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Abstract

Lee, Lee and Lee [App. Math. and Comp. Vol. 159 , 2004, pp.
317-331] recently presented a collection of n + 1 different n-party key
agreement protocols based on multi-linear forms. Here we show that
n − 2 of the protocols are completely insecure, being vulnerable to
impersonation attacks.
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1 Introduction

Recently, Lee, Lee and Lee [4] presented a collection of n+1 different n-party
key agreement protocols. Their protocols make use of multi-linear forms [3]
and are based on the protocols developed by Al-Riyami and Paterson in
[1, 2]. We show that, contrary to the claim of [4, p. 323], n− 2 of the n + 1
protocols are easily broken using an impersonation attack. In our attack,
the adversary impersonates the parties in the protocol to one another and
learns the session keys held by the parties at the end of the attack. Thus
the protocols of [4] do not meet even the most basic security requirement
for a key agreement protocol.

In Section 2 we review the protocols of [4], while in Section 3 we present
our attacks on the protocols of [4].
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2 The protocols of Lee, Lee and Lee

The protocols of [4] operate in the following mathematical setting. Groups
G1 and G2 are of the same prime order (p say) and en : Gn−1

1 → G2 is an
(n− 1)-multi-linear map, that is, a map satisfying:

en−1(xa1
1 , xa2

2 , . . . , x
an−1

n−1 ) = en−1(x1, x2, . . . , xn−1)a1a2...an−1

for any a1, a2, . . . , an−1 ∈ Zp and any x1, x2, . . . , xn−1 ∈ G1. Such maps
were introduced to cryptography by Boneh and Silverberg in [3]. However,
it should be noted that no implementations of such maps suitable for use in
cryptographic applications are currently known to exist.

In the protocols of [4], each of the n participants Ai has a long-term
private key xi ∈ Zp and a corresponding public key gxi where g is a fixed
generator of G1. Each participant then picks at random ai ∈ Z∗p, computes
gai and broadcasts this value to all the other participants. Then n+1 possi-
ble different methods for the protocol participants to agree on a common key
are presented in [4]. Of these, two methods, namely MAK-A and MAK-C,
need not concern us further here. The remaining methods are named MAK
B-j (1 ≤ j ≤ n− 1) in [4]. In method MAK B-j, the key computed by the
participants is of the form:

K =
∏

I⊂[n], |I|=j

en−1(g, g, . . . , g)xIa[n]\I .

where [n] denotes the set {1, 2, . . . , n}, xI denotes the product
∏

i∈I xi and
a[n]\I denotes the product

∏
i∈[n]\I ai. We note that a different (and arguably

less clear) notation is used to describe these protocols in [4].
Thus the set of exponents appearing in the calculation of K consists of all(

n
j

)
possible expressions comprising a product of j distinct terms of the form

xi (which we call “x” terms) and n− j distinct terms of the form ai (which
we call “a” terms). It is not hard to see how participant Ai, in possession
of his private values xi, ai and all the public values gxj , gaj (for j 6= i) can
exploit the multi-linear nature of the map en−1 to compute K. For example,
when n = 4 and j = 2, A1 can compute the expression e3(g, g, g)x2x4a1a3

appearing in the product for K as e3(gx2 , gx4 , ga3)a1 , while A2 can compute
it as e3(gx4 , ga1 , ga3)x2 .

3 Impersonation attack

We now demonstrate an impersonation attack on the protocols MAK B-j
for 1 ≤ j ≤ n − 2, that is, on all the MAK B protocols of [4] with the

2



exception of MAK B-(n− 1).
Let j satisfy 1 ≤ j ≤ n− 2 and consider an adversary E who intercepts

and replaces the values broadcast by the participants in protocol MAK B-j.
For each k, adversary E intercepts the value gak sent by participant k to the
other protocol participants and replaces it with a value ga′k , where a′k ∈ Zp

is known to E.
Consider how participant Ak in receipt of values ga′1 , ga′2 , . . . ga′n (exclud-

ing the term ga′k) calculates his key, Kk say. This key is a computed by Ak

as a product of terms of the form T ′I = en−1(g, g, . . . , g)xIa[n]\I where I is a
subset of [n] of size j and the ai are replaced by a′i for each i 6= k.

We show how E can also compute each of these terms T ′I . Let I =
{i1, i2, . . . , ij}. There are two cases. In the first case, we have k ∈ I. Then
E knows all of the “a” terms appearing in the exponent of T ′I (they are all
of the form a′i) and can exploit the multi-linearity of en−1 to compute:

T ′I = en−1(gxi1 , gxi2 , . . . , gxij , g, . . . , g)a′
[n]\I

where a′[n]\I =
∏

i∈[n]\I a′i. In the second case, we have k /∈ I. Then E knows
all of the “a” terms appearing in the exponent of T ′I with the exception of
ak and so can compute:

T ′I = en−1(gxi1 , gxi2 , . . . , gxij , gak , g, . . . , g)a′
[n]\(I∪{k})

where a′[n]\(I∪{k}) =
∏

i∈[n]\(I∪{k}) a′i. Here, we use the fact that j ≤ n−2 to
ensure that the j + 1 different terms xi1 , xi2 , . . . , xij , ak can be moved from
the exponent to “inside” the map en−1.

Thus it is apparent that E can also compute all the terms T ′I , and hence
the key Kk held by participant k.

Example 1 When n = 4 and j = 2, participant A1 receives values ga′2, ga′3

and ga′4 from E. He computes the expression e3(g, g, g)x2x4a1a′3 as part of
his computation of K1. The adversary E can also compute this expression
using the formula:

e3(g, g, g)x2x4a1a′3 = e3(gx2 , gx4 , ga1)a′3

and his knowledge of a′3. In a similar fashion, E can calculate the 5 other
expressions involved in A1’s computation of K1.

Note that at the end of the attack, the various participants hold dif-
ferent keys, all of which are known to the adversary E. This is normal in

3



impersonation attacks. If the keys are subsequently used, for example, for
encryption, then this allows E to act as a man-in-the-middle, intercepting,
decrypting, reading and then re-encrypting any data sent by any participant
to any other participant.
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