component to the other components (Cho et al. 2018). As NPOD is increased,
the velocity fluctuations tend to be more isotropic and their anisotropic extent becomes
closer to that of DNS. However, this does not necessarily imply that the increase of NPOD

improves the proposed QLA – this is simply because the higher-order POD modes are
more isotropic than the lower-order ones. In fact, both the wall-normal and spanwise
velocity fluctuations also develop a non-physical peak in the outer region for NPOD > 8
(y+ > 2000 in figures 5c,d).
To further understand the effect of NPOD on the velocity fluctuations, spanwise

wavenumber spectra of the wall-normal velocity of DNS are further compared with those
of QLA. The energy-containing part of the spectra of DNS shows good alignment along
a ridge scaling with y linearly (y = 0.4λz in figure 6a), consistent with the attached eddy
hypothesis. The spectra of the present QLA show qualitatively the same behaviour for all
NPOD considered – they are also aligned well with a linear ridge y = 0.2λz (figures 6b-d).
However, the spectra of DNS show significant difference from those of QLA in the region
where the energy cascade for turbulent dissipation is supposed to play an important role
in the formation of the spectra: i.e. y > 0.4λz in figure 6(a) and y > 0.2λz in figure 6(b-d)
(see also Cho et al. 2018). In this region, the low-level contour lines of the DNS spectra
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Figure 6. Spanwise wavenumber spectra of wall-normal velocity from (a) DNS at Reτ = 5186
(Lee & Moser 2015) and from (b, c, d) QLA at Reτ = 5000. Here, (b) NPOD = 1149 (all); (c)
NPOD = 8; (d) NPOD = 2. The contours are normalised by their maximum value, and their
levels are spaced with 10% of the maximum.

(e.g. 10% contour level in figure 6a) appear to be aligned well with y ∼ λ2
z , which would

depict the Taylor microscale in the logarithmic region. By contrary, the spectra of the
QLA with NPOD = 1149 (figure 6b) do not show such a behaviour. Instead, they contain
the primary peak at the channel centre, and their low-level contour lines oddly scale with
y ∼ λ3

z . It is evident that these are the unphysical artefact caused by the crude model
for N in (2.2). For example, in DNS or in real flow, the turbulence production is zero
at the channel centre, thus it is very unlikely to have any strong velocity fluctuations at
this location. By contrary, the QLA still has a driving mechanism of velocity fluctuations
at this location because the considered stochastic forcing has a non-zero amplitude (see
(2.11)). This explains why the QLA exhibits a peak in the wall-normal and spanwise
velocity fluctuations when relatively largeNPOD is used for the spectral covariance matrix
(figures 5b, c). These artefact can simply be removed by considering only a few leading
POD modes for the construction of the spectral covariance matrix, as shown in figure
6(d) where NPOD = 2 is used. By doing so, all the contour lines of the spectra are
very well aligned with y = 0.2λz, indicating that only the energy-containing part is
now accounted for modelling of the velocity fluctuations like the original attached eddy
model of Townsend (1976). This observation suggests that only a few leading POD modes
are self-similar and the rest of the modes are not. Furthermore, taking NPOD = 2 has
been found to significantly lower the error in the solution to the proposed optimisation
problems (2.16) and (2.17) (table 1), implying that these non-self-similar higher-order
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velocity; (e, f) spanwise velocity. The contours are normalised by their maximum value, and
their levels are spaced with 10% of the maximum.

POD modes, presumably unphysical artefact of the crude model of N , only deteriorates
the performance of the optimisation problems. Therefore, from now on, we shall only
consider NPOD = 2 for the QLA in the present study.

Figure 7 further compares spanwise wavenumber spectra of the other Reynolds-stress
components from DNS with those from the QLA. In general, the energy-containing part
of each spectra from both DNS and QLA appears to be well aligned with a linearly
scaling ridge with y. Furthermore, in both cases, the spectra of the streamwise and
spanwise turbulent kinetic energies tend to contribute to the near-wall region for large
λz , unlike the wall-normal velocity spectra in figure 6 and the Reynolds shear-stress
spectra in figure 7(a, b): for example, 10% contour lines of these spectra reach y+ . 10 at
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λz ≃ 1h (figures 7c-f). This wall-reaching part of the streamwise and spanwise turbulent
kinetic energies describes the so-called ‘inactive’ motion in the sense of Townsend (1976),
and its wall-normal distribution has been shown to scale in inner units, resulting in a
‘mesolayer’-like behaviour in the spectra (for a detailed discussion on the scaling and the
origin of this part, see Hwang 2016; Cho et al. 2018).
Despite the qualitatively good comparison between the DNS and QLA spectra, it

should be pointed out that the detailed features of the spectra of the QLA are still
non-negligibly different from those of DNS. In particular, the linear ridges of the QLA,
along which the spectra are aligned in the λz-y plane, tend to appear in the region
closer to the wall than those of DNS: all the scaling constants for the linear ridge
of the QLA spectra are smaller than those of the DNS (figures 6 and 7). While this
difference partially originates from the crude nature of the model for N in (2.2), the
other important reason is the lack of the description of the streak instability in the
present QLA. Indeed, the streak instability mechanism has been shown to generate a
strong wall-normal and spanwise velocity fluctuation (Cassinelli et al. 2017; de Giovanetti
et al. 2017), and their contribution to the spanwise wavenumber spectra appears roughly
along y = 0.5λz located much further from y = 0.2λz in figure 6 and y = 0.03λz in
figure 7(f) (for a detailed discussion, see Hwang 2015). However, the incorporation of
the streak instability mechanism into the present QLA is not straightforward because
this mechanism is primarily mediated by N in (2.1c) (de Giovanetti et al. 2017) – if N
becomes nonlinear, (2.12) is no longer true, breaking the entire quasi-linear framework.

3.2. Scaling with Reynolds number

As discussed in the previous section, the spectra of the present QLA for NPOD = 2
describe many important statistical feature of energy-containing motions in DNS or real
flow qualitatively well, except the one associated with the energy cascade. Using this
observation, the QLA model is solved in a range of Reynolds number from Reτ = 500
to Reτ = 20000. The inner- and outer-scaled Reynolds-stress profiles of DNS (Lee &
Moser 2015) and the present QLA are then compared in figures 8 and 9, respectively.
It appears that the scaling behaviour of the Reynolds-stress profiles of the QLA with
Reynold number is strikingly similar to that of DNS at lower Reynolds numbers (up
to Reτ = 5186). Furthermore, on increasing Reynolds number up to Reτ = 20, 000,
it becomes evident that the streamwise and spanwise turbulence intensities gradually
exhibit the logarithmic wall-normal dependence (figures 9d, h), while the Reynolds shear
stress and the wall-normal turbulence intensity show the region where their profiles are
roughly constant in the wall-normal direction (figures 9b, f). This is consistent with the
early theoretical prediction of Townsend (1976) and Perry & Chong (1982). By trial and
error, a good fit of their prediction to the Reynolds-stress profiles of the present QLA is
obtained as

u′u′

u2
τ

= −2.8 ln
(y
h

)
+ 3.2, (3.1a)

v′v′

u2
τ

= 0.148, (3.1b)

w′w′

u2
τ

= −0.1 ln
( y
h

)
− 0.17. (3.1c)

Here, the fitting constants in the first terms of the right-hand side of (3.1a) and (3.1c)
appear to be independent of the Reynolds number especially when Reτ > 5000 (figures
9d, h), indicating a possibility for them to be Reynolds-number-independent constants.
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By contrary, the second constant in the right-hand side of (3.1a) does show a little
dependence of Reynolds number (figure 9d), although the one in the right-hand side
of (3.1c) appears not to (figure 9h). Also, it needs to be mentioned that the constants
in (3.1) should not be directly compared with those from DNS or from experimental
data because their values would be directly affected by the quantitative detail of the
spectral covariance matrix in (2.12). Finally, the streamwise turbulence intensity profile
of the QLA reported in figure 9(d) does not appear to reproduce a plateau-like behaviour
observed in the lower logarithmic region of DNS (figure 9c). This may well be due to the
lack of the modes for kx 6= 0 in the present model, implying that a more sophisticated
effort needs to be made to retrieve this feature within the framework of the proposed
QLA.
The inner- and outer-scaled spanwise wavenumber spectra of Reynolds stress from

DNS and the present QLA are also compared in figures 10 and 11, respectively. As
expected from figures 8 and 9, the spectra of the present QLA also exhibit exactly the
same qualitative behaviour as those of DNS. All the spectra of the QLA span from
λ+
z ≃ O(10) to λz ≃ O(h) like those of DNS. The near-wall part of the spectra of the

QLA (say y+ 6 O(100)) scales very well in inner units for λ+
z 6 O(100) like that of

DNS (figure 8). The outer part of all the spectra for both DNS and QLA exhibits very
good scaling in the outer region (figure 9), while the streamwise and spanwise velocity
spectra develop wall-reaching inactive part at large λz with increasing Re: for example,
as Re is increased, the lowest contour levels in figures 11(c,d,g,h) at large λz extend to
the wall. We note that the development of the wall-reaching inactive part in each of these
spectra is the crucial element for the streamwise and spanwise velocity fluctuations to
have the logarithmic wall-normal dependence (Townsend 1976; Perry & Chong 1982),
consistent with the result shown in figures 8 and 9. Nevertheless, any firm evidence on
k−1
z spectra does not seem to emerge even at Reτ = 20, 000 in the present QLA. This

result is consistent with the previously reported experimental data (Samie et al. 2018;
Baars & Marusic 2020a,b), and it indicates that the computation at much high Reynolds
number would be needed for any firm conclusion on the emergence of k−1

z spectra.

3.3. The near-wall peak in streamwise and spanwise turbulence intensities

Lastly, in this section, we provide one example of an open question that can be
addressed within the proposed quasi-linear model. In particular, we will use the proposed
quasi-linear approximation as a ‘predictive’ tool for the scaling behaviour of the near-
wall peak turbulence intensity with Reynolds number. While the proposed quasi-linear
approximation relies on a phenomenological minimal model for N given in (2.2), it should
be mentioned that the near-wall behaviour of the POD modes used here has been shown
to behave very similarly to that of the near-wall velocity spectra (for a detailed discussion,
see Hwang & Cossu 2010b; Hwang 2016). Therefore, we anticipate that this would be
an useful exercise for the demonstration of the capability of the proposed quasi-linear
model.
Early evidence at moderately high Reynolds numbers (Reτ < 104) suggested that the

peak streamwise turbulence intensity may grow logarithmically with the friction Reynolds
number (see Marusic et al. 2010). However, recent measurement of the near-wall region
up to Reτ = 4×104 in the CICLoPE facility (Willert et al. 2017) suggested that the peak
streamwise turbulence intensity may begin to deviate from the logarithmic scaling for
Reτ > 104. By contrary, the other recent measurement in boundary layer (Samie et al.

2018) showed that the peak intensity may continue to follow the logarithmic scaling at
least up to Reτ = 2 × 104. The logarithmic growth of the near-wall region has been
believed as one of the important evidence supporting the attached eddy hypothesis, and



Attached eddy model revisited using a minimal quasi-linear approximation 19

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3

0.4

0.5

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

0

0.5

1

1.5

2

2.5

3

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

0

0.05

0.1

0.15

0.2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

0

0.5

1

1.5

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

0

2

4

6

8

10

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

0

5

10

15

20

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

+y
+y

2

τu

vu ′′
−

2

τu

uu ′′

2

τu

vv ′′

2

τu

ww ′′

)(a )(b

τRe τRe

τRe
τRe

τRe
τRe

τRe
τRe

)(c )(d

)(e )( f

)(g )(h

Figure 8. Reynolds stress profile from (a, c, e, g) DNS (Lee & Moser 2015) and (b, d, f, h)
QLA (NPOD = 2) in the inner-scaled wall-normal coordinate: (a, b) −u′v′/u2

τ ; (c, d)
u′u′/u2

τ ; (e, f) v′v′/u2
τ ; (g, h) w′w′/u2

τ . Here, Reτ = 543, 1001, 1995, 5186 for DNS and
Reτ = 500, 1000, 2000, 5000, 10000, 20000 for QLA.



20 Y. Hwang and B. Eckhardt

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

0

0.1

0.2

0.3

0.4

0.5

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

0

0.5

1

1.5

2

2.5

3

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

0

2

4

6

8

10

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

0

5

10

15

20

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

0

0.2

0.4

0.6

0.8

1

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

0

0.2

0.4

0.6

0.8

1

2


u

vu 


2


u

uu 

2


u

vv 

2


u

ww 

)(a )(b


Re

)(c )(d

)(e )( f

)(g )(h


Re


Re


Re


Re


Re


Re


Re

hy /hy /

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

0

0.05

0.1

0.15

0.2

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

0

0.5

1

1.5

Figure 9. Reynolds stress profile from (a, c, e, g) DNS (Lee & Moser 2015) and (b, d, f, h)
QLA (NPOD = 2) in the outer-scaled wall-normal coordinate: (a, b) −u′v′/u2

τ ; (c, d)
u′u′/u2

τ ; (e, f) v′v′/u2
τ ; (g, h) w′w′/u2

τ . Here, Reτ = 543, 1001, 1995, 5186 for DNS and
Reτ = 500, 1000, 2000, 5000, 10000, 20000 for QLA. In (d, f, h), the dashed lines are the fits
obtained at Reτ = 20000 using the theoretical result of Townsend (1976) (see (3.1)).
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indicate Reτ = 1000, 5000, 20000, respectively. The contour levels are chosen as 0.25, 0.5 and
0.75 times each of the maximum for comparison.



22 Y. Hwang and B. Eckhardt

τRe
τRe

τRe
τRe

τRe
τRe

τRe
τRe

τRe

τRe

τRe

τRe

)(a )(b

)(c )(d

)(e )( f

)(g )(h

hz /λ hz /λ

h

y

h

y

h

y

h

y

Figure 11. Outer-scaled spanwise wavenumber spectra from (a, c, e, g) DNS (Hoyas & Jiménez
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(b, d, f, h), they indicate Reτ = 1000, 5000, 20000, respectively. The contour levels are chosen as
0.25, 0.5 and 0.75 times each of the maximum for comparison.
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Figure 12. Growth of the peak streamwise turbulence intensity with Reτ :
(a) DNS at Reτ = 543, 1001, 1995, 5186 (Lee & Moser 2015); (b) QLA at
Reτ = 500, 1000, 2000, 5000, 10000, 20000. Here, , y+ = y+

max; - - - -, y+ = 50;
, y+ = 100. Each of the coloured straight lines indicates the fit given in the form

of u′u′/u2
τ = a + b lnReτ where the constants a and b are obtained from the data at

Reτ = 1000, 2000.

it can be described with the following semi-empirical extension of the attached eddy
model of Townsend (1976) for the near-wall turbulence intensity (Marusic & Kunkel
2003):

u′u′

u2
τ

= fi(y
+)fT (y

+;Reτ ), (3.2a)

where fi(y
+) models the universal part of near-wall turbulence intensity and

fT (y
+;Reτ ) = 1 + (α− 1)

ln(y+)

ln(y+ref)
(3.2b)

with

α =
B1 −A1 ln (y

+/Reτ )

B1 −A1 ln
(
y+ref/Reτ,ref

) (3.2c)

describes the near-wall influence of the energy-containing motions in the logarithmic
and outer regions. Here, A1 and B1 are the constants emerging in the original model
of Townsend (1976) for the logarithmic layer, y+ref and Reτ,ref are the reference inner-
scaled wall-normal location and friction Reynolds number, respectively: for example,
y+ref = 50 and Reτ,ref = 2000 were chosen in (Marusic & Kunkel 2003). In this model,
if the peak wall-normal location is assumed to scale in inner units (i.e. y+max = const),
u′u′/u2

τ ∼ lnReτ is obtained – in fact, (3.2) gives a logarithmic growth of the near-wall
streamwise turbulence intensity with Reτ whenever the wall-normal location is chosen
to scale in inner units.
To gain a physical insight into the scaling of the peak streamwise turbulence intensity

with Reτ , the streamwise turbulence intensities of DNS and QLA at three different
wall-normal locations (y+ = y+max, 50, 100 where ymax is the peak wall-normal location)
are shown in figure 12. Here, the data are presented with the fits given in the form
of u′u′/u2

τ = a + b lnReτ where the constants a and b are obtained from the data at
Reτ = 1000, 2000. The streamwise turbulence intensity of DNS at y+ = y+max appears to
grow logarithmically with Reτ at least up to Reτ ≃ 5000, as reported by Lee & Moser
(2015) (figure 12a). The peak intensities of QLA also seem to behave like those of DNS
for Reτ 6 5000 (figure 12b). However, a closer look suggests that the peak streamwise
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Figure 13. Near-wall streamwise turbulence intensity: (a) DNS at Reτ = 543, 1001, 1995, 5186
(Lee & Moser 2015); (b) QLA at Reτ = 1000, 2000, 5000, 20000. Here, the symbols indicate the
locations of the three grid points around the maximum of each curve.

turbulence intensity from both DNS and QLA for Reτ 6 5000 very slightly deviate from
the logarithmic scaling obtained at Reτ = 1000, 2000. If the Reynolds number is further
increased, it becomes evident that the data from the present QLA show a non-negligible
deviation from the logarithmic scaling with Reτ . To check this observation more carefully,
the data of DNS and QLA are further examined at the other two inner-scaling wall-normal
locations (y+ = 50, 100). In this case, even the DNS data for Reτ 6 5186 show rather
visible deviations from logarithmic scalings (figure 12a), and the same behaviour is more
clearly observed in the QLA data obtained up to Reτ = 20, 000 (figure 12b).
The only possible explanation for this deviation from the logarithmic scaling would be

that the extent that each of relatively large energy-containing motions in the logarithmic
and outer regions influences the near-wall region is slightly reduced as Reτ increases
– if not, it is not possible to explain why the near-wall spectra of DNS and QLA at
small λz scale so well in inner units (figures 10c, d). Further supporting evidence on
this argument can be found in figure 13, where the peak wall-normal locations of the
streamwise turbulence intensity of DNS and QLA are shown to slightly move away from
the wall on increasing Reτ . This observation implies that the prediction by the model
(3.2) would actually have a small deviation from the behaviour of the DNS and QLA
data (figures 12 and 13), as the peak wall-normal locations do not precisely scale in inner
units (figure 13).
The discussion here appears to favour the conclusion of Willert et al. (2017), but it is

not necessarily against the one of Samie et al. (2018) made in boundary layer. We note
that the spanwise length scale of the large-scale outer structures in boundary layer (i.e.
large-scale and very-large-scale motions) is λz ≃ 0.8δ99 (δ99 is the thickness of boundary
layer), a little smaller than λz ≃ 1.4R in pipe flow (R is the pipe radius). Therefore,
their highest Reynolds number (Reτ ≃ 20, 000) might have not been high enough to
see a rather clear deviation from the logarithmic scaling with Reτ . Finally, it should
be mentioned that the discussion given here applies to the scaling of the peak spanwise
turbulence intensity in the exactly same manner, thus it is not repeated.

4. Concluding remarks

In the present study, a quasi-linear description of the Navier-Stokes equations for first-
and second-order turbulence statistics have been proposed for parallel wall-bounded shear
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flows. The velocity field is decomposed into a mean and fluctuations. While the mean is
obtained from the full nonlinear equation (2.1a), the fluctuation equations are linearised
by replacing the nonlinear self-interaction terms with a simple model composed of an
eddy-viscosity-based turbulent diffusion and a stochastic forcing. Under this particular
setting, the fluctuation equations are linear, enabling superposition of their solutions for
the construction of Reynolds stress. This feature is compatible to the essential elements
of the classical attached eddy model. Based on this framework, the colour in the spanwise
direction and amplitude of the stochastic forcing have been determined self-consistently
by solving an optimisation problem which minimises the difference between the Reynolds
shear stresses from the mean and fluctuations with a constraint that the averaged
spectrum of the forcing must be sufficiently smooth in Fourier space. The proposed
quasi-linear approximation has subsequently been applied to turbulent channel flow for
friction Reynolds number ranging from Reτ = 500 to Reτ = 20, 000. The best result is
obtained when the Reynolds stress is constructed using only the two leading POD modes,
a procedure that evidently filters out the modelling artifact caused by the unphysical
stochastic forcing. In this case, it has been shown that the resulting turbulence intensity
profile and energy spectra exhibit exactly the same qualitative behaviour as DNS data
throughout the entire wall-normal location, reproducing the early theoretical predictions
of Townsend and Perry within a controlled approximation to the Navier-Stokes equation.
Finally, the proposed quasi-linear approximation has shown that the peak streamwise and
spanwise turbulence intensities can slightly deviate from the logarithmic scaling with Reτ ,
and the supporting evidence from the existing DNS data has also been presented.

The proposed QLA is evidently an extension of the early quasi-linear framework of
Malkus (1956) and Herring (1963) to a linearly stable turbulent shear flow at high
Reynolds numbers, where the classical marginal stability criterion is not applicable. For
this purpose, stochastically driven linearised fluctuation equations are self-consistently
obtained only with minimal statistical information (i.e. mean velocity) and with a mini-
mal physical model for the self-interacting nonlinear terms in the fluctuation equations.
The design procedure of the stochastic linearised fluctuation equations shares exactly
the same idea with the attached eddy model of Townsend (1976) and Perry & Chong
(1982): i.e. the self-similar POD modes from the stochastically driven linear system are
suitably superposed to generate the Reynolds shear stress of the mean equation. In the
context of the stochastically-driven linearised Navier-Stokes system, Jovanović & Bamieh
(2001) empirically designed the wall-normal profile of stochastic forcing to improve its
response in comparison to the turbulence statistics from DNS. However, in many senses,
the proposed quasi-linear framework shares more similarities with the recent work of
Zare et al. (2017), where the unknown turbulence statistics (i.e. full information of
spectral covariance matrix) are recovered by suitably designing a stochastic linearised
fluctuation equations using the ‘known’ statistics (power and cross-spectral densities of
DNS). Indeed, Zare et al. (2017) determined the colour of the stochastic forcing for the
purpose of seeking a more accurate data-driven model of the nonlinearity. However, it is
worth being pointed out that the power and cross-spectral densities used as the ‘inputs’ in
their study are often the ultimate statistical ‘outputs’ of interest in many cases, because
they can only be obtained with DNS or accurate laboratory experiment. By contrast, the
proposed framework requires only mean velocity, and it produces the related second-order
statistics and spanwise wavenumber spectra in qualitative agreement with those of DNS.
In other words, provided the mean velocity is available, the proposed quasi-linear model
would be a useful framework to study the scaling of second-order turbulence statistics
with its ‘predictive’ nature for the certain statistical properties of interest.
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Figure 14. Sensitivity of the optimisation problem (2.16) and (2.17) to the smoothness control
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Figure 15. Sensitivity of the optimisation (2.16) and (2.17) to the integration weight
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Appendix A. Sensitivity to the optimisation parameters

In this section, sensitivity of the optimisation problem in §2.3 to the parameter ζ for M
and the integration weight Q(y) = (1− y/h)m (m is a positive real number) in (2.16) is
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studied. Figure 14 shows how the solution to the optimisation problem W (kz) is changed
with respect to ζ. Given the form of M(= diag[eζ e2ζ e3ζ .... eNβζ ]), it is evident that
a low value of ζ would allow W (kz) to take a more complicated form, whereas a high
value of ζ would restrict it to be a highly smooth function. This is exactly seen in figure
14(a) where W (kz) is plotted for ζ = 0.1, 0.3, 0.5, 0.7, 0.9, 1.1, although the overall shape
of W (kz) remains to be changed only a little. Given the role of ζ, it is also expected
that the difference between the Reynolds shear stresses from the mean equation and
the fluctuations equations with the computed W (kz) would increase with ζ. Indeed, the

two measures quantifying the Reynolds-shear-stress difference (i.e. ǫ1 =
∥∥u′v′ − 〈u′v′〉

∥∥2
Q

and ǫ2 =
∥∥u′v′ − 〈u′v′〉

∥∥2

L2

) do increase with ζ, as shown in figure 14(b). In particular, it

appears that ǫ1 6 10−6 and ǫ2 6 10−4 if ζ 6 0.5 is chosen. Therefore, to obtain reasonable
degree of freedom for the shape of W (kz) and sufficiently low ǫ1 and ǫ2, ζ = 0.5 is chosen
in the present study.

Sensitivity to the choice of the integration weight Q(y) = (1 − y/h)m is also studied
by considering 0 6 m 6 1. Figure 15 shows the solution to the optimisation problem
(W (kz)) and the two measures quantifying the Reynolds-shear-stress difference (ǫ1 and
ǫ2). It appears that W (kz) changes rather insensitively to the choice of m (figure 15a).
This is also seen in the values of ǫ1 and ǫ2 for m considered. As long as m > 8, ǫ1 6 10−6

and ǫ2 6 10−4 (figure 15b). In particular, the lowest ǫ1 (the quantity identical to the
objective functional in (2.17) is obtained when m = 6. Therefore, m = 6 is chosen for
the integration weight Q(y) in (2.16) and (2.17) throughout the present study.
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