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Attack-Resilient Sensor Fusion for Safety-Critical Cyber-Physical
Systems

Radoslav Ivanov, University of Pennsylvania

Miroslav Pajic, Duke University1

Insup Lee, University of Pennsylvania

This paper focuses on the design of safe and attack-resilient Cyber-Physical Systems (CPS) equipped with

multiple sensors measuring the same physical variable. A malicious attacker may be able to disrupt sys-

tem performance through compromising a subset of these sensors. Consequently, we develop a precise and

resilient sensor fusion algorithm that combines the data received from all sensors by taking into account

their specified precisions. In particular, we note that in the presence of a shared bus, in which messages are

broadcast to all nodes in the network, the attacker’s impact depends on what sensors he has seen before

sending the corrupted measurements. Therefore, we explore the effects of communication schedules on the

performance of sensor fusion and provide theoretical and experimental results advocating for the use of the

Ascending schedule, which orders sensor transmissions according to their precision starting from the most

precise. In addition, to improve the accuracy of the sensor fusion algorithm, we consider the dynamics of

the system in order to incorporate past measurements at the current time. Possible ways of mapping sensor

measurement history are investigated in the paper and are compared in terms of the confidence in the final

output of the sensor fusion. We show that the precision of the algorithm using history is never worse than

the no-history one, while the benefits may be significant. Furthermore, we utilize the complementary prop-

erties of the two methods and show that their combination results in a more precise and resilient algorithm.

Finally, we validate our approach in simulation and experiments on a real unmanned ground robot.

Categories and Subject Descriptors: C.3 [Special-purpose and Application-based Systems]: Process

control systems, Real-time and embedded systems; K.6.5 [Security and Protection]: Unauthorized access

(e.g., hacking, phreaking)

Additional Key Words and Phrases: Cyber-Physical Systems security; sensor fusion; fault-tolerance; fault-

tolerant algorithms

1. INTRODUCTION

Ensuring the safety of Cyber-Physical Systems (CPS) is a challenging problem. De-
pending on the attacker’s goals and resources, the consequences of malicious attacks
may range from minor variation in performance to absolute inability to control the
system [Koscher et al. 2010; Checkoway et al. 2011]. In addition to the multitude of
cyber attacks (e.g., denial of service) developed over the years, the fact that CPS rely
on real-time information to interact with the physical world makes them additionally
vulnerable to physical attacks (e.g., sensor spoofing). Recent attacks on GPS [mit 2014;
Warner and Johnston 2003] and anti-braking systems [Shoukry et al. 2013a] have il-
lustrated that by tampering with values obtained from system sensors, the attacker
can seriously compromise the safety of the system.

On the other hand, due to proliferation of sensing technology, modern CPS have
many sensors that can be used to estimate the same physical variable. For example,
modern automotive systems have multiple ways of estimating speed; combining their
sensor data to provide more accurate estimates to the controller can have a signifi-
cant impact on the system’s performance and reliability. Even though these sensors’
precisions may be different, their measurements can be fused to produce an estimate
that is better than any single sensor’s [Kalman 1960]. In addition, having diverse sen-
sors with different accuracy and reliability decreases the system’s dependence on a
particular sensor.

1This work was done while M. Pajic was a postdoc fellow at the University of Pennsylvania.



(a) General architecture. (b) Automotive architecture.

Fig. 1: A typical CPS architecture, with sensors communicating over a shared bus with
a controller. After obtaining sensor measurements, the controller performs a sensor
fusion algorithm.

Increased sensor diversity, however, raises the question of the vulnerability of sensor
fusion to malicious attacks. Consequently, in this work, we investigate the design of an
attack-resilient sensor fusion algorithm in order to improve the safety and resiliency
of CPS under attack. As illustrated in Figure 1a, we focus on a widely used CPS ar-
chitecture consisting of multiple sensors that constantly interact with their physical
environment (physical part) and communicate with the controller (cyber part) via a
shared (broadcast) bus. For instance, a specific automotive application is shown in Fig-
ure 1b, where an adaptive cruise controller receives velocity measurements from dif-
ferent sensors. It is important to highlight that modern sensors may have complex
software stacks themselves; for example, GPS software uses synchronized position
measurements to provide filtered velocity estimates even when some of the position
samples have not been received. This increase in design complexity may introduce po-
tential software vulnerabilities that can be exploited to launch remote attacks over a
network, i.e., the attacker may not require physical access to the system [Checkoway
et al. 2011]. As a result, a compromised node may be reprogrammed and reconfigured
to output any measurement, thereby performing subtle and stealthy attacks.

In addition, we assume that communication is implemented in a time-triggered
manner – based on time-triggered (TT) architecture where in every frame, each sensor
transmits its measurements during its allocated time slot, according to a predefined
schedule. In TT communication systems, this is implemented using a physical gateway
(i.e., bus guardian), built on a Trusted Platform Module (TPM), that only allows trans-
mission during a specific time slot, thus preventing “babbling idiot” behaviors [Temple
1998; Short and Pont 2007]. As a result, while a corrupted sensor may be able to ob-
serve all other messages on the bus, it cannot transmit during time slots that are not
assigned to the sensor, i.e., it cannot send messages on behalf of other nodes. Conse-
quently, the attacker can only change the output of compromised sensors; he cannot
affect the transmission schedule nor the output of other correct nodes.

The first consideration when designing a sensor fusion component of CPS is the
underlying sensor model. These can be broadly divided into two main categories: prob-
abilistic and abstract. In the former, the sensor provides the controller with a single
measurement that may be corrupted by noise with a known probability distribution
(e.g., [Xiao et al. 2005]). In the latter, the sensor produces a set with all possible values



for the true state of the variable in question [Marzullo 1990]. Each model is a basis
for a different kind of analysis – while the probabilistic model allows designers to con-
sider the average case and to ignore events with low probability, the abstract model is
usually utilized for worst-case analysis.

Our goal is to guarantee the safety of CPS under attack; hence we focus on worst-
case analysis. Accordingly, we adopt the abstract sensor model, in which each sensor
provides an interval of possible values. The width of the interval reflects its precision -
a larger interval implies less confidence in the obtained measurement. Intuitively, the
abstract model is well-suited for worst-case analysis for the following reason. Suppose
interval A is an unsafe region for a system (e.g., A = [100 mph,∞)). Then if every sen-
sor’s interval has an empty intersection with A one can conclude with certainty that
the system is not in state A. It is worth noting that this presents a very general sensor
model as it does not make any assumptions about the distribution of the sensor mea-
surements or their noise. Instead, the interval is constructed based on manufacturer
specifications about precision and accuracy of the sensor, as well as implementation
limitations such as sampling jitter and synchronization errors [Pajic et al. 2014].

We assume that an attacker is able to take control of some of the sensors and send
any measurements to the controller on their behalf. The attacker’s goal is to use these
compromised sensor measurements to affect the performance of sensor fusion by forc-
ing it to produce an incorrect output or increasing the uncertainty of the produced
value. In particular, if the output is an interval, the attacker would try to maximize its
size since a larger interval reduces the confidence in the provided measurements and
may indicate that the system is in an unsafe state. Since safety analysis is concerned
with the worst case of a system’s operation, we assume the attacker has full knowledge
of its model; in particular, he is aware of the fusion algorithm used by the system as
well as of the sensor and system specifications. In addition, he has access to the shared
bus and hence to all messages that are broadcast on it.

The contribution of this work is the design and analysis of a safe and attack-resilient
sensor fusion for a system such as the one in Figure 1. We provide a framework for
investigating and securing such systems based on their sensors’ specifications and
dynamics. Specifically, given the sensor model used in this work, our approach is based
on the fusion algorithm developed in [Marzullo 1990]. This algorithm produces a fusion
interval for a bounded number of faulty sensors and is guaranteed to contain the true
value (see Section 2 for more detail). In this paper, we propose an improvement to
the sensor fusion algorithm as well as a specific communication schedule that aims to
minimize the attacker’s impact on safety and performance. In addition, we combine
the two approaches in order to leverage their complementary properties.

To improve the precision of the original sensor fusion algorithm, we exploit knowl-
edge of system dynamics and incorporate past measurements in the sensor fusion al-
gorithm. To achieve this, we focus on discrete-time linear systems with bounded noise.
This paper identifies and compares all possible ways of mapping past measurements
to the current time and compares them in terms of the size of the fusion interval that
they produce. We also show that the algorithm using history never leads to a larger
interval than the no-history one.

Furthermore, to enhance the resiliency of sensor fusion, we note that in shared buses
measurements are broadcast to all nodes in the network, including the attacked ones.
Consequently, the attacker’s capabilities depend on what measurements he has seen
before sending his own. Note that, given the chosen fusion algorithm, the attacker’s
goal is to increase the size of the fusion interval if he cannot produce a wrong inter-
val. In particular, if he sends his intervals last, he can maximize the size of the fusion
interval based on the placements of the correct intervals. We show that in the worst
case, the attacker does not benefit from compromising the least precise sensors but



may achieve the worst case for the system if he takes control of the most precise. Con-
sequently, we argue that system designers should prioritize the protection of the most
precise sensors in their systems. In addition, based on these observations, we consider
different communication schedules (based on sensors’ precisions), and investigate how
they affect the attacker’s impact on the performance of sensor fusion (i.e., size of the
fusion interval). We show that systems adopting the abstract sensor model should also
implement the Ascending schedule, which orders sensors according to their interval
size starting from the most precise.

Finally we validate our approach on an unmanned ground vehicle case study. We
use the LandShark robot [lan 2009] and illustrate in simulations and experiments the
advantages of the Ascending schedule as well as of the use of measurement history for
sensor fusion.

This paper is organized as follows. Section 2 introduces precise formulations of the
problems addressed in this work. In Section 3, we formalize a model of the attacker
(his goals and constraints) and present worst-case results with respect to the size of
the fusion interval. Section 4 compares effects of different communication schedules
on the attacker’s performance. Section 5 introduces system dynamics and the benefits
of the use of measurement history, whereas Section 6 shows the combined effect of
the two methods. Finally, in Section 7 we illustrate the performance of the proposed
sensor fusion approach using simulations and experiments on an autonomous vehicle,
before discussing related work (Section 8) and providing some concluding remarks
(Section 9).

2. PROBLEM FORMULATION AND PRELIMINARIES

This section describes the problems addressed in this work. At a high level, the goal is
to use sensor redundancy to improve the system’s resiliency to attacks, i.e., its ability to
maintain a desired performance even in the presence of compromised sensors. To this
end, we analyze the fusion algorithm and shared bus modules (as shown in Figure 1).
We formalize both the system and attack models used in the paper, before stating the
two problems considered in the work.

2.1. System Model

The system consists of n sensors measuring the same physical variable, e.g., velocity.
As mentioned above, we assume abstract sensors; therefore, each sensor provides the
controller with an interval containing all possible values of the true state. The interval
is computed based on the sensor’s specification and manufacturer guarantees. Thus,
its size reflects the system’s confidence in the sensor’s precision, i.e., a larger interval
means a less precise sensor. A sensor is said to be correct if its interval contains the
true value and compromised/corrupted otherwise.

In addition, since most CPS have known dynamics, we assume the system operates
according to discrete-time linear dynamics of the form2

x(t+ 1) = ax(t) + w,

where x ∈ R is the system’s state, a ∈ R is the transition matrix and w ∈ R is bounded
process noise such that |w| ≤ M for some constant M . All sensors transmit at each
point in time.

In addition, we assume that in each round sensors transmit their measurements in
a predefined schedule, i.e., each sensor only transmits its interval in an allocated slot.
Sensors communicate over a shared bus (e.g., CAN bus) such that all messages are

2We have addressed the problem of attack-resilient sensor fusion for multidimensional systems in our pre-
vious work [Ivanov et al. 2014b].



Fig. 2: The fusion interval for three values of f , for a system with n = 5 sensors.
Dashed horizontal line separates sensor intervals from fusion intervals in all figures
in this work.

broadcast to all nodes in the network. Therefore, the sensor scheduled to transmit last
is able to receive and examine all other measurements before sending.

Once the controller receives all measurements in a given round, it performs the
following abstract sensor fusion algorithm as developed by Marzullo [Marzullo 1990].
As discussed in Section 1, the algorithm is chosen because it is conservative and fits
the safety analysis used in this work.

2.2. Fusion Algorithm

The inputs to the algorithm are n intervals and a number, f , which denotes an upper
bound on the number of corrupted sensors in the system (since this number is un-
known, f is usually set conservatively high, e.g., f = ⌈n/2⌉−1). The algorithm outputs
an interval, referred to as the fusion interval in this work, which spans the smallest
to largest point contained in at least n − f intervals. Intuitively, the algorithm is con-
servative: since there are at most f corrupted sensors, there are at least n − f correct
ones, hence the true value can lie in any group of n − f intervals. Thus the algorithm
outputs the smallest interval containing all such groups.

The algorithm is illustrated in Figure 2. As can be seen in the figure, when f = 0
(i.e., the system is confident that all intervals are correct) the fusion interval is just
their intersection. When f = 1 the fusion interval contains all points that lie in at
least four intervals. As the figure shows, as f increases, so does the size of the fusion
interval; in particular, if f = n− 1 the fusion interval would just be the convex hull of
the union of all intervals. Three results about the size of the fusion interval from the
original work by Marzullo are relevant to this paper. First of all, if f < ⌈n/3⌉, the size of
the fusion interval is bounded by the size of some correct interval. If ⌈n/3⌉ ≤ f < ⌈n/2⌉,
the fusion interval can be at most as large as some sensor’s interval, not necessarily
correct. Finally, if f ≥ ⌈n/2⌉ the fusion interval can be arbitrarily large.

Note that, while the fusion interval can be used for performing closed-loop control
(e.g., by selecting its middle point as its “measurement”), in this work it is used for
safety analysis. In particular, if the fusion interval contains any points that affect the
system’s safety, a flag is raised that the system is in a potentially dangerous state.



2.3. Attack Model

In this work, we assume that compromised sensors are not randomly faulty but are
controlled by a malicious attacker. This subsection describes what the attacker’s goals
may be and how such attacks may be performed before formalizing the assumptions
on the attacker with respect to the system model shown above.

2.3.1. Attack Goals. Depending on the considered CPS and its application domain, an
attacker may have different motivations for compromising the system, ranging from
minor disruptions in performance to a complete takeover of the system. We discuss
two scenarios in which resilience to attacks is critical for the employed systems.
Attacks on autonomous vehicles used in hostile environments: Recent ad-
vances in the quality of robots and autonomous vehicles have made it possible to de-
ploy such systems in hostile environments. For example, the LandShark [lan 2009] is
a newly-developed unmanned ground vehicle that is used to perform critical military
missions on enemy territory such as carry precious cargo or injured people. However,
it is possible to spoof some of the LandShark’s sensor measurements even without
physical access to the vehicle. In fact, the RQ-170 Sentinel drone that was captured
in Iran [Peterson and Faramarzi 2011; Shepard et al. 2012] is widely believed to have
been the first example of such attacks; the drone was captured through a jammed GPS
signal, illustrating that sensor attacks are a valid threat for autonomous CPS.
Attacks on modern automobiles: As described in [Koscher et al. 2010; Checkoway
et al. 2011], modern cars are susceptible to multiple attacks through a single (or mul-
tiple) compromised electrical control unit (ECU). These attacks may range from non-
critical situations such as turning on the windscreen wipers to life-threatening sce-
narios such as disabling the brakes. Thus, in addition to a large-scale attack with life-
threatening consequences on a brand of vehicles with security vulnerabilities, which
could instantaneously cripple transportation networks, it is also possible that certain
car manufacturers try to stealthily disrupt the performance of their competitors’ au-
tomobiles in order to gain a market advantage [Koscher et al. 2010; Checkoway et al.
2011].

2.3.2. Attack Means. Due to the nature of CPS and the system architecture, an attacker
may exploit weaknesses both at the physical and cyber layers. We discuss each type of
attacks in turn.
Physical Attacks: One way for the attacker to take control of a sensor is by physically
tampering with it. This may be done by damaging or replacing the sensor, or introduc-
ing a bias through other physical means [Shoukry et al. 2013b]. Note that this kind of
pure physical attacks may not be possible for all sensors – some sensors, e.g., wheel
encoders, are attached to other platforms and cannot be compromised without affect-
ing critical components, e.g., the entire wheel; however, such attacks may be easily
discovered by an on-board diagnostic system that monitors whether system hardware
has been tampered with.
Cyber Attacks: As discussed in [Koscher et al. 2010; Checkoway et al. 2011], an at-
tacker may also compromise a sensor by exploiting vulnerabilities in its software or re-
placing its code with an altogether new version. In this respect, sensors are treated as
standalone computing devices, integrated into the system by a design team with lim-
ited knowledge of their implementation and potential security vulnerabilities. Hence,
any software deficiencies that may occur in other embedded systems can be exploited
in modern sensors as well. Note that, similar to physical attacks, cyber attacks cannot
be used on all sensors on the system – finding deficiencies in the code or replacing the
software both require significant efforts and/or physical access, which, as discussed
above, may be limited as well.



It is important to highlight here that at design time, systems designers/integrators
are usually not able to evaluate which sensors might be susceptible to attacks. As a re-
sult, we propose a system design approach that would minimize the attacker’s impact
on sensor fusion in situations where some of the sensors have been compromised.

2.3.3. Attack Assumptions and Formalization. As discussed above, sensors in the system
communicate over a shared bus. Thus, by gaining control over a sensor, an attacker
has the ability to inspect all sensor measurements transmitted before his sensor’s slot
in the current round’s schedule as well as all past rounds’ measurements. We assume
the attacker can send any interval3 on behalf of the corrupted sensor. In addition, we
consider a worst-case scenario where the attacker has unlimited computational power
and full system knowledge, including sensor/design specifications and the employed
sensor fusion algorithm. The attacker’s goal is to disrupt system performance by lead-
ing the system to believe it is in an unsafe state. As described in Section 1, the strategy
used to accomplish this goal (formalized in Section 3) is through maximizing the size
of the fusion interval. In addition, the attacker has the constraint that he has to stay
undetected throughout the system’s operation; while a single pronounced attack (fol-
lowed by detection) may be considered as a fault and ignored, consistent uncertainty
may be worse for the system. As argued in the previous subsection, the attacker may
not be able to compromise all sensors in the system; hence, we assume that the number
of compromised sensors, denoted by fa, is always less than ⌈n/2⌉,4 and we assume f is
set conservatively high so that f ≥ fa (for example, this can be guaranteed by setting
f = ⌈n/2⌉ − 1).

2.4. Problems

Given the above model, we note that the attacker’s impact depends on the position
of his sensors in the transmission schedule. In particular, if his sensors are last in
the schedule, the attacker can examine all other measurements before sending his
intervals. This would allow him to place his interval(s) in the way that maximizes
damage while not being detected. Therefore, the first problem considered in this paper
is the following.

PROBLEM 1. How does the sensor communication schedule affect the attacker’s im-
pact on the performance of sensor fusion (as measured by the size of the fusion interval)
in a given round? Find the schedule that minimizes this impact.

In the second part of the paper we aim to improve the precision of sensor fusion as
that would mitigate the attacker’s impact and eliminate certain safety concerns. To
this end, we explore the use of system dynamics in the sensor fusion algorithm. Thus,
the second problem addressed in this paper is as follows:

PROBLEM 2. How can we utilize the knowledge of system dynamics and past mea-
surements to improve the precision of the sensor fusion algorithm for any attack strategy
and communication schedule?

Finally, we analyze the mixture of the solutions of the aforementioned two problems
in order to combine the power of the two methods.

3Note that sensors have predefined and known widths of measurement intervals, so the attacker cannot
change the width of his sensor’s interval if he wants to avoid detection.
4As discussed in Section 2.2, if more than half of the sensors are compromised, then one cannot make any
guarantees about the output of sensor fusion.



2.5. Notation

Let N (t) denote all n intervals measured by sensors at time t. In Sections 3 and 4
we omit time notation and write N since no time is used in the analysis. Let SN (t),f

denote the fusion interval given the sensors in N (t) and an upper bound f . For a given
interval s, let ls and us be the lower and upper bound of s, respectively. By |s| we denote
the size of s, i.e., |s| = us − ls; in particular, |SN (t),f | is the size of the fusion interval.

Finally, let C(t) denote the (unknown to the system) set of correct sensors at time t.

3. ATTACK STRATEGY AND WORST-CASE ANALYSIS

This section formalizes the attack strategy considered in this work and illustrates how
the attacker’s capabilities vary with the utilized transmission schedule. Given this
strategy, the second part of the section provides worst-case results to suggest which
sensors would be most beneficial for the attacker to corrupt and for the system to de-
fend, respectively. We denote the strategy with AS1; to illustrate its effectiveness from
the attacker’s point of view, we compare it with another viable strategy in Section 4.
Note that this section does not consider the use of previous sensor readings, hence a
single round is analyzed in isolation. We introduce the use of measurement history in
Section 5.

3.1. Attack Strategy

As described in Section 2, the attacker has a goal, maximize the size of the fusion in-
terval, and constraints, stay undetected. This subsection formalizes the two, beginning
with the latter.

3.1.1. Constraints: Staying Undetected. Formally, the attacker has two modes: passive
and active, as defined below. When in passive mode, the attacker’s constraints are
tighter, and thus his impact is limited. In active mode, on the other hand, the con-
straints on the placement of the compromised intervals are looser, hence the attacker
can send intervals that would greatly increase the uncertainty in the system.

The attacker begins in passive mode, in which the main goal is to stay undetected.
The detection mechanism used in this work is to check whether each interval has a
nonempty intersection with the fusion interval;5since the fusion interval is guaranteed
to contain the true value, any interval that does not intersect the fusion interval must
be compromised. Thus, in passive mode, the attacker computes the intersection of all
seen measurements, including his own sensors’, which is the smallest interval from
the attacker’s perspective that is guaranteed to contain the true value. We denote
this intersection by ∆. Therefore, in passive mode the attacker must include ∆ in his
interval (any point that is not contained may be the true value) and has no restrictions
on how to place the interval around ∆ (if the interval is larger than ∆6).

The attacker may switch to active mode when at least n − f − far measurements
have been transmitted, where far is the number of unsent compromised intervals. At
this point, the attacker may send an interval that does not contain ∆ because he is
aware of enough sent measurements, i.e., he can prevent his sensor from being de-
tected because he has exactly far remaining intervals to send and can guarantee each
interval overlaps with n − f − 1 sensors and with the fusion interval, consequently.
When in active mode, the attacker is not constrained when sending his intervals as
long as overlap with the fusion interval is guaranteed.

5In Section 5, we use historical measurements to further improve the system’s detection capabilities.
6Note that it cannot be smaller than ∆ since ∆ includes the intersection of all measurements of the cor-
rupted sensors.



Fig. 3: An example showing that if attacker (sinusoid) has not seen all intervals then
he has no strategy that guarantees the fusion interval is maximized.

3.1.2. Goal: Maximizing the size of the fusion interval. When maximizing the size of the
fusion interval, the attacker’s strategy consists of two different cases depending on
the position of the attacker’s intervals in the transmission schedule: one to target the
largest interval and another to target the largest expected interval.

Specifically, if all the attacker’s sensors are scheduled to transmit last, meaning
that the attacker will be aware of all measurements prior to sending his, his strategy
can be stated through the following optimization problem, where variables a1, . . . , afa
represent the attacked intervals:

max
a1,...,afa

|SN ,f |

s.t. SN,f ∩ ai 6= ∅, i = 1, . . . , fa.
(1)

Since the solution to this problem can be obtained with full information about the
correct sensors’ measurements, we call this solution and the strategy that led to it,
respectively, optimal.

Definition 3.1. The attack strategy obtained as a solution to the optimization prob-
lem (1) (i.e., the placements of the attacked intervals that achieve the solution) is called
optimal (from the attacker’s point of view) given the correct sensors’ measurements.
Any attack strategy that achieves this solution is also referred to as optimal.

Note that the attack strategy described by optimization problem (1) is optimal by def-
inition. However, there are scenarios in which there exists no optimal strategy for the
attacker if his sensors are not last in the schedule. For example, consider the scenario
depicted in Figure 3, where out of three sensors, a1 is under attack. Suppose that the
attacker transmits second in the schedule so that he is aware of s1’s and his own sen-
sor’s measurement but not of s2’s. Given the measurements shown in the figure, the
attacker cannot guarantee that the fusion interval will be maximized regardless of the
interval that he sends. In particular, if a1 is sent to the left of s1 (a1(1) in the figure)
then s2’s measurement could appear as shown, in which case a1(2) would have resulted
in a larger fusion interval. Other attacks could be similarly shown to not be optimal
for any measurement that can be obtained from s2.

While the attacker may be able to choose which sensors to attack, as argued in
Section 2, certain sensors may not be compromised without detection or at all, with the
resources available to the attacker. Thus, the attacker may not always ensure that his
sensors would be last in the transmission schedule. Consequently, in cases such as the
one in Figure 3, a reasonable strategy for the attacker is to maximize the expected size
of the fusion interval. The expectation is computed over all possible placements of the



unseen correct and compromised intervals.7 Formally, for each compromised interval
ak the attack strategy can be described with the following optimization problem

max
ak,...,afa

E
CR
k

|SN ,f |

s.t. SN,f ∩ ai 6= ∅ i = k, . . . , fa,
(2)

where CRk is the set of all possible placements of the correct intervals that will be
transmitted after ak, and E is the expectation operator.

As shown in Figure 3, there are scenarios in which no optimal strategy exists; yet,
there do exist cases in which there is an optimal solution even if the attacker is not last
in the schedule (and the strategy obtained as a solution to the optimization problem
(2) leads to that solution). In particular, there exist scenarios in which if the unseen
intervals are small enough it is possible for the attacker to obtain an optimal strategy.

To formalize this statement, we introduce the following notation. Let CS be the set of
seen correct intervals and let CR be the set of correct sensors that have not transmitted
yet. Let ln−f−fa be the (n− f − fa)

th smallest seen lower bound and let un−f−fa be the

(n − f − fa)
th largest seen upper bound. Finally, let amin be the attacked sensor with

smallest width.

THEOREM 3.2. Suppose n − f − fa ≤ |C
S | < n − fa. There exists an optimal attack

strategy if one of the following is true:

(a) ∀si, sj ∈ C
S , lsi = lsj , usi = usj and ∀s ∈ CR, |s| ≤ (|amin| − |SCS∪∆,0|)/2

(b) |amin| ≥ un−f−fa − ln−f−fa and ∀s ∈ CR,
|s| ≤ min {lS

CS∪∆,0
− ln−f−fa , un−f−fa − uS

CS∪∆,0
}

Remark 3.3. Note that the conditions in the theorem state that either all seen cor-
rect intervals coincide with one another, and the attacker can attack around them (a);
or that the unseen correct intervals are small enough so that they cannot change the
extreme points contained in at least n− f − fa seen correct intervals (b), in which case
the attacker can attack around these points.

PROOF. First suppose the first statement is true. We argue that the optimal strat-
egy for the attacker is to attack on both sides of seen intervals. For any s ∈ CR, s must
overlap with at least one point in SCS∪∆,0 (the overlap must contain the true value)
and since |s| ≤ (|amin| − |SCS∪∆,0|)/2 then s will necessarily overlap with all malicious
sensors implementing the above strategy. Note that since f < ⌈n/2⌉, the fusion inter-
val cannot be larger than the union of all correct intervals. Therefore, this strategy is
optimal because the attacker can guarantee that all her intervals contain all correct
intervals. Figure 4a illustrates this case. All seen correct intervals coincide, and the
attacker’s intervals are large enough to guarantee that attacking on both sides will
make sure all unseen intervals are included.

Now suppose the second case is true. Then the attacked intervals are large
enough to contain both ln−f−fa and un−f−fa , thus making sure the fusion interval
is [ln−f−fa , un−f−fa ]. This attack is optimal since the unseen intervals are all small
enough to not change the positions of points un−f−fa and ln−f−fa . Figure 4b presents
an example of this case. The unseen interval, s3, cannot change the largest and small-
est points contained in at least one correct interval.

7To compute the expectation, the attacker is implicitly assuming intervals are uniformly distributed around
∆. If additional information is available about the distribution of sensor measurements, it can be incorpo-
rated in the optimization problem (2).



(a) Attacker has seen s1 and s2, while
the unseen s3 is small enough.

(b) Attacker has seen s1 and
s2, while the unseen s3 is small
enough.

Fig. 4: Examples of the two cases of Theorem 3.2. Attacked intervals are indicated by
sinusoids.

3.2. Worst-Case Analysis

Given the attack strategy described in the previous subsection, we now analyze worst-
case results based on the sizes of the attacked and correct sensors. The first result
puts the problem in perspective - it provides an absolute upper bound on the size of
the fusion interval.

THEOREM 3.4. Let sc1 and sc2 be the two largest-width correct sensors. Then
|SN ,f | ≤ |sc1 |+ |sc2 |.

PROOF. Let sl and su be the two correct intervals with smallest lower bound and
largest upper bound, respectively. Since f < ⌈n/2⌉, the lower bound of SN ,f cannot
be smaller than the lower bound of sl and its upper bound cannot be larger than the
upper bound of su. Thus, the width of SN ,f is bounded by the sum of the widths of sl
and su because any two correct intervals must intersect. Hence, the width of SN ,f is
bounded by the sum of the two largest correct intervals.

Theorem 3.4 provides a conservative upper bound on the size of the fusion interval
because it does not directly take into account the sizes of the attacked intervals. The
following results analyze how the worst case varies with different attacked intervals.

To formulate the theorems, we use the following notation. Let L be the set of pre-
defined lengths of all intervals. We use Sna to denote the worst-case (largest width)
fusion interval when no sensor is attacked. Similarly, let SF be the worst-case fusion
interval for a fixed set of attacked sensors F , |F| = fa, whereas Swc

fa
is the worst-case

fusion interval for a given number of attacked sensors, fa. Finally, we refer to the
set of n fixed (i.e., specific) measurement intervals as a “configuration”. Note that
|Sna| ≤ |SF | ≤ |S

wc
fa
| by definition. The first inequality is true since when there are

no attacks, all intervals must contain the true value, which is not the case in the pres-
ence of attacks, hence the worst-case is at least the same. The second inequality is true
since the worst-case with fa attacks may not be achieved for any F with |F| = fa.

THEOREM 3.5. If the fa largest intervals are under attack, then |Sna| = |SF |.

PROOF. Note that |SF | < |Sna| is impossible since the attacker can send the correct
measurements from her sensors. Thus, suppose |SF | > |Sna|. Let SC,0 be the intersec-
tion of the correct intervals in the configuration that achieves SF . Suppose SF extends
SC,0 on the right (note that the argument for the left side is symmetric) by some dis-
tance d and let A be the rightmost point contained in SF . Since f < ⌈n/2⌉, A must
lie in at least one correct interval sc. Since sc is correct it must contain SC,0, which
implies d+ |SC,0| ≤ |sc| ≤ |smax|, where smax is the largest correct interval. Let s be any
attacked interval that contains A. Because |s| ≥ |smax|, s can be placed to contain both



(a) Attacking the biggest intervals
does not change the worst case in
the system.

(b) Attacking the smallest in-
tervals can achieve the absolute
worst case.

Fig. 5: Illustrations of Theorems 3.5 and 3.6.

A and SC,0. Since this can be done for all attacked intervals containing A, the same
worst-case fusion interval can be achieved if no intervals were attacked.

The theorem is illustrated in Figure 5a. The attacked intervals a1 and a2 both do not
contain the true value, which is at the intersection of the other sensors. Since a1 and a2
are the largest intervals, they can be moved and can be made correct while preserving
the size of the fusion interval. Hence, the same worst case can be achieved with correct
intervals.

THEOREM 3.6. |Swc
fa
| is achievable if the fa smallest intervals are under attack.

PROOF. Note that if |Swc
fa
| = |Sna|, the theorem follows trivially. Consider the case

|Swc
fa
| > |Sna|. Suppose |Swc

fa
| is not achievable if the fa smallest intervals are attacked.

Let S be the configuration with fa corrupted intervals that achieves |Swc
fa
| and let A

be the rightmost point in Swc
fa

. Since |Swc
fa
| > |Sna| there exists an interval s ∈ S that

does not contain the true value but contains A. Let Nsmall be the set of fa smallest
intervals. If s ∈ Nsmall for all such s then Swc

fa
is achievable if Nsmall is under attack

and the theorem follows.
Now suppose there exists an s as above such that s /∈ Nsmall. Then there exists an

interval ssmall ∈ Nsmall that is not under attack. If we swap s and ssmall such that
ssmall now contains A and s contains the old interval ssmall, s is made correct and
ssmall corrupted while preserving the size of the fusion interval. Since we can do the
same for all such s, |Swc

fa
| can be achieved if Nsmall is under attack.

Figure. 5b illustrates the theorem. The worst-case for the setup can be achieved
when either s or ssmall is attacked.

A few conclusions can be drawn from the results shown in this subsection. First of
all, from Theorem 3.4, the smaller the correct intervals are, the smaller the fusion
interval will be in the worst case, regardless of the attacker’s actions. In addition, as
shown in Theorems 3.5 and 3.6, the attacker benefits more from compromising pre-
cise sensors as opposed to less precise ones. Intuitively, this is true because imprecise
sensors produce large intervals even when correct; attacking precise sensors, however,
and moving their intervals on one side of large correct intervals, with the true value
on the other, may significantly increase the uncertainty in the system. Therefore, one
may conclude that it is better for system designers to prioritize the protection of the
most precise sensors.



(a) An example where the Ascending schedule is
better for the system.

(b) An example where the Descending schedule is
better for the system.

Fig. 6: Two examples that show that neither the Ascending nor the Descending sched-
ule is better for the system in all situations. The first column shows the measurements
by the sensors, including the attacked one. The other columns contain the intervals
sent to the controller, and the corresponding fusion interval.

4. SCHEDULE COMPARISON AND ANALYSIS

In this section, we analyze the schedule design for communication over the shared
bus in Figure 1. It builds on the analysis in Section 3 by considering how different
schedules affect the capabilities of the attacker. In particular, we examine the effect of
each schedule on the size of the fusion interval.

We first note that the only information available a priori to system designers is
the sensors’ accuracy and their intervals’ sizes, consequently; additional information
considerations are discussed in Section 9. Thus, any investigated schedule must be
based on interval lengths alone. We focus on the two schedules, named Ascending and
Descending, which schedule sensor transmissions in order starting from the most and
least precise, respectively. Other schedules are discussed in Section 9.

We first note that neither schedule is better than the other in all scenarios. Figure 6
shows two examples in which different schedules are better, i.e., they produce smaller
fusion intervals. In Figure 6a the fusion interval obtained with the Descending sched-
ule is larger because the attacker is aware of the position of the largest interval. Fig-
ure 6b, however, shows that knowing the largest interval does not necessarily bring
the attacker any useful information because he can only increase the fusion interval
by overlapping with s1 and s2. Hence, if he is aware of s3 when sending his interval he
would send aD but that would be worse for the attacker than sending aA which would
be the case if the attacker had seen s1 and s2 instead.

Since the two schedules cannot be compared in the absolute sense, we consider the
average case over all possible sensor measurements. In particular, we investigate the
expected size of the fusion interval for a fixed set of sensors with fixed precisions. One
may consider all possible measurements of these sensors and all possible attack com-
binations (with fa < ⌈n/2⌉), and compute the average length of the fusion interval over
all combinations. Note that there are two main considerations when computing this ex-
pectation: (1) what is the distribution of sensor measurements around the true value
(e.g., uniform over the interval? normal?) and (2) what is the likelihood of different
sensors being attacked.

In the following analysis we investigate two possible distributions, uniform and nor-
mal,8 and assume that all sensors are equally likely to be compromised. Since obtain-
ing closed form formulas for the expected sizes of the fusion intervals under the two
schedules was not possible, we computed the values for specific systems. In particular,
we varied the number of sensors from 3 to 5, the sensor lengths from 5 to 20 with

8To approximate a normal distribution, we assumed the length of the interval is equal to six standard
deviations, i.e., about 99% of the values of a normal distribution.



Table I: Comparison of the two sensor communication schedules.

EU |SN ,f |
Asc.

EU |SN ,f |
Desc.

EN |SN ,f |
Asc.

EN |SN ,f |
Desc.

n = 3, fa = 1,
L = {5, 11, 17}

10.77 13.58 10.87 13.18

n = 3, fa = 1,
L = {5, 11, 11}

9.43 10.16 9.89 10.39

n = 4, fa = 1,
L = {5, 8, 17, 20}

7.66 9.44 8.07 10.17

n = 4, fa = 1,
L = {5, 8, 8, 11}

6.32 6.53 6.99 7.23

n = 5, fa = 1,
L = {5, 5, 5, 5, 20}

6.13 6.15 5.66 5.7

n = 5, fa = 1,
L = {5, 5, 5, 14, 20}

7.22 9.18 6.86 9.09

n = 5, fa = 2,
L = {5, 5, 5, 5, 20}

6.71 10.32 6.43 9.77

n = 5, fa = 2,
L = {5, 5, 5, 14, 17}

8.17 11.85 8.11 11.04

increments of 3, and the number of attack sensors from 1 to ⌈n/2⌉. For each setup, we

generated all possible measurement configurations9 and for each computed the size of
the fusion interval under the two schedules; finally, we computed their weighted sum
(depending on the distribution and likelihood of obtaining each configuration), i.e., our
best estimate of the real expected size of the fusion interval for a given schedule and
system. For all setups, we used f = ⌈n/2⌉ − 1 as input to the sensor fusion algorithm.

Table I presents the obtained results. Due to the very large number of setups tried,
only a small subset is listed in this work. During simulations, it was noticed that the
schedules produce similar-size expected intervals when the interval lengths are close
to one another. The schedules differed greatly, however, in systems with a few very pre-
cise sensors and few imprecise sensors. Hence, setups in Table I were chosen such that
they represent classes of combinations according to these observations. As the table
shows, for all analyzed systems, the expected fusion interval under the Ascending
schedule was never larger than that under Descending. In addition, the gains were
significant in some cases. This is also true of all other setups that are not shown in
this paper. We note that while these results are not sufficient to conclude that the As-
cending schedule produces a smaller fusion interval for any sensor configuration, the
same framework can be used for any particular system to compare impacts of commu-
nication schedules (based on sensors’ precisions when no other information is available
a priori) on the performance of attack-resilient sensor fusion.

To conclude this section, we analyze another possible attack strategy, denoted by
AS2, and show that the optimization strategy AS1 is worse for the system, i.e., it is a
more powerful attack. In AS2, a constant positive offset is added to the attacked sen-
sors’ measurements. Once again, the attacker has to guarantee overlap with the fusion
interval to avoid detection. Therefore, the schedule and the seen intervals determine if
introducing the whole offset would lead to detection, in which case the offset is reduced
to the maximal one that would not result in detection.

To compare the two strategies, we note that they can only be compared when the
attacker is not last in the schedule, in which case he always has an optimal strategy

9We discretized the real line with sufficient precision in order to enumerate the possible measurements.



Table II: Comparison of the two attack strategies when Ascending schedule is used –
S1 is the expectation optimization strategy; S2 is the constant offset strategy.

E |SN ,f |
Ascending, S1

E |SN ,f |
Ascending, S2

n = 3, fa = 1,
L = {5, 11, 17}

10.17 9.79

n = 3, fa = 1,
L = {5, 11, 11}

8.65 8.44

n = 4, fa = 1,
L = {5, 8, 17, 20}

7.54 7.16

n = 4, fa = 1,
L = {5, 8, 8, 11}

6.17 5.66

n = 5, fa = 1,
L = {5, 5, 5, 5, 20}

6.61 5.92

n = 5, fa = 1,
L = {5, 5, 5, 14, 20}

7.35 6.92

n = 5, fa = 2,
L = {5, 5, 5, 5, 20}

7.35 5.99

n = 5, fa = 2,
L = {5, 5, 5, 14, 17}

8.78 6.96

(specified by AS1). Thus, we only investigate cases in which the attacker has control of
the sensors in the middle of the schedule. Similar to the above results, we compute the
expected size of the fusion interval for each strategy for different setups. The results
are shown in Table II, where a maximal offset of 3 was introduced and the strategies
are compared using the Ascending schedule (the results using the Descending schedule
are similar but not shown in the interest of clarity). Note that strategy AS1 always
produces a larger expected fusion interval than the AS2, which means it is expected to
lead to more powerful attacks.

5. USING MEASUREMENT HISTORY FOR ATTACK-RESILIENT SENSOR FUSION

In this section, we explore a complementary approach to improve both the precision
and detection capabilities of the sensor fusion algorithm. In particular, we note that
most autonomous systems have known dynamics. In this paper, we assume a linear
time-invariant system in one dimension x(t+1) = ax(t)+w,10 as outlined in Section 2.
Given such a system, this section describes different ways of mapping past measure-
ments to the current round in order to reduce the size of the fusion interval.

First note that the general assumptions of the model used in this work restrict the
number of ways of using history. In particular, it is not possible to only map subsets of
intervals from previous rounds to the current one as that may not guarantee that the
fusion interval will contain the true value. Thus, in our previous work [Ivanov et al.
2014b] we enumerated the possible ways of using history given our assumptions and
identified five ways of mapping past measurements to the current round. Due to space
limitations, we only consider three here: the most intuitive one as well as the two best
ones, as measured by the size of the obtained fusion interval.

To simplify the equations, we introduce the map

m(x(t)) = {y ∈ R | ax(t) + w = y, |w| ≤M}.

10As part of future work, we will also consider the case of a hybrid system in which the dynamics would
change as the mode of operation changes. One way to handle this problem would be by also assuming a
bounded process noise during the mode transition period, in addition to the bounded noise for each mode.



Here, the mapping of an interval one round to the future is the image of the interval
under m. In addition, let RN (t),f denote the set of all intersections of n − f intervals,

and let SN (t),f = conv(RN (t),f ), where conv denotes the convex hull. Note that we use
convex hull since the union of disjoint intervals is not an interval. There are three
ways to use past measurements as follows:

(1) map n: In this algorithm all intervals from time t are mapped to time t+1, resulting
in 2n intervals at time t + 1 with 2f as the new bound on the number of corrupted
intervals. Formally the fusion interval can be described as

Sm(N (t))∪N (t+1),2f .

(2) map R and intersect: This algorithm first maps RN (t),f and intersects it with
RN (t+1),f , after which the convex hull is computed. Formally we describe this as

conv(m(RN (t),f ) ∩RN (t+1),f ).

(3) pairwise intersect: This mapping performs pairwise intersection. Pairwise intersec-
tion, denoted by ∩p, means intersecting the mapping of each sensor s’s interval from
time t to t+1 with the same sensor’s interval at time t+1. This object again contains
n intervals. The parameter f used in the fusion algorithm remains the same but an
additional assumption is required as discussed below. Formally we capture this as

Sm(N (t))∩pN (t+1),f .

We now compare the three methods through the size of the fusion interval obtained
from each.

THEOREM 5.1. The interval obtained from map R and intersect is a subset of the
one produced by map n.11

PROOF. Consider any point p ∈ m(RN (t),f ) ∩ RN (t+1),f . Then p lies in at least n− f
intervals in N (t+ 1), and there exists a q such that p ∈ m(q) that lies in at least n− f
intervals in N (t). Thus, p lies in at least 2n − 2f intervals in m(N (t)) ∪ N (t + 1), i.e.,
p ∈ Rm(N (t))∪N (t+1),2f , implying

conv(m(RN (t),f ) ∩RN (t+1),f ) ⊆ conv(Rm(N (t))∪N (t+1),2f )

= Sm(N (t))∪N (t+1),2f .

To compare pairwise intersect and map R and intersect, however, we note that dif-
ferent mappings make different assumptions about the definition of a corrupted sen-
sor. In particular, with the definition used in the first part of this work (i.e., if a sensor
is correct in a given round then its interval contains the true value), one cannot use
the pairwise intersection method as it does not guarantee that the fusion interval will
contain the true value.12 In this case, a stricter definition is necessary, namely that a
sensor is correct if its interval contains the true value at all time steps. With this in
mind, it is possible to strengthen the attack detection mechanism by two more con-
ditions. First of all, if the same sensor’s intervals (mapped from previous rounds and
the current one) do not intersect, then it must be compromised in at least one of the
rounds. Second of all, if the same sensor’s intervals’ intersection does not intersect

11map R and intersect also produces a smaller fusion interval than the other methods described in our
previous work that are not listed here.
12This is true because if different sets of sensors are attacked over time, it is possible that not enough
pairwise intersections will contain the true value.



the fusion interval obtained from pairwise intersection, then the sensor must also be
compromised. If such a definition of correctness is not realistic for a system (e.g., for
sensors with transient failures), it could still use map R and intersect, which works
with the weaker definition of a correct sensor.

Another consideration when using history is what the system does when a sensor
has been detected to be compromised. If the sensor is believed to be easy to compro-
mise, then the system may choose to ignore its measurements completely. On the other
hand, the system may choose to just ignore the current intervals and resume using the
sensor in several rounds. We do not investigate the advantages and disadvantages of
each approach here; instead, we assume this is a design decision (i.e., input), and leave
its analysis for future work.

THEOREM 5.2. Suppose a system discards a sensor’s measurements in both the cur-
rent and previous round if it is detected to be compromised. The interval produced by
pairwise intersect is a subset of map R and intersect.

PROOF. The assumption stated in the first sentence implies that for the given sys-
tem, each remaining (i.e., non-discarded) interval intersects the fusion interval in the
same round. In addition, each sensor’s two intervals intersect each other, and this
intersection intersects the fusion interval obtained by pairwise intersect method. We
assume n and f have been updated accordingly (after compromised sensors are de-
tected).

Without loss of generality, assume that a > 0. Let p be the smallest point in
Sm(N (t))∩pN (t+1),f . Then, p must belong to at least n − f pairwise intersections, and

hence lie in at least n− f intervals in m(N (t)).
Consider RN (t),f . It is a collection of, possibly disjoint, intervals that represent the

intersections of all combinations of n − f intervals in N (t). Let s ∈ RN (t),f be the
interval with lowest lower bound, i.e., ls is the smallest point contained in RN (t),f . Let

S(t) denote the set of n− f intervals whose intersection yields s.
It remains to show that p ∈ m(s) since then the theorem follows because p ∈

m(RN (t),f ) and p ∈ RN (t+1),f .

Suppose for a contradiction that p /∈ m(s). Note that this implies that a(us)+M < p;
if a(ls) −M > p then there would not be n − f pairwise intersections that contain p.
Let q(t) ∈ S(t) be the interval with smallest upperbound. Then p /∈ m(q(t)). But this
implies p /∈ m(q(t)) ∩ q(t + 1). However, this leads to a contradiction since p is in the
fusion interval obtained using pairwise intersect, whereas m(q(t)) ∩ q(t + 1) does not
intersect the fusion interval.

These results suggest that systems that could justify the stronger definition of sensor
correctness should use the pairwise intesect method. For other systems we should re-
sort to the map R and intersect algorithm. Regardless of which approach is followed,
the following results show that using historical measurements is never worse than
computing the fusion interval in just one round in isolation, while the benefits are
sometimes significant.

PROPOSITION 5.3. The fusion interval computed using pairwise intersect is never
larger than the fusion interval computed without using history.

PROOF. Each of the intervals (e.g., m(P1(t)) ∩ P1(t+ 1)) computed after pairwise
intersection is a subset of the corresponding interval when no history is used (e.g.,
P1(t+1)). Consequently, the fusion interval will always be a subset of the fusion inter-
val obtained when no history is used.



Table III: Comparison of the two sensor communication schedules when historical
measurements are used.

EU |Sp i|
Asc.

EU |Sp i|
Desc.

EN |Sp i|
Asc.

EN |Sp i|
Desc.

n = 3, fa = 1,
L = {5, 11, 17}

8.59 9.65 10.03 11.37

n = 3, fa = 1,
L = {5, 11, 11}

7.77 8.05 9.19 9.61

n = 4, fa = 1,
L = {5, 8, 8, 11}

4.9 5 6.61 6.79

PROPOSITION 5.4. The fusion interval computed using map R and intersect is
never larger than the fusion interval computed without using history.

PROOF. Since m(RN (t),f ) ∩RN (t+1),f ⊆ RN (t+1),f , then

conv(m(RN (t),f ) ∩RN (t+1),f ) ⊆ conv(RN (t+1),f ), and the proposition follows.

6. UNIFIED APPROACH FOR ATTACK-RESILIENT SENSOR FUSION

In this section, we analyze how the use of an optimal transmission schedule and mea-
surement history in sensor fusion can be combined to complement each other and fur-
ther improve the performance of the sensor fusion algorithm. We assume the stronger
definition of correctness and use the pairwise intersect method in the following compar-
isons. We also assume that the attacker does not have any limitations, i.e., he is aware
of all previous sensor measurements and is able to implement pairwise intersect as
well (or any other algorithm).

Similar to the one-round comparison of schedules, we note that no schedule is better
than the other in the absolute sense. Therefore, we compare them using the expected
size of the fusion interval. As no closed-form solution for this size is available, we
compute the value for the same setups as the ones described in Table I. The system
dynamics were assumed to be x(t + 1) = x(t) + w, with |w| ≤ 1. Table III presents
the results. Two things are worth noting. Firstly, once again the Ascending schedule
produces smaller-size fusion intervals for all setups. Secondly, as compared with the
same setups in Table I, by adding history the system can further reduce the expected
sizes for all setups, even when the attacker also has access to historical measurements.

Note that pairwise intersect does not add significant computational and memory
complexity to the sensor fusion algorithm. In fact, the only additional computation
it imposes is the intersection of n pairs of intervals. Furthermore, it requires storing
at most n intervals to represent past measurements - intuitively they are the “inter-
section” of all past measurements.

The implementation of pairwise intersect is shown in Algorithm 1. In essence, at
each point in time n intervals (the pairwise intersections) are stored. Thus, past meas
represents the “pairwise intersection” of all previous measurements of each sensor. In
addition to being more efficient in terms of the size of the fusion interval, the algorithm
also needs very little memory – the required memory is linear in the number of sensors
irrespective of how long the system runs.

7. CASE STUDIES

This section illustrates how the framework proposed in this work can be implemented
on an unmanned ground vehicle. We provide both simulation and experimental results
using the LandShark [lan 2009] robot (shown in Figure 7). The LandShark is mainly



Algorithm 1 Implementation of the pairwise intersect algorithm

Input: f , an upper bound on the number of corrupted sensors
1: past meas← ∅
2: for each step t do
3: cur meas← get meas(t)
4: if past meas == ∅ then
5: past meas← cur meas
6: else
7: past meas = pair inter(cur meas, past meas)
8: end if
9: S ← fuse intervals(past meas, f)

10: send interval to controller(S)
11: end for

Fig. 7: LandShark vehicle [lan 2009].

used in missions in hostile environments in order to carry injured people or for recon-
naissance of rough terrain.

7.1. Simulations

For our simulations, we used the LandShark’s velocity sensors. It has four sensors that
can estimate speed, namely two wheel encoders, a GPS and a camera. The encoders’
intervals were determined based on the measurement error and sampling jitter pro-
vided by the manufacturer, whereas the GPS and camera intervals were determined
empirically, i.e., the LandShark was driven in the open and largest deviations from
the actual speed (as measured by a high-precision tachometer) were recorded for each
sensor. The interval sizes (at a speed of 10 mph) were computed to be 0.2 mph for the
encoder, 1 mph for the GPS, and 2 mph for the camera.

We simulated two different scenarios in order to illustrate the effectiveness of the
two approaches discussed in this paper both as separate components and as a unity.
The following subsections describe each evaluation in greater detail.

7.1.1. Utilize Dynamics and Measurement History. To validate the use of measurement
history, we analyzed the fusion interval for the LandShark’s velocity when moving
straight at a constant speed of 10 mph; we examined the fusion interval when mea-
surements history is used and compared it to the no-history case. In order to use pair-
wise intersect, we assume that only one sensor is compromised during one run of the
system. Thus, we simulated three cases, each one with a different sensor under attack.
Since schedules were not investigated in this scenario, an offset attack strategy was



(a) GPS under attack. (b) Camera under attack. (c) Encoder under attack.

Fig. 8: Sizes of velocity fusion intervals for each of the three simulated cases; Dashed
line – volume of the fusion interval when measurement history is not considered, Solid
line – volume of the fusion interval obtained using pairwise intersect.

chosen such that a constant offset of 1 mph was added to each interval.13 If an attack is
detected, both the current and the previous measurements of the sensor are discarded
(thereby reducing both n and f by 1), and new measurements are again collected in
the following round.

Figure 8 shows the results for the three cases. As can be seen in the figure, using
history never results in larger fusion intervals, whereas in some cases the reductions
in size are significant. Notably, in agreement with Theorem 3.6, when an attack on an
encoder is detected, the resulting fusion interval is much smaller.

7.1.2. Unified Approach. To illustrate the advantages of the Ascending schedule, the
following scenario was simulated – three LandSharks are moving away from enemy
territory in a straight line. The leader sets a target speed of v mph, and the two vehicles
behind it try to maintain it for safety reasons. Each vehicle’s velocity must not exceed
v+δ1 as that may cause the leader to crash in an unseen obstacle or one of the other two
LandSharks to collide with the one in front. Speed must also not drop below v − δ2 as
that may cause the front two vehicles to collide with the one behind. If either of these
conditions occurs, a high-level algorithm takes control, switching to manual control of
the vehicles. These constraints were encoded via the size of the fusion interval - if the
fusion interval contains a point less than or equal to v − δ2 or greater than or equal to
v + δ1, then a critical violation flag is raised.

We simulated multiple runs of this scenario, each consisting of two rounds. To sat-
isfy the stronger assumption of sensor correctness, the same sensor (randomly chosen
at each run) was assumed attacked during the two rounds. In each round random (but
correct) measurements were generated for each sensor and then fusion intervals were
computed at the end of the second round under the Ascending and Descending sched-
ules (using strategy AS1). For completeness, a different Random schedule was used
during each round in order to investigate other schedules that were not analyzed in
depth. For each schedule, the fraction of runs was computed that led to a critical vio-
lation, as defined in the previous paragraph. The target speed was set to be 10 mph,
with δ1 = 0.5 and δ2 = 0.5, and system dynamics were assumed to be x(t+1) = x(t)+w,
with |w| ≤ 10. The results are shown in Table IV. As can be seen, no critical violations
were recorded under the Ascending Schedule, whereas the Descending and Random

13Note that this scenario is equivalent to one where a schedule is used and the attacker has to transmit first
without a detection constraint.



Table IV: Simulation results for each of the three schedules used in combination with
pairwise intersect. Each entry denotes the proportion of time that the corresponding
schedule generated a critical violation when there was none.

Ascending Descending Random
History Used

More than 10.5 mph 0% 2.98% 4.9%
Less than 9.5 mph 0% 2.63% 4.8%
No History Used

More than 10.5 mph 0% 15.29% 5.22%
Less than 10.5 mph 0% 16.8% 5.61%

Table V: Average size of the fusion interval for each of the four scenarios.

Ascending schedule Descending schedule
Optimization strategy 0.399m/s 0.652m/s
Offset strategy 0.395m/s 0.483m/s

schedules both produced some.14 In addition, adding history has greatly reduced the
number of violations, both for the Descending and the Random schedules.

7.2. Experimental Validation

In addition to the simulations shown above, experiments were performed using the
LandShark robot. They were used to compare the two attack strategies described in
the paper as well as to illustrate the advantages of the Ascending schedule regardless
of the attack strategy used.

As argued in Section 4, attack strategies can only be compared when the compro-
mised sensors are not at the beginning or end of the communication schedule but in
the middle instead. Thus, in the experiments only the mid-schedule sensors were com-
promised. In the experiments, the LandShark was driven straight and the size of the
fusion interval for each scenario was computed as soon as measurements were ob-
tained from all sensors. Note that three sensors were used in the experiments (GPS
and two encoders), with the right encoder being in the middle of the schedule, i.e.,
under attack.

Figure 9 presents the results of the experiments.15 During the run of the LandShark,
the attack (as computed by AS1 and AS2) on the right encoder was turned on and off
several times, and we only recorded the fusion interval sizes at the rounds with an
attack. Since the rounds were independent, they were concatenated in Figure 9 as if
the system was always under attack. The four curves represent the size of the fusion
interval for each scenario. As is apparent from the figure, the Ascending curves are
almost invariably below, but never above, the Descending. This confirms our results
that the use of the Ascending communication schedule reduces the attacker’s impact
on the performance of sensor fusion. In addition, it is clear that the optimization attack
strategy (i.e., AS1) outperforms the offset one (i.e., AS2) at virtually every round and
with both schedules. Finally, Table V summarizes the results by providing the average
size of the fusion interval for each scenario.

14Note that all critical violations recorded under the Descending and Random schedules are false alarms,
i.e., the system is not in an unsafe state but is led to believe it is in one due to the attack.
15A video with the experiments is available at
http://www.seas.upenn.edu/∼pajic/research/CPS security.html#videos.



Fig. 9: Comparison of the sizes of the fusion intervals as obtained with the two attack
strategies, optimization (AS1) and offset (AS2), and two schedules.

8. RELATED WORK

Providing security for Cyber-Physical and Embedded Systems is a challenging
task [Serpanos and Voyiatzis 2013]. One way of addressing it is through exploiting
the fact that these systems have multiple sensors, whose data may be calibrated and
fused for better closed-loop performance [Tan et al. 2013]. Yet, the term “sensor fu-
sion” has different interpretations and applications in different fields of research. In
some areas it is considered to be the process of collecting and combining the data from
similar sensors measuring the same variable. In others, however, it is synonymous
to the broader term “state estimation”, in which different sensors measure different
aspects of the system’s state. This paper uses the first definition as it implies sensor
redundancy, which is a part of the model used in this work.

The work on sensor fusion can be divided according to the sensor model used. The
far more prevalent approach is to use a probabilistic model and derive expected re-
sults such as in the pivotal work in this domain, the Kalman filter [Kalman 1960]. In
that work, assumptions about sensor precisions are combined with a known system
dynamics model in order to produce a best linear estimator of the true state. In ad-
dition, distributed versions of this model have been proposed as well [Delouille et al.
2004; Xiao et al. 2005]. All probabilistic works, however, are concerned with the aver-
age performance of a system and are not well-suited for the analysis of low-probability
rare events.

On the other hand, the abstract sensor model is usually employed for worst-case
analysis. One of the first works in this field [Marzullo 1990] assumes that sensors
provide one-dimensional intervals and shows worst-case results regarding the size of
the fused interval based on the number of faulty sensors in the system. A variation
of [Marzullo 1990] relaxes the worst-case guarantees in favor of obtaining more pre-
cise fused measurements through weighted majority voting [Brooks and Iyengar 1996].
Another extension combines the abstract and probabilistic models by assuming a prob-
ability distribution of the true value inside the interval and casting the problem in the
probabilistic framework [Zhu and Li 2006]. Finally, sensors can be assumed to not only



provide intervals but also multidimensional rectangles and balls [Chew and Marzullo
1991] and more general sets as well [Milanese and Novara 2004; 2011]. Another ad-
vantage of the abstract sensor model is that it can be used not only for safety analysis
but for fault detection as well [Marzullo 1990; Jayasimha 1994].

Finally, some works propose performing sensor fusion independently of the sensor
model. In particular, if instead of a measurement, the sensor’s output is a decision such
as whether to raise an alarm or not, a higher-level fusion algorithm has to combine the
sensor decisions instead of their measurements. This problem is usually solved with
a voting scheme [Katenka et al. 2008; Chair and Varshney 1986] or a fuzzy voting
technique [Blank et al. 2010].

Another term that is used differently across areas of research is “sensor schedul-
ing”. While in some works, including this one, it refers to the communication schedule
of sending measurements during every round of system operation, in others the sched-
ule refers to which sensors should be utilized in a given round. Thus, the difference
between the two is that in the former all sensors are utilized at all time steps, whereas
in the latter only subsets of the sensors are used at each time in order to minimize
energy consumption or interference. Different approaches for the latter definition of
sensor scheduling have been proposed, ranging from pruning techniques [Vitus et al.
2012] to convex optimization [Joshi and Boyd 2009] to information theory [Williams
2007].

9. DISCUSSION AND CONCLUSION

In this paper we described an attack-resilient sensor fusion algorithm for multiple sen-
sors measuring the same variable. We introduced security concerns by formalizing an
attack strategy that attempts to maximize the uncertainty in the system by increasing
the set of possible measurement values obtained from sensor fusion. Two approaches of
improving the precision and resiliency of sensor fusion were investigated. On the one
hand, we showed that different transmission schedules affect the information and ca-
pabilities of the attacker. Our results showed that the Ascending schedule is expected
to produce the most precise fusion intervals by either providing the attacker with too
little information (acting first in the schedule when compromising more precise sen-
sors) or too little power (when compromising imprecise sensors). On the other hand,
we showed that knowledge of system dynamics can be utilized with sensor measure-
ment history in order to further improve the precision and resilience of the algorithm.
Finally, we showed that by using the optimal communication schedule (i.e., Ascending)
and the sensor fusion algorithm with measurement history, we can further reduce the
attacker’s impact on the system. We validated our findings and illustrated the use of
the proposed sensor fusion approach on a real-world case study, velocity estimation on
an unmanned ground vehicle.

There are several ways in which the algorithm can be improved. Naturally, if infor-
mation is available as to which sensors are harder to compromise, it can be incorpo-
rated by scheduling those sensors to transmit last, thus precluding the attacker from
seeing their measurements. In addition, while this work focused mainly on the Ascend-
ing and Descending schedules, other schedules were considered in Section 7.16 Even
there, however, the Ascending schedule produced no violations, whereas the Random
schedules led to a few. Finally, we aim to extend the framework proposed in this pa-
per in order to handle hybrid systems as well, in which a mode switch may introduce
additional uncertainties in the model.

16Although these schedules were collectively called Random, the system was run for sufficient time in order
to generate all possible other schedules.



Regarding the problem of using measurement history, it was noted that the accu-
racy of the different mapping algorithms depends on the definition of a compromised
sensor. However, in this work we assume that sensors are either correct or compro-
mised. A next step would be to allow a fault model for sensors to be included in the
fusion algorithm. For example, we could introduce a temporal fault model where sen-
sors are allowed to be faulty in a few rounds without being immediately discarded as
compromised.
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