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As energy-harvesting wireless sensor networks (EHWSNs) are increasingly integrated with all walks of life, their security problems
have gradually become hot issues. As an attack means, malicious programs often attack sensor nodes in critical locations in the
networks to cause paralysis and information leakage of the networks, resulting in security risks. Based on the previous works and
the introduction of solar charging, we proposed a novel model, namely, Susceptible-Infected-Low (energy)-Recovered-Dead
(SILRD) with solar energy harvesters. Meanwhile, this paper takes Logistic Growth as the drop rate of sensor nodes and the
infection rate of multitype malicious programs under nonlinear condition into consideration. Finally, an Λ-Susceptible-Infected-
Low (energy)-Recovered-Dead (ΛSILRD) model is proposed. Based on the Pontryagin Maximum Principle, this paper proposes
the optimal strategies based on the SILRD with solar energy harvesters and the ΛSILRD. -e effectiveness of SILRD with solar
energy harvesters was demonstrated by comparison with the general epidemic model. At the same time, by analyzing different
charging strategies, we conclude that solar charging is highly efficient. Moreover, we further analyze the influence of controllable
and uncontrollable input and various node degrees on ΛSILRD model.

1. Introduction

With the rapid development of wireless sensor networks
(WSNs) in the past few years, the unique characteristics of
WSNs have enabled them to play a key role in many fields,
such as military strike, agricultural production, intelligent
transportation, medical and health systems, and industrial
fields. Typical WSNs consist of a series of sensor nodes with
different functions of gathering environment information
and transmitting processed information, which is either
fixed or randomly distributed. Generally, the coverage area
of the networks is much larger than the maximum trans-
mission distance of each sensor node. -erefore, trans-
mission between sensor nodes and terminal computers or
control centers is normally conducted in multihop. How-
ever, the limited energy vastly confines the lifetime of the
networks. Renewable natural resources, such as wind, solar,
and tidal energy, can be transferred to electricity by certain

energy harvesters, which can greatly mitigate the impact of
energy shortage on the lifetime of energy-harvesting wireless
sensor networks (EHWSNs) which is equipped with energy
harvesters on each sensor node.

However, the structure of WSNs provides a hotbed for
the propagation of malicious programs. Furthermore, low
defense capabilities render sensor nodes more vulnerable to
malicious programs.With the booming ofWSNs in all walks
of life, paralysis and information leakage owing to malicious
programs will cause unpredictable economic losses. Along
with the ceaseless invasion of malicious programs, many
scholars have studied the behavior characteristics of mali-
cious programs and develop corresponding countermea-
sures. Due to the similarity of propagation mechanisms
between malicious programs and infectious disease, epi-
demic models which are suitable for WSNs have been
further developed after decades of study based on the initial
Susceptible-Infected-Recovered (SIR) model proposed by
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Kermack and McKendrick in 1927 [1]. Unlike computer
viruses, the spread of malicious programs in WSNs is af-
fected by node distribution density and communication
radius [2]. Also, geospatial limitation [3], spatial correlation
[4], coupling degree [5], and transmission delay [6] have
effects on it. In addition to a series of removal methods,
predicting the risk of infection of sensor nodes is also one of
the current research hotspots [7]. Furthermore, a two-level
bidirectional data prediction model proposed by Wang et al.
can effectively reduce the data collection cost of the un-
derwater acoustic sensor network and improve the utiliza-
tion rate of bandwidth [8]. Li et al. applied machine learning
methods to improve the efficiency of malware detection [9].
Han et al. proposed a DMPPR scheme to protect users’
privacy of WSNs [10]. Zhao et al. proposed a method to
detect an undetectable false data-injection attack in cyber-
physical systems [11]. In the prevention of malicious pro-
grams, Li et al. [12] and Liu et al. [13], respectively, proposed
a LightLRFMS algorithm and TPE-FTED algorithm to
screen false data caused by malicious attacks and system
failures. Dynamic defenses are also valid methods [14, 15]
compared with static approaches. Wu et al. proposed a novel
model and defense mechanism to effectively protect big data
in the networks owing to its vulnerability to virus attacks
[16].

Although few scholars discuss the issue of energy in the
sensor network attacked by malicious programs, effectively,
the increase in the energy of WSNs is always a hot topic. For
example, Mo et al. used multiple mobile chargers to sup-
plement the energy of WSNs [17, 18]. It is worth mentioning
that the control of multiagent is one of the research hotspots
in recent years [19, 20]. In this paper, sensor nodes have been
divided into five states based on the remaining energy, and
the energy-harvesting technology is introduced to supple-
ment the energy of sensor nodes to extend the lifespan of the
EHWSNs. On the basis of [21], this paper changes the
charging method to solar charging and constructs a new
model, namely, Susceptible-Infected-Low (energy)-Recov-
ered-Dead (SILRD) with solar energy harvesters. At the
same time, considering networks input and multitypes of
malicious programs attacks with nonlinear infection rates, a
novel model named Λ-Susceptible-Infected-Low (energy)-
Recovered-Dead (ΛSILRD) is proposed.

Similar to conflict of interest in a game, game theory can
be applied to get optimal solutions, like optimal Dissemi-
nation of Security Patches [22], optimal power control [23],
optimal detection rate [24], optimal data transmission
strategy [25], optimal hardware deployment cost in
EHWSNs [26], optimal delay and transmission times in the
networks [27], suitable game strategy and price adjustment
principle in cyber-physical-social systems (CPSS) [28],
maximization of energy efficiency [29], and optimal mul-
tipath routing [30]. As an essential part of game theory, the
differential game can describe the dynamic process with
differential equations. Mylvaganam et al. find the optimal
control in multiagent collision avoidance [31]. Miao and Li
[32] derive the optimal strategies for the attackers and the
intrusion prevention systems. Miao et al. [33] find an op-
timal solution based on tradeoff between network

throughput and energy efficiency. In this paper, the dif-
ferential game will be applied to solve the confrontation
problem between malicious programs and EHWSNs, and
the optimal attack-defense strategies for both parties have
been proposed.

Our contributions are summarized in the following
paragraphs.

-e low-energy state is introduced into the basic epi-
demic model considering the limited energy of sensor nodes.
To suppress the spread of malicious programs, themethod of
charging by solar energy harvesters is put forward which is
helpful to alleviate the security problems andmaintenance of
the networks.-us, a model named SILRD with solar energy
harvesters which better fits EHWSNs has been proposed.
-e effectiveness of SILRD with solar energy harvesters is
obtained by comparison with existing epidemic models. -e
efficiency of solar charging is demonstrated by comparing
with different charging strategies.

-ree nonlinear factors will be considered in this paper,
including Logistic Growth, nonlinear infection rate, and
charging power provided by solar energy harvesters. At the
same time, this paper takes the impact of multitypes of
malicious programs into consideration. Finally, a novel
attack-defense game model named ΛSILRD is proposed in
this paper. Meanwhile, the influence of controllable input,
uncontrollable input, and various node degree on ΛSILRD
model and EHWSNs has been discussed.

Based on the ΛSILRD model, the optimal dynamic
control strategies for EHWSNs and malicious programs
under various node degrees are proposed by applying
Pontryagin Maximum Principle.

-e rest of the paper is organized as follows. In Section 2,
the nonlinear factors involved in ΛSILRD model will be
proposed first, and then ΛSILRD model will be introduced
in detail. In Section 3, the Pontryagin Maximum Principle
will be used to find the optimal dynamic control strategies
and the optimality will be proved briefly after the intro-
duction of the expressions of control variables and game
cost. In Section 4, the effectiveness of SILRD with solar
energy harvesters and solar charging, the influence of
controllable and uncontrollable input, and node degree on
ΛSILRD will be demonstrated through simulations. Section
5 is the conclusion and prospect of this paper.

2. ΛSILRD Model in EHWSNs

-is section explains the nonlinear factors at first, including
Logistic Growth, nonlinear infection rate, and solar charging
power.-en, on the premise of considering multiple types of
malicious programs’ attacks, theΛSILRDmodel is proposed.

2.1. Nonlinear Factors in ΛSILRD Model. In this paper,
EHWSNs consist of identical sensor nodes equipped with
solar energy harvesters, which are distributed statically. -e
solar energy harvesters energize sensor nodes according to
the duration of sunlight. In the case of the diurnal period, the
charging power generally goes through a process of in-
creasing firstly and then decreasing. Specifically, the
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charging power increases slowly at first since the sunlight
intensity is weak at dawn. With the arrival of noon, sunlight
intensity increasingly reaches themaximum value of the day,
while charging power at this time is also at a maximum.
However, the charging power will show a downward trend
when night falls. In this paper, 24 hours is assumed as a
period and the case of fine days is only considered. In
particular, (1) is used to describe the trend of solar charging
power over a day [34]:

P(t) � A���
2π

√
n
e− (t− m)2/2n2( ), (1)

whereA is the intensity of solar charging power andm and n
are the mean value and variance value of the power dis-
tribution, respectively.

To maintain the functioning of EHWSNs, it is indis-
pensable to deploy new nodes when conditions permit. -is
paper considers Logistic Growth as input rate of new nodes.
Logistic Growth is formulated by

Λ(t) � rS(t) 1 − S(t)
k

[ ], (2)

where r represents the node degree, k represents the capacity
of EHWSNs, and S(t) represents the quantity of susceptible
nodes at time t.

Compared with the linear infection rate, the nonlinear
infection rate can better describe the ability of malicious
programs to propagate in a limited area. Models with
linear infection rates, where the quantity of infected nodes
grows linearly, are impractical. Actually, the quantity of
infections is bound to increase exponentially at first. As
time progresses, the quantity grows steadily until it
eventually infects the entire networks. According to the
above description of infection process, (3) is applied to
express it:

Y(t) � 1 − 1 − PSI( )nI(t)[ ], (3)

where PSI is the probability of infection, I(t) is the quantity
of infected nodes at time t, and n represents the connectivity
of nodes.

2.2.Model with Solar EnergyHarvester. -ere exist two-time
intervals without sunlight in one day. Specifically, one is
from 0 am to 5 am and the other is from 8 pm to 12 pm [34].
In these two intervals, solar energy harvesters knock off and
sensor nodes may be dysfunctional since electricity drains
out. According to the energy levels and the infection status,
sensor nodes have been divided into five states.

Susceptible (S) State. Sensor nodes in the susceptible
state are with high-energy level and can complete as-
signment normally. Without defense measures, sus-
ceptible sensor nodes are vulnerable to malicious
programs.

Infected (I) State. Sensor nodes in the infected state are
transformed from susceptible, recovered, or low-energy

sensor nodes by running malicious programs. In the
early stage of infection or after charging, infected
sensor nodes are still at a high-energy level because the
extent of damage has not yet been reached.

Low-Energy (L) State. Sensor nodes in the low-energy
state are with energy which are too insufficient to
function properly, including information transmission.
-erefore, malicious programs attached to low-energy
sensor nodes do not have the ability to continue
infecting. Similarly, low-energy sensor nodes will not
be patched.

Recovered (R) State. Sensor nodes in the recovered state
have installed the patches successfully. Also, recovered
sensor nodes are all in high-energy level. -e patches
are only applicable to relevant malicious programs. In
the face of attacks by inhomogeneous malicious pro-
grams, these sensor nodes will also be helpless and
transform to infected state.

Dead (D) State. Sensor nodes in the dead state are
absolute dysfunction compared with low-energy sensor
nodes. Dead sensor nodes no longer own the ability to
collect, process, and transmit information.

At time t, the proportion of the number of sensor nodes
in susceptible, infected, recovered, low-energy, and dead
states is S(t), I(t), L(t), R(t), andD(t), respectively. And the
following equation must be met:

S(t) + I(t) + L(t) + R(t) +D(t) � 1. (4)

In the absence of sunlight, the networks rely on the
residual energy to maintain functioning. New sensor nodes
are cast randomly to keep the connectivity of EHWSNs.
Susceptible nodes still consume electricity at night to con-
tinue data acquisition, processing, and transmission. Under
the attack of malicious programs, susceptible sensor nodes
are transformed into infected sensor nodes with probability
PSI. Some susceptible sensor nodes are fortunately enough to
be patched to possess immunity with probability PSR. -e
rest stick at their daily tasks normally with probability PSL.

Infected sensor nodes transmit data to neighbors at
higher frequencies to spread malicious programs rapidly
and disrupt the transmission mechanism. -erefore, in-
fected sensor nodes will consume the remaining electricity
at a faster rate and transform to low-energy or dead state
with probability PIL and PID according to the attack
power of malicious programs. While malicious programs
are spreading arbitrarily, patches carried by unmanned
aerial vehicles (UAVs) transmitted to the infected sensor
nodes located at the corresponding district with proba-
bility PIR.

-e existence of multiple types of malicious programs is
considered and the common feature of these malicious
programs is that their attack mechanisms are embodied in
the accelerated consumption of sensor nodes’ energy. For
this reason, even recovered sensor nodes will be infected
again with probability PRI. Similarly, few recovered sensor
nodes work normally until low-energy level with probability
PRL.
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Sensor nodes at high-energy levels include sensor nodes
in susceptible, infected, and recovered state. Energy con-
sumption owing to damage or normal operation will
eventually convert sensor nodes in high-energy state to low-
energy state. Sensor nodes at low-energy levels suspend
some functions, including data transmission, for their own
subsistence. -erefore, low-energy sensor nodes will not
receive and transmit malicious programs. Even if the con-
sumption is lower, the energy will eventually run out with
probability PLD. With the use of solar energy harvesters, the
probabilities of sensor nodes in low-energy state converting
into susceptible, infected, and recovered states are PLSP(t),
PLIP(t), and PLRP(t), respectively. Among them, PLS is
related to the number of sensor nodes that transformed from
susceptible state to low-energy state at the previous moment,
PLI is related to the number of sensor nodes that trans-
formed from infected state to low-energy state at the

previous moment, and PLR is related to the number of nodes
that switched from an infected state to a low-energy state at
the previous moment. In particular, Figure 1 is used to
visualize the evolution of sensor nodes. Figure 1 shows a part
of sensor nodes in EHWSNs. Among them, the letter in the
circle represents the node state. Specifically, Figure 1(a)
shows the initial node state when the patch-carrying
UAV has not yet passed the sensor nodes and the solar
energy harvesters have started working. Figure 1(b) shows
the evolution of sensor nodes after the UAV drives over a
part of sensor nodes and the solar energy harvesters charge
sensor nodes.

Considering the Logistic Growth (2) and the nonlinear
incidence rate (3), the above dynamic processes are for-
mulated in (5)–(9), and the flow diagram of propagation is
shown in Figure 2:

dS(t)
dt

� Λ(t) − Y(t)S(t) − PSRS(t) − PSLS(t) + PLSP(t)L(t), (5)

dI(t)
dt

� Y(t)S(t) − PIRI(t) − PILI(t) + PRIR(t) − PIDI(t) + PLIP(t)L(t), (6)

dL(t)
dt

� PILI(t) + PSLS(t) − PLDL(t) + PRLR(t) − PLSP(t)L(t) − PLIP(t)L(t) − PLRP(t)L(t), (7)

dR(t)
dt

� PIRI(t) + PSRS(t) − PRIR(t) − PRLR(t) + PR(t)L(t), (8)

dD(t)
dt

� PLDL(t) + PIDI(t). (9)

3. Optimal Controls in Attack-Defense Game

In this section, control variables between malicious pro-
grams and EHWSNs are introduced at first. -en, the
process of attack-defense game has been analyzed and the
overall cost has been formulated. Finally, the Hamiltonian
function has been built and constructed and the optimal
strategies of both sides are obtained on the basis of proving
the existence and the uniqueness.

3.1. Control Variables in the ΛSILRD Model. -e attacks of
malicious programs are mainly reflected in the propagation
performance and the damage capacity. -e more contagious
malicious programs are, the more sensor nodes they can
infect. Infected sensor nodes can spread malicious programs
by increasing communication frequency. -e damage ca-
pacity is incarnated in the consumption of energy and the
destruction of hardware. Some malicious programs can
overload sensor nodes so that they can become dysfunc-
tional quickly, and other malicious programs cannot directly
destroy sensor nodes because damage capacities are not
powerful enough [35].

-e defense measures applied by EHWSNs are the de-
ployment of patch-carrying UAVs and the installing and
running of solar energy harvesters. Because of the periodicity
of sunlight, patching is the only countermeasure at night. By
identifying and analyzing multitype malicious programs,
UAVs will download corresponding patches from the base
station. Energy supplements do not cure infected sensor
nodes but only alleviate their severe consumption.

It is not hard to find that the propagation performance of
malicious programs is the process of transformation from
susceptible or recovered state to infected state. -e attacks
on the above transformations are defined as ASI(t) and
ARI(t). At the same time, the damage capacities are reflected
in the process of transformation from infected state to low-
energy or dead state. -us, the attacks are defined as AIL(t)
and AID(t). -e defenses of EHWSNs are embodied in all
sensor nodes that are transformed into recovered state.
-erefore, the defense measures are defined as DSR(t) and
DIR(t).

According to the above statement, the corresponding
probability can be replaced by the equations containing the
control variables. Specifically, PIL can be replaced by
(AIL(t)SIL/(AILmax + AILmin)), PID can be replaced by
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(AID(t)SID/(AIDmax + AIDmin)), PRI can be replaced by
(ARI(t)SRI/(ARImax + ARImin)), PSR can be replaced by
(DSR(t)SSR/(DSRmax +DSRmin)), and PIR can be replaced by
(DIR(t)SIR/(DIRmax +DIRmin)). In particular, for the con-
venience of calculation, (ASI(t)SSI/(ASImax + ASImin)) will
be directly multiplied by the term corresponding to the
nonlinear incidence rate. -e subscripts max and min, re-
spectively, represent the maximum and the minimum values
of the attacks or defenses, and the letter S represents the
probability of the successful attacks or defenses and its
subscript represents relevant state transition relationship.

3.2. Cost Function in ΛSILRD Model. -e continuous
confrontation between malicious programs and EHWSNs
constitutes the attack-defense game. -e purposes of
malicious programs as attacker are to infect and destroy as
many nodes as possible, while EHWSNs as defender aim
to keep as many nodes immune and alive as possible. Both
sides achieve their goals through the control means
mentioned in the previous part. -e cost function is
applied to indicate the consequence of attack-defense
game.

Deployment costs include production costs and human
costs. Cost factor CN times the drop rate formulated in (2) is
used to represent the deployment costs at time t, whereCN is
greater than 0. By completing daily assignments, sensor
nodes in susceptible state which send involved information
to clients to meet their requirements will generate positive
benefits.

Although the unstoppable spread of malicious programs
causes more sensor nodes to be infected, infected sensor
nodes do not initially incur additional costs until malicious

programs begin to run. CII(t) is used to describe the costs
incurred after malicious programs run at time t, where CI is
greater than 0.

As a defense means for EHWSNs, the transmission of
patches to susceptible and infected sensor nodes will incur
costs. CSRPSRS(t) is used to describe the cost of transmitting
patches to susceptible sensor nodes at time t, andCIRPIRI(t)
is used to describe the cost of transmitting patches to in-
fected sensor nodes at time t, where CSR and CIR are greater
than 0.

Recovered sensor nodes are similar to susceptible
nodes. Because they have immunity to certain types of
malicious programs, the revenue generated by recovered
nodes at time t will be higher than that of the susceptible
sensor nodes.

Low-energy sensor nodes cannot operate normally
compared with the high-energy sensor nodes, so that they
can incur the cost CLL(t) at time t, where CL is greater than
0. -e generation of dead sensor nodes will lead to the
interruption of the connection of sensor nodes, or even the
paralysis of the networks, andCDD(t) is used to describe the
cost at time t, where CD is greater than 0. It is worth noting
that since solar energy harvesters capture natural resources,
the cost of energy harvesting and transformation is not
considered.

At the end of the game, each type of sensor nodes will
incur a series of termination payoff. Among them, sus-
ceptible sensor nodes and recovered sensor nodes will still
generate revenue in the future, so their terminal costs should
be less than 0; that is, CSf and CRf are both less than 0.

Conversely, sensor nodes at infected, low-energy, and dead
states will still cause loss in the future; that is, CIf, CLf, and
CDf

are greater than 0.

Target trajetory

Patched
area

(a)

Patched

area

(b)

Figure 1: Schematic of ΛSILRD model. (a) -e initial state of sensor nodes; (b) the current state of sensor nodes after solar charging and
UAVs’ patching.

Λ
S

L

D R

I

Figure 2: -e flow diagram of ΛSILRD model.
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Based on the above statement, the cost function (10) is
constructed as follows:

J(t) � ∫tf
t0

CII(t) + rCNS(t) 1 − S(t)
k

[ ] + CLL(t) + CDD(t) + CSRPSRS(t) + CIRPIRI(t){ }dt
+ CSfS tf( ) + CIfI tf( ) + CLfL tf( ) + CRfR tf( ) + CDf

D tf( ).
(10)

3.3. Optimal Strategies in the ΛSILRD Model. Suppose the
duration of the game is T. Within T, according to (5)–(9), it
is not difficult to find that the state variables are continuous
and uninterrupted. Meanwhile, the state variables are
continuous in the cost function (10).

For the control variables, they are not only continuous in
state functions (5)–(9) and cost function (10), but also linear.
Specifically, according to the assumptions in Section 3.1,
each control variable has a maximum value and a minimum
value; that is, each control variable is bounded. Furthermore,
we define ](t) as a set of control strategies of attacker
(malicious programs), that is, ](t) � ASI(t), AIL(t),{
AID(t), ARI(t)}, and μ(t) as a set of control strategies of
defender (EHWSNs), that is, μ � DSR(t), DIR(t){ }.

-us, according to the conditions put forward by [36],
there must exist a saddle point in (10), which satisfies

J μ∗(t), ](t)( )≤ J μ∗(t), ]∗(t)( )≤ J μ(t), ]∗(t)( ), (11)

where J(μ∗(t), ](t)) represents the cost incurred when only
the optimal strategy is selected by EHWSNs, J(μ(t), ]∗(t))
denotes that only malicious programs choose the optimal
strategy and J(μ∗(t), ]∗(t)) indicates that both EHWSNs
and malicious programs choose the optimal strategies.

Specifically, the inequality on the left indicates that when
strategy chosen by EHWSNs is unchanged, the cost will be
maximized when themalicious programs choose the optimal
strategy; the inequality on the right indicates the cost will be
minimized when EHWSNs select the optimal strategy, while
the strategy chosen by malicious programs remains un-
changed. When both parties choose the optimal strategies,
an equilibrium point, the saddle point, will be formed be-
tween the maximum cost generated by the malicious pro-
grams and the minimum cost generated by EHWSNs.

According to [37] and the characteristics of this model,
we can further know that there must be V satisfying the
following equation:

V � max
](t)

min
μ(t)

J(μ(t), ](t))

� min
μ(t)

max
](t)

J(μ(t), ](t))

� J μ∗(t), ]∗(t)( ),
(12)

where max
](t)minμ(t)J(μ(t), ](t)) represents the cost in-

curred by EHWSNs in selecting the optimal strategy after the
malicious programs make an optimal decision, while
minμ(t)max

](t)J(μ(t), ](t)) denotes the cost incurred when
the order of two sides is switched.

Theorem 1. In the attack-defense game based on the
ΛSILRD model, the optimal dynamic strategies of EHWSNs
and malicious programs are

A∗SI(t) �
ASImax; βASI > 0,
unknown; βASI � 0,

ASImin; βASI < 0,

 (13)

A∗IL(t) �
AILmax; βAIL > 0,
unknown; βAIL � 0,

AILmin; βAIL < 0,

 (14)

A∗ID(t) �
AIDmax; βAID > 0,
unknown; βAID � 0,

AIDmin; βAID < 0,

 (15)

A∗RI(t) �
ARImax; βARI > 0,
unknown; βARI � 0,

ARImin; βARI < 0,

 (16)

D∗SR(t) �
DSRmax; βDSR

> 0,
unknown; βDSR

� 0,

DSRmin; βDSR
< 0,

 (17)

D∗IR(t) �
DIRmax; βDIR

> 0,
unknown; βDIR

� 0,

DIRmin; βDIR
< 0,

 (18)

where discriminant parameters are shown in Table 1.

Proof. Define x(t) � S(t), I(t), L(t), R(t), D(t){ } in the
ΛSILRD model. For all t which belongs to T, if H(x(t), μ∗
(t), ](t), t)≤H(x(t), μ∗(t), ]∗(t), t)≤H(x(t), μ(t), ]∗(t),
t) is satisfied, there must be an optimal set of strategies
(μ∗(t), ]∗(t)) according to [38].

First, the generalization of the cost function in the game
will be described as follows:

J(μ(t), ](t)) � φ x t1( ), t1( ) + ∫tf
t0

L(x(t), μ(t), ](t), t)dt

+ υψ x t1( ), t1( ).
(19)

Define a new function ϕ as follows:
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ϕ � φ x t1( ), t1( ) + υψ x t1( ), t1( ). (20)

-en, the above general cost function will be simplified
as follows:

J(μ(t), ](t)) � ϕ x t1( ), t1( ) + ∫tf
t0

L(x(t), μ(t), ](t), t)dt,

(21)
where L(x(t), μ(t), ](t), t) corresponds to the integral term
in (10) and ϕ(x(t1), t1) corresponds to the nonintegral term
in (10).

According to the definition of Hamiltonian function in
differential game, we have the following formula:

H(λ(t), x(t), μ(t), ](t), t)≜ ∑5
i�0

λi(t)fi(x(t), μ(t), ](t), t)

�∑5
i�1

λi(t)fi(x(t), μ(t), ](t), t) + L(x(t), μ(t), ](t)),

(22)
where λ(t) is the set of costate variables; that is, λ(t) � λS{
(t), λI(t), λL(t), λR(t), λD(t)}, and fi(x(t), μ(t), ](t), t) is
the differential equation of node state corresponding to
(5)–(9).

Among them, when the costate functions satisfy the
following equations, there exists an optimal strategy (μ∗, ]∗):

zλi
zt
� − zH

zxi
,

λi t1( ) � − zϕ

zxi t1( ),
(23)

where t1 represents the terminal moment when the game
ends.

-erefore, the Hamiltonian function, the differential
equations, and the end-value constraints of costate variables
in this paper can be formulated from (24) to (30):

H(λ(t), x(t), μ(t), ](t), t) � λS(t)
dS(t)
dt

+ λI(t)
dI(t)
dt

+ λR(t)
dR(t)
dt

+ λL(t)
dL(t)
dt

+ λD(t)
dD(t)
dt

+ rCNS(t) 1 − S(t)
k

[ ] + CII(t) + CSRS(t) DSRSSR
DSRmax +DSRmin

+ CLL(t)

+ CIRI(t)
DIRSIR

DIRmax +DIRmin

+ CDD(t),

(24)

dλS(t)
dt

� 2λS(t)S(t)
k

+ λS(t) − λI(t)( )ASI(t) 1 − 1 − PSI( )( )nI(t) − λS(t)r

+ λS(t) − λR(t)( ) DSR(t)SSR
DSRmax +DSRmin

+ λS(t) − λL(t)( )PSL − rCN(t)
+ 2rCNS(t)

k
− CSR

DSR(t)SSR
DSRmax +DSRmin

,

(25)

dλI(t)
dt

� nASI λI(t) − λS(t)( )S(t) 1 − PSI( )nI(t) ln 1 − PSI( ) − CI − CIR DIR(t)SIR
DIRmax +DIRmin

+ λI(t) − λR(t)( ) DIR(t)SIR
DIRmax +DIRmin

+ λI(t) − λD(t)( ) AID(t)SID
AIDmax + AIDmin

+ λI(t) − λL(t)( ) AIL(t)SIL
AILmax + AILmin

,

(26)

dλL(t)
dt

� λL(t) − λD(t)( )PLD + λL(t) − λR(t)( )PLRP(t)
+ λL(t) − λS(t)( )PLSP(t) + λL(t) − λI(t)( )PLIP(t) − CL,

(27)

Table 1: Table of parameters in optimal strategies.

Letter Counterpart

βASI (λI(t) − λS(t))[1 − (1 − PSI)nI
∗(t)]S∗(t)

βAIL (λL(t) − λI(t))PILI∗(t)
βAID (λD(t) − λI(t))PIDI∗(t)
βARI (λI(t) − λR(t))PRIR∗(t)
βDSR

(λR(t) − λS(t))PSRS∗(t) + CSRPSRS∗(t)
βDIR

(λR(t) − λI(t))PIRI∗(t) + CIRPIRI∗(t)
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dλR(t)
dt

� λR(t) − λI(t)( ) ARI(t)SRI
ARImax + ARImin

+ λR(t) − λL(t)( )PRL, (28)

dλD(t)
dt

� − CD, (29)

λS tf( ) � dϕ

dS(t) � CSf,

λI tf( ) � dϕ

dI(t) � CIf,

λL tf( ) � dϕ

dL(t) � CLf,

λR tf( ) � dϕ

dR(t) � CRf,

λD tf( ) � dϕ

dD(t) � CDf
.



(30)

When H(x(t), μ∗(t), ](t), t)≤H(x(t), μ∗(t), ]∗(t), t) is
satisfied, if (λI(t) − λS(t))[1 − (1 − PSI)nI

∗(t)]S∗(t) is greater
than 0, ASI(t) takes the maximum value, and if (λI(t) −
λS(t))[1 − (1 − PSI)nI

∗(t)]S∗(t) is less than 0,ASI(t) takes the
minimum value; if (SIL(λL(t) − λI(t))I∗(t)/(AILmax+
AILmin)) is greater than 0, AIL(t) takes the maximum value,
and if (SIL(λL(t) − λI(t))I∗(t)/(AILmax + AILmin)) is less
than 0, AIL(t) takes the minimum value; if (SID(λD(t) −
λI(t))I∗(t)/(AIDmax + AIDmin)) is greater than 0, AID(t)
takes the maximum value, and if (SID(λD(t)−
λI(t))I∗(t)/(AIDmax + AIDmin)) is less than 0, AID(t) takes
the minimum value; if (SRI(λI(t) − λR(t))R∗(t)/(ARImax +
ARImin)) is greater than 0, ARI(t) takes the maximum value,
and if (SRI(λI(t) − λR(t))R∗(t)/(ARImax + ARImin)) is less
than 0, ARI(t) takes the minimum value. On the contrary,
when H(x(t), μ∗(t), ]∗(t), t)≤H(x(t), μ, ]∗(t), t) is to be
satisfied, if (SSR(λR(t) − λS(t) + CSR)S∗(t)/(DSRmax+
DSRmin)) is greater than 0, DSR(t) chooses the minimum
value, and if (SSR(λR(t) − λS(t) + CSR)S∗(t)/(DSRmax+
DSRmin)) is less than 0, DSR(t) chooses the maximum value;
if (SIR(λR(t) − λI(t) + CIR)I∗(t)/(DIRmax +DIRmin)) is
greater than 0, DIR(t) chooses the minimum value, and if
(SIR(λR(t) − λI(t) + CIR)I∗(t)/(DIRmax +DIRmin)) is less
than 0, DIR(t) chooses the maximum value.

4. Simulation

In this section, we will expand into three parts. -e first
part is to compare with the existing general epidemic
models in turn. -e second part is to analyze the impact of
charging on the SILRD model. -e third part is to discuss
the impact of controllable and uncontrollable system
input and node degree on the ΛSILRD model. In all three
parts, the simulations are implemented in MATLAB

R2017b. -e abbreviations are applied in the section list in
Table 2.

4.1. Comparison with General Epidemic Model. In this part,
three general epidemic models will be compared, namely,
Susceptible-Infected-Recovered (SIR) model [39], Suscep-
tible-Exposed-Infected-Recovered (SEIR) model [40], and
EiSIRS model [41]. Among the three models, SIR model is
the basic, SEIR model extends the E state on the basis of the
SIRmodel, and EiSIRS adds the corresponding sleeping state
on the basis of the SIR model.

For the unification and reasonability of the analysis, we
did not consider the multiple rounds of infection in the
EiSIRS model, and EiSIRS model would be renamed as
Susceptible-Susceptible & sleep-Infected-Infected & sleep-
Recovered-Recovered & sleep-Dead (SsIiRrD) model to
facilitate understanding, where lowercase letters represent
the sleep state of the corresponding state.

Experimental parameters are set as follows: PSI � 0.1,
PSR � 0.4, PSD � 0.0008, PID � 0.005, PIR � 0.21, PRD �
0.008, PEI � 0.005, PER � 0.21, PED � 0.005, PSs � 0.006,
PsS � 0.006, PIi � 0.006, PiI � 0.009, PRr � 0.006, PrR �
0.006, PSL � 0.0008, PIL � 0.001, PRL � 0.0008, PLD � 0.3,
PLR � 0.6.

-ree general epidemic models have the same parameter
settings except for their own defensive measures. Similarly,
the SILRD with UAVs and the SILRD with solar energy
harvesters have the same parameter settings except for the
introduction of the L state and the corresponding defensive
measures. In particular, the difference between the two
SILRD models lies in the different charging methods. -e
first method is to use energy harvesters to capture solar
energy and convert light energy into electrical energy to
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supplement the energy of sensor nodes. -e second method
is to deploy UAVs to charge sensor nodes [21].

It is worth noting that the purpose of this part is to
highlight the characteristics of the two SILRD model by
comparing with other general epidemic models, so the
system input, multiple types of malicious programs, and the
nonlinear infection rate will be ignored. Figure 3 shows the
evolution of sensor node under five epidemic models.

It can be seen from Figure 3(a) that the changes in the
quantity of susceptible sensor nodes in the five models are
very close. Except for SEIR, the other models had a high
infection rate in the first few days, as depicted in Figure 3(b).
Because the SEIR model exists an exposed state between the
susceptibility and infection state, some infected sensor nodes
were cleared during the exposure period. For recovered
sensor nodes, the decline was more pronounced in SsIiRrD,
followed by SEIR and SIR, as depicted in Figure 3(c). Among
them, the quantity of recovered sensor nodes in SIRLD
model decreased the most slowly and stay around 96% after
20 days. As shown in Figure 3(d), the order of increasing
quantity of dead sensor nodes from fast to slow is SIR, SEIR,
SsIiRrD, SILRD with UAVs, and SILRD with solar energy
harvesters.

It can be seen from the comparison with other general
epidemic models that the SILRD model can more effectively
increase the quantity of recovered sensor nodes and reduce
the quantity of dead sensor nodes. -e phenomenon is more
obvious in SILRD with solar energy harvesters. At the same
time, the two SILRD model directly charges low-energy
sensor nodes, which will effectively reduce the energy de-
pletion of sensor nodes due to infections or daily work.

4.2. Effect of Charging on SILRD Model. Charging factors as
one of the features of SILRDmodel will be discussed here. In
this part, variations in the quantity of five node states,
control variables and the quantity of high- and low-energy
nodes, and the overall costs will be applied as indicators to
explain the impact of charging.

-ree scenarios will be discussed here, namely, SILRD
model with solar energy harvesters, SILRD model with
UAVs [21], and SILRD model without charging capability.
In order to facilitate the analysis of the impact of charging,
this part will ignore the impact of system input but will
consider multiple types of malicious programs’ attacks and
nonlinear infection rates.

Unlike the previous section, the simulation here only
considers one day, so the relevant simulation parameters
have also been modified. Experimental parameters are set as
follows: SSI � 0.005, SSR � 0.05, SIR � 0.05, SIL � 0.001,
SID � 0.005, SRI � 0.005, PSL � 0.0008, PLD � 0.0016,
PRL � 0.0008, CSR � 5, CIR � 7, CI � 10, CL � 12, CD � 20,
A � 8, a � 0.5, b � 0.5, m � 12, n � 3, and CN � 50.

4.2.1. Evolution of Sensor Node under Various Charging
Strategies. -e solar charging power is formulated in (1). It
is worth noting that SILRD with UAVs considers the sit-
uation of patching and charging at the same time, so low-
energy sensor nodes will be transformed to recovered state
directly. Figure 4 shows the evolution of sensor nodes under
three charging strategies.

As can be seen from Figure 4(a), SILRDwith solar energy
harvesters can effectively increase the quantity of susceptible
sensor nodes. However, under the attack of multiple types of
malicious programs, the SILRD model with charging
strategy cannot effectively restrain the growth of malicious
programs, among which the case with solar charging is the
most serious, as shown in Figure 4(b). Nevertheless,
charging can effectively reduce the quantity of low-energy
sensor nodes, as shown in Figure 4(c). Similarly, the quantity
of recovered sensor nodes also increased due to the charging
strategies, as depicted in Figure 4(d). -e situation of energy
depletion is very close as shown in Figure 4(e). Among them,
the more accurate sorting from high to low should be SILRD
with UAVs, followed by SILRDwithout charging and SILRD
with solar energy harvesters.

Under the attack of multitype of malicious programs, the
strategies with charging cannot inhibit the increase of the
quantity of infected sensor nodes effectively, but it can
greatly reduce the quantity of low-energy sensor nodes so as
to increase the quantity of recovered sensor nodes. -e
strategy with solar charging is more widely distributed, so it
can increase the quantity of recovered sensor nodes in highly
efficient to keep the networks running well.

4.2.2. Variation on Dynamic Control Level. -e variation of
dynamic control will further reveal the cause of the evolution
of node state, as depicted in Figure 5. Specifically, Figure 5(a)
shows the changes in control variables in SILRD with solar
energy harvesters, Figure 5(b) shows the changes in control

Table 2: Table of abbreviations.

Abbreviation Full name

EHWSNs Energy-harvesting wireless sensor networks
WSNs Wireless sensor networks
SILRD Susceptible-Infected-Low (energy)-Recovered-Dead
ΛSILRD Λ-Susceptible-Infected-Low (energy)-Recovered-Dead
UAVs Unmanned aerial vehicles
SIR Susceptible-Infected-Recovered
SEIR Susceptible-Exposed-Infected-Recovered
SsIiRrD Susceptible-Susceptible & sleep-Infected-Infected & sleep-Recovered-Recovered & sleep-Dead
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variables in SILRD with UAVs, and Figure 5(c) shows the
changes in control variables in SILRD without charging.

In all three cases, the malicious programs stopped
spreading at the beginning and peaked when t � 2. After
propagation stops, the malicious programs still exist in the
infected sensor nodes. After patching with maximum effort,
due to the accumulation of costs, the networks stop patching
after weighing. If the networks were patched again, the cost of
patching would be higher than the cost of damage caused by
malicious programs, so the networks stopped using the UAVs.

After UAVs stop patching, there are still exist malicious
programs with strong and weak ability to destroy in the
networks. Among them, the strategy with UAVs can quickly

eliminate the malicious programs with weak damage ability
(t � 2), followed by the solar charging strategy (t � 4) and
finally the noncharging strategy (t � 15). However, mali-
cious programs with strong destructive ability still present in
the networks without completely clearing away.

4.2.3. Variation on the Quantity of High- and Low-Energy
Nodes. In order to directly express the quantity of high- and
low-energy sensor nodes in the networks, the form of his-
togram has been applied to show the variation on the
quantity of high- and low-energy sensor nodes over time
under different charging strategies, as depicted in Figure 6.
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Figure 3: Evolution of node states under 5 epidemic models. (a) Susceptible state; (b) infected state; (c) recovered state; (d) dead state.
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Figure 4: Evolution of sensor nodes under 3 charging strategies. (a) Susceptible state; (b) infected state; (c) low-energy state; (d) recovered
state; (e) dead state.
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As can be seen from Figure 6(a), sensor nodes with high
energy show a downward trend under the three strategies.
Among them, the strategy without charging fell by the most
quickly. -e degree of elevation of the strategy with UAVs is
determined by the quantity of UAVs. -is paper assumes a
small quantity of UAVs deployed because too many

deployments would be costly. -e strategy with solar energy
harvesters assumes that each sensor node is equipped with
the energy harvester, which is close to reality. Based on the
analysis of Figures 6(a) and 6(b), it can be seen that, due to
the comprehensive deployment of sensor nodes equipped
with solar energy harvesters, the quantity of high-energy
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Figure 5: Dynamic control under 3 charging strategies. (a) Strategy with solar energy harvesters; (b) strategy with UAVs; (c) strategies
without charging.
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Figure 6: Variations on the quantity of high- and low-energy sensor nodes. (a) High-energy sensor nodes; (b) low-energy sensor nodes.
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Figure 8: Continued.
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Figure 8: Evolution of sensor nodes with Logistic Growth in susceptible sensor nodes. (a) -e quantity of susceptible sensor nodes with
controllable input; (b) the quantity of infected sensor nodes with controllable input; (c) the quantity of low-energy sensor nodes with
controllable input; (d) the quantity of recovered sensor nodes with controllable input; (e) the quantity of dead sensor nodes with controllable
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input; (h) the quantity of low-energy sensor nodes with uncontrollable input; (i) the quantity of recovered sensor nodes with uncontrollable
input; (j) the quantity of dead sensor nodes with uncontrollable input.
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sensor nodes declines slowly. Moreover, the low-energy
sensor nodes not only did not rise but also fell.

4.2.4. Overall Cost under Various Charging Strategies.
Figure 7 shows the cost trends of the three strategies. -e
cost of solar charging is the lowest, followed by the
strategy of deploying UAVs and finally the strategy of

noncharging. For solar charging, since each sensor node is
equipped with a solar energy harvester, there is no ad-
ditional cost during capturing solar energy compared to
the deployment of UAVs. In the conclusion of the pre-
vious section, charging can effectively improve the im-
munity of EHWSNs and reduce the quantity of dead
sensor nodes, so as to achieve the purpose of reducing
costs.
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Figure 9: Variation of dynamic control variables. (a) Controllable input with node degree� 5; (b) controllable input with node degree� 15;
(c) controllable input with node degree� 30; (d) controllable input with node degree� 50; (e) uncontrollable input with node degree� 5; (f )
uncontrollable input with node degree� 15; (g) uncontrollable input with node degree� 30; (h) uncontrollable input with node degree� 50.
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4.3. Influence of Networks Input and Node Degree onΛSILRD
Model. -is section mainly discusses the influence of
controllable and uncontrollable input and node degree
on ΛSILRD model. -e formulation of networks input
adopts (17). Node degrees are set to 5, 15, 30, and 50,
respectively.

Similar to the previous section, this section also discusses
the variation trend of four aspects, which are sensor nodes in
various states, control variables, quantity of high- and low-
energy sensor nodes, and overall costs.

-e experimental parameters are the same as those in
Section 4.2.

4.3.1. Evolution of Sensor Nodes in ΛSILRD Model. As a
control group, uncontrollable input into the system will be
considered. Figures 8(a)–8(e) show the evolution of node
state when networks input contains control variables, and
Figures 8(f)–8(j) show the evolution with uncontrollable
input.

In both cases, evolutions of sensor nodes change uni-
formly except when node degree equals 5, as depicted in
Figure 8.-e quantity of susceptible sensor nodes fell rapidly
in the first hour before reaching equilibrium, as depicted in
Figures 8(a) and 8(f ). In the case of input with control
variables, the final stable value of the quantity of susceptible
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Figure 10: Variations in the quantity of high- and low-energy sensor nodes. (a) Variation of the quantity of high-energy sensor nodes with
controllable input; (b) variation of the quantity of low-energy sensor nodes with controllable input; (c) variation of the quantity of high-
energy sensor nodes with uncontrollable input; (d) variation of the quantity of low- energy sensor nodes with uncontrollable input.
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sensor nodes is related to node degree, as shown in
Figure 8(a). With the increase of node degree, the stable
value of the quantity of susceptible sensor nodes becomes
lower. On the contrary, in the case of input without control
variables, the quantity of susceptible nodes experienced a
process of rapid decrease and then a slow rise and finally
reached an equilibrium, as shown in Figure 8(f).

-e changes of the quantity of infected sensor nodes,
low-energy sensor nodes, and dead sensor nodes are very
similar, as shown in Figures 8(b), 8(c), 8(e), 8(g), 8(h), and
8(j). In the case of input with control variables, the quantity
of recovered sensor nodes remained stable except when the
node degree equals 5, as shown in Figure 8(d). In the case of
input without control variables, the quantity of recovered
sensor nodes increased rapidly after a period of stabilization,
as shown in Figure 8(i). In a word, as the node degree in-
creases, the infection will become more severe, and the
quantity of low-energy and death sensor nodes will increase.

4.3.2. Variation of Control Variables. In both cases, the
quantity of infected sensor nodes reaches its peak when
t � 1, so the networks stop patching, as shown in Figure 9.
When t � 10, as more vulnerable sensor nodes exist in the
networks, there is a risk of reinfection by malicious pro-
grams, so the networks start to patch the vulnerable sensor
nodes again, as depicted in Figures 9(a), 9(b), 9(d), 9(f ), and
9(h). When t � 11, the existing quantity of vulnerable sensor
nodes is enough to maintain the normal operation of the
networks, and the deployment of new sensor nodes will only
bring more extra burden, so the networks will stop casting
new sensor nodes, as shown in Figure 9(a). With the increase
of node degree, the control strategy will not change greatly,
as shown in Figures 9(c)–9(h).

4.3.3. Variation on the Quantity of High- and Low-Energy
Sensor Nodes. Figure 10 shows the changing trend of the
quantity of high- and low-energy sensor nodes in the net-
works. -e variation trend of low-energy sensor nodes is the
same in both cases, but the influence of node degree on both
cases is different when T is greater than 16, as shown in
Figures 10(b) and 10(d). As can be seen from Figure 10(a),
when network input contains control variables, the quantity
of high-energy sensor nodes basically remains at a very high
level, about 90%. In the case of uncontrollable input, the
quantity of high-energy sensor nodes will increase contin-
uously, as shown in Figure 10(c). It is worth noting that, with
the increase of node degree, the quantity of high-energy
sensor nodes will increase. As the infection rate continues to
rise, sensor nodes in susceptible state will quickly convert to
infected state, so that the quantity of susceptible sensor
nodes will rapidly decline. -erefore, it is necessary to
quickly cast new sensor nodes to maintain the operation of
the networks.

4.3.4. Overall Cost. Figure 11 shows the cumulative cost in
both cases.With the increase of node degree, the costs do not
show the same growth trend but tend to be saturated. In
Figure 11(a), the numerical difference between the cost of
node degree equal to 5 and the cost of node degree equal to
15 is about 7000, but the difference between 15 and 30 is
about 1000, and the difference between 30 and 50 is about
200. Figure 11(b) shows the same phenomenon. -e costs
are lower in the case of controllable input than uncon-
trollable input under the same node degree owing to the
networks with controllable input which can reduce the
quantity of new sensor nodes and cut the cost of patching
new sensor nodes, as shown in Figures 11(a) and 11(b).
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Figure 11: Overall cost with Logistic Growth in susceptible sensor nodes under different node degrees. (a) Strategy with controllable input;
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5. Conclusion

By introducing Logistic Growth, nonlinear incidence, and
charging by solar energy, this paper builds an ΛSILRD
model suitable for EHWSNs. At the same time, the intro-
duction of multiple types of malicious programs refines the
model. By comparing with the existing epidemic models, we
found that the SILRD has obvious advantages in increasing
the quantity of recovered sensor nodes and reducing the
quantity of death sensor nodes, especially SILRD with solar
charging. Meanwhile, compared with the three charging
strategies, we found that the SILRD with solar charging has
the lowest cost. Finally, the influence of controllable input,
uncontrollable input, and node degree on ΛSILRD model is
revealed through the simulations. When the node degree is
higher, the quantity of infected sensor nodes and dead
sensor nodes will increase rapidly under the attack of
multitype malicious programs with nonlinear infection rate
but will tend to be saturated. At the same time, input that
contains control variables can timely stop the delivery of new
nodes and affect the subsequent network patching behavior,
thereby reducing costs.

Although this paper proposes a malicious programs’
propagation model that is close to reality, there are still many
deficiencies. In the establishment of the solar charging model,
this paper uses a simplifiedmodel and does not consider some
random factors, like weather factors, human factors, and so
on. At the same time, the topology of the EHWSNs and
various delay phenomena are not further analyzed in this
paper. However, in spite of this, the model and analytical
methods proposed in this paper are believed to provide
scholars in related fields some inspiration in the future.
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