
Attack Directories, Not Caches:
Side-Channel Attacks in a Non-Inclusive World

Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher Fletcher, Roy Campbell, Josep Torrellas
University of Illinois at Urbana Champaign

{myan8, spraber2, gopired2, cwfletch, rhc, torrella}@illinois.edu

Abstract—Although clouds have strong virtual memory isola-
tion guarantees, cache attacks stemming from shared caches have
proved to be a large security problem. However, despite the past
effectiveness of cache attacks, their viability has recently been
called into question on modern systems, due to trends in cache
hierarchy design moving away from inclusive cache hierarchies.

In this paper, we reverse engineer the structure of the directory
in a sliced, non-inclusive cache hierarchy, and prove that the
directory can be used to bootstrap conflict-based cache attacks on
the last-level cache. We design the first cross-core Prime+Probe
attack on non-inclusive caches. This attack works with minimal
assumptions: the adversary does not need to share any virtual
memory with the victim, nor run on the same processor core.
We also show the first high-bandwidth Evict+Reload attack on
the same hardware. We demonstrate both attacks by extracting
key bits during RSA operations in GnuPG on a state-of-the-art
non-inclusive Intel Skylake-X server.

I. INTRODUCTION

Cloud computing on shared machines is now ubiquitous.

Cloud hypervisors share physical hardware resources between

concurrent guest Virtual Machines (VMs), giving each VM

the impression that it owns the entire cloud. On the business

side, dynamically sharing hardware between tenants is essential

to keep cloud computing economically viable. However, in

this environment, an obvious challenge is security. Fortunately,

researchers and industry have developed a suite of techniques—

e.g., the hypervisor-OS privilege hierarchy and hardware

security extensions such as Intel SGX [1]—to provide virtual

memory isolation between VMs and between processes within

a VM.

Unfortunately, virtual memory isolation is insufficient to

maintain privacy in the cloud. The very fact that users share

the same physical machine leads to shared resource attacks,

whereby the adversary can infer sensitive information by

monitoring how the victim uses available hardware [2]–[6].

Of these, cache attacks [2], [7], [8] are arguably the most

popular and powerful, enabling an adversary to learn fine-

grain information regarding a victim process’ memory access

pattern—e.g., attacks can disclose encryption keys [8], user

keystrokes [9], user web behavior [10], and more. Worse, these

attacks can succeed even when the victim and adversary are run

on different processor cores and do not share virtual memory

by exploiting hardware characteristics of the last-level cache

(LLC), which is shared across cores [8].

A. Challenges for Current Cache Attacks

Despite their past successes, the viability of LLC cache

attacks has been called into question on modern systems due

to recent trends in processor design. To start with, many prior

attacks [7], [9]–[11] can be mitigated out of the gate, as

virtualized environments are now advised to disable shared

virtual memory between VMs [12].

Without sharing virtual memory with a victim, the adversary

must carefully consider the cache hardware architecture in

mounting a successful attack. This is where problems arise.

First, modern cache hierarchies are becoming non-inclusive or
exclusive. Prior LLC attacks without shared virtual memory

(e.g., [8]) rely on LLCs being inclusive, as this gives adversaries

the ability to evict cache lines that are resident in the victim’s

private caches. Non-inclusive cache behavior is significantly

more complicated than that of inclusive caches (Section III).

Second, modern LLCs are physically partitioned into multiple

slices. Sliced LLCs notoriously complicate attacks, as the

mapping between victim cache line address and cache slice is

typically proprietary. Taken together, these challenges cause

current LLC attacks to fail on modern systems (e.g., the Intel

Skylake-X [13]).

Modern systems are moving to non-inclusive cache hierar-

chies due to the redundant storage that inclusive designs entail.

Indeed, AMD servers have always used exclusive LLCs [11],

and Intel servers are now moving to this design [13]. We expect

the trend of non-inclusive caches to continue, as the cost of

inclusive caches grows with core count (Section II).

B. This Paper: Modernizing Cross-Core Cache Attacks

In this paper, we design a novel cross-core cache attack that

surmounts all of the above challenges. Specifically, our attack

does not require the victim and adversary to share cores or

virtual memory, and succeeds on state-of-the-art sliced non-
inclusive caches, such as those in Skylake-X [13]. Our key

insight is that in a machine with non-inclusive cache hierarchies,

we can still attack the directory structure. Directories are an

essential part of modern cache hierarchies, as they maintain

tracking information for each cache line resident in the cache

hierarchy.1 Since the directory must track all cache lines, and

not just cache lines in the LLC, it offers an attack surface

1This should not be confused with the “directory protocol” used in multi-
socket attacks that assume shared virtual memory between the adversary and
victim [11].

similar to that of an inclusive cache. Indeed, our work suggests

that conflict-based LLC attacks (on inclusive, non-inclusive

or exclusive cache hierarchies) should target directories, not

caches, as directories are a homogeneous resource across these

different cache hierarchy designs.

Contributions. To summarize, this paper makes the follow-

ing contributions:

1) We develop an algorithm to find groups of cache lines that

completely fill a given set of a given slice in a non-inclusive

LLC (called an Eviction Set). This modernizes prior work on

Eviction Set creation, which only works for sliced inclusive

LLCs.

2) Using our Eviction Sets, we reverse engineer the directory

structure in Skylake-X, and identify vulnerabilities in directory

design that can be leveraged by cache-based side channel

attacks.

3) Based on our insights into the directory, we present

two attacks. The first is a Prime+Probe attack on sliced

non-inclusive LLCs. Our attack does not require the victim

and adversary to share cores or virtual memory. The second

attack is a novel, high-bandwidth Evict+Reload attack that

uses multi-threaded adversaries to bypass non-inclusive cache

replacement policies.

4) We use our two attacks to attack square-and-multiply

RSA on the modern Intel Skylake-X server processor. Both of

these attacks are firsts: although prior work implemented an

Evict+Reload attack on non-inclusive LLCs, it cannot attack

RSA due to its low-bandwidth. Finally, we construct efficient

covert channels for sliced non-inclusive LLCs.

II. BACKGROUND

A. Memory Hierarchy and Basic Cache Structures

Modern high-performance processors contain multiple levels

of caches that store data and instructions for fast access. The

cache structures closer to the core, such as the L1, are the

fastest, and are called higher-level caches. The ones farther

away from the core and closer to main memory are slower, and

are called lower-level caches. High-performance processors

typically feature two levels of private caches (L1 and L2),

followed by a shared L3 cache—also referred to as LLC for

last-level cache.

The L1 cache is designed to be small (e.g., 32-64KB) and

to respond very fast, typically within a few cycles. The L2

cache is slightly bigger (e.g., 256KB-1MB) and takes around

10-20 cycles. Finally, the LLC is designed to be large (e.g.,

several to tens of MBs) and has a latency of 40-60 cycles. The

LLC latency is still much lower than the main memory access

latency, which is on the order of 200-300 cycles.

A cache consists of the data array, which stores the data or

code, and the tag array, which stores the high-order bits of

the addresses of the data or code. The cache is organized in a

number of cache lines, each one of size B bytes. The cache is

typically set-associative, with S sets and W ways. A cache line

occupies one way of a cache set. The set in which a cache line

belongs is determined by its address bits. A memory address

is shown in Figure 1.

�� �� ������������������������������� ����������� 	

����������
�����

������������
��������

������������������
���������

�������

������

������������
� !����
���������"#

Fig. 1. Example of a memory address broken down into tag, index, and block
offset bits. The actual bit field sizes correspond to the L2 and the LLC slice
of the Intel Skylake-X system, as we reverse-engineered in Section V. We
refer to the LLC slice set index as the LLC set index in this paper.

The lower log2 B bits indicate the block offset within a cache

line. The next log2 S bits form the index of the set that the

cache line belongs to. The remaining bits of the address form

the tag. The tags of all the lines present in the cache are stored

in the tag array. When a load or store request is issued by the

core, the tag array of the L1 cache is checked to find out if

the data is present in the cache. If it is a hit, the data is sent

to the core. If it is a miss, the request is sent to the L2 cache.

Similarly, if the request misses in L2 it is further sent to the

LLC and then to main memory. Note that, generally, lower

levels of the cache hierarchy have more sets than higher levels.

In that case, cache lines that map to different LLC sets may

map to the same L2 set, due to the pigeonhole principle.

B. Multi-Core Cache Organization

The LLC in a modern multi-core is usually organized into

as many slices (partitions) as the number of cores. Such an

organization, shown in Figure 2, is helpful to keep the design

modular and scalable. Each slice has an associativity of W slice

and contains Sslice sets. Sslice is 1/N the total number of sets

in the LLC, where N is the number of cores.

������
���

�	
����
���

�	
����
������

�����
���

�	
���
���

�	
����
������

������
���

�	
����
���

�	
����
������

������
���

�	
����
���

�	
����
������

Fig. 2. Example of a sliced LLC design with 8 cores.

Processors often use an undocumented hash function to

compute the slice ID to which a particular line address maps

to. The hash function is designed to distribute the memory lines

uniformly across all the slices. In the absence of knowledge

about the hash function used, a given cache line can be present

in any of the slices. Therefore, from an attacker’s perspective,

the effective associativity of the LLC is N × W slice. The

hash function used in Intel’s Sandybridge processor has been

reconstructed in prior work [14], and found to be an xor of

selected address bits. The slice hash function for the Skylake-X

is more complex, as we find in Appendix B.

We now discuss two important cache design choices, and

the trade offs behind them.

a) Inclusiveness: The LLC can be either inclusive, ex-
clusive, or non-inclusive of the private caches. In an inclusive

LLC, the cache lines in private L2 caches are also present in

the LLC, whereas in an exclusive LLC, a cache line is never

present in both the private L2 caches and in the LLC. Finally,

in a non-inclusive LLC, a cache line in the private L2 caches

may or may not be present in the LLC.

The inclusive design wastes chip area and power due to the

replication of data. Typically, as the number of cores increases,

the LLC size must increase, and hence the average LLC access

latency increases [15], [16]. This suggests the use of large L2s,

which minimize the number of LLC accesses and, therefore,

improve performance. However, increasing the L2 size results

in a higher waste of chip area in inclusive designs, due to the

replication of data. The replication of data can be as high as the

L2 capacity times the number of cores. Therefore, non-inclusive

cache hierarchies have recently become more common. For

example, the most recent server processors by Intel use non-

inclusive caches [13], [17]. AMD has always used non-inclusive

L3s in their processors [11].

b) Cache Coherence and Directories: When multiple

cores read from or write to the same cache line, the caches

should be kept coherent to prevent the use of stale data.

Therefore, each cache line is assigned a state to indicate whether

it is shared, modified, invalid, etc. A few state bits are required

to keep track of this per-line state in hardware in the cache

tag array or directory.

Two types of hardware protocols are used to maintain cache

coherence—snoop-based and directory-based. The snoop-based

protocols rely on a centralized bus to order and broadcast

the different messages and requests. As the number of cores

is increased, the centralized bus quickly proves to be a

bottleneck. Therefore, most modern processors use a directory-

based protocol, which uses point-to-point communication. In a

directory-based protocol, a directory structure is used to keep

track of which cores contain a copy of a given line in their

caches, and whether the line is dirty or clean in those caches.

In an inclusive LLC design, the directory information can

be conveniently co-located with the tag array of the LLC

slice. Since the LLC is inclusive of all the private caches, the

directory state of all the cache lines in any private cache is

present in such a directory. The hardware can obtain the list

of sharer cores of a particular line by simply checking the

line’s directory entry in the LLC. There is no need to query

all the cores. However, the directory in a non-inclusive cache

hierarchy design is more complicated, as we reverse engineer

in Section V.

C. Cache-based Side Channel Attacks

Cache-based side channel attacks are a serious threat to

secure computing, and have been demonstrated on a variety of

platforms, from mobile devices [18] and desktop computers

[2], [19] to server deployments [8], [10], [20]. Side channel

attacks bypass software isolation mechanisms and are difficult

to detect. They can detect coarse-grained information such as

when a user is typing [18] down to much more fine-grained

information such as a user’s behavior on the web [21], and

even RSA [8], [22] and AES [19], [20], [23]–[25] encryption

keys.

Cache-based side channel timing attacks leverage timing

differences in memory accesses to deduce information about

a victim workload. There are many such attacks (e.g., [2],

[7]–[11], [18]–[21], [25]–[33]). In this paper, we refer to

target address as the address which, when accessed, reveals

information about victim behavior.

As an example of cache-based attack, consider the square-

and-multiply exponentiation algorithm, which is widely used

in many encryption algorithms such as RSA and ElGamal.

Algorithm 1 shows an implementation. In the process of

computing its output, the algorithm iterates over exponent

bits from high to low. For each bit, it performs a sqr and a

mod operation. Then, if the exponent bit is “1”, the algorithm

performs a mul and a mod operation that are otherwise skipped.

The target addresses can be the addresses of Line 3 and Line 6

in Algorithm 1. The instruction in Line 3 is executed as many

times as the number of bits in the exponent. The instruction

in Line 6 is only executed if the corresponding bit is set. If,

at every iteration, an attacker can evict both instructions from

the cache, and probe to see if the victim has brought them

back into the cache, then the attacker can track the execution

of loop iterations and reveal the full exponent.

Algorithm 1: Square-and-multiply exponentiation.

Input : base b, modulo m, exponent e = (en−1...e0)2
Output : be mod m

1 r = 1
2 for i = n− 1 downto 0 do
3 r = sqr(r)
4 r = mod(r,m)
5 if ei == 1 then
6 r = mul(r, b)
7 r = mod(r,m)
8 end
9 end

10 return r

In the first phase of a cache-based attack, the attacker first

identifies the target address. This can be done using source

code analysis or through a cache template attack [9]. In the

second phase, the attacker gathers timing information to carry

out the attack. In this phase, the attacker follows three steps:

1) Evict the target address from the resource in which it is

resident.

2) Wait a time period during which the victim may access the

target address.

3) Measure the timing of certain accesses to determine the

location of the target address.

Three existing attacks highlight the three-step process

outlined above. These are listed in order of difficulty, with the

last being the most difficult for an attacker.

Flush+Reload [7], [33]: This attack is easiest thanks to the

use of shared memory between the attacker and the victim.

Shared memory is possible on many platforms due to page-

deduplication and shared libraries [7]. The attacker can simply

flush the target address using the clflush instruction (step

1). After waiting for a period of time (step 2), the attacker

re-accesses the target address and measures the latency (step 3).

The attacker will expect a cache hit when accessing the memory

flushed in step 1 if the victim has accessed the memory in the

interval, and a miss otherwise. This attack is also referred to as

a flush-based attack. This type of attack has serious limitations:

it relies on clflush, and cloud platforms are now advised

to turn sharing off, which disables this attack [34], [35].

Evict+Reload [18]: This attack also relies on shared memory

for the reload operation, but does not flush or evict data using

clflush, as not all architectures have a clflush instruction,

and some defenses have suggested making clflush a

privileged instruction [34] or disabling it all together [35].

In this case, the attacker uses cache conflicts to evict the

target address (step 1). Specifically, the attacker accesses

enough addresses mapped to the same cache set as the target

address to evict the target address. The other steps are the

same as Flush+Reload. Besides the additional complexity of

creating such conflicts, this attack is otherwise the same as

Flush+Reload, with an alternative flushing mechanism.

Prime+Probe [19]: This attack does not need shared mem-

ory. The attack steps are called prime, wait, and probe. In the

prime step, the attacker evicts the target address from the cache

by accessing a group of addresses mapped to the same cache

set as the target address. During the wait step, the attacker

waits. Finally, in the probe step, the attacker re-accesses the

group of addresses used in the prime step, to measure victim

activity. A cache miss in the probe step indicates that the victim

has accessed the target address during the interval, and caused

the eviction of one of the addresses accessed during the prime

step from the cache.

Evict+Reload and Prime+Probe are referred to as conflict-
based attacks due to fact that they exploit conflicts in cache

structures.

D. Eviction Set

An Eviction Set (EV) is a collection of addresses that are

all mapped to a specific cache set of a specific cache slice,

and that are able to evict the current contents of the whole set

in that slice. In a slice with W slice ways, an eviction set must

contain at least W slice addresses to occupy all the ways and

evict the complete contents of the set. We refer to Eviction
Addresses as the addresses in an Eviction Set. In an inclusive

LLC, both Evict+Reload and Prime+Probe use Eviction Sets

to evict the target address from the private caches. Further,

the probe operation in Prime+Probe measures the latency of

accessing an Eviction Set to deduce the victim’s activity.

III. THE CHALLENGE OF NON-INCLUSIVE CACHES

Previous cross-core cache side-channel attacks only work for

inclusive cache hierarchies (e.g., [8], [34]). In a non-inclusive

cache hierarchy, attackers must overcome the two main

challenges that we describe next. In this discussion, we assume

that the clflush instruction is disabled (Section II) [36] and

that shared memory between attacker and victim has been

disabled [12].

A. Lack of Visibility into the Victim’s Private Cache

In a non-inclusive cache hierarchy, an attacker running on

a core seemingly cannot evict an address from another core’s

private cache — i.e., it cannot create an Inclusion Victim in

the second core’s cache. To see why, consider Figure 3, which

shows a shared LLC and two private caches. The attacker runs

on Cache 1 and the victim on Cache 0. The target line is shown

in a light shade in Cache 0.

����� �����

�������������� ��	�	������������

$ ��� �#
��

% 	������
�����
��������	��

&��	����
	����	���
�	�	

����� �����

$ ��� �#
��

% 	������
�����
�������	�

����	����	������ �
������	����	������

!�	�����
����

������
���

Fig. 3. Attempting to evict a target line from the victim’s private cache in
inclusive (a) and non-inclusive (b) cache hierarchies.

Figure 3(a) shows an inclusive hierarchy. An LLC set

contains lines from the attacker (in a dark shade) plus the

target line from the victim (in a light shade). The attacker

references an additional line that maps to the same LLC set.

That line will evict the target line from the LLC, and because

of inclusivity, also from private Cache 0, creating an inclusion

victim. The ability to create these inclusion victims on another

cache is what enables cross-core attacks.

Figure 3(b) shows a non-inclusive hierarchy. In this case,

the target line is in the victim’s cache, and not in the LLC.

Consequently, when the attacker references an additional line

that maps to the same LLC set, there is no invalidation sent to

Cache 0. The attacker has no way to create inclusion victims

in the victim’s cache.

B. Eviction Set Construction is Hard

In a later section, we will show that we perform Prime+Probe

and Evict+Reload attacks in non-inclusive cache hierarchies

using an Eviction Set (EV). However, the algorithm used to

create an EV in inclusive cache hierarchies [8] does not work

for non-inclusive hierarchies. Creating an EV in non-inclusive

hierarchies is harder. The reason is that it is less obvious what

memory accesses are required to reliably evict the target line,

which is currently in the private cache, from the entire cache

hierarchy.

To see why, consider Figure 4, which shows a private cache

and two slices of the shared LLC. Victim and attacker run on

the same core. Figure 4(a) shows an inclusive hierarchy. The

target line is in the private cache and in one slice of the LLC.

To evict the target from the cache hierarchy, the attacker only

needs to reference enough lines to fill the relevant set in the

corresponding slice of the LLC. This is because, as these lines

fill the set, they will also fill the set in the private cache, and

evict the target line from it. This is the EV, shown in a dark

shade. The order and number of accesses to each of the lines

in the EV required to evict the target address is determined by

the replacement algorithm used in the LLC slice.

��������������

	�
�������������

��������
����

������
���

������ ������ ������ ������

	�
�����������������

���������������

' ����������
����������

� �����
����

' �������
�����������
���

(��������
����������

(����������
�������

� �����
����

' ���������������
�����������

Fig. 4. Attempting to evict a target line in inclusive (a) and non-inclusive (b)
cache hierarchies. Victim and attacker run on the same core.

Figure 4(b) shows a non-inclusive hierarchy. In this case, the

target line is only in the private cache. As the core accesses the

same dark cache lines as in Figure 4(a), the lines go first to the

private cache, bypassing the LLC. The replacement algorithm

used in the private cache will determine when the target line is

evicted from the private cache into the LLC. When the target is

evicted, it will go to one of the LLC slices, depending on the

mapping of addresses to slices. Then, the core needs to evict

enough lines into that LLC slice to create enough conflicts to

evict the target line from the slice.

Overall, the order and number of accesses to each of the lines

in the EV required to evict the target address is determined by

multiple factors, including the replacement algorithm used in

the private cache, the mapping of the line addresses to LLC

slices, and the replacement algorithm used in the LLC slice.

In the inclusive case, only the replacement algorithm in the

LLC affects evictions.

We note that, in non-inclusive cache hierarchies, the re-

placement algorithms in the private caches and LLC slices

can be quite sophisticated. What specific line is chosen as a

replacement victim depends not only on the number and order

of accesses to the lines, but also on the coherence state of the

lines in the cache as well. Specifically, we have empirically

observed that the replacement algorithm in the LLC slices tries

to minimize the eviction of lines that are present in multiple

private caches. This particular heuristic affects the ability to

create an effective EV for Evict+Reload attacks, where lines

are shared between attacker and victim.

C. Attack Overview

We address these two challenges in two novel ways. To

handle the difficulty of creating EVs, we propose a novel

way to create EVs for non-inclusive caches in Section IV.

Using EVs and other techniques, we reverse engineer the

Intel Skylake-X directory structure (Section V). This process

reveals key insights into directory entry replacement policies

and inclusivity properties. In particular, we derive conditions for

when an attacker is able to use the directory to create inclusion

victims in the private caches of a non-inclusive cache hierarchy.

Based on our reverse engineering results, and the new EV

construction methodology, we design effective “Prime+Probe”

and “Evict+Reload” attacks in non-inclusive caches hierarchies

in Section VI.

IV. CONSTRUCTING EVICTION SETS

In this section, we present an EV construction algorithm

for non-inclusive caches. Recall that an EV is a collection of

memory addresses that fully occupy a specific cache set of

a specific LLC slice. This is a core primitive that we use to

reverse engineer the directory (Section V) and later complete

our attacks (Section VI).

Liu et al. [8] proposed an EV construction algorithm for

sliced inclusive caches. However, it does not work for non-

inclusive caches. The reason was discussed in Section III: line

eviction from the cache hierarchy is less predictable because

it depends on the L2 replacement algorithm, the mapping of

line addresses to LLC slices, and the replacement algorithm

used in the LLC slices. We fix these issues by developing

a new implementation for check_conflict, an important

subroutine used in Liu et al., that works on non-inclusive caches.

We present evaluation results to demonstrate the effectiveness

of our algorithm in Section VII-A.

A. The Role of check conflict in EV Construction Algorithm

The EV construction algorithm by Liu et al. [8] uses

a function that we call check_conflict(Address x,
Collection U) (called probe in [8]), shown in Algo-

rithm 2. This function checks if the addresses in Collection U
conflict with x in the LLC. The function should return true
if U contains Wslice or more addresses, which are mapped to

the same slice and set as x. The function should return false
otherwise. The EV construction algorithm works only if this

function has very low false positive and false negative rates.

Algorithm 2: Baseline check conflict for inclusive caches.

1 Function check conflict (x, U):
2 access x
3 for each addr in U do
4 access addr
5 end
6 t = measure time of accessing x
7 return t ≥ LLC miss threshold
8 end

To see why these requirements are important, consider how

check_conflict is used in the EV construction algorithm.

The high-level idea is to start with a collection U known to

conflict with x in an LLC slice. Then, one removes an address y
from the collection U and obtains a new collection U ′ = U−y.

If the conflict with x disappears when checking against U ′,
then we know that y must contribute to the conflict. In such

a case, y is considered to be in the EV for x. Clearly, the

operation needs low false positive and false negative rates to

precisely observe the disappearance of conflicts. Appendix A

provides more details on how the algorithm is used, and why

a high-accuracy implementation is important.

B. New check conflict Function

We first discuss why the check_conflict function

designed by Liu et al. [8] has a high false negative rate when

applied naı̈vely to non-inclusive caches. We then show how

the function can be modified to work in non-inclusive caches.

In the following discussion, we assume that all the addresses

in U have the same LLC set index bits as x.

Baseline check_conflict [8]. In Algorithm 2, the base

function first accesses the target address x, ensuring that the

line is cached. It then accesses all the addresses in U . If a later

access to line x takes a short time, it means that the line is

still cached. Otherwise, it means that the line has been evicted

out of the cache due to cache conflicts caused by U . Thus, the

access latency can be used to determine whether U contains

enough addresses to evict x.

When applied to non-inclusive caches, this function has a

high false negative rate. Specifically, when U contains enough

addresses that, if they all were in the LLC, they would evict

x, the function is supposed to return true. However, it may

return false. To see how this false negative happens, consider

a minimal U , which has exactly Wslice addresses mapped to the

same LLC slice as x. On non-inclusive caches, when accessing

U , some of these Wslice lines may remain in L2 and never

be evicted from the L2 into the LLC. Hence, these addresses

do not have a chance to conflict with x in the LLC, and x is

not evicted, resulting in a false negative. Moreover, since the

replacement algorithm of L2 is neither LRU nor pseudo-LRU,

simply accessing U multiple times does not guarantee a small

false negative rate, as we validate in Section VII-A.

Naı̈ve New check_conflict. To reduce the false negative

rate, we need to flush all the lines in U from the L2 to the

LLC. It would be convenient if we had a special instruction

to do so, but such an instruction does not exist in x86. Hence,

we leverage L2 conflicts to achieve the flush effect.

We create an extra collection of addresses, called

L2 occupy set, which contains W L2 addresses mapped to

the same L2 set as U . When accessed, L2 occupy set forces

all lines in U to be evicted to the LLC. Our modified

check_conflict function is shown in Algorithm 3. After

accessing x and all the addresses in U as in the base function

(line 2-5), the addresses in L2 occupy set are accessed (line

6-8). In this way, every line in U gets evicted to the LLC slice

where x is, and we can significantly reduce the false negative

rate.

Algorithm 3: New check conflict for non-inclusive caches.

1 Function check conflict (x, U):
2 access x
3 for each addr in U do
4 access addr
5 end
6 for each addr in L2 occupy set do

// this evicts U from L2 to LLC
7 access addr
8 end
9 t = measure time of accessing x

10 return t ≥ LLC miss threshold
11 end

However, this naı̈ve approach has a high false positive rate.

A false positive can occur when U does not contain enough

addresses to evict x from the LLC slice, but with the help of

some addresses in L2 occupy set that end up getting evicted

to the LLC, they evict x from the LLC. In this case, the

function is supposed to return false, but it returns true.

Reliable New check_conflict. To reduce the false pos-

itive rate in the naı̈ve new check_conflict function, we

need to make sure accesses to L2 occupy set do not interfere

with the conflicts between U and x in the LLC. We can achieve

this by leveraging the one-to-many set mapping relationship

between L2s and LLCs.

For a reliable design, we select L2 occupy set such that

its addresses are mapped to the same L2 set as addresses in

U , but to a different LLC set than used by addresses in U
(and x). As mentioned before, upper level caches like the L2

contain fewer cache sets than lower level caches like the LLC

(Section II-A). For example, in Skylake-X, the L2 has 1024

sets, while an LLC slice has 2048 sets. Correspondingly, the

L2 uses 10 bits (bits 6-15) from the physical address as the set

index, while the LLC slice uses 11 bits (bits 6-16). Therefore,

L2 occupy set can be constructed by simply flipping bit 16
of WL2 addresses in U . Such addresses can be used to evict

U from the L2 but do not conflict with U in the LLC.

In summary, we design a reliable check_conflict
function with both low false positive rate and low false negative

rate. This function can be used in the EV construction algorithm

of Liu et al. [8] to construct an EV for non-inclusive caches.

We evaluate the effectiveness of the function in Section VII-A.

For independent interest, we use our EV creation routine to

partially reverse engineer the Skylake-X slice hash function in

Appendix B.

V. REVERSE ENGINEERING THE DIRECTORY STRUCTURE IN

INTEL SKYLAKE-X PROCESSORS

We leverage our EV creation function to verify the existence

of the directory structure in an 8-core Intel Core i7-7820X

processor, which uses the Intel Skylake-X series microarchitec-

ture. We also provide detailed information about the directory’s

associativity, inclusivity, replacement policies (for both private

and shared data), and interactions with the non-inclusive caches.

These insights will be used for the attack in Section VI. Skylake-

X is a server processor for cloud computing and datacenters.

A comparison of the cache parameters in this processor with

previous Skylake series processors is listed in Table I.

Skylake-S Skylake-X/Skylake-SP

L1-I 32KB, 8-way 32KB, 8-way
L1-D 32KB, 8-way 32KB, 8-way

L2 256KB/core 1MB/core
16-way, inclusive 16-way, inclusive

LLC 2MB/core 1.375MB/core
16-way, inclusive 11-way, non-inclusive

TABLE I
CACHE STRUCTURES IN SKYLAKE PROCESSORS.

Relative to the older Skylake-S processor, the Skylake-X/SP

LLC is non-inclusive and, correspondingly, Skylake-X/SP can

Fig. 5. Latency of a cache line access when the line is in different locations in the Intel Skylake-X cache hierarchy.

support larger L2 caches relative to the LLC. The L2 in Skylake-

X/SP grows to 1 MB per core, which is 4 times larger than

before, while the LLC size shrinks from 2 MB per core to

1.375 MB per core. The associativity in the LLC slice is also

reduced from 16-way to 11-way.

A. Timing Characteristics of Cache Access Latencies

We first conduct a detailed analysis of the timing char-

acteristics of the cache access latencies on Skylake-X. This

information can be used to infer the location of a specified

cache line, and is useful in reverse engineering the directory

structure.

For each cache location, we measure the access latency

by using the rdtsc instruction to count the cycles for one

access. We use the lfence instruction to make sure we get

the timestamp counter after the memory access is complete

as suggested in [37]. Thus, all the latencies presented include

delays introduced by the execution of lfence.

Figure 5 shows the distribution of latencies to access lines

in different cache layers. For each cache layer, we perform

1,000 accesses. The latency is for accessing a single cache line.

From the figure, we see that L1 and local L2 access latencies

are below 50 cycles. An LLC access takes around 100 cycles,

and a DRAM access around 350 cycles.

A remote L2 access occurs when a thread accesses a line

that is currently in another core’s L2. From the figure, a remote

L2 access takes around 200 cycles, which is shorter than the

DRAM latency. We leverage the difference between the remote

L2 latency and the DRAM latency in the “Evict+Reload” attack

to infer the victim’s accesses.

B. Existence of the Sliced Directory

Our first experiment is designed to verify the existence of a

directory and its structure. In each round of the experiment, a

single thread conducts the following three steps in order:

1) Access target cache line x.

2) Access a set of N eviction addresses. In a Reference setup,

these are cache line addresses that have the same LLC set

index bits as x, and can be mapped to different LLC slices.

In a SameEV setup, these are cache line addresses that have

the same LLC set index bits as x, and are mapped to the

same LLC slice as x.

3) Access the target cache line x again while measuring the

access latency.

Generally, step 2 is repeated multiple times (100 times) to avoid

the noise due to cache replacement policy in both Reference

and SameEV setups. The medium access latency over 1,000

measurements for step 3 is shown in Figure 6, as a function of

the number of eviction addresses accessed. We validated that

the experiment results are consistent for x mapped to different

slices and sets.

Fig. 6. Target line access latency as a function of the number of eviction
addresses, in experiments to verify the existence of the directory.

According to the timing characteristics in Figure 5, we know

that latencies around 40, 100 and 300 cycles indicate that the

target line is in local L2, LLC and DRAM, respectively. In the

Reference configuration, if 16 or more lines are accessed in step

2, the target line is evicted from L2 to LLC. These evictions

are caused by L2 conflicts because the L2 associativity (WL2)

is 16. Later, we start to observe that the target line is evicted

to DRAM when more than 75 addresses are accessed in step 2.

This number is less than 104 (W L2 +Nslice ×W slice) because

the hash function makes the addresses used in the experiment

distribute unevenly across the different slices.

In the SameEV setup, we observe L2 misses when 12 cache

lines are accessed in step 2, before reaching the L2 associativity.

Moreover, the target line is evicted out of the LLC when 21
lines are accessed, even though the L2 cache and one LLC

slice should be able to hold up to 27 lines (W L2 + W LLC).

The difference between 12 and 16 (L2 case), and between 21
and 27 (LLC case) indicates that there exists some bottleneck,

other than the L2 and LLC slice associativity. This indicates

the presence of some set-associative on-chip structure, where

conflicts can cause L2 and LLC evictions. The structure’s

associativity seen for L2 lines is 12, and the associativity seen

for L2 and LLC lines is 21.

In addition, we know that the structure is sliced and looked-

up using the LLC slice hash function. Notice that addresses

conflict in this structure only if they are from the same LLC

slice, as in the SameEV configuration. Addresses from different

LLC slices do not cause conflicts in this structure, as seen in

the Reference configuration.

Finally, we can also reverse engineer the number of sets in

each slice of the structure by testing which bits are used to

determine the set index. We analyzed the EVs that we derived

for this structure, and found that the addresses in a given EV

always have the same value in bits 6-16. The addresses that

belong to the same EV are mapped to the same set and slice,

and should share the same set index bits and slice id. Since

none of the bits 6-16 are used for slice hash function (see

Appendix B), we know that these bits are used as set index

bits. Hence, the structure has 2048 sets, the same number of

sets as an LLC slice.

1. There exists a set-associative structure that operates

alongside the non-inclusive caches. Contention on this

structure can interfere with cache line states in both the

L2 and LLC.

2. The structure is sliced and is looked up using the LLC

slice hash function. Each slice has the same number of

sets as an LLC slice.

3. The associativity of the structure for L2 lines is 12;

the associativity of the structure for L2 and LLC lines is

21.

C. Inclusivity and Associativity for Private Cache Lines

We use the term Private cache line to refer to a line that has

been accessed by a single core; we use the term Shared cache

line to refer to a line that has been accessed by multiple cores.

We observed that the non-inclusive LLC cache in Skylake-X

behaves differently towards private and shared cache lines.

We conduct a two-thread experiment to reverse engineer

the inclusivity of the set-associative structure that we found

and the cache for private lines. The two threads are pinned to

different cores.

1) Thread A accesses target line x.

2) Thread B accesses N eviction addresses. The addresses are

selected for the Reference and SameEV setups as in the

previous experiment.

3) Thread A accesses target line x again and measures the

access latency.

The access latencies in step 3 are shown in Figure 7, as a

function of the number of eviction addresses.

Fig. 7. Target line access latency as a function of the number of eviction
addresses in experiments to analyze the inclusive property for private lines.

In the Reference setup, the target line in thread A’s private

L2 is never evicted. Due to the non-inclusive property of the

LLC, thread B is unable to interfere in thread A’s private cache

state, and hence loses any visibility into thread A’s private

cache accesses. However, in the SameEV setup, the target line

is evicted from the L2 to LLC when 12 lines are accessed by

thread B, and it is further evicted to DRAM when thread B

accesses 21 lines.

This experiment shows that the structure is shared by all the

cores, and that conflicts on this structure can interfere with L2

and LLC cache states. In particular, the SameEV configuration

shows that we can create inclusion victims across cores, since

lines in the L2 can be evicted due to the contention on the

structure. We can safely conclude that the structure is inclusive

to all the lines in the cache hierarchy, including L2 and LLC.

This characteristic can be leveraged by an attacker to gain

visibility into a victim’s private cache and build Prime+Probe

attacks. Moreover, the experiment also confirms the same

associativity across cores as the last experiment.

4. The structure is shared by all cores.

5. The structure is inclusive, and contention on the

structure can cause inclusion victims across cores.

D. Inclusivity and Associativity for Shared Cache Lines

To reverse engineer the inclusivity and associativity of the

structure for shared cache lines, we use 2 or 3 threads in

different modes.

1) Thread A and B both access the target cache line x to

ensure the line has been marked as shared by the processor.

2) In 1evictor mode, thread B accesses N cache line eviction

addresses; in the 2evictors mode, thread B and C access

N cache line eviction addresses to put those lines into the

Shared state. In both modes, different eviction cache lines

are selected for Reference and SameEV setups as in our

previous experiments.

3) Thread A accesses the target line x again and measures the

access latency.

From this discussion, in the 1evictor mode, only x is in the

shared state; in the 2evictors mode, both x and the N eviction

lines are in the shared state. Figure 8 shows the access latencies

for step 3.

Fig. 8. Target line access latency as a function of the number of eviction
addresses in experiments to analyze the inclusive property for shared lines.

In the 1evictor sameEV setup, the shared target line is never

evicted out of thread A’s private L2. However, we showed

in Figure 7 that this pattern does cause remote L2 evictions

of private lines. Comparing the two cases, we can infer that

the cache coherence state–namely whether a line is shared

or not–plays a role in the cache line replacement policy. The

replacement policy prefers not to evict shared cache lines.

In the 2evictors sameEV setup, threads B and C are able to

evict the target line out of the LLC by accessing 11 shared lines,

while in the 2evictors ref setup, we begin to observe stable LLC

misses when around 85 lines are accessed. The characteristics

in 2evictors sameEV indicates the associativity of the inclusive

structure for shared cache lines is 11. Moreover, this experiment

indicates how an attacker can use shared eviction lines to evict

a shared target line out of the cache hierarchy, which we will

leverage to build stable and efficient Evict+Reload attacks.

6. The cache replacement policy takes into account the

coherence state and prefers not to evict cache lines which

have been accessed by multiple cores.

7. The associativity of the inclusive structure for shared

cache lines is 11.

E. Putting It All Together: the Directory Structure

We infer that the inclusive structure is a directory. Indeed,

Intel has used a directory-based coherence protocol since

Nehalem [38].2 Supporting a directory-based protocol requires

structures that store presence information for all the lines in

the cache hierarchy. Thus the directory, if it exists, must be

inclusive, like the structure we found. In the rest of the paper,

we will use the term directory to refer to the inclusive structure

we found.

Overall structure. Figure 9 shows a possible structure of the

directory in one LLC slice. From Section V-B, we found that

the directory is sliced, is looked-up using the LLC slice hash

function, and has the same number of sets as the LLC. An

LLC slice can co-locate with its directory, enabling concurrent

LLC slice and directory look-up.

�� ��

�� ��

�� ��

��

�������� �����	
��
������������

�����	�
���������	
��
��������

�������

��������	
��
����

��

��

��

��

��������

�����
�����

���

�����

��

��

��

��

�� ������� �����

���� ����� �����

��

�� ��

�����	
�����	��
�
������� �� ���

�����	
�����	��
�
������� ���� ��	 �
	����

�����	
�����	����������
�
���������������
����

Fig. 9. Reverse engineered directory structure.

From Section V-B, each directory slice has 21 ways in total

(denoted W dir = 21) for all the lines in the cache, including

the L2 and LLC. From Section V-B, there are maximally 12
ways can be used for lines present in the L2 but not in the LLC.

We call the directory for these lines the Extended Directory
(ED). We denote the ED associativity as W ED = 12. From

the public documentation in Table I, we know that the LLC

slice and its directory (which we call the Traditional Directory
is 11-way set associative. We denote such associativity as

W TD = W slice = 11. One might expect W dir = W ED +W TD,

2Sometimes, the directory structure is called “core valid bits”.

but 21 < 12 + 11. From this mismatch, we infer that 2 ways

in each directory slice are dynamically shared between the

traditional directory and the extended directory. How these

ways are shared is determined by the replacement policy, which

prefers to hold lines that are in state shared.

Migration between directories. The migration between the

ED and the traditional directory operates as follows. An ED

conflict causes a directory entry to be migrated from the ED

to the traditional directory, and the corresponding cache line to

be evicted from an L2 to the LLC. A conflict in the traditional

directory causes a directory entry to be removed from the

whole directory slice, which causes the corresponding cache

line to be evicted out of the entire cache hierarchy. For private

lines, 21 addresses are needed to cause a traditional directory

conflict. From Section V-B, the private lines will take up the

ED and traditional directory, after which we see conflicts. For

shared lines, only 11 addresses are needed to cause conflicts.

We found that shared lines, after being accessed a sufficient

number of times, allocate a data entry in the LLC and migrate

their directory entry from the ED to the traditional directory.

In this case, the line lives in multiple L2s and in the LLC

at the same time.3 This is likely a performance optimization

as LLC hits are faster than remote L2 hits (Figure 5). Thus,

heavily shared lines should be accessible from the LLC.

This directory structure matches our reverse engineered

results. Even though the actual implementation may use a

slightly different design, our interpretation of the structure is

helpful in understanding the directory and cache interactions,

and in designing the attacks.

F. The Root Cause of the Vulnerability

The directory in non-inclusive caches is inclusive, since

it needs to keep information for all the cache lines that are

present in the cache hierarchy. This inclusivity can be leveraged

to build cache-based attacks. An attacker can create conflicts

in the directory to force cache line evictions from a victim’s

private cache, and create inclusion victims.

Considering the usage of directories, the directory capacity

(W dir × Sdir) should be large enough to hold information for

all the cache lines. In this case, how can it be possible to

cause a directory conflict before causing cache conflicts? This

section answers this question by analyzing the root cause of

the vulnerability that we exploit.

The root cause is that the directory associativity is smaller
than the sum of the associativities of the caches that the
directory is supposed to support. More specifically, a directory

conflict can occur before a cache conflict if any of the following

conditions is true, where ED indicates the directory entries

used by L2 cache lines.

W ED < W L2 ×NL2

or W dir < W L2 ×NL2 +W slice

where NL2 is the number of L2s in the system (usually equal

to the number of cores).

3This is consistent with the cache being non-inclusive. Non-inclusive means
that the cache may be inclusive for certain lines in certain circumstances.

We believe that, for performance reasons, these conditions

should be common. First, as the number of cores on chip

increases, architects want to avoid centralized directory designs

and, therefore, create directory slices. At the same time,

architects try to limit the associativity of a directory slice

to minimize look-up latency, energy consumption, and area.

As a result, it is unlikely that each directory slice will be as

associative as the sum of the associativities of all the L2 caches.

For example, an 8-core Intel Skylake-X processor with 16-way

L2s would require each directory slice to have a 128-way ED

to avoid ED conflicts before L2 conflicts. This is expensive.

We found that the above conditions do not hold in some

AMD processors. Consequently, our attack does not work

on these AMD processors. We also found that memory and

coherence operations on some AMD machines are slower

than on Intel machines. This may suggest that these AMD

machines do not use sliced directories. Appendix C describes

the experiments we performed.

VI. ATTACK STRATEGIES

Leveraging the EV construction algorithm in Section IV

and our reverse engineering of the directory structure in

Section V, we can now build effective side channel attacks in

non-inclusive cache hierarchies. In this section, we first present

our Prime+Probe attack targeting the ED. We then show a

multi-threaded Evict+Reload attack to achieve fine-grained

monitoring granularity. Finally, for completeness, we provide

a brief discussion on Flush+Reload attacks.

A. Prime+Probe

To the best of our knowledge, this is the first Prime+Probe

attack on non-inclusive caches. We first present our customized

cross-core attack on Skylake-X, and then discuss how to

generalize the attack to other vulnerable platforms.

On Intel Skylake-X, an attacker can leverage the inclusivity

of the ED to gain visibility into a victim’s private cache

state. Before the attack, the attacker uses the EV construction

algorithm of Section IV to construct an EV that is mapped to

the same LLC slice and set as the target address. Since the ED

is both sliced and looked-up using the LLC slice hash function,

it follows that the EV is mapped to the same ED set and slice

as the target address. Thus, the EV can be used in the prime

and probe steps.

Our cross-core Prime+Probe attack follows the same steps

as a general Prime+Probe attack. In the prime step, the attacker

accesses WED EV lines to occupy all the ways within the

ED set, and evict the target line from the victim’s L2 to the

LLC. During the wait interval, if the victim accesses the target

address, it causes an ED conflict and one of the EV addresses

will be evicted from the attacker’s private L2 cache to the

LLC. In the probe step, when the attacker accesses the EV

addresses again, it will observe the LLC access. Alternatively,

if the victim does not access the target line in the wait interval,

the attacker will observe only L2 hits in the probe step. After

the probe step, the ED set is fully occupied by EV addresses,

and can be used as the prime step for the next attack iteration.

Attack granularity. The attack granularity is determined

by the time per attack iteration, which is composed of the

wait time and the probe time. The more efficient the probe

operation is, the finer granularity an attack can achieve.

In our ED-based Prime+Probe attack, the probe time is very

short. The attacker only needs to distinguish between local

L2 latency and LLC latency, which is shorter than the probe

time in inclusive cache attacks, where the attacker needs to

distinguish between LLC latency and DRAM latency.

Generalizing the attack. The attack above is customized

for Intel Skylake-X. We now discuss how to generalize the

attack to other vulnerable platforms which satisfy the conditions

discussed in Section V-F.

First, a characteristic of the Skylake-X is that the ED asso-

ciativity is not higher than the L2 associativity (W ED ≤ W L2),

which allows us to trigger ED conflicts using a single attacker

thread. If this condition is not satisfied, we can still mount

a Prime+Probe attack with multiple attacker threads, running

on different cores, as long as W ED ≤ W L2 × (NL2 − 1). For

example, consider the case where W ED = W L2 × (NL2 − 1).
The attacker can use (NL2 − 1) threads running on all the

cores except for the victim’s core, where each thread accesses

WL2 addresses to occupy the ED set.

Second, the directory in Skylake-X uses the same hash

function as the LLC. Therefore, we can directly use the EVs

constructed for LLC slices to create directory conflicts. If the

sliced ED uses a different hash function, the attack should still

work but will need a new EV construction algorithm for the

directory.

B. Evict+Reload

On non-inclusive caches, an attacker could leverage the

directory’s inclusivity to build Evict+Reload attacks using

a similar approach as in Prime+Probe. However, the evict

operation in Evict+Reload is more challenging than the prime

operation, since the target line is shared by the attacker and the

victim. As we showed in Section V-D, the cache replacement

policy takes into account the coherency state—namely that the

target line is shared—and prefers not to evict the directory

entries for shared lines.

We propose a novel multi-threaded Evict+Reload attack

that can achieve fine-grained monitoring granularity by taking

advantage of the characteristics of the replacement policy. The

attack involves two tricks, namely, to upgrade the eviction

addresses to a higher replacement priority, and to downgrade

the target address to a lower replacement priority.

The attacker consists of three threads: a main thread which

executes the evict and reload operations, and two helper threads

to assist evicting the shared target line. The two helper threads

share all the eviction addresses, and thus are able to switch the

eviction addresses to the shared coherence state, similar to the

2evictors sameEV setup in Section V-D. This brings eviction

addresses to the same replacement priority as the target address

in the directory. In addition, the main attacker thread evicts the

target address from its private cache to the LLC by creating

L2 conflicts, which makes the target address non-shared.

Throughout the entire attack, the helper threads run in the

background, continuously accessing the addresses in the EV in

order to keep these addresses in their caches. In the eviction

step, the main attacker thread introduces conflicts in its L2

cache to evict the target line from its L2 to the LLC. The

helper threads then evict the target line (which they do not

share) from the LLC to DRAM, by accessing the shared EV

lines. If the victim accesses the target line during the wait

interval, it will bring the line into its L2. Then, in the reload

step, the main attacker will see a remote L2 access latency.

Otherwise, the attacker will observe a DRAM access latency.

C. Flush+Reload

A Flush+Reload attack on non-inclusive caches follows the

same procedure as the one on inclusive caches. This process

has been referred to as Invalidate+Transfer [11] on AMD’s non-

inclusive caches. We evaluate this attack on Intel’s platform

for completeness, though it is not necessary to demonstrate

our new attack channel on directories.

The attacker uses the clflush instruction to evict the target

address from all levels of the cache hierarchy to DRAM. If,

during the wait interval, the victim accesses the target address,

the line will be brought into the victim’s local L2. In the

measurement phase, the attacker reloads the target address and

measures the access latency. If the victim had accessed the line,

the attacker will see a remote L2 access latency; otherwise, it

will observe a DRAM access latency.

VII. EVALUATION

A. Effectiveness of the check conflict Function

We evaluate the effectiveness of the check_conflict
function by measuring the false positive rates and the false

negative rates. We consider three designs, the baseline function

proposed by Liu et al. (no flushL2), and the two modified

functions discussed in Section IV, i.e. flushL2 naive and

flushL2 reliable.

We obtained 8 EVs and confirmed their correctness by

checking their conflicting behaviors as in Section V. All

the addresses in the 8 EVs have the same LLC set index

bits, and each EV is mapped to a different LLC slice. To

measure the false positive rate, we select an address x and set

the argument U of check_conflict to be a collection of

addresses with 10 addresses (< W slice) from the same EV as

x, and 5 addresses from each of the other EVs. The function

should return false. We then count the number of times when

the function mistakenly returns true. To measure the false

negative rate, an extra address from the same EV as x is added

to the collection U , so that U contains 11 eviction addresses

(= W slice). The function should return true. Then, we count the

number of times when the function mistakenly returns false.

In each of the three check_conflict implementations,

the eviction operation (line 3-5 of Algorithm 2, line 3-8 in

Algorithm 3) is repeated multiple times. Figure 10 shows how

the false positive rate and the false negative rate change with

the number of eviction operations performed.

Fig. 10. Comparing effectiveness of different check conflict functions.

In Figure 10(a), both no flushL2 and flushL2 reliable have

no false positives. flushL2 naive has a much higher false

positive rate due to the extra conflicts introduced by the

L2 occupy set. In Figure 10(b), both flushL2 naive and

flushL2 reliable can achieve very low false negative rate when

eviction operations are repeated around 10 times. The false

negative rate of the no flushL2 approach stays high even though

the evictions are performed 20 times. In conclusion, our reliable

flushL2 approach in check_conflict function is effective

and can achieve both low false negative rate and false positive

rate.

B. Extended Directory Timing Characteristics

As we leverage ED conflicts to construct our Prime+Probe

attack, it is very important to understand their timing impact on

cache access latencies, as shown in Figure 11. The figure shows

the access latency of a number of addresses from the same EV.

In the “no EDconf” case, we simply measure the latency of EV

accesses. In the “1 EDconf” case, between two measurements,

we use a different thread on another core to issue one access

to the same ED set to cause one ED conflict. Thus, the latency

in “no EDconf” is the expected probe latency with no victim

accesses during wait intervals, while the “1 EDconf” latency

corresponds to the expected probe latency when victim accesses

the target line.

Fig. 11. Prime/Probe Latency

A high-resolution low-noise Prime+Probe attack requires

the probe operation to be efficient and clearly distinguishable.

From Figure 11, WED (12) is the optimal number of probe

addresses we should use in Prime+Probe. First, the impact

of ED conflicts is large and clearly observable. The timing

difference between no ED conflicts and a single ED conflict

is around 80 cycles. Second, accessing 12 addresses takes

very short time, around 230 cycles with a ED conflict. With

such efficient prime/probe operation, we can do fine-grained

monitoring. It is also feasible to use 13-15 addresses, but it is

not optimal due to the longer access latency and larger variance.

Note that the variance in Figure 11 is measured in a clean

environment, there is more noise when running the attacker

code with the victim code.

C. Directory Replacement Policy Analysis

As discussed before, the directory uses a complex replace-

ment policy. We analyze how the replacement policy affects the

effectiveness of eviction operations on a private and a shared

cache line in Figure 12. This is an important factor an attacker

needs to consider in designing efficient cache attacks.

Fig. 12. Analysis of Directory Replacement Policy

Figure 12(a) shows the eviction rate of evicting a private

cache line from a remote L2 to the LLC by creating ED

conflicts. To repeat the eviction operation, we simply re-access

each address in the EV in the same order. When using 12 EV

addresses, the eviction rate reaches 100% after accessing the

EV for 14 times, while the eviction rate increases much faster

when we increase the size of the EV. For example, accessing

13 EV addresses for 5 times can ensure eviction. Figure 12(b)

shows the eviction rate of evicting a shared cache line from

a remote L2 to DRAM by creating directory conflicts with

2 eviction threads. It turns out when using 14 EV addresses,

it requires repeating the eviction operation 9 times to ensure

complete eviction. This indicates the necessity to downgrade

the target line replacement priority to achieve fine-grained

attack granularity, as we discussed in Section VI-B.

In summary, due to the complexity of the directory replace-

ment policy, we find it difficult to come up with an efficient

eviction strategy. A possible approach would be to try all

the combinations of EV sizes and access orders as in [18].

Nevertheless, in this paper, we show that our attacks can tolerate

this imperfect eviction rate.

D. Covert Channel on Extended Directories

We demonstrate a covert channel between two different

processors that utilizes the extended directory between two

different processes. One process serves as the sender and the

other as the receiver. The sender and receiver run on separate

cores, and each utilizes 7 addresses that are mapped to the

same LLC slice. Together there are 14 addresses, which are

enough to cause measurable ED conflicts.

Since we have not reverse engineered the slice hash function,

the sender and the receiver cannot directly negotiate which slice

Fig. 13. The upper plot shows receiver’s access latencies on a slice not being
used for the covert channel, while the lower one shows the one used in the
covert channel. Sender transmits sequence “101010...”.

to use. Before communication, the receiver scans all slices to

find the one the sender is using. The sender transmits a bit “0”

by idling for 5000 cycles, and keeps accessing the 7 addresses

for 5000 cycles to transmit a bit “1”. The receiver decodes the

two states by taking latency samples every 1000 cycles. On

our 3.6GHz machine, it takes 5000 cycles to transmit one bit,

thus the bandwidth is 0.2Mbit/s. With a better protocol than

we are using, the bandwidth can be further improved.

Figure 13 shows the results of our reliable covert commu-

nication channel. The upper plot shows the latencies that the

receiver observes when accessing the wrong slice. All the

latencies are low, as they correspond to L1 cache hits. In the

lower plot, it is clear to see the sender’s message of “101010”.

The receiver observes a ∼ 400 cycle latency due to ED conflicts

when decoding a “1” bit, which is easily differentiated from

the ∼ 80 cycle L1 hits for a “0” bit.

E. Side Channel Attacks on the Square-and-Multiply Exponen-
tiation Algorithm

We evaluate the effectiveness of our side channel attacks

on the square-and-multiple exponentiation vulnerability in

GnuPG 1.4.13. The implementation is similar to the one

presented in Algorithm 1 in Section II. As discussed before,

a victim’s accesses on function sqr and mul can leak

the value of exponent. In GnuPG, these two functions are

implemented recursively, thus the target address identifying

each function will be accessed multiple times throughout the

execution of either operation. We show how this algorithm

remains vulnerable on non-inclusive caches by attacking it

with Prime+Probe, Evict+Reload and Flush+Reload attacks.

1) Flush+Reload: We evaluate a cross-core Flush+Reload

attack on this new platform for completeness. The victim

and the attacker run on separate cores. The flush and reload

operations are used on the addresses located at the entry of the

sqr and mul functions. We use a wait time of 2000 cycles

between the flush and reload.

Figure 14 shows the time measurement of the reload

operation for 100 samples. A low latency reload operation, less

than 250 cycles, indicates the victim has accessed the target

address during the wait interval. A high latency, around 350

cycles, means the victim has not accessed the target address.

According to the algorithm, an access on sqr followed by

Fig. 14. Access latencies measured in the reload operation in Flush+Reload.
A sequence of “1001110101” can be deduced as part of the exponent.

an access on mul indicates a bit “1”, and two consecutive

accesses on sqr without mul accesses in the between indicate

a bit “0”. From Figure 14, we can see that each sqr operation

completes after 3 samples, or about 6000 cycles. Leveraging

this information, the attacker is able to deduce part of the

exponent as “1001110101”.

In Flush+Reload, errors stem from times when the attacker’s

flush operation overlaps with victim accesses. Such occurrences

cause lost bits.

2) Prime+Probe: In our Prime+Probe attacks, we use 12

probe addresses from an eviction set for the target address, and

use 500 cycles as the attacker wait interval. 4 We are able to

monitor with such small granularity due to the efficient probe

operation on the ED. We only monitor one target address, i.e.

the address located at the entry of mul function, which is good

enough.

Fig. 15. Access latencies measured in the probe operation in Prime+Probe. A
sequence of “01010111011001” can be deduced as part of the exponent.

Figure 15 shows the access latencies measured in the probe

operation as results of our Prime+Probe attack for 400 samples.

If there is no victim access of the target address, the probe

operation will see L2 hits for all the probe addresses without ED

conflicts, taking around 160 cycles. Otherwise, if the victim

accesses the target address, ED conflicts will be observed,

resulting in long access latency, around 230 cycles. We do

not track victim accesses on the sqr function; this the same

approach taken in [8]. Instead, the number of sqr operations

can be deduced from the length of the interval between two

consecutive multiply operations. The attacker can deduce a

sequence of “01010111011001” as part of the exponent from

Figure 15.

4We use 12 EV addresses instead of 13 addresses, because we can get more
precise and clean measurements of accessing 12 addresses, even though we
suffer some noise due to relatively low eviction rate.

In Prime+Probe attacks, most errors stem from the imperfect

eviction rate, which leads to observing a multiply operation

for more samples than it actually executed.

Fig. 16. Access latencies measured in the reload operation in Evict+Reload.
A sequence of “0101011110110101” can be deduced as part of the exponent.

3) Evict+Reload: Our novel Evict+Reload attack utilizes

1 attacker thread and 2 helper threads. The 2 helper threads

access the same EV with 11 (W TD) addresses mapped to the

same LLC slice and set as the target address. The attacker

thread accesses 16 (W L2) addresses mapped to the same L2

set as the target line 6 times. We tested multiple eviction

approaches, and found this method is highly reliable, and also

very efficient, only taking around 1200 cycles. We monitor

both the square and multiply operations and use 4000 cycles

as the wait interval.

Figure 16 shows the access latencies measured in the reload

step as the results for the Evict+Reload attack for 100 samples.

The figure can be interpreted in the same way as the one for

Flush+Reload, and the attacker can decode the part of the

exponent as sequence “0101011110110101”.

Compared to Flush+Reload, the Evict+Reload attack on non-

inclusive caches tends to suffer more errors. Since the evict

operation takes longer than the flush operation, the probability

that the evict step overlaps with the victim’s access is higher.

VIII. RELATED WORK

There have been a variety of cache-based side channel attacks

in the literature. We start by reviewing the attacks most closely

related to our attack, namely those on non-inclusive caches. We

then briefly discuss side-channel attacks on inclusive caches.

A. Attacks on Non-Inclusive Caches

There are two known attacks on non-inclusive caches that

require page sharing [11], [18]. ARMageddon [18] leverages

Evict+Reload to attack a non-inclusive ARM LLC. Irazoqui et

al. [11] leverage Flush+Reload to attack a non-inclusive AMD

dual-socket machine. Both works rely on shared virtual memory.

Moreover, neither of these works addresses the complexities

stemming from sliced caches. Thus, our work is more general.

ARMageddon’s [18] usage of Evict+Reload on non-inclusive

caches is slower than our Evict+Reload attack, as it must access

many more addresses in the evict phase. Its method will be

even slower for larger caches. For example, ARMageddon

attacks L1 caches that are at most 32KB, while their shared L2

cache is at most 2048KB. On the Skylake-X system that we

attack, the L2 is 1MB and the LLC is 11MB. Despite having

larger caches, our attack succeeds and with finer granularity

than ARMageddon. Additionally, we overcome issues related

to sliced caches, which are not present on ARM architectures.

B. Attacks on Inclusive Caches

Same-core side channel attacks [27], [39], [40] leverage

hyper-threading to co-locate victims and attackers on the same

core, and exploit cache timing differences between L1 and

L2 cache accesses. Other attacks exploit the operating system

scheduler to achieve core-co-residency, overcoming the need

for hyper-threading [19]. Cross-core attacks are more difficult,

as timing information comes from a much larger LLC, which

increases noise as it is shared across many cores. Yarum et

al. [7] proposed a cross-core, cross-VM Flush+Reload attack on

an LLC by leveraging shared memory stemming from memory

deduplication. Liu et al. [8] proposed a practical Prime+Probe

attack on an inclusive LLC, which does not rely on shared

memory, as we discussed earlier.

IX. COUNTERMEASURES

Hardware-based. Our attack causes conflicts on the limited

number of directory entries (including ED) to create inclusion

victims. One approach to prevent the attack is to eliminate

contention for directory entries. This can be realized in a few

different ways, some of which introduce severe performance

degradation. First, we can increase the associativity of the

ED in each LLC slice, so that it is equal to the maximum

possible number of entries in a set, i.e. NL2×W L2. In a sliced

directory design, the total number of ED entries will then be

NED × SED ×NL2 ×W L2. This results in a large amount of

wasted area on the chip. Second, we can build a centralized

directory structure. However, such centralized structure is not

scalable and will be a serious performance bottleneck. Third,

we can eliminate directories and use a snoopy-based coherence

protocol. However, snoopy protocols do not scale with the core

count.

Beyond general architectural changes, we can prevent the

attack by applying several side channel prevention techniques

that have been used for inclusive caches [34], [41], [42]. For

example, the directory entry replacement policy can be modified

to mimic SHARP [34], which prevents the creation of inclusion

victims in the LLC. By preventing the replacement of directory

entries occupied by a different core than the requesting one,

the proposed attack can be prevented. Alternatively, one can

partition the directory entries among the cores in a manner

similar to the way Intel CAT partitions the cache.

Software-based. Software-only cache side channel defenses

suffer from a variety of drawbacks. Some of these defenses use

cache-coloring techniques [43]–[47] or constant time program

transformation [48], which incur potentially large overheads, or

costly application level changes. Compiler level defenses are

transparent to developers, but incur large runtime overhead [49].

Other transparent techniques focus on kernel level changes, but

remain probabilistic [50], [51]. Nomad [52] is a probabilistic

defense that operates at the cloud scheduler level to keep two

tenants from being co-scheduled on the same host for long

periods. It is challenging to mount a probabilistic defense

against fine-grained attacks such as the one presented in

Section VI.

X. CONCLUSION

In this paper, we identified the directory as a unifying

structure across different cache hierarchies on which to mount

a conflict-based side channel attack. Based on this insight, we

presented two attacks on non-inclusive cache hierarchies. The

first one is a Prime+Probe attack. Our attack does not require

the victim and adversary to share cores or virtual memory,

and succeeds in state-of-the-art non-inclusive sliced caches

such as those of Skylake-X [13]. The second attack is a novel,

high-bandwidth Evict+Reload attack that uses a multi-threaded

adversary to bypass non-inclusive cache replacement policies.

We attacked square-and-multiply RSA on the modern Intel

Skylake-X processor, using both of our attacks. Moreover,

we also conducted an extensive study to reverse engineer the

directory structure of the Intel Skylake-X processor. Finally,

we developed a new eviction set construction methodology to

find groups of cache lines that completely fill a given set of a

given slice in a non-inclusive LLC.

ACKNOWLEDGMENTS

This work was supported in part by NSF under grant CCF

1725734.

REFERENCES

[1] Intel, “Intel Software Guard Extensions Programming Reference,” 2013.

[2] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and countermea-
sures: the case of AES,” in Topics in Cryptology–CT-RSA. Springer,
2006.

[3] O. Acıiçmez, Ç. K. Koç, and J.-P. Seifert, “Predicting secret keys via
branch prediction,” in Cryptographers Track at the RSA Conference.
Springer, 2007.

[4] Y. Wang, A. Ferraiuolo, and G. E. Suh, “Timing channel protection for
a shared memory controller,” in HPCA’14.

[5] M. Andrysco, D. Kohlbrenner, K. Mowery, R. Jhala, S. Lerner, and
H. Shacham, “On subnormal floating point and abnormal timing,” in
Proceedings of the 2015 IEEE Symposium on Security and Privacy.
Washington, DC, USA: IEEE Computer Society, 2015.

[6] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bindschaedler, H. Tang,
and C. A. Gunter, “Leaky cauldron on the dark land: Understanding
memory side-channel hazards in SGX,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security. ACM,
2017.

[7] Y. Yarom and K. Falkner, “Flush+Reload: a high resolution, low noise,
L3 cache side-channel attack,” in 23rd USENIX Security Symposium
(USENIX Security), 2014.

[8] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in IEEE Symposium on Security and
Privacy, 2015.

[9] D. Gruss, R. Spreitzer, and S. Mangard, “Cache template attacks:
Automating attacks on inclusive last-level caches,” in 24th USENIX
Security Symposium (USENIX Security), 2015.

[10] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-tenant side-
channel attacks in PaaS clouds,” in Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2014.

[11] G. Irazoqui, T. Eisenbarth, and B. Sunar, “Cross processor cache attacks,”
in Proceedings of the 11th ACM on Asia Conference on Computer and
Communications Security. ACM, 2016.

[12] VMWare, “Transparent page sharing: new default setting.” 2014.
[Online]. Available: http://blogs.vmware.com/security/2014/10

[13] Intel, “6th Gen Intel Core X-Series Processor Family
Datasheet - 7800X, 7820X, 7900X,” 2017. [Online]. Available:
https://www.intel.com/content/www/us/en/products/processors/core/6th-
gen-x-series-datasheet-vol-1.html

[14] R. Hund, C. Willems, and T. Holz, “Practical timing side channel attacks
against kernel space ASLR,” in IEEE Symposium on Security and Privacy.
IEEE, 2013.

[15] A. Jaleel, J. Nuzman, A. Moga, S. C. Steely, and J. Emer, “High
performing cache hierarchies for server workloads: Relaxing inclusion
to capture the latency benefits of exclusive caches,” in 2015 IEEE 21st
International Symposium on High Performance Computer Architecture
(HPCA), Feb 2015.

[16] L. Zhao, R. Iyer, S. Makineni, D. Newell, and L. Cheng, “NCID: a
non-inclusive cache, inclusive directory architecture for flexible and
efficient cache hierarchies,” in Proceedings of the 7th ACM international
conference on Computing frontiers. ACM, 2010.

[17] D. Mulnix, “Intel Xeon Processor Scalable Family Technical Overview,”
2017. [Online]. Available: https://software.intel.com/en-us/articles/intel-
xeon-processor-scalable-family-technical-overview

[18] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard, “AR-
Mageddon: Cache Attacks on Mobile Devices,” in 25th USENIX Security
Symposium (USENIX Security 16). USENIX Association.

[19] M. Neve and J.-P. Seifert, “Advances on access-driven cache attacks on
AES,” in Selected Areas in Cryptography. Springer, 2006.

[20] G. Irazoqui, T. Eisenbarth, and B. Sunar, “S$A: A shared cache attack
that works across cores and defies VM sandboxing and its application
to AES,” in IEEE Symposium on Security and Privacy. IEEE, 2015.

[21] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis,
“The spy in the sandbox: Practical cache attacks in javascript and their
implications,” in Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2015.

[22] D. M. Gordon, “A survey of fast exponentiation methods,” Journal of
algorithms, vol. 27, no. 1, 1998.

[23] D. Gullasch, E. Bangerter, and S. Krenn, “Cache Games–Bringing Access-
Based Cache Attacks on AES to Practice,” in IEEE Symposium on
Security and Privacy. IEEE, 2011.

[24] B. Gülmezoğlu, M. S. Inci, G. Irazoqui, T. Eisenbarth, and B. Sunar, “A
faster and more realistic flush+reload attack on AES,” in International
Workshop on Constructive Side-Channel Analysis and Secure Design.
Springer, 2015.

[25] J. Bonneau and I. Mironov, “Cache-collision timing attacks against AES,”
in International Workshop on Cryptographic Hardware and Embedded
Systems. Springer, 2006.

[26] C. Percival, “Cache Missing for Fun and Profit,” Oct. 2005. [Online].
Available: http://www.daemonology.net/papers/htt.pdf

[27] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get
off of my cloud: exploring information leakage in third-party compute
clouds,” in Proceedings of the 16th ACM conference on Computer and
communications security. ACM, 2009.

[28] Y. Xu, M. Bailey, F. Jahanian, K. Joshi, M. Hiltunen, and R. Schlichting,
“An exploration of L2 cache covert channels in virtualized environments,”
in Proceedings of the 3rd ACM workshop on Cloud computing security
workshop. ACM, 2011.

[29] Z. Wu, Z. Xu, and H. Wang, “Whispers in the hyper-space: high-speed
covert channel attacks in the cloud,” in USENIX Security symposium,
2012.

[30] C. Maurice, C. Neumann, O. Heen, and A. Francillon, “C5: cross-cores
cache covert channel,” in Detection of Intrusions and Malware, and
Vulnerability Assessment. Springer, 2015.

[31] T. Hornby, “Side-channel attacks on everyday applications: Distinguishing
inputs with flush+reload,” in BackHat 2016.

[32] G. Irazoqui, M. S. IncI, T. Eisenbarth, and B. Sunar, “Know thy neighbor:
Crypto library detection in cloud,” Proceedings on Privacy Enhancing
Technologies, vol. 2015, no. 1, 2015.

[33] D. Gruss, C. Maurice, and K. Wagner, “Flush+Flush: A stealthier last-
level cache attack,” arXiv preprint arXiv:1511.04594, 2015.

[34] M. Yan, B. Gopireddy, T. Shull, and J. Torrellas, “Secure hierarchy-aware
cache replacement policy (SHARP): Defending against cache-based
side channel attacks,” in Proceedings of the 44th Annual International
Symposium on Computer Architecture. ACM, 2017.

[35] Chrome Developers Native Client, “Security: Disallow the x86 “clflush”
instruction due to DRAM “rowhammer” problem,” 2014. [Online].
Available: https://bugs.chromium.org/p/nativeclient/issues/detail?id=3944

[36] Intel, “The Intel 64 and IA-32 architectures software developer’s manual,”
vol. 2A: Instruction Set Reference A-Z, no. 325383, 2016.

[37] G. Paoloni, “How to Benchmark Code Execution Times on Intel IA-32
and IA-64 Instruction Set Architectures,” 2010.

[38] R. Singhal, “Inside Intel next generation Nehalem microarchitecture,” in
Hot Chips, vol. 20, 2008.

[39] D. J. Bernstein, “Cache-timing attacks on AES,” Technical Report,
University of Illinois at Chicago, 2005.

[40] E. Tromer, D. A. Osvik, and A. Shamir, “Efficient cache attacks on AES
and countermeasures,” Journal of Cryptology, vol. 23, no. 1, 2010.

[41] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R. B.
Lee, “CATalyst: Defeating last-level cache side channel attacks in cloud
computing,” in 22nd IEEE Symposium on High Performance Computer
Architecture, 2016.

[42] Y. Wang, A. Ferraiuolo, D. Zhang, A. C. Myers, and G. E. Suh, “SecDCP:
secure dynamic cache partitioning for efficient timing channel protection,”
in Proceedings of the 53rd Annual Design Automation Conference. ACM,
2016.

[43] B. Rodrigues, F. M. Quintão Pereira, and D. F. Aranha, “Sparse represen-
tation of implicit flows with applications to side-channel detection,”
in Proceedings of the 25th International Conference on Compiler
Construction. ACM, 2016.

[44] T. Kim, M. Peinado, and G. Mainar-Ruiz, “STEALTHMEM: system-
level protection against cache-based side channel attacks in the cloud,”
in USENIX Security symposium, 2012.

[45] J. Shi, X. Song, H. Chen, and B. Zang, “Limiting cache-based side-
channel in multi-tenant cloud using dynamic page coloring,” in 2011
IEEE/IFIP 41st International Conference on Dependable Systems and
Networks Workshops (DSN-W). IEEE, 2011.

[46] Y. Ye, R. West, Z. Cheng, and Y. Li, “Coloris: a dynamic cache
partitioning system using page coloring,” in Proceedings of the 23rd
international conference on Parallel architectures and compilation.
ACM, 2014.

[47] H. Raj, R. Nathuji, A. Singh, and P. England, “Resource management
for isolation enhanced cloud services,” in Proceedings of the 2009 ACM
workshop on Cloud computing security. ACM, 2009.

[48] A. Rane, C. Lin, and M. Tiwari, “Raccoon: Closing digital side-channels
through obfuscated execution.” in USENIX Security Symposium, 2015.

[49] B. Coppens, I. Verbauwhede, K. De Bosschere, and B. De Sutter,
“Practical mitigations for timing-based side-channel attacks on modern
x86 processors,” in 30th IEEE Symposium on Security and Privacy.
IEEE, 2009.

[50] Z. Zhou, M. K. Reiter, and Y. Zhang, “A software approach to defeating
side channels in last-level caches,” in Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security. ACM,
2016.

[51] V. Varadarajan, T. Ristenpart, and M. Swift, “Scheduler-based defenses
against cross-VM side-channels,” in 23rd USENIX Security Symposium
(USENIX Security 14), 2014.

[52] S.-J. Moon, V. Sekar, and M. K. Reiter, “Nomad: Mitigating arbitrary
cloud side channels via provider-assisted migration,” in Proceedings
of the 22nd acm sigsac conference on computer and communications
security. ACM, 2015.

[53] C. Maurice, N. Le Scouarnec, C. Neumann, O. Heen, and A. Francillon,
“Reverse engineering Intel last-level cache complex addressing using
performance counters,” in Research in Attacks, Intrusions, and Defenses.
Springer, 2015.

[54] G. Irazoqui, T. Eisenbarth, and B. Sunar, “Systematic reverse engineering
of cache slice selection in Intel processors,” in Euromicro Conference
on Digital System Design (DSD). IEEE, 2015.

[55] W. V. Quine, “The problem of simplifying truth functions,” The American
Mathematical Monthly, vol. 59, no. 8, 1952.

[56] D. Molka, D. Hackenberg, and R. Schöne, “Main Memory and Cache
Performance of Intel Sandy Bridge and AMD Bulldozer,” in Proceedings
of the Workshop on Memory Systems Performance and Correctness, ser.
MSPC ’14. New York, NY, USA: ACM, 2014.

[57] M. Clark, “A new X86 core architecture for the next generation of
computing,” in Hot Chips 28 Symposium (HCS), 2016 IEEE. IEEE,
2016.

[58] T. Singh, S. Rangarajan, D. John, C. Henrion, S. Southard, H. McIntyre,
A. Novak, S. Kosonocky, R. Jotwani, A. Schaefer et al., “Zen: A next-
generation high-performance x86 core,” in IEEE International Solid-State
Circuits Conference (ISSCC). IEEE, 2017.

APPENDIX

A. The Eviction Set Construction Algorithm

The complete EV construction algorithm that we used for

non-inclusive caches is a slightly modified version of the

algorithm proposed by Liu et al. [8], as shown in Algorithm 4.

The find_EV(Collection CS) function above takes

a collection of addresses, which we call a Candidate Set (CS)

as input, and outputs an eviction set (EV) for one slice as

output. For the algorithm to work, it is required that all the

addresses in CS have the same LLC set index bits, and CS
contains more than W slice addresses for each slice. Such CS
can be easily obtained by using a large number of addresses.

To find EVs for all the slices within CS, we need to run the

function the same number of times as the number of slices.

The function initializes EV as an empty set and selects

a random address test addr in CS (line 2-3). It then tries

to construct an EV containing all the addresses which are

mapped to the same slice and set as test addr from CS. First,

it creates a new set CS′ by removing test addr from CS
(line 4), and then performs a sanity check to make sure CS′

contains enough addresses to evict test addr out of LLC using

check_conflict (line 5-7).

The loop (line 8-14) performs the bulk of the work, checking

whether an address is mapped to the same slice as test addr.

Since CS′ conflicts with test addr, if removing an address

addr causes the conflict disappear, we know that addr
contributes to the conflict, and addr should be added to EV

Algorithm 4: Constructing an eviction set.

Input : candidate set CS
Output :EV

1 Function find EV(CS):
2 EV = {}
3 test addr = get a random addr from CS
4 CS′ = CS − test addr

// make sure there are enough addresses to conflict with test addr
5 if check conflict(test addr, CS′)==false then
6 return fail
7 end
8 for each addr in CS′ do
9 if check conflict(test addr, CS′ − addr)==false then

// if conflict disappears, we know addr contributes to
// the conflict, and it should be in the EV

10 insert addr to EV
11 else
12 CS′ = CS′ − addr
13 end
14 end
15 for each addr in CS do
16 if check conflict(test addr, EV)==true then
17 insert addr to EV
18 end
19 end
20 return EV
21 end

(line 9-10). Such addresses are kept in CS′. Addresses which

are not strictly necessary to cause conflicts with test addr
are removed from CS′ (line 12), and CS′ should still conflict

with test addr after the remove operations. After the loop, we

obtain a minimal EV with exactly Wslice number of addresses.

It is possible that there are more than Wslice addresses from

the same slice as test addr which have been conservatively

removed in the loop. We use an extra loop (line 15-19) to find

these addresses, by iteratively checking each address in the

original CS to determine whether it conflicts with the obtained

EV .

The check_conflict function is extensively used in

this algorithm. On line 9, the function is used to test whether

removing an address from a set can cause LLC conflicts to

disappear. This operation requires the function to have both

a low false positive rate and a low false negative rate, as

discussed in Section IV.

B. Slice Hash Function

Based on our EV construction results, we are able to reverse

engineer part of the slice hash function in the Intel Skylake-

X processor. Our goal here is to show that the slice hash

function is not a simple XOR operation of selected physical

address bits. This design is significantly different from the

one in previous Intel processors such as SandyBridge and

IvyBridge. Considering that all of the previous works on

reverse-engineering slice hash functions [53], [54] rely on

the use of a simple XOR hash function, our results identify

the need for more advanced reverse-engineering approaches.

We briefly discuss how to get the partial hash function. We

select 128 addresses with the same LLC set index bits to form

a Candidate Set (CS). Bits 6-16 of these addresses are set to

the same value, while bits 17-23 are varied. The goal is to

reverse engineer how bits 17-23 affect the output of the slice

hash function.

First, we run find_EV on the 128-address CS and obtain

8 EVs. Each EV is mapped to one cache slice. Second, we

try to figure out the slice id for each EV. Since the Skylake-X

processor uses a mesh network-on-chip to connect L2s and

LLC slices [13], a local LLC slice access takes shorter time

than a remote slice access. We check the access latency of

each EV from each core. We then get the id of the core from

which the access latency is the lowest, and assign the core id

to the EV. Finally, we use the Quine-McCluskey solver [55]

to get the simplified boolean functions from the input bits to

the slice id as below. In the following, oi is the ith bit in the

slice id, and bi is the ith bit in the physical address.

o2 =b′23b
′
19 + b′22b

′
19 + b23b22b19

o1 =(b23 + b22)(b20 ⊕ b19 ⊕ b18 ⊕ b17)+

b′23b
′
22(b20 ⊕ b19 ⊕ b18 ⊕ b17)

′

o0 =b′22(b19 ⊕ b18) + b22(b23 ⊕ b21 ⊕ b19 ⊕ b18)
′

where {b63...b24} = 0x810

These functions can not be further reduced to a simple XOR

function. According to our observations, some of the higher

bits (bits 24-63) also affect the hash function, which we have

not fully reverse engineered.

C. Attacking AMD Non-Inclusive Caches

We tried to reverse engineer the non-inclusive cache hier-

archy in an 8-core AMD FX-8320 processor, which uses the

AMD Piledriver microarchitecture. The cache parameters in

this processor are listed in Table II.

AMD Piledriver AMD Zen (4-core CCX)

L1-I 64KB/2cores, 2-way 64KB, 4-way
L1-D 16KB, 4-way 32KB, 8-way

L2 2MB/2cores, 16-way, inclusive 512KB, 8-way, inclusive
LLC 8MB/8cores 2MB/core

64-way, non-inclusive 16-way, non-inclusive
TABLE II

CACHE STRUCTURES IN AMD PROCESSORS.

We found that the L2 caches in this processor are inclusive

and shared by two cores. We verified that previous inclusive

cache attacks work well, if the attacker and the victim are

located on neighboring cores and share the same L2.

To see whether the non-inclusive LLC is vulnerable to cache

attacks, we tried the reverse engineering experiments in Sec-

tion V to detect the existence of directories. We did not observe

extra conflicts besides cache conflicts. It is possible that the

processor uses a snoopy-based cache coherence protocol [56],

in which case there is no directory. It is also possible that the

processor uses a centralized and high-associativity directory

design, such that the directory associativity is at least as high

as the total cache associativity. In this case, the directory for

L2 lines needs to have ≥ 64 ways. Overall, the conditions in

Section V-F do not hold.

We also evaluated our attack on an 8-core Ryzen 1700

processor, which uses the latest AMD Zen microarchitecture.

The cache parameters are also listed in Table II. The processor

consists of 2 Core Complexes (CCX). A CCX is a module

containing 4 cores, which can connect to other CCX modules

via Infinity Fabric [57], [58]. We did not observe extra conflicts

other than the cache conflicts on this processor either. Given

the small number of cores on each die and low L2 associativity

(8 on AMD CCX compared to 16 on Intel Skylake-X), we

hypothesize that this processor either uses a snoopy-based

protocol or a 32-way centralized directory for L2 lines.

Performance implications for AMD designs. We measured

the remote L2 access latency for the Piledriver processor, and

found that it was about as long as a DRAM access. This time

is significantly longer than the corresponding operation in the

Intel Skylake-X (Figure 5). This observation backs up our

claim that sliced directories are important structures in high

performance processors. For the Ryzen processor, we have a

similar result. Specifically, a cross-CCX access takes a similar

amount of time as a DRAM access. The Skylake-X/Skylake-SP

processors can support up to 28 cores. Since each CCX is only

4 cores, constructing a similarly provisioned Ryzen system

can mean that most cross-core accesses turn into cross-CCX

accesses.

