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Attack Detection and Identification in

Cyber-Physical Systems – Part II:

Centralized and Distributed Monitor Design
Fabio Pasqualetti, Florian Dörfler, and Francesco Bullo

Abstract—Cyber-physical systems integrate computation, com-
munication, and physical capabilities to interact with the physical
world and humans. Besides failures of components, cyber-
physical systems are prone to malicious attacks so that specific
analysis tools and monitoring mechanisms need to be developed
to enforce system security and reliability. This paper builds upon
the results presented in our companion paper [1] and proposes
centralized and distributed monitors for attack detection and
identification. First, we design optimal centralized attack detec-
tion and identification monitors. Optimality refers to the ability of
detecting (respectively identifying) every detectable (respectively
identifiable) attack. Second, we design an optimal distributed
attack detection filter based upon a waveform relaxation tech-
nique. Third, we show that the attack identification problem is
computationally hard, and we design a sub-optimal distributed
attack identification procedure with performance guarantees.
Finally, we illustrate the robustness of our monitors to system
noise and unmodeled dynamics through a simulation study.

I. INTRODUCTION

Cyber-physical systems need to remain functional and op-

erate reliably in presence of unforeseen failures and, possibly,

external attacks. Besides failures and attacks on the physical

infrastructure, cyber-physical systems are also prone to cyber

attacks against their data management, control, and communi-

cation layer [2], [3], [4], [5].

In several cyber-physical systems, including water and gas

distribution networks, electric power systems, and dynamic

Leontief econometric models, the physical dynamics include

both differential equations as well as algebraic constraints. In

[1] we model cyber-physical systems under attack by means

of linear continuous-time differential-algebraic systems; we

analyze the fundamental limitations of attack detection and

identification, and we characterize the vulnerabilities of these

systems by graph-theoretic methods. In this paper we design

monitors for attack detection and identification for the cyber-

physical model presented in [1].

Related work. Concerns about security of control, commu-

nication, and computation systems are not recent as testified

by the numerous works in the fields of fault-tolerance control

and information security. However, as discussed in [1], cyber-

physical systems feature vulnerabilities beyond fault-tolerance

control and information security methods.
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Attack detection and identification monitors have recently

been proposed. In [6], [7] monitoring procedures are designed

for the specific case of state attacks against discrete-time non-

singular systems. In [8] an algorithm to detect output attacks

against discrete-time nonsingular systems is described and

characterized. In [9] a detection scheme for replay attacks is

proposed. Fault detection and identification schemes for linear

differential-algebraic power network models are presented in

[10], [11] and in the conference version of this paper [12].

We remark that the designs in [10], [11] consider particular

known faults rather than unknown and carefully orchestrated

cyber-physical attacks. Finally, protection schemes for output

attacks against systems described by purely static models are

presented, among others, in [13], [14].

Contributions. The main contributions of this work are as

follows. First, for the differential-algebraic model of cyber-

physical systems under attacks developed in [1], we design

centralized monitors for attack detection and identification.

With respect to the existing solutions, in this paper we propose

attack detection and identification filters that are effective

against both state and output attacks against linear continuous-

time differential-algebraic cyber-physical systems. Our moni-

tors are designed by using tools from geometric control theory;

they extend the construction of [15] to descriptor systems with

direct feedthrough matrix, and they are guaranteed to achieve

optimal performance, in the sense that they detect (respectively

identify) every detectable (respectively identifiable) attack.

Second, we develop a fully distributed attack detection

filter with optimal (centralized) performance. Specifically, we

provide a distributed implementation of our centralized attack

detection filter based upon iterative local computations by

using the Gauss-Jacobi waveform relaxation technique. For

the implementation of this method, we rely upon cooperation

among geographically deployed control centers, each one

responsible for a part of the system. In particular, we require

each control center to have access to the measurements of its

local subsystem, synchronous communication among neigh-

boring control centers at discrete time instants, and ability to

perform numerical integration.

Third, we show that the attack identification problem is

inherently computationally hard. Consequently, we design a

distributed identification method that achieves identification,

at a low computational cost and for a class of attacks, which

can be characterized accurately. Our distributed identification

methods is based upon a divide and conquer procedure, in

which first corrupted regions and then corrupted components

are identified by means of local identification procedures and

cooperation among neighboring regions. Due to cooperation,
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our distributed procedure provably improves upon the fully

decoupled approach advocated in decentralized control [16].

Fourth, we present several illustrative examples. Besides

illustrating our findings concerning centralized and distributed

detection and identification, our numerical investigations show

that our methods are effective also in the presence of system

noise, nonlinearities, and modeling uncertainties.

Finally, as a minor contribution, we build upon the estima-

tion method in [17] to characterize the largest subspace of the

state space of a descriptor system that can be reconstructed in

the presence of unknown inputs.

Paper organization. Section II contains a mathematical de-

scription of the problems under investigation. In Section III we

design monitors for attack detection. Specifically, we propose

optimal centralized, decentralized, and distributed monitors.

In Section IV we show that the attack identification problem

is computationally hard. Additionally, we design an optimal

centralized and a sub-optimal decentralized attack identifi-

cation monitor. Finally, Section V and Section VI contain,

respectively, our numerical studies, and our conclusion.

II. PROBLEM SETUP AND PRELIMINARY CONCEPTS

In this section we recall the framework proposed in [1] for

cyber-physical systems and attacks. We model a cyber-physical

system under attack with the time-invariant descriptor system

Eẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),
(1)

where x(t) ∈ R
n, y(t) ∈ R

p, E ∈ R
n×n, A ∈ R

n×n,

B ∈ R
n×m, C ∈ R

p×n, and D ∈ R
p×m. Here the matrix E

is possibly singular, and the input terms Bu(t) and Du(t) are

unknown signals describing disturbances affecting the plant.

Besides reflecting the genuine failure of systems components,

these disturbances model the effect of an attack against the

cyber-physical system. For notational convenience and without

affecting generality, we assume that each state and output

variable can be independently compromised by an attacker.

Thus, we let B =
�

I, 0
�

and D =
�

0, I
�

be partitioned into

identity and zero matrices of appropriate dimensions, and,

accordingly, u(t) =
�

ux(t)
T, uy(t)

T
�T

. Hence, the unknown

input (Bu(t), Du(t)) = (ux(t), uy(t)) can be classified as

state attack affecting the system dynamics and as output attack

corrupting directly the measurements vector.

The attack signal t �→ u(t) ∈ R
n+p depends upon the

specific attack strategy. In the presence of k ∈ N0, k ≤ n+ p,

attackers indexed by the attack set K ⊆ {1, . . . , n + p} only

and all the entries K of u(t) are nonzero over time. To under-

line this sparsity relation, we sometimes use uK(t) ∈ R
|K| to

denote the attack mode, that is the subvector of u(t) indexed

by K. Accordingly, we use the pair (BK , DK), where BK and

DK are the submatrices of B and D with columns in K, to

denote the attack signature. Hence, Bu(t) = BKuK(t), and

Du(t) = DKuK(t). We make the following assumptions on

system (1), a discussion of which can be found in [1]:

(A1) the pair (E,A) is regular, that is, det(sE−A) does not

vanish identically,

(A2) the initial condition x(0) ∈ R
n is consistent, that is,

(Ax(0) +Bu(0)) ⊥ Ker(ET) = 0; and

(A3) the input signal u(t) is smooth.

The following definitions are inspired by our results in [1].

Let y(x0, u, t) be the output sequence generated from the

initial state x0 under the attack signal u(t).
Definition 1: (Undetectable attack set) For the linear de-

scriptor system (1), the attack set K is undetectable if there

exist initial conditions x1, x2 ∈ R
n, and an attack mode uK(t)

such that, for all t ∈ R≥0, it holds y(x1, uK , t) = y(x2, 0, t).

Definition 2: (Unidentifiable attack set) For the linear de-

scriptor system (1), the attack set K is unidentifiable if there

exists an attack set R, with |R| ≤ |K| and R �= K, initial

conditions xK , xR ∈ R
n, and attack modes uK(t), uR(t) such

that, for all t ∈ R≥0, it holds y(xK , uK , t) = y(xR, uR, t).

In our companion paper [1] we characterize undetectable

and unidentifiable attacks. In this paper, instead, we design

monitors to achieve attack detection and identification.

III. MONITOR DESIGN FOR ATTACK DETECTION

A. Centralized attack detection monitor design

In the following we present a centralized attack detection

filter based on a modified Luenberger observer.

Theorem 3.1: (Centralized attack detection filter) Consider

the descriptor system (1) and assume that the attack set K is

detectable, and that the network initial state x(0) is known.

Consider the centralized attack detection filter

Eẇ(t) = (A+GC)w(t)−Gy(t),

r(t) = Cw(t)− y(t),
(2)

where w(0) = x(0) and the output injection G ∈ R
n×p is

such that the pair (E,A+GC) is regular and Hurwitz. Then

r(t) = 0 at all times t ∈ R≥0 if and only if uK(t) = 0 at all

times t ∈ R≥0. Moreover, in the absence of attacks, the filter

error w(t)− x(t) is exponentially stable.

Proof: Consider the error e(t) = w(t)−x(t) between the

dynamic states of the filter (2) and the descriptor system (1).

The error dynamics with output r(t) are given by

Eė(t) = (A+GC)e(t)− (BK +GDK)uK(t),

r(t) = Ce(t)−DKuK(t),
(3)

where e(0) = 0. To prove the theorem we show that the error

system (3) has no invariant zeros, that is, r(t) = 0 for all

t ∈ R≥0 if and only if uK(t) = 0 for all t ∈ R≥0. Since the

initial condition x(0) and the input uK(t) are assumed to be

consistent (A2) and non-impulsive (A3), the error system (3)

has no invariant zeros if and only if [18, Proposition 3.4] there

exists no triple (s, w̄, gK) ∈ C× R
n × R

p satisfying
�

sE − (A+GC) BK +GDK

C −DK

� �

w̄
gK

�

=

�

0
0

�

. (4)

The second equation of (4) yields Cw̄ = DKgK . Thus, by

substituting Cw̄ by DKgK in the first equation of (4), the set

of equations (4) can be equivalently written as
�

sE −A BK

C −DK

� �

w̄
gK

�

=

�

0
0

�

. (5)

Finally, note that a solution (s,−w̄, gK) to above set of equa-

tions would yield an invariant zero, zero state, and zero input
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for the descriptor system (1). By the detectability assumption,1

the descriptor model (1) has no zero dynamics and the matrix

pencil in (5) necessarily has full rank. It follows that the triple

(E,A,C) is observable, so that G can be chosen to make the

pair (E,A+GC) Hurwitz [19, Theorem 4.1.1], and the error

system (3) is stable and with no zero dynamics.

Remark 1: (Detection and identification filters for un-

known initial condition and noisy dynamics) If the network

initial state is not available, then, since (E,A + GC) is

Hurwitz, an arbitrary initial state w(0) ∈ R
n can be chosen.

Consequently, the filter converges asymptotically, and some

attacks may remain undetected or unidentified. For instance,

if the eigenvalues of the detection filter matrix have real part

smaller than c < 0, with c ∈ R, then, in the absence of attacks,

the residual r(t) exponentially converges to zero with rate less

than c. Hence, only inputs u(t) that vanish faster or equal than

e−ct may remain undetected by the filter (2). Alternatively,

the detection filter can be modified so as to converge in a

predefined finite time, see [20], [21]. In this case, every attack

signal is detectable after a finite transient.

If the dynamics and the measurements of (1) are affected by

modeling uncertainties and noise with known statistics, then

the output injection matrix G in (2) should be chosen as to

optimize the sensitivity of the residual r(t) to attacks versus

the effect of noise. Standard robust filtering or model match-

ing techniques can be adopted for this task [22]. Statistical

hypothesis techniques can subsequently be used to analyze the

residual r(t) [23]. Finally, as discussed in [1], attacks aligned

with the noise statistics turn out to be undetectable. �

Observe that the design of the filter (2) is independent of

the particular attack signature (BK , DK) and its performance

is optimal in the sense that any detectable attack set K can

be detected. We remark that for index-one descriptor systems

such as power system models, the filter (2) can analogously

be designed for the corresponding Kron-reduced model, as

defined in [1]. In this case, the resulting attack detection

filter is low-dimensional and non-singular but also non-sparse,

see [12]. In comparison, the presented filter (2), although

inherently centralized, features the sparse matrices (E,A,C).
This sparsity will be key to develop a distributed attack

detection filter.

B. Decentralized attack detection monitor design

Let Gt = (V, E) be the directed graph associated with

the pair (E,A), where the vertex set V = {1, . . . , n} cor-

responds to the system state, and the set of directed edges

E = {(xj , xi) : eij �= 0 or aij �= 0} is induced by the

sparsity pattern of E and A; see also [1, Section IV]. Assume

that V has been partitioned into N disjoint subsets as V =
V1∪ · · ·∪VN , with |Vi| = ni, and let Gi

t = (Vi, Ei) be the i-th
subgraph of Gr with vertices Vi and edges Ei = E ∩ (Vi×Vi).
According to this partition, and possibly after relabeling the

1Due to linearity of the descriptor system (1), the detectability assumption
reads as “the attack (B,D, u(t)) is detectable if there exist no initial condition
x0 ∈ Rn, such that y(x0, u, t) = 0 for all t ∈ R≥0.”

states, the system matrix A in (1) can be written as

A =







A1 · · · A1N

...
...

...

AN1 · · · AN






= AD +AC ,

where Ai ∈ R
ni×ni , Aij ∈ R

ni×nj , AD is block-diagonal,

and AC=A−AD. Notice that, if AD = blkdiag(A1, . . . , AN ),
then AD represents the isolated subsystems and AC describes

the interconnection structure among the subsystems. Addition-

ally, if the original system is sparse, then several blocks in AC

vanish. We make the following assumptions:

(A4) the matrices E, C are block-diagonal, that is E =
blkdiag(E1, . . . , EN ), C = blkdiag(C1, . . . , CN ),
where Ei ∈ R

ni×ni and Ci ∈ R
pi×ni ,

(A5) each pair (Ei, Ai) is regular, and each triple (Ei, Ai, Ci)
is observable.

Given the above structure and in the absence of attacks, the

descriptor system (1) can be written as the interconnection of

N subsystems of the form

Eiẋi(t) = Aixi(t) +
�

j∈N in
i

Aijxj(t),

yi(t) = Cixi(t), i ∈ {1, . . . , N},

(6)

where xi(t) and yi(t) are the state and output of the i-th
subsystem and N in

i = {j ∈ {1, . . . , N} \ i : �Aij� �= 0}
are the in-neighbors of subsystem i. We also define the set of

out-neighbors as N out
i = {j ∈ {1, . . . , N} \ i : �Aji� �= 0}.

We assume the presence of a control center in each subnetwork

Gi
t with the following capabilities:

(A6) the i-th control center knows the matrices Ei, Ai, Ci,

as well as the neighboring matrices Aij , j ∈ N in
i ; and

(A7) the i-th control center can transmit an estimate of its

state to the j-th control center if j ∈ N out
i .

Before deriving a fully-distributed attack detection filter, we

explore the question of decentralized stabilization of the error

dynamics of the filter (2). For each subsystem (6), consider

the local residual generator

Eiẇi(t) = (Ai +GiCi)wi(t) +
�

j∈N in
i

Aijxj(t)−Giyi(t),

ri(t) = yi(t)− Ciwi(t), i ∈ {1, . . . , N}, (7)

where wi(t) is the i-th estimate of xi(t) and Gi ∈ R
ni×pi .

In order to derive a compact formulation, let w(t) =
[wT

1 (t) · · · w
T

N (t)]T, r(t) = [rT1 (t) · · · r
T

N (t)]T, and G =
blkdiag(G1, . . . , GN ). Then, the overall filter dynamics (7) are

Eẇ(t) = (AD +GC)w(t) +ACw(t)−Gy(t) ,

r(t) = y(t)− Cw(t) .
(8)

Due to the observability assumption (A5) an output injection

matrix Gi can be chosen such that each pair (Ei, Ai −GiCi)
is Hurwitz [19, Theorem 4.1.1]. Notice that, if each pair

(Ei, Ai+GiCi) is regular and Hurwitz, then (E,AD+GC) is

also regular and Hurwitz since the matrices E and AD +GC
are block-diagonal. We are now ready to state a condition for

the decentralized stabilization of the filter (8).

Lemma 3.2: (Decentralized stabilization of the attack de-

tection filter) Consider the descriptor system (1), and assume
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that the attack set K is detectable and that the network initial

state x(0) is known. Consider the attack detection filter (8),

where w(0) = x(0) and G = blkdiag(G1, . . . , GN ) is such

that (E,AD +GC) is regular and Hurwitz. Assume that

ρ
�

(jωE −AD −GC)−1AC

�

< 1 for all ω ∈ R , (9)

where ρ(·) denotes the spectral radius operator. Then r(t) = 0
at all times t ∈ R≥0 if and only if uK(t) = 0 at all times

t ∈ R≥0. Moreover, in the absence of attacks, the filter error

w(t)− x(t) is exponentially stable.

Proof: The error e(t) = w(t)− x(t) obeys the dynamics

Eė(t) = (AD +AC +GC)e(t)− (BK +GDK)uK(t),

r(t) = Ce(t)−DKuK(t) . (10)

A reasoning analogous to that in the proof of Theorem 3.1

shows the absence of zero dynamics. Hence, for r(t) = 0 at all

times t ∈ R≥0 if and only if uK(t) = 0 at all times t ∈ R≥0.

To show stability of the error dynamics in the absence of

attacks, we employ the small-gain approach to large-scale

interconnected systems [24] and rewrite the error dynamics

(10) as the closed-loop interconnection of the two subsystems

Γ1 : Eė(t) = (AD +GC)e(t) + v(t) ,

Γ2 : v(t) = ACe(t) .

Since both subsystems Γ1 and Γ2 are causal and internally

Hurwitz stable, the overall error dynamics (10) are stable if the

loop transfer function Γ1(jω) · Γ2 satisfies the spectral radius

condition ρ(Γ1(jω) · Γ2) < 1 for all ω ∈ R [22, Theorem

4.11]. The latter condition is equivalent to (9).

Observe that, although control centers can compute the

output injection matrix independently of each other, an im-

plementation of the decentralized attack detection filter (8)

requires control centers to continuously exchange their local

estimation vectors. Thus, this scheme has high communication

cost, and it may not be broadly applicable. A solution to this

problem is presented in the next section.

C. Distributed attack detection monitor design

In this subsection we exploit the classical waveform relax-

ation method to develop a fully distributed variation of the

decentralized attack detection filter (8). We refer the reader

to [25], [26] for a comprehensive discussion of waveform

relaxation methods. The Gauss-Jacobi waveform relaxation

method applied to the system (8) yields the waveform relax-

ation iteration

Eẇ(k)(t) = ADw(k)(t) +ACw
(k−1)(t)−Gy(t) , (11)

where k ∈ N denotes the iteration index, t ∈ [0, T ] is the

integration interval for some uniform time horizon T > 0, and

w(k) : [0, T ] → R
n is a trajectory with the initial condition

w(k)(0) = w0 for each k ∈ N. Notice that (11) is a descriptor

system in the variable w(k) and the vector ACw
(k−1) is a

known input, since the value of w(t) at iteration k−1 is used.

The iteration (11) is said to be (uniformly) convergent if

lim
k→∞

max
t∈[0,T ]

�

�w(k)(t)− w(t)
�

�

∞
= 0 ,

where w(t) is the solution of the non-iterative dynamics (8). In

order to obtain a low-complexity distributed detection scheme,

we use the waveform relaxation iteration (11) to iteratively

approximate the decentralized filter (8).

We start by presenting a convergence condition for the

iteration (8). Recall that a function f : R≥0 → R
p is said to

be of exponential order β if there exists β ∈ R such that the

exponentially scaled function f̃ : R≥0 → R
p, f(t) = f(t)e−βt

and all its derivatives exist and are bounded. An elegant

analysis of the waveform relaxation iteration (11) can be

carried out in the Laplace domain [27], where the operator

mapping w(k−1)(t) to w(k)(t) is (sE − AD − GC)−1AC .

Similar to the regular Gauss-Jacobi iteration, convergence

conditions of the waveform relaxation iteration (11) rely on

the contractivity of the iteration operator.

Lemma 3.3: (Convergence of the waveform relaxation [27,

Theorem 5.2]) Consider the waveform relaxation iteration

(11). Let the pair (E,AD + GC) be regular, and the initial

condition w0 be consistent. Let y(t), with t ∈ [0, T ], be of

exponential order β. Let α be the least upper bound on the real

part of the spectrum of (E,A), and define σ = max{α,β}.

The waveform relaxation method (11) is convergent if

ρ
�

((σ + jω)E −AD −GC)−1AC

�

< 1 for all ω ∈R. (12)

In the reasonable case of bounded (integrable) measure-

ments y(t), t ∈ [0, T ], and stable filter dynamics, we have

that σ ≤ 0, and the convergence condition (12) for the

waveform relaxation iteration (11) equals the condition (9)

for decentralized stabilization of the filer dynamics. We now

propose our distributed attack detection filter.

Theorem 3.4: (Distributed attack detection filter) Consider

the descriptor system (1) and assume that the attack set K is

detectable, and that the network initial state x(0) is known.

Let assumptions (A1) through (A7) be satisfied and consider

the distributed attack detection filter

Eẇ(k)(t) =
�

AD +GC
�

w(k)(t) +ACw
(k−1)(t)−Gy(t) ,

r(t) = y(t)− Cw(k)(t) , (13)

where k ∈ N, t ∈ [0, T ] for some T > 0, w(k)(0) = x(0) for

all k ∈ N, and G = blkdiag(G1, . . . , GN ) is such that the pair

(E,AD +GC) is regular, Hurwitz, and

ρ
�

(jωE −AD −GC)−1AC

�

< 1 for all ω ∈ R . (14)

Then limk→∞ r(k)(t) = 0 at all times t ∈ [0, T ] if and only

if uK(t) = 0 at all times t ∈ [0, T ]. Moreover, in the absence

of attacks, the asymptotic filter error limk→∞(w(k)(t)−x(t))
is exponentially stable for t ∈ [0, T ].

Proof: Since w(k)(0) = x(0), it follows from Lemma 3.3

that the solution w(k)(t) of the iteration (13) converges, as k →
∞, to the solution w(t) of the non-iterative filter dynamics (8)

if condition (12) is satisfied with σ = 0 (due to integrability of

y(t), t ∈ [0, T ], and since the pair (E,AD+GC) is Hurwitz).

The latter condition is equivalent to condition (14).

Under condition (14) and due to the Hurwitz assumption,

it follows from Lemma 3.2 that the error e(t) = w(t) − x(t)
between the state w(t) of the decentralized filter dynamics (8)

and the state x(t) of the descriptor model (1) is asymptotically

stable in the absence of attacks. Due to the detectability as-

sumption and by reasoning analogous to the proof of Theorem
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3.1, it follows that the error dynamics e(t) have no invariant

zeros. This concludes the proof of Theorem 3.4.

Remark 2: (Distributed attack detection) The waveform

relaxation iteration (11) can be implemented in the following

distributed fashion. Assume that each control center i is able

to numerically integrate the descriptor system

Eiẇ
(k)
i (t) =(Ai +GiCi)w

(k)
i (t)

+
�

j∈N in
i

Aijw
(k−1)
j (t)−Giyi(t) , (15)

over a time interval t ∈ [0, T ], with initial condition w
(k)
i (0) =

wi,0, measurements yi(t), and the neighboring filter states

w
(k−1)
j (t) as external inputs. Let w

(0)
j (t) be an initial guess of

the signal wj(t). Each control center i ∈ {1, . . . , N} performs

the following operations assuming k = 0 at start:

(1) set k := k + 1, and compute the signal w
(k)
i (t) by

integrating the local filter equation (15),

(2) transmit w
(k)
i (t) to the j-th control center if j ∈ N out

i

(3) update the input w
(k)
j with the signal received from the

j-th control center, with j ∈ N in
i , and iterate.

If the waveform relaxation is convergent, then, for k suffi-

ciently large, the residuals r
(k)
i (t) = yi(t) − Ciw

(k)
i (t) can

be used to detect attacks; see Theorem 3.4. In summary,

our distributed attack detection scheme requires integration

capabilities at each control center, knowledge of the measure-

ments yi(t), t ∈ [0, T ], as well as synchronous discrete-time

communication between neighboring control centers. �

Remark 3: (Distributed filter design) As discussed in Re-

mark 2, the filter (13) can be implemented in a distributed

fashion. In fact, it is also possible to design the filter (13),

that is, the output injections Gi, in an entirely distributed way.

Since ρ(A) ≤ �A�p for any matrix A and any induced p-norm,

condition (14) can be relaxed by the small gain criterion to
�

�(jωE −AD −GC)−1AC

�

�

p
< 1 for all ω ∈ R . (16)

With p = ∞, in order to satisfy condition (16), it is sufficient

for each control center i to verify the following quasi-block

diagonal dominance condition [28] for each ω ∈ R:
�

�

�
(jωEi −Ai −GiCi)

−1
�n

j=1,j �=i
Aij

�

�

�

∞
< 1. (17)

Note that condition (17) can be checked with local informa-

tion, and it is a conservative relaxation of condition (14). �

D. Illustrative example of decentralized detection

The IEEE 118 bus system shown in Fig. 1 represents a

portion of the Midwestern American Electric Power System

as of December 1962. This test case system is composed of

118 buses and 54 generators, and its parameters can be found,

for example, in [29]. Following [1, Section II.C], a linear

continuous-time descriptor model of the network dynamics

under attack assumes the form (1).

For estimation and attack detection purposes, we partition

the IEEE 118 bus system into 5 disjoint areas, we assign a

control center to each area, and we implement our detection

procedure via the filter (13); see Fig. 1 for a graphical

illustration. Suppose that each control center continuously
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Fig. 1. Partition of IEEE 118 bus system into 5 areas. Each area is monitored
and operated by a control center. The control centers cooperate to estimate
the state and to assess the functionality of the whole network.
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Fig. 2. In this figure we show the residual functions computed through
the distributed attack detection filter (13). The attacker compromises the
measurements of all the generators in area 1 from time 30 with a signal
uniformly distributed in the interval [0, 0.5]. The attack is correctly detected,
because the residual functions do not decay to zero. For the simulation, we
run k = 100 iterations of the attack detection method.

measures the angle of the generators in its area, and suppose

that an attacker compromises the measurements of all the

generators of the first area. In particular, starting at time 30s,

the attacker adds a signal uK(t) to all measurements in area

1. It can be verified that the attack set K is detectable, see [1].

According to assumption (A3), the attack signal uK(t) needs

to be continuous to guarantee a continuous state trajectory

(since the power network is a descriptor system of index 1).

In order to show the robustness of our detection filter (13), we

let uK(t) be randomly distributed in the interval [0, 0.5] rad.

The control centers implement the distributed attack de-

tection procedure described in (13), with G = ACT. It can

be verified that the pair (E,AD + GC) is Hurwitz stable,

and that ρ
�

jωE −AD −GC)−1AC

�

< 1 for all ω ∈ R.

As predicted by Theorem 3.4, our distributed attack detection

filter is convergent; see Fig. 2. For completeness, in Fig. 3 we
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Fig. 3. The plot represents the error of our waveform relaxation based filter
(13) with respect to the corresponding decentralized filter (8). Here the error
is maxt∈[0,T ]

�

�w(k)(t)− w(t)
�

�

∞
, that is, the worst-case difference of the

outputs of the two filters. As predicted by Theorem 3.4, the error is convergent.

illustrate the convergence of our waveform relaxation-based

filter as a function of the number of iterations k. Notice that

the number of iterations directly reflects the communication

complexity of our detection scheme.

IV. MONITOR DESIGN FOR ATTACK IDENTIFICATION

A. Complexity of the attack identification problem

In this section we study the problem of attack identification,

that is, the problem of identifying from measurements the

state and output variables corrupted by the attacker. We start

our discussion by showing that this problem is generally NP-

hard. For a vector x ∈ R
n, let supp(x) = {i ∈ {1, . . . , n} :

xi �= 0}, let �x��0 = |supp(x)| denote the number of non-

zero entries, and for a vector-valued signal v : R≥0 → R
n,

let �v�L0
= | ∪t∈R≥0

supp(v(t))|. We consider the following

cardinality minimization problem: given a descriptor system

with dynamic matrices E,A ∈ R
n×n, measurement matrix

C ∈ R
p×n, and measurement signal y : R≥0 → R

p, find

the minimum cardinality input signals vx : R≥0 → R
n and

vy : R≥0 → R
p and an arbitrary initial condition ξ0 ∈ R

n

that explain the data y(t), that is,

min
vx, vy, ξ0

�vx�L0
+ �vy�L0

subject to Eξ̇(t) = Aξ(t) + vx(t),
y(t) = Cξ(t) + vy(t),
ξ(0) = ξ0 ∈ R

n .

(18)

Lemma 4.1: (Problem equivalence) Consider the system

(1) with identifiable attack set K. The optimization problem

(18) coincides with the problem of identifying the attack set K
given the system matrices E, A, C, and the measurements y(t),
where K = supp([vTx vTy ]).

Proof: Due to the identifiability of K, the attack identification

problem consists of finding the smallest attack set capable of

injecting an attack (BKuK , DKuK) that generates the given

measurements y for the given dynamics E, A, C, and some

initial condition; see Definition 2. The statement follows since

B = [I, 0] and D = [0, I] in (1), so that (BKuK , DKuK) =
(vx, vy).

As it turns out, the optimization problem (18), or equiva-

lently our identification problem, is generally NP-hard [30].

1

65

8 7

34

2

ε

ε

ε

Fig. 4. A regular consensus system (A,B,C), where the state variable 3
is corrupted by the attacker, and the state variables 2, 4, and 7 are directly
measured. Due to the sparsity pattern of (A,B,C) any attack of cardinality
one is generically detectable and identifiable, see [1], [7] for further details.

Corollary 4.2: (Complexity of the attack identification

problem) Consider the system (1) with identifiable attack set

K. The attack identification problem given the system matrices

E, A, C, and the measurements y(t) is NP-hard.

Proof: Consider the NP-hard [31] sparse recovery problem

minξ̄∈Rn �ȳ− C̄ ξ̄��0 , where C̄ ∈ R
p×n and ȳ ∈ R

p are given

and constant. In order to prove the claimed statement, we show

that every instance of the sparse recovery problem can be cast

as an instance of (18). Let E = I , A = 0, C = C̄, and

y(t) = ȳ at all times. Notice that vy(t) = ȳ − Cξ(t) and

ξ(t) = ξ(0)+
� t

0
vx(τ)dτ . The problem (18) can be written as

min
vx, ξ

�vx�L0
+ �ȳ − C̄ξ(t)�L0

= min
vx(t), ξ̄

�vx(t)�L0
+ �ȳ − C̄ ξ̄ − C̄

� t

0
vx(τ)dτ�L0

,

(19)

where ξ̄ = ξ(0). Notice that there exists a minimizer to

problem (19) with vx(t) = 0 for all t. Indeed, since �ȳ−C̄ ξ̄−
C̄
� t

0
vx(τ)dτ�L0

= |∪t∈R≥0
supp(ȳ− C̄ ξ̄− C̄

� t

0
vx(τ)dτ)| ≥

|supp(ȳ − C̄ ξ̄ − C̄
� 0

0
vx(τ)dτ)| = �ȳ − C̄ ξ̄��0 , problem (19)

can be equivalently written as minξ̄ �ȳ − C̄ ξ̄��0 .

By Corollary 4.2 the general attack identification problem

is combinatorial in nature, and its general solution will re-

quire substantial computational effort. In the next sections we

propose an optimal algorithm with high computational com-

plexity, and a sub-optimal algorithm with low computational

complexity. We conclude this section with an example.

Example 1: (Attack identification via �1 regularization) A

classical procedure to handle cardinality minimization prob-

lems of the form minv∈Rn �y − Av��0 is to use the �1
regularization minv∈Rn �y − Av��1 [31]. This procedure can

be adapted to the optimization problem (18) after converting it

into an algebraic optimization problem, for instance by taking

subsequent derivatives of the output y(t), or by discretizing

the continuous-time system (1) and recording several mea-

surements. As shown in [8], for discrete-time systems the

�1 regularization performs reasonably well in the presence of

output attacks. However, in the presence of state attacks such

an �1 relaxation performs generally poorly. In what follows,

we develop an intuition when and why this approach fails.

Consider a consensus system with underlying network graph

(sparsity pattern of A) illustrated in Fig. 4. The dynamics



7

Time
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Fig. 5. Plot of the attack mode ū(t) for the attack set K̄ = {2, 4, 7} to
generate the same output as the attack set K = {3} with attack mode u(t) =
1. Although |K̄| > |K|, we have that |ūi(t)| < |u(t)|/3 for i ∈ {1, 2, 3}.

are described by the nonsingular matrix E = I and the state

matrix A depending on the small parameter 0 < ε � 1 as

A =











−0.8 0.1 0 0.2 0.5 0 0 0
0.1 −0.4−ε ε 0 0 0.3 0 0
0 3ε −9ε 0 0 0 6ε 0
0.1 0 ε −0.5−ε 0 0 0 0.4
0.1 0 0 0 −0.6 0.2 0 0.3
0 0.4 0 0 0.1 −0.6 0.1 0
0 0 3ε 0 0 0.4 −0.6−3ε 0.2
0 0 0 0.3 0.2 0 0.2 −0.7











.

The measurement matrix C and the attack signature BK are

C =
�

0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0

�

, BT

K = [ 0 0 1 0 0 0 0 0 ] ,

and we let G(s) = C(sI − A)−1BK . It can be verified that

the state attack K = {3} is detectable and identifiable.

Consider also the state attack K̄ = {2, 4, 7} with signature

BT

K̄ =
�

0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0

�

,

and let Ḡ(s) = C(sI − A)−1BK̄ . We now adopt the short-

hands u(t) = uK(t) and ū(t) = uK̄(t), and denote their

Laplace transforms by U(s) and Ū(s), respectively. Notice

that Ḡ(s) is right-invertible [32]. Thus, Y (s) = G(s)U(s) =
Ḡ(s)

�

Ḡ−1(s)G(s)U(s)
�

. In other words, the measurements

Y (s) generated by the attack signal U(s) can equivalently be

generated by the signal Ū(s) = Ḡ−1(s)G(s)U(s). Obviously,

we have that �ū�L0
= 3 > �u�L0

= 1, that is, the attack set K
achieves a lower cost than K̄ in the optimization problem (18).

Consider now the numerical realization ε = 0.0001, x(0) =
0, and u(t) = 1 for all t ∈ R≥0. The corresponding attack

mode ū(t) is shown in Fig. 5. Since |ūi(t)| < 1/3 for

i ∈ {1, 2, 3} and t ∈ R≥0, it follows that �u(t)��p >�ū(t)��p
point-wise in time and �u(t)�Lq/�p > �ū(t)�Lp/�q , where

p, q ≥ 1 and �u(t)�Lq/�p =
��∞

0
(
�n+p

i=1 |ui(τ)|
p)q/pdτ

�1/q
is

the Lq/�p-norm. Hence, the attack set K̄ achieves a lower cost

than K for any algebraic version of the optimization problem

(18) penalizing a �p cost point-wise in time or a Lq/�p cost

over a time interval. Since �ū�L0
>�u�L0

, we conclude that,

in general, the identification problem cannot be solved by a

point-wise �p or Lq/�p regularization for any p, q ≥ 1.

Notice that, for any choice of network parameters, a value

of ε can be found such that a point-wise �p or a Lq/�p
regularization procedure fails at identifying the attack set.

Moreover, large-scale stable systems often exhibit this behav-

ior independently of the system parameters. This can be easily

seen in discrete-time systems, where a state attack with attack

set K affects the output via the matrix CAr−1BK , where r
is the relative degree of (A,BK , C). Hence, if A is Schur

stable and thus limk→∞ Ak = 0, then CAr−1BK converges

to the zero matrix for increasing relative degree. In this case,

an attack closer to the sensors may achieve a lower Lq/�p cost

than an attack far from sensors independently of the cardinality

of the attack set. In short, the �-connections in Fig. 4 can be

thought of as the effect of a large relative degree in a stable

system. �

B. Centralized attack identification monitor design

As previously shown, unlike the detection case, the identifi-

cation of the attack set K requires a combinatorial procedure,

since, a priori, K is one of the
�

n+p
|K|

�

possible attack sets. The

following centralized attack identification procedure consists

of designing a residual filter to determine whether a predefined

set coincides with the attack set. The design of this residual fil-

ter consists of three steps – an input output transformation (see

Lemma 4.3), a state transformation to a suitable conditioned-

invariant subspace (see Lemma 4.4), and an output injection

and definition of a proper residual (see Theorem 4.5).

As a first design step, we show that the identification prob-

lem can be carried out for a modified system without corrupted

measurements, that is, without the feedthrough matrix D.

Lemma 4.3: (Attack identification with safe measure-

ments) Consider the descriptor system (1) with attack set K.

The attack set K is identifiable for the descriptor system (1) if

and only if it is identifiable for the following descriptor system:

Eẋ(t) = (A−BKD†
KC)x(t) +BK(I −D†

KDK)uK(t),

ỹ(t) = (I −DKD†
K)Cx(t). (20)

Proof: Due to the identifiability hypothesis, there exists

no attack set R with |R| ≤ |K| and R �= K, s ∈ C, gK ∈
R

|K|, gR ∈ R
|R|, and x ∈ R

n \ {0} such that




sE −A −BK −BR

C DK DR

C DK DR









x
gK
gR



 =





0
0
0



 , (21)

where we added an additional (redundant) output equation [1,

Theorem 3.4]. A multiplication of equation (21) from the left

by the projectors blkdiag
�

I , DKD†
K , (I −DKD†

K)
�

yields





sE −A −BK −BR

DKD†
KC DK DKD†

KDR

(I −DKD†
K)C 0 (I −DKD†

K)DR









x
gK
gR



=





0
0
0



 .

The variable gK can be eliminated in the first redundant

(corrupted) output equation according to

gK = −D†
KCx−D†

KDRgR + (I −D†
KDK)gK .

Thus, P (s)[xT gTK gTR]
T = 0 has no solution, where P (s) is

�

sE −A+BKD
†
KC −BK(I −D

†
KDK) −BR +BKD

†
KDR

(I −DKD
†
K)C 0 (I −DKD

†
K)DR

�

The statement follows.
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The second design step of our attack identification monitor

relies on the concept of conditioned invariant subspace. We

refer to [18], [32], [33] for a comprehensive discussion of

conditioned invariant subspaces. Let S∗ be the conditioned

invariant subspace associated with the system (E,A,B,C,D),
that is, the smallest subspace of the state space satisfying

S∗ =
�

A B
�

��

E−1S∗

R
m

�

∩Ker
�

C D
�

�

, (22)

and let L be an output injection matrix satisfying

�

A+ LC B + LD
�

�

E−1S∗

R
m

�

⊆ S∗. (23)

We transform the descriptor system (20) into a set of canonical

coordinates representing S∗ and its orthogonal complement.

For a nonsingular system (E = I) such an equivalent state

representation can be achieved by a nonsingular transformation

of the form Q−1(sI − A)Q. However, for a singular system

different transformations need to be applied in the domain and

codomain such as PT(sE −A)Q for nonsingular P and Q.

Lemma 4.4: (Input decoupled system representation)

For the system (20), let S∗ and L be as in

(22) and (23), respectively. Define the unitary

matrices P =
�

Basis(S∗) Basis((S∗)⊥)
�

and

Q =
�

Basis(E−1S∗) Basis((E−1S∗)⊥)
�

. Then

P
T
EQ=

�

Ẽ11 Ẽ12

0 Ẽ22

�

, P
T(A−BKD

†
KC + LC)Q=

�

Ã11 Ã12

0 Ã22

�

,

P
T
BK(I −D

†
KDK)=

�

B̃K(t)
0

�

, (I −DKD
†
K)C)Q=

�

C̃1 C̃2

�

.

The attack set K is identifiable for the descriptor system (1)

if and only if it is identifiable for the descriptor system

�

Ẽ11 Ẽ12

0 Ẽ22

� �

ẋ1(t)
ẋ2(t)

�

=

�

Ã11 Ã12

0 Ã22

� �

x1(t)
x2(t)

�

+

�

B̃K(t)
0

�

,

y(t) =
�

C̃1 C̃2

�

�

x1(t)
x2(t)

�

. (24)

Proof: Let L = E−1S∗ and M = S∗. Notice that (A+
LC)E−1S∗ ⊆ S∗ by the invariance property of S∗ [33], [18].

It follows that L and M are a pair of right deflating subspaces

for the matrix pair (A+LC,E) [34], that is, M = AL+EL
and dim(M) ≤ dim(L). The sparsity pattern in the descriptor

and dynamic matrices Ẽ and Ã of (24) arises by construction

of the right deflating subspaces P and Q [34, Eq. (2.17)],

and the sparsity pattern in the input matrix arises due to the

invariance properties of S∗ containing Im(BK). The statement

follows because the output injection L, the coordinate change

x �→ Q−1x, and the left-multiplication of the dynamics by PT

does not affect the existence of zero dynamics.

We call system (24) the conditioned system associated with

(1). For the ease of notation and without affecting generality,

the third and final design step of our attack identification filter

is presented for the conditioned system (24).

Theorem 4.5: (Attack identification filter for attack set

K) Consider the conditioned system (24) associated with the

descriptor system (1). Assume that the attack set is identifiable,

the network initial state x(0) is known, and the assumptions

(A1) through (A3) are satisfied. Consider the attack identifi-

cation filter for the attack signature (BK , DK)

Ẽ22ẇ2(t) = (Ã22 + G̃(I − C̃1C̃
†
1)C̃2)w2(t)− G̃ȳ(t),

rK(t) = (I − C̃1C̃
†
1)C̃2w2(t)− ȳ(t), with

ȳ(t) = (I − C̃1C̃
†
1)C̃2y(t),

(25)

where w2(0) = x2(0), and G̃ is such that (Ẽ22, Ã22 + G̃(I −
C̃1C̃

†
1)C̃2) is Hurwitz. Then rK(t) = 0 for all times t ∈ R≥0

if and only if K coincides with the attack set.

Proof: Let w(t) = [w1(t)
T w2(t)

T]T, where w1(t) obeys

Ẽ11ẇ1(t) + Ẽ12ẇ2(t) = Ã11w1(t) + Ã12w2(t).

Consider the filter error e(t) = w(t)− x(t), and notice that
�

Ẽ11 Ẽ12

0 E22

� �

ė1(t)
ė2(t)

�

=

�

Ã11 Ã12

0 Ā22

� �

e1(t)
e2(t)

�

−

�

B̃K

0

�

uK(t),

rK(t) = (I − C̃1C̃
†
1)C̃2e2(t),

where Ā22 = Ã22 + G̃(I − C̃1C̃
†
1)C̃2). Notice that rK(t) is

not affected by the input uK(t), so that, since e2(0) = 0 due

to w2(0) = x2(0), the residual rK(t) is identically zero when

K is the attack set. In order to prove the theorem we are left

to show that for every set R, with |R| ≤ |K| and R∩K = ∅,

every attack mode uR(t) results in a nonzero residual rK(t).
From [1, Theorem 3.4] and the identifiability hypothesis, for

any R �= K, there exists no solution to





sẼ11 − Ã11 sẼ12 − Ã12 B̃K −BR1

0 sẼ22 − Ā22 0 −BR2

C̃1 C̃2 0 DR













x1

x2

gK
gR









=









0
0
0
0









.

A projection of the equation 0 = C̃1x1 + C̃2x2 +DRgR onto

the image of C̃1 and its orthogonal complement yields






sẼ11 − Ã11 sẼ12 − Ã12 BK −BR1

0 sẼ22 − Ā22 0 −BR2

C̃1 C̃1C̃
†
1C̃2 0 C̃1C̃

†
1DR

0 (I − C̃1C̃
†
1)C̃2 0 (I − C̃1C̃

†
1)DR











x1

x2

gK
gR





= [0 0 0 0]
T
. (26)

Due to the identifiability hypothesis the set of equations (26)

features no solution [xT

1 xT

2 gTK gTR]
T with [xT

1 xT

2 ]
T = 0.

Observe that, for every x2 and gR, there exists x1 ∈
Ker(C̃1)

⊥ such that the third equation of (26) is satisfied. Fur-

thermore, for every x2 and gR, there exist x1 ∈ Ker(C̃1) and

gK such that the first equation of (26) is satisfied. Indeed, since

QE−1S∗ = [Im(I) 0]T and PTS∗ = [Im(I) 0]T, the invari-

ance of S∗ implies that S∗ = A(E−1S∗∩Ker(C))+Im(BK),
or equivalently in new coordinates, Im(I) = Ã11 Ker(C̃1) +
Im(B̃K). Finally note that [(sẼ11 − Ã11)Ker(C̃1) B̃K ] is of

full row rank due to the controllability of the subspace S∗

[18]. We conclude that there exist no vectors x2 and gR such

that (sẼ22 − Ā22)x2 − BR2gR = 0 and (I − C̃1C̃
†
1)(C̃2x2 +

DRgR) = 0 and the statement follows.

Our identification procedure is summarized in Algorithm

1. Observe that the proposed attack identification filter ex-

tends classical results concerning the design of unknown-

input fault detection filters. In particular, our filter generalizes

the construction of [15] to descriptor systems with direct
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Algorithm 1: Identification Monitor for (BK , DK)

Input : Matrices E, A, BK , and DK ,;
Require : Identifiability of attack set K;

1 From system (1) define the system (20);

2 Compute S∗ and L for system (20) as in (22) and (23);

3 Apply L, P , and Q as in Lemma 4.4 leading to system (24);

4 For (24), define rK and apply the output injection Ḡ as in (25).

feedthrough matrix. Additionally, we guarantee the absence

of invariant zeros in the residual dynamics. By doing so, our

attack identification filter is sensitive to every attack mode.

Notice that classical fault detection filters, for instance those

presented in [15], are guaranteed to detect and isolate signals

that do not excite exclusively zero dynamics. Finally, an attack

identification filter for the case of state space or index-one

systems is presented in our previous work [12].

Remark 4: (Complexity of centralized identification) Our

centralized identification procedure assumes the knowledge of

the cardinality k of the attack set, and it achieves identification

of the attack set by constructing a residual generator for
�

n+p
k

�

possible attack sets. Thus, for each finite value of

k, our procedure constructs O(nk) filters. If only an upper

bound k̄ on the cardinality of the attack set is available,

identification can be achieved by constructing
�n+p

k̄

�

filters,

and by intersecting the attack sets generating zero residuals.�

Remark 5: (Attack identification filter in the presence

of noise) Let the dynamics and the measurements of the

system (1) be affected, respectively, by the additive white noise

signals η(t), with E[η(t)ηT(τ)] = Rηδ(t− τ), and ζ(t), with

E[ζ(t)ζT(τ)] = Rζδ(t − τ). Let the state and output noise

be independent of each other. Then, simple calculations show

that the dynamics and the output of the attack identification

filter (25) are affected, respectively, by the noise signals

η̂(t) = PTη(t) + PT(L(I −DKD†
K)−BKD†

K)ζ(t),

ζ̂(t) = −

�

I −
�

(I −DKD†
K)CQ1

� �

(I −DKD†
K)CQ1

�†

(I −DKD†
K)

�

ζ(t),

where Q1 = Basis(E−1S∗). Define the covariance matrix

R
η̂,ζ̂ = E

��

η̂(t)

ζ̂(t)

�

�

η̂T(t) ζ̂T(t)
�

�

.

Notice that the off-diagonal elements of R
η̂,ζ̂ are in general

nonzero, that is, the state and output noises of the attack

identification filter are not independent of each other. As in

the detection case, by using the covariance matrix R
η̂,ζ̂ , the

output injection matrix G̃ in (25) can be designed to optimize

the robustness of the residual rK(t) against noise. A related

example is in Section V. �

We conclude this section by observing that a distributed

implementation of our attack identification scheme is not

practical. Indeed, even if the filters parameters may be obtained

via distributed computation, still
�

n+p
k

�

filters would need

to be implemented to identify an attack of cardinality k.

Such a distributed implementation results in an enormous

communication effort and does not reduce the fundamental

combinatorial complexity.

C. Fully decoupled attack identification

In the following sections we develop a distributed attack

identification procedure. Consider the decentralized setup pre-

sented in Section III-B with assumptions (A4)-(A7). The

subsystem assigned to the i-th control center is

Eiẋi(t) = Aixi(t) +
�

j∈N in
i

Aijxj(t) +BKi
uKi

(t),

yi(t) = Cixi(t) +DKi
uKi

(t), i ∈ {1, . . . , N},

(27)

where Ki = (K ∩ Vi) ∪Kp
i with K being the attack set and

Kp
i being the set of corrupted measurements in the region Gi

t .

As a first distributed identification method we consider the

fully decoupled case (no cooperation among control centers).

In the spirit of [16], the neighboring states xj(t) affecting xi(t)
are treated as unknown inputs (fi(t)) to the i-th subsystem:

Eiẋi(t) = Aixi(t) +Bb
i fi(t) +BKi

uKi
(t),

yi(t) = Cixi(t) +DKi
uKi

(t), i ∈ {1, . . . , N},
(28)

where Bb
i = [Ai1 · · · Ai,i−1 Ai,i+1 · · · AiN ]. We refer to (28)

as to the i-th decoupled system, and we let Kb
i ⊆ Vi be the

set of boundary nodes of (28), that is, the nodes j ∈ Vi with

Ajk �= 0 for some k ∈ {1, . . . , n} \ Vi.

If the attack identification procedure in Section IV-B is de-

signed for the i-th decoupled system (28) subject to unknown

inputs fi(t) and uKi
(t), then a total of only

�N
i=1

�

ni+pi

|Ki|

�

<
�

n+p
|K|

�

need to be designed. Although the combinatorial com-

plexity of the identification problem is tremendously reduced,

this decoupled identification procedure has several limitations.

The following fundamental limitations follow from [1]:

(L1) if (Ei, Ai, BKi
, Ci, DKi

) has invariant zeros, then Ki is

not detectable by the i-th control center;

(L2) if there is an attack set Ri, with |Ri| ≤ |Ki|, such that

(Ei, Ai, [BKi
BRi

], Ci, [DKi
DRi

]) has invariant zeros,

then Ki is not identifiable by the i-th control center;

(L3) if Ki �⊆ Kb
i and (Ei, Ai, [B

b
i BKi

], Ci, DKi
) has no

invariant zeros, then Ki is detectable by the i-th control

center; and

(L4) if Ki �⊆ Kb
i and there is no attack set Ri, with |Ri| ≤

|Ki|, such that (Ei, Ai, [B
b
i BKi

BRi
], Ci, [DKi

DRi
])

has invariant zeros, then Ki is identifiable by the i-th
control center.

Whereas limitations (L1) and (L2) also apply to any central-

ized attack detection and identification monitor, limitations

(L3) and (L4) arise by naively treating the neighboring signals

as unknown inputs. Since, in general, the i-th control center

cannot distinguish between an unknown input from a safe

subsystem, an unknown input from a corrupted subsystem,

and a boundary attack with the same input direction, we can

further state that

(L5) any (boundary) attack set Ki ⊆ Kb
i is not detectable

and not identifiable by the i-th control center, and

(L6) any (external) attack set K \ Ki is not detectable and

not identifiable by the i-th control center.
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We remark that, following our graph-theoretic analysis in [1,

Section IV], the attack Ki is generically identifiable by the i-th
control center if the number of attacks |Ki| on the i-th subsys-

tem is sufficiently small, the internal connectivity of the i-th
subsystem (size of linking between unknown inputs/attacks

and outputs) is sufficiently high, and the number of unknown

signals |Kb
i | from neighboring subsystems is sufficiently small.

These criteria can ultimately be used to select an attack-

resilient partitioning of a cyber-physical system.

D. Cooperative attack identification

In this section we improve upon the naive fully decoupled

method presented in Subsection IV-C and propose an identi-

fication method based upon a divide and conquer procedure

with cooperation. This method consists of the following steps.

(S1: estimation and communication) Each control center

estimates the state of its own region by means of an unknown-

input observer for the i-th subsystem subject to the unknown

input Bb
i fi(t). For this task we build upon existing unknown-

input estimation algorithms (see the Appendix for a construc-

tive procedure). Assume that the state xi(t) is reconstructed

modulo some subspace Fi.
2 Let Fi = Basis(Fi), and let

xi(t) = x̃i(t) + x̂i(t), where x̂i(t) is the estimate computed

by the i-th control center, and x̃i(t) ∈ Fi. Assume that each

control center i transmits the estimate x̂i(t) and the uncertainty

subspace Fi to every neighboring control center.

(S2: residual generation) Observe that each input sig-

nal Aijxj(t) can be written as Aijxj(t) = Aij x̃j(t) +
Aij x̂j(t), where x̃j(t) ∈ Fj . Then, after carrying out

step (S1), only the inputs Aij x̃j(t) are unknown to the

i-th control center, while the inputs Aij x̂j(t) are known

to the i-th center due to communication. Let Bb
iFi =

[Ai1F1 · · · Ai,i−1Fi−1 Ai,i+1Fi+1 · · · AiNFN ], and rewrite

the signal Bb
i x̃(t) as Bb

i x̃(t) = Bb
iFifi(t), for some unknown

signal fi(t). Then the dynamics of the i-th subsystem read as

Eiẋi(t) = Aixi(t) +Bb
i x̂(t) +Bb

iFifi(t) +BKi
uKi

(t).

Analogously to the filter presented in Theorem 4.5 for the at-

tack signature (BK , DK), consider now the following filter (in

appropriate coordinates) for (28) for the signature (Bb
iFi, 0)

Eiẇi(t) = (Ai + LiCi)wi(t)− Ly(t) +Bb
i x̄(t),

ri(t) = Mwi(t)−Hy(t),
(29)

where Li is the injection matrix associated with the condi-

tioned invariant subspace generated by Bb
iFi, with (Ei, Ai +

LiCi) Hurwitz, and x̄(t) is the state transmitted to i by its

neighbors. Notice that, in the absence of attacks in the regions

N in
i , we have Bb

i x̄(t) = Bb
i x̂(t). Finally, let the matrices

M and H in (29) be chosen so that the input Bb
iFifi(t)

does not affect the residual ri(t).
3 Consider the filter error

ei(t) = wi(t)− xi(t), and notice that

Eiėi(t) = (Ai + LiCi)ei(t) +Bb
i (x̄(t)− x̂(t))−BKi

uKi
(t)

−Bb
iFifi(t), (30)

ri(t) = Mei(t),

2For nonsingular systems without feedthrough matrix, Fi is as small as the
largest (Ai, B

b
i )-controlled invariant subspace contained in Ker(Ci) [32].

3See Section IV-B for a detailed construction of this type of filter.

(S3: cooperative residual analysis) We next state a key result

for our distributed identification procedure.

Lemma 4.6: (Characterization of nonzero residuals) Let

each control center implement the distributed identification

filter (29) with wi(0) = xi(0). Assume that the attack K
affects only the i-th subsystem, that is K = Ki. Assume

that (Ei, Ai, [B
b
iFi BKi

], Ci) and (Ei, Ai, B
b
i , Ci) have no

invariant zeros. Then,

(i) ri(t) �= 0 at some time t, and

(ii) either rj(t) = 0 for all j ∈ N out
i at all times t, or

rj(t) �= 0 for all j ∈ N out
i at some time t.

Proof: Notice that the estimation computed by a control

center is correct provided that its area is not under attack. In

other words, since K = Ki, we have that Bb
i x̂(t) = Bb

i x̄(t)
in (30). Since (Ei, Ai, [B

b
iFi BKi

], Ci) has no invariant zeros,

statement (i) follows. In order to prove statement (ii), consider

the following two cases: the i-th control center provides the

correct estimation x̂i(t) = x̄i(t) or an incorrect estimation

x̂i(t) �= x̄i(t). For instance, if Im(BKi
) ⊆ Im(Bb

i ), that is,

the attack set Ki lies on the boundary of the i-th area, then

x̂i(t) = x̄i(t). Notice that, if x̂i(t) = x̄i(t), then each residual

rj(t), j �= i, is identically zero since the associated residual

dynamics (30) evolve as an autonomous system without inputs.

Suppose now that x̂i(t) �= x̄i(t). Notice that Bb
iFifi(t) +

Bb
i (x̂(t) − x̄(t)) ∈ Im(Bb

i ). Then, since (Ei, Ai, B
b
i , Ci) has

no invariant zeros, each residual rj(t) is nonzero for some t.

As a consequence of Lemma 4.6 the region under attack can

be identified through a distributed procedure. Indeed, the i-th
area is safe if either of the following two criteria is satisfied:

(C1) the associated residual ri(t) is identically zero, or

(C2) the neighboring areas j ∈ N out
i feature both zero and

nonzero residuals rj(t).

Consider now the case of several simultaneously corrupted

subsystems. Then, if the graphical distance between any two

corrupted areas is at least 2, that is, if there are at least two

uncorrupted areas between any two corrupted areas, corrupted

areas can be identified via our distributed method and criteria

(C1) and (C2). An upper bound on the maximum number of

identifiable concurrent corrupted areas can consequently be

derived (see the related set packing problem in [30]).

(S4: local identification) Once the corrupted regions have

been identified, the identification method in Section IV is used

to identify the local attack set.

Lemma 4.7: (Local identification) Consider the decoupled

system (28). Assume that the i-th region is under the attack

Ki whereas the neighboring regions N out
i are uncorrupted.

Assume that each control center j ∈ N in
i transmits the estimate

x̂j(t) and the uncertainty subspace Fi to the i-th control center.

Then, the attack set Ki is identifiable by the i-th control center

if (Ei, Ai, [B
b
iFi BKi

BRi
], Ci, [DKi

DRi
]) has no invariant

zeros for any attack set Ri, with |Ri| ≤ |Ki|.
Proof: Notice that each control center j, with j �= i,

can correctly estimate the state xj(t) modulo Fj . Since

this estimation is transmitted to the i-th control center, the

statement follows from [1, Theorem 3.4].

The final identification procedure (S4) is implemented

only on the corrupted regions. Consequently, the combinato-

rial complexity of our distributed identification procedure is
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Subsystem 2

Subsystem 1

Fig. 6. This figure shows a network composed of two subsystems. A control
center is assigned to each subsystem. Each control center knows only the dy-
namics of its local subsystem. The state of the blue nodes {2, 5, 7, 12, 13, 15}
is continuously measured by the corresponding control center, and the state
of the red node {3} is corrupted by an attacker. The decoupled identification
procedure presented in Subsection IV-C fails at detecting the attack. Instead,
by means of our cooperative identification procedure, the attack can be
detected and identified via distributed computation.

��
i=1

�

ni+pi

|Ki|

�

, where � is the number of corrupted regions.

Hence, the distributed identification procedure greatly reduces

the combinatorial complexity of the centralized procedure pre-

sented in Subsection IV-B, which requires the implementation

of
�

n+p
|K|

�

filters. Finally, the assumptions of Lemma 4.6 and

Lemma 4.7 clearly improve upon the limitations (L3) and

(L4) of the naive decoupled approach presented in Subsection

IV-C. We conclude this section with an example showing that,

contrary to the limitation (L5) of the naive fully decoupled

approach, boundary attacks Ki ⊆ Kb
i can be identified by our

cooperative attack identification method.

Example 2: (An example of cooperative identification)

Consider the sensor network in Fig. 6, where the state of

the blue nodes {2, 5, 7, 12, 13, 15} is measured and the state

of the red node {3} is corrupted by an attacker. Assume

that the network evolves according to nonsingular, linear,

time-invariant dynamics. Assume further that the network has

been partitioned into the two areas V1 = {1, . . . , 8} and

V2 = {9, . . . , 16} and at most one area is under attack. Since

{3, 4} are the boundary nodes for the first area, the attack set

K = 3 is neither detectable nor identifiable by the two control

centers via the fully decoupled procedure in Section IV-C.

Consider now the second subsystem with the boundary

nodes Kb
2 = {9, 10}. It can be shown that, generically,

the second subsystem with unknown input Bb
2f2(t) has no

invariant zeros; see [1, Section V]. Hence, the state of the

second subsystem can be entirely reconstructed. Analogously,

since the attack is on the boundary of the first subsystem, the

state of the first subsystem can be reconstructed, so that the

residual r2(t) is identically zero; see Lemma 4.6.

Suppose that the state of the second subsystem is continu-

ously transmitted to the control center of the first subsystem.

Then, the only unknown input in the first subsystem is due to

the attack, which is now generically detectable and identifiable,

(optional DC link)
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Fig. 7. This figure illustrates the IEEE RTS96 power network [35]. The
dynamics of the generators {101, 102} are affected by an attacker.
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Fig. 8. In this figure we report our simulation results for the case of
linear network dynamics without noise and for the proposed detection monitor
(2) and identification monitor (25), respectively. The state trajectory x(t)
consists of the generators angles and frequencies. The detection residual r(t)
becomes nonzero after time 15s, and it reveals the presence of the attack.
The identification residual rK(t) is identically zero even after time 15s, and
it reveals that the attack set is K = {101, 102}. The identification residual
rR(t) is nonzero after time 15s, and it reveals that R is not the attack set.

since the associated system has no invariant zeros; see Lemma

4.7. We conclude that our cooperative identification procedure

outperforms the decoupled counterpart in Section IV-C. �

V. A CASE STUDY: THE IEEE RTS96 SYSTEM

In this section we apply our centralized attack detection

and identification methods to the IEEE RTS96 power network

[35] illustrated in Fig. 7. In particular, we first consider the

nominal case, in which the power network dynamics evolve as

nominal linear time-invariant descriptor system, as described

in [1, Section II.C]. Second, we consider the case of additive

state and measurement noise, and we show the robustness

of the attack detection and identification monitors. Third, we
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Fig. 9. In this figure we report our simulation results for the case of linear
network dynamics driven by state and measurements noise. For this case,
we choose the output injection matrices of the detection and identification
filters as the corresponding optimal Kalman gain (see Remark 1 and Remark
5). Due to the presence of noise, the residuals deviate from their nominal
behavior reported in Fig. 8. Although the attack is clearly still detectable and
identifiable, additional statistical tools such as hypothesis testing [23] may be
adopted to analyze the residuals r(t), rK(t), and rR(t).

consider the case of nonlinear differential-algebraic power

network dynamics and show the effectiveness of our methods

in the presence of unmodeled nonlinear dynamics.

For our numerical studies, we assume the angles and fre-

quencies of every generator to be measured. Additionally, we

let the attacker affect the angles of the generators {101, 102}
with a random signal starting from time 15s. Since the

considered power network dynamics are of index one, the

filters are implemented using the nonsingular Kron-reduced

system representation [1, Section III.D]. The results of our

simulations are in Fig. 8, Fig. 9, and Fig. 10. In conclusion, our

centralized detection and identification filters appears robust to

state and measurements noise and unmodeled dynamics.

VI. CONCLUSION

For cyber-physical systems modeled by linear time-invariant

descriptor systems, we proposed attack detection and identifi-

cation monitors. In particular, for the detection problem we

developed both centralized and distributed monitors. These

monitors are optimal, in the sense that they detect every

detectable attack. For the attack identification problem, we

developed an optimal centralized monitor and a sub-optimal

distributed method. Our centralized attack identification mon-

itor relies upon a combinatorial machinery. Our distributed

attack identification monitor, instead, is computationally ef-

ficient and achieves guaranteed identification of a class of

attacks, which we characterize. Finally, we provided several

examples to show the effectiveness and the robustness of our

methods against uncertainties and unmodeled dynamics.

APPENDIX

In this section we present an algebraic technique to recon-

struct the state of a descriptor system. Our method builds upon
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Fig. 10. In this figure we report our simulation results for the case of
nonlinear network dynamics without noise. For this case, the detection and
identification filters are designed for the nominal linearized dynamics with
output injection matrices as the corresponding optimal Kalman gain (see
Remark 1 and Remark 5). Despite the presence of unmodeled nonlinear
dynamics, the residuals reflect their nominal behavior reported in Fig. 8.

the results presented in [17]. Consider the descriptor model (1)

written in the form (see [1, Section IV.C])

ẋ1(t) = A11x1(t) +A12x2(t) +B1u(t) ,

0 = A21x1(t) +A22x2(t) +B2u(t) ,

y(t) = C1x1(t) + C2x2(t) +Du(t) .

(A-1)

We aim at characterizing the largest subspace of the state space

of (A-1) that can be reconstructed through the measurements

y(t). Consider the associated nonsingular system

˙̃x1(t) = A11x̃1(t) +B1ũ(t) +A12x̃2(t), (A-2)

ỹ(t) =

�

ỹ1(t)
ỹ2(t)

�

=

�

A21

C1

�

x̃1(t) +

�

A22 B2

C2 D

� �

x̃2(t)
ũ(t)

�

.

Recall from [32, Section 4] that the state of the system (A-2)

can be reconstructed modulo its largest controlled invariant

subspace V∗
1 contained in the null space of the output matrix.

Lemma 6.1: (Reconstruction of the state x1(t)) Let V∗
1 be

the largest controlled invariant subspace of the system (A-2).

The state x1(t) of the system (A-1) can be reconstructed only

modulo V∗
1 through the measurements y(t).

Proof: We start by showing that for every x1(0) ∈ V∗
1

there exist x2(t) and u(t) such that y(t) is identically zero.

Due to the linearity of (A-1), we conclude that the projection

of x1(t) onto V∗
1 cannot be reconstructed. Notice that for every

x̃1(0), x̃2(t), and ũ(t) yielding ỹ1(t) = 0 at all times, the state

trajectory [x̃1(t) x̃2(t)] is a solution to (A-1) with input u(t) =
ũ(t) and output y(t) = ỹ2(t). Since for every x̃1(0) ∈ V∗

1 ,

there exists x̃2(t) and ũ(t) such that ỹ(t) is identically zero, we

conclude that every state x1(0) ∈ V∗
1 cannot be reconstructed.

We now show that the state x1(t) can be reconstructed

modulo V∗
1 . Let x1(0) be orthogonal to V∗

1 , and let x1(t),
x2(t), and y(t) be the solution to (A-1) subject to the input

u(t). Notice that x̃1(t) = x1(t), ỹ1(t) = 0, and ỹ2(t) = y(t)
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is the solution to (A-2) with inputs x̃2(t) = x2(t) and

ũ(t) = u(t). Since x̃1(0) is orthogonal to V∗
1 , we conclude

that x̃1(0) = x1(0), and in fact the subspace (V∗)⊥, can be

reconstructed through the measurements ỹ2(t) = y(t).
In Lemma 6.1 we show that the state x1(t) of (A-1) can be

reconstructed modulo V∗
1 . We now show that the state x2(t)

can generally not be completely reconstructed.

Lemma 6.2: (Reconstruction of the state x2(t)) Let V∗
1 =

Im(V1) be the largest controlled invariant subspace of the

system (A-2). The state x2(t) of the system (A-1) can be

reconstructed only modulo V∗
2 = A−1

22 Im([A21V1 B2]).
Proof: Let x1(t) = x̄1(t) + x̂1(t), where x̄1(t) ∈ V∗

1 and

x̂1(t) is orthogonal to V∗
1 . From Lemma 6.1, the signal x̂1(t)

can be entirely reconstructed via y(t). Notice that

0 = A21x1(t) +A22x2(t) +B2u(t),

= A21V1v1(t) +A21x̂1(t) +A22x2(t) +B2u(t).

Let W be such that Ker(W ) = Im([A21V1 B2]). Then,

0 = WA21x̂1(t) + WA22x2(t), and hence x2(t) = x̄2(t) +
x̂2(t), where x̂2(t) = (WA22)

†WA21x̂1(t), and x̄2(t) ∈
Ker(WA22) = A−1

22 Im([A21V1 B2]). The statement follows.

To conclude the paper, we remark the following points.

First, our characterization of V∗
1 and V∗

2 is equivalent to the

definition of weakly unobservable subspace in [18], and of

maximal output-nulling subspace in [33]. Hence, we proposed

an optimal state estimator for our distributed attack identifi-

cation procedure, and the matrix Vi in (S1: estimation and

communication) can be computed as in [18], [33]. Second, a

reconstruction of x1(t) modulo V∗
1 and x2(t) modulo V∗

2 can

be obtained through standard algebraic techniques [32]. Third

and finally, Lemma 6.1 and Lemma 6.2 extend the results in

[17] by characterizing the subspaces of the state space that

can be reconstructed with an algebraic method by processing

the measurements y(t) and their derivatives.
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