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Cyber-Physical Systems

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Moore’s Law in Computing/Communication/Control

Renewables and PMUs in smart grid, autonomy/networking in robotics,
distributed intelligence in industrial processes  cyber-physical networks
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Application Domains
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power generation, transportation, distribution networks

water, oil, gas and mass transportation systems

sensor networks

process control and industrial automation systems
(metallurgical process plants, oil refining, chemical plants,
pharmaceutical manufacturing ... ubiquitous SCADA/PLC systems)

Security of these networks is critically important
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The Cyber-Physical Security Problem

Stuxnet worm (Iran, 2010)
New York Times 15jan2011: replay
attack as if “out of the movies:”

1 records normal operations and
plays them back to operators

2 spins centrifuges at damaging
speeds

“Repository of Ind. Security Incidents”

http://www.securityincidents.org

SOME OF MANY

Water industry 
Maroochy Shire sewage spill; Salt 
River Project SCADA hack; software 
flaw makes MA water undrinkable; 
Trojan/Keylogger on Ontario SCADA 
System; viruses on Aussie SCADA 
laptops; audit/blaster causes water 
SCADA crash; penetration of 
California irrigation district 
wastewater treatment plant SCADA; 
SCADA system tagged with 
message: ‘I enter in your server like 
you in Iraq’.
 
Petroleum industry 
Electronic sabotage of Venezuela oil 
operations; CIA Trojan causes 
Siberian gas explosion; anti-virus 
software prevents boiler safety 
shutdown; slammer infected laptop 
shuts down DCS; electronic 
sabotage of gas processing plant; 
Slammer impacts offshore 

platforms; Code Red Worm defaces 
automation Web pages; penetration 
test locks-up gas SCADA System.
 
Chemical industry
IP address change shuts down 
chemical plant; hacker changes 
chemical plant set points; Nachi 
Worm on advanced process control 
servers; SCADA attack on plant of 
chemical company; contractor 
connects to remote PLC; Blaster 
Worm infects chemical plant.
 
Power industry
Slammer infects control central LAN 
via VPN; Slammer causes loss of 
comms to substations; Slammer 
infects Ohio nuclear plant SPDS; 
Iranian hackers attempt to disrupt 
Israel power system; utility SCADA 
System attacked; virus attacks a 
European Utility; facility cyber 
attacks on Asian utility; power plant 
security details leaked on Internet.
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Cyber-Physical Security 6=
Cyber Security, Fault Tolerance

Cyber-physical security complements cyber security

Cyber security (e.g., secure communication, secure code execution)

does not verify “data compatible with physics/dynamics”

is ineffective against direct attacks on the physics/dynamics

is never foolproof (e.g., insider attacks, OS zero-day vulnerabilities)

Cyber-physical security extends fault tolerance

fault detection considers accidental/generic failures

cyber-physical security models worst-case attacks
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An Example of Cyber-Physical Attack
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1 Physical dynamics: classical generator model & DC load flow

2 Measurements: angle and frequency of generator g1

3 Attack: modify real power injections at buses b4 & b5
“Distributed internet-based load altering attacks against smart power grids” IEEE Trans on Smart Grid, 2011

The attack affects the second and third generators while remaining
undetected from measurements at the first generator
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Models of Power Networks

Small-signal structure-preserving power network model:

1 transmission network: generators �� , buses •◦ ,
DC load flow assumptions, and network
susceptance matrix Y = Y T

2 generators �� modeled by swing equations:

Mi θ̈i + Di θ̇i = Pmech.in,i −
∑

j
Yij ·

(

θi − θj
)
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3 buses •◦ with constant real power demand:

0 = Pload,i −
∑

j
Yij ·

(

θi − θj
)

⇒ Linear differential-algebraic dynamics: Eẋ = Ax

YjkYik

k

Pload,k
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Models of Water Networks

Linearized municipal water supply network model:

1 reservoirs with constant pressure heads: hi (t) = hreservoiri = const.

2 pipe flows obey linearized Hazen-Williams eq: Qij = gij · (hi − hj)

3 balance at tank:
Ai ḣi =

∑

j→i Qji −
∑

i→k Qik

4 demand = balance at junction:
di =

∑

j→i Qji −
∑

i→k Qik

5 pumps & valves:

hj −hi = +∆h
pump/valves
ij = const.

⇒ Linear differential-algebraic dynamics: Eẋ = Ax
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Prototypical Attacks

Dynamic false data injection:

(sE −A)−1
C

x(t)
+ y(t)x(0)

DKuK(t)

G(s)
(

(s− p)− 1
)

Covert attack:

(sE −A)−1
C

x(t)
+ y(t)

x(0)

BK ūK(t)

DKuK(t)

Static stealth attack:

Cx(t) + y(t)

C
DKuK(t)

ũ(t)

Replay attack:

(sE −A)−1
C

x(t)
+ y(t)

x(0)

BK ūK(t)

DKuK(t)
x̃(0) +

−

−

corrupt measurements according to C affect system and reset output

closed loop replay attack render unstable pole unobservable

(sE −A)−1
C

(sE −A)−1
C
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Models of Networks, Attackers and Monitors #1

Network model

Eẋ(t) = Ax(t)+Bu(t) (state and actuator attack)

y(t) = Cx(t)+Du(t) (data substitution attack)

Byzantine Cyber-Physical Attackers

1 colluding omniscent attackers:

know model structure and parameters
measure full state
can apply some control signal and corrupt some measurements

2 attacker’s objective is to change/disrupt the physical state
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Models of Networks, Attackers and Monitors #2

Security System

1 knows structure and parameters

2 measures output signal

Objectives

1 vulnerability analysis (fundamental monitor limitations)

2 detection and identification monitors

3 secure-by-design systems

4 attack strategies
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Framework for Cyber-Physical Security

1 a modeling framework for cyber-physical systems under attack
generalizing broad range of previous results

2 fundamental detection and identification limitations

3 system- and graph-theoretic detection and identification conditions

4 centralized attack detection and identification procedures

5 distributed attack detection and identification procedures
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Result #1: Vulnerabilities Analysis
Western US (WECC 3-m, 6-b)
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1 undetectable attacks exist

2 input/output (intruder/monitor) system has invariant zero

3 number of attacked signals > size of input/output linking
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Result #2: Distributed Monitor Design
IEEE 118 bus (Midwest, 54-m 118-b)
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Waveform iteration error:
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Result #3: Optimal Cooperative Attacks
Western US (WECC, 16-m 13-b)
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Optimal attack design via geometric control

Two attackers suffice for network-wide instability

Specific effect against selected machines

Attack unidentifiable by single machine

De Marco et al, “Malicious control in a competitive power systems environment” CCA ’96
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Technical Assumptions

Eẋ(t) = Ax(t) + BKuK (t)

y(t) = Cx(t) + DKuK (t)

Technical assumptions guaranteeing existence, uniqueness, & smoothness:

(i) (E ,A) is regular: |sE − A| does not vanish for all s ∈ C

(ii) the initial condition x(0) is consistent (can be relaxed)

(iii) the unknown input uK (t) is sufficiently smooth (can be relaxed)

Attack set K = sparsity pattern of attack input
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Undetectable Attack
Definition

An attack remains undetected if its effect on measurements is
undistinguishable from the effect of some nominal operating conditions

Normal operating

condition

Undetectable

attacks

Detectable

attacks

y(·, 0, t) y(·, uK(t), t)

Definition (Undetectable attack set)

The attack set K is undetectable if there exist initial conditions x1, x2, and
an attack mode uK (t) such that, for all times t

y(x1, uK , t) = y(x2, 0, t).
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Undetectable Attack
Condition

By linearity, an undetectable attack is such that y(x1 − x2, uK , t) = 0

zero dynamics

Theorem

For the attack set K, there exists an undetectable attack if and only if

[

sE − A −BK

C DK

] [

x
g

]

= 0

for some s, x 6= 0, and g.
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Unidentifiable Attack
Definition

The attack set K remains unidentified if its effect on measurements is
undistinguishable from an attack generated by a distinct attack set R 6= K

Attacks by K
Unidentifiable

attacks
Attacks by R

y(·, uK(t), t) y(·, uR(t), t)

Definition (Unidentifiable attack set)

The attack set K is unidentifiable if there exists an admissible attack set
R 6= K such that

y(xK , uK , t) = y(xR , uR , t).
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Unidentifiable Attack
Condition

By linearity, the attack set K is unidentifiable if and only if there exists a
distinct set R 6= K such that y(xK − xR , uK − uR , t) = 0.

Theorem

For the attack set K, there exists an unidentifiable attack if and only if

[

sE − A −BK −BR

C DK DR

]





x
gK
gR



 = 0

for some s, x 6= 0, gK , and gR .

So far we have shown:

fundamental detection/identification limitations

system-theoretic conditions for undetectable/unidentifiable attacks
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From Algebraic to Graph-theoretical Conditions

Eẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
θ1ω1

δ1

y2 f2θ5

δ3

ω3θ3

f1 θ4

δ2

ω2 θ2

y1

θ6

the vertex set is the union of the state, input, and output variables

edges corresponds to nonzero entries in E , A, B , C , and D
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Zero Dynamics and Connectivity

A linking between two sets of vertices is a set of mutually-disjoint directed
paths between nodes in the sets

Input Output

Theorem (Detectability, identifiability, linkings, and connectivity)

If the maximum size of an input-output linking is k:

there exists an undetectable attack set K1, with |K1| ≥ k, and

there exists an unidentifiable attack set K2, with |K2| ≥ ⌈k2 ⌉.

statement becomes necessary with generic parameters

statement applies to systems with parameters in polytopes
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Summary and Future Directions

Cyber-Physical Security

1 fundamental limitations
2 distributed monitor design
3 control theory + distributed algorithms

Research Avenues

1 optimal network clustering for distributed procedures
2 analysis of costs and effects of attacks
3 optimal monitors with noise and faults
4 nonlinear and piecewise systems
5 integration with hypothesis testing and system optimization
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