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Attack-Resistant Location Estimation in Wireless
Sensor Networks

Donggang Liu
The University of Texas at Arlington
Peng Ning, An Liu
North Carolina State University
Cliff Wang
Army Research Office
Wenliang Kevin Du
Syracuse University

Many sensor network applications require sensors’ locations to function correctly. Despite the
recent advances, location discovery for sensor networks in hostile environments has been mostly
overlooked. Most of the existing localization protocols for sensor networks are vulnerable in hostile
environments. The security of location discovery can certainly be enhanced by authentication.
However, the possible node compromises and the fact that location determination uses certain
physical features (e.g., received signal strength) of radio signals make authentication not as effec-
tive as in traditional security applications. This paper presents two methods to tolerate malicious
attacks against range-based location discovery in sensor networks. The first method filters out
malicious beacon signals on the basis of the “consistency” among multiple beacon signals, while
the second method tolerates malicious beacon signals by adopting an iteratively refined voting
scheme. Both methods can survive malicious attacks even if the attacks bypass authentication,
provided that the benign beacon signals constitute the majority of the beacon signals. This paper
also presents the implementation and experimental evaluation (through both field experiments
and simulation) of all the secure and resilient location estimation schemes that can be used on
the current generation of sensor platforms (e.g., MICA series of motes), including the techniques
proposed in this paper, in a network of MICAz motes. The experimental results demonstrate the
effectiveness of the proposed methods, and also give the secure and resilient location estimation
scheme most suitalbe for the current generation of sensor networks.

Categories and Subject Descriptors: C.2.0 [Computer-Communication Networks]: General—Security and pro-
tection; C.2.1 [Computer-Communication Networks]: Network Architecture and Design—Wireless communi-
cation

General Terms: Security, Design, Algorithms

Additional Key Words and Phrases: Sensor Networks, Security, Localization

This work is supported by the National Science Foundation (NSF) under grants CNS-0430223 and CNS-0430252.
A. Liu and Wang’s work is supported by the US Army Research Office (ARO) under Wang’s staff research grant
W911NF-04-D-0003-0001.
A preliminary version of this paper appeared in theProceedings of The Fourth International Symposium on
Information Processing in Sensor Networks (IPSN ’05), pages 99 – 106, April 2005.
Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use
provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c© 20 ACM 0000-0000/20/0000-0001 $5.00

ACM Journal Name, Vol. , No. , 20, Pages 1–36.



2 · Liu, et al.

1. INTRODUCTION

Recent technological advances have made it possible to develop distributed sensor net-
works consisting of a large number of low-cost, low-power, and multi-functional sensor
nodes that communicate in short distances through wirelesslinks [Akyildiz et al. 2002].
Such sensor networks are ideal candidates for a wide range ofapplications such as health
monitoring, data acquisition in hazardous environments, and military operations. The de-
sirable features of distributed sensor networks have attracted many researchers to develop
protocols and algorithms that can fulfill the requirements of these applications (e.g., [Perrig
et al. 2001; Hill et al. 2000; Gay et al. 2003; Niculescu and Nath 2001; Intanagonwiwat
et al. 2000; Newsome and Song 2003; Akyildiz et al. 2002]).

Sensors’ locations play a critical role in many sensor network applications. Not only do
applications such as environment monitoring and target tracking require sensors’ location
information to fulfill their tasks, but several fundamentaltechniques developed for wireless
sensor networks also require sensor nodes’ locations. For example, in geographical routing
protocols (e.g., GPSR [Karp and Kung 2000] and GEAR [Yu et al.2001]), sensor nodes
make routing decisions at least partially based on their ownand their neighbors’ locations.
As another example, in some data-centric storage applications such as GHT [Ratnasamy
et al. 2002; Shenker et al. 2002], storage and retrieval of sensor data highly depend on sen-
sors’ locations. Indeed, many sensor network applicationswill not work without sensors’
location information.

A number of location discovery protocols (e.g., [Savvides et al. 2001; Savvides et al.
2002; Niculescu and Nath 2003a; Nasipuri and Li 2002; Doherty et al. 2001; Bulusu et al.
2000; Niculescu and Nath 2003b; Nagpal et al. 2003; He et al. 2003]) have been proposed
for wireless sensor networks in recent years. These protocols share a common feature:
They all use some special nodes, calledbeacon(or anchor) nodes, which are assumed to
know their own locations (e.g., through GPS receivers or manual configuration). These
protocols work in two stages. In the first stage, non-beacon nodes receive radio signals
called beacon signalsfrom the beacon nodes. The packet carried by a beacon signal,
which we call abeacon packet, usually includes the location of the beacon node. The
non-beacon nodes then estimate certain measurements (e.g., distance between the beacon
and the non-beacon nodes) based on features of the beacon signals (e.g., received signal
strength indicator (RSSI), time difference of arrival (TDoA)). We refer to such a measure-
ment and the location of the corresponding beacon node collectively as alocation refer-
ence. In the second stage, a sensor node determines its own location when it has enough
number of location references from different beacon nodes.A typical approach is to con-
sider the location references as constraints that a sensor node’s location must satisfy, and
estimate it by finding a mathematical solution that satisfiesthese constraints with minimum
estimation error. Existing approaches either employrange-basedmethods [Savvides et al.
2001; Savvides et al. 2002; Niculescu and Nath 2003a; Nasipuri and Li 2002; Doherty
et al. 2001], which use the exact measurements obtained in stage one, orrange-freeones
[Bulusu et al. 2000; Niculescu and Nath 2003b; Nagpal et al. 2003; He et al. 2003; Lazos
and Poovendran 2004], which only need the existences of beacon signals in stage one.

Despite the recent advances, location discovery for wireless sensor networks inhostile
environments, where there may be malicious attacks, has been mostly overlooked. Many
existing location discovery protocols become vulnerable in the presence of malicious at-
tacks. As illustrated in Figure 1, an attacker may provide incorrect location reference by
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Fig. 1. Attacks against location discovery schemes

pretending to be valid beacon nodes (Figure 1(a)), compromising beacon nodes (Figure
1(b)), or replaying the beacon packets that he/she intercepted in different locations (Figure
1(c) ). In either of the above cases, non-beacon nodes will determine their locations incor-
rectly. In either of these cases, non-beacon nodes will determine their locations incorrectly.

Without protection, an attacker may easily mislead the location estimation at sensor
nodes and subvert the normal operation of sensor networks. The security of location
discovery can certainly be enhanced by authentication. Specifically, each beacon packet
should be authenticated with a cryptographic key only knownto the sender and the intended
receivers, and a non-beacon node accepts a beacon signal only when the beacon packet car-
ried by the beacon signal can be authenticated. However, authentication does not guarantee
the security of location discovery, either. An attacker mayforge beacon packets with keys
learned through compromised nodes, or replay beacon signals intercepted in different loca-
tions. Indeed, an attacker can introduce substantial location estimation errors by forging or
replaying beacon packets. Thus, it is highly desirable to have additional methods to protect
location discovery in sensor networks.

Several techniques has been developed recently to deal withthe security problems of
location discovery in wireless sensor networks [Sastry et al. 2003; Lazos and Poovendran
2004; Ray et al. 2003; Li et al. 2005; Capkun and Hubaux 2005; Lazos et al. 2005]. The
location verification technique proposed in [Sastry et al. 2003] can be used to verify the
relative distance between a verifying node and a sensor node. However, it does not provide
a solution to conduct secure location estimation at non-beacon nodes. A robust location
detection is developed in [Ray et al. 2003] using the idea of majority voting. However, it
cannot be directly applied in resource constrained sensor networks due to its high compu-
tation and storage overheads. Similar to our attack-resistant MMSE techniques, a robust
statistical method is independently discovered in [Li et al. 2005] to achieve robustness
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through Least Median of Squares.

SeRLoc [Lazos and Poovendran 2004] protects location discovery with the help of sec-
tored antennae at beacon nodes. Similar to the voting-basedscheme proposed in this pa-
per, SeRLoc can tolerate malicious attacks by adopting the idea of majority voting. SPINE
[Capkun and Hubaux 2005] is developed to protect location discovery by using verifiable
multilateration. However, the distance bounding techniques required for verifiable multi-
lateration may not be available in sensor networks due to thedifficulties to (1) deal with
the external attacks in Ultrasound-based distance bounding and (2) achieve nanosecond
processing and time measurements in Radio-based distance bounding. ROPE [Lazos et al.
2005] is developed by integrating SeRLoc and SPINE. However, it still requires nanosec-
ond processing and time measurements that are not desirablefor the current generation of
sensor networks.

In this paper, we investigate two types of attack-resistantlocation estimation techniques
to tolerate the malicious attacks against range-based location discovery in wireless sensor
networks. The first technique, namedAttack-Resistant Minimum Mean Square Estimation
(ARMMSE), is based on the observation that malicious location references introduced by
attacks are intended to mislead a sensor node about its location, and thus are usually incon-
sistent with the benign ones. To exploit this observation, our methods identify malicious
location references by examining the inconsistency among location references (indicated
by the mean square error of estimation) and defeats malicious attacks by removing such
malicious data.

We develop three variations of the ARMMSE method to identifymalicious location
references:the brute-force ARMMSE algorithm, the greedy ARMMSE algorithmandthe
enhanced greedy ARMMSE algorithm. The brute-force algorithm tries every combination
of location references to identify the largest set of consistent location references. It in-
troduces high computation overhead at sensor nodes. The greedy algorithm is developed
to reduce the computation overhead. It works in rounds and removes the most suspicious
location reference in each round. The enhanced greedy algorithm further improves the
performance of the greedy algorithm by adopting a more efficient way to identify the most
suspicious location reference. We also develop an algorithm to incrementally perform the
MMSE computation in the enhanced greedy algorithm, which significantly reduces the
computation cost. The end result is an efficient and resilient algorithm that can defend
against malicious attacks aimed at location estimation.

Our second technique, avoting-based location estimationmethod, quantizes the deploy-
ment field into a grid of cells and has each location reference“vote” on the cells in which
the node may reside. Moreover, we develop a method that allows iterative refinement of
the “voting” results so that it can be executed in resource constrained sensor nodes.

We have implemented the proposed schemes on TinyOS [Hill et al. 2000], and evalu-
ated the performance through both field experiments in a network of MICAz motes and
simulation. To provide a realistic model in the simulation for the radio signal used for
distance measurement, we perform an extensive set of experiments with MICAz motes to
profile the channel characteristics. We compare all the attack-resistant schemes that can be
implemented on the current sensor platforms (e.g., MICAz motes) through experimental
evaluation, aiming at identifying the algorithm most suitable for the current generation of
sensor networks. Our experiments indicate that (1) the investigated schemes (including
both approaches proposed in this paper) can effectively remove the effect of malicious lo-
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cation references when the majority of location referencesare benign, and (2) among all the
algorithms that can be implemented on the current sensor platforms, the enhanced greedy
ARMMSE algorithm has the least execution time while providing a similar resiliency to
the other schemes.

The rest of the paper is organized as follows. Section 2 discusses assumptions and
the threat model. Sections 3 and 4 present the ARMMSE location estimation and the
voting-based location estimation techniques, respectively. Section 5 provides the security
analysis for the proposed schemes. Section 6 discusses the evaluation methodology for our
experimental evaluation and presents the detailed evaluation results. Section 7 discusses
related work, and Section 8 concludes this paper.

2. ASSUMPTIONS AND THREAT MODEL

In this paper, we present two approaches to dealing with malicious attacks against location
discovery in wireless sensor networks. The first approach isextended from the minimum
mean square estimation (MMSE). It uses the mean square erroras an indicator to identify
and remove malicious location references. The second one adopts an iteratively refined
voting scheme to tolerate malicious location references introduced by attackers.

Our techniques are purely based on a set of location references. The location references
may come from beacon nodes that are either single hop or multiple hops away, or from
those non-beacon nodes that already estimated their locations. We do not distinguish these
location references, though the effect of “error propagation” may affect the performance of
our techniques due to the estimation errors at non-beacon nodes. We consider such inves-
tigations as possible future work. Since our techniques only utilize the location references
from beacon nodes, there is no extra communication overheadinvolved when compared to
the previous localization schemes.

We assume all beacon nodes are uniquely identified. In other words, a non-beacon node
can identify the original sender of each beacon packet basedon the cryptographic key used
to authenticate the packet. This can be easily achieved witha pairwise key establishment
scheme [Eschenauer and Gligor 2002; Chan et al. 2003; Du et al. 2003] or a broadcast
authentication scheme [Perrig et al. 2001].

We assume each non-beacon node uses at most one location reference derived from the
beacon signals sent by each beacon node. As a result, even if abeacon node is compro-
mised, the attacker that has access to the compromised key can only introduce at most one
malicious location reference to a given non-beacon node by impersonating the compro-
mised node.

For simplicity, we assume the distances measured from beacon signals (e.g., with RSSI
or TDoA [Savvides et al. 2001]) are used for location estimation. (Our techniques can
certainly be modified to accommodate other measurements such as angles.) For the sake
of presentation, we denote a location reference obtained from a beacon signal as a triple
〈x, y, δ〉, where(x, y) is the location of the beacon declared in the beacon packet, and δ is
the distance measured from its beacon signal.

We assume an attacker may change any field in a location reference through, for ex-
ample, compromised nodes or wormhole attacks [Hu et al. 2003]. In other words, it may
declare a wrong location in its beacon packets, or carefullymanipulate the beacon signals
to affect the distance measurement by, for example, manipulating the signal strength when
RSSI is used for distance measurement. We also assume multiple malicious beacon nodes
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may collude together to make the malicious location references appear to be “consistent”.
Our techniques can still defeat such colluding attacks as long as the majority of location
references are benign.

An attacker may also launch physical attacks to change sensors’ location after they finish
location estimation. (Indeed, other factors (e.g., wind) may also change sensors’ locations.)
Such threats cannot be directly addressed by attack-resistant location estimation. However,
we assume each sensor can perform location estimation periodically based on fresh loca-
tion references to mitigate such threats. An attacker may also jam the communication
channel to, for example, prevent the successful transmission and receiving of beacon sig-
nals. This is a common threat to all wireless networks. However, we assume the attacker
cannot jam the communication channel continuously withoutbeing detected and removed.

3. ATTACK-RESISTANT MINIMUM MEAN SQUARE ESTIMATION

Intuitively, a location reference introduced by a malicious attack is aimed at misleading a
sensor node about its location. Thus, it is usually “different” from benign location refer-
ences. When there are redundant location references, theremust be some “inconsistency”
between the malicious location references and the benign ones. (An attacker may still have
a location reference consistent with the benign ones after changing both the location and
the distance values. However, such a location reference will not generate significantly neg-
ative impact on location determination.) To take advantageof this observation, we propose
to use the “inconsistency” among the location references toidentify the malicious ones,
and discard them before finally estimating the locations at sensor nodes.

In this paper, we assume a sensor node uses an MMSE-based method (e.g., [Savvides
et al. 2001; Savvides et al. 2002; Niculescu and Nath 2003a; Nasipuri and Li 2002; Do-
herty et al. 2001; Niculescu and Nath 2003b]) to estimate itsown location. Thus, most
current range-based localization methods can be used with this technique. To harness this
observation, we first estimate the sensor’s location with the MMSE-based method and then
assess if the estimated location could be derived from a set of consistent location refer-
ences. If yes, we accept the estimation result; otherwise, we identify and remove the most
“inconsistent” location reference, and repeat the above process. This process may continue
until we find a set of consistent location references or it is not possible to find such a set.

3.1 Checking the Consistency of Location References

We use the mean square errorς2 of the distance measurements based on the estimated
location as an indicator of the degree of inconsistency, since all the MMSE-based methods
estimate a sensor node’s location by (approximately) minimizing this mean square error.
Other indicators are possible but need further investigation.

DEFINITION 1. Given a set of location referencesL = {〈x1, y1, δ1〉, 〈x2, y2, δ2〉, ...,
〈xm, ym, δm〉} and a location(x̂, ŷ) estimated based onL, themean square error of this
location estimationis

ς2 =

m
∑

i=1

(δi −
√

(x̂ − xi)2 + (ŷ − yi)2)
2

m
.

Intuitively, the more inconsistent a set of location references is, the greater the corre-
sponding mean square error should be. To gain further understanding, we performed an
experiment through simulation with the MMSE-based method in [Savvides et al. 2001].

ACM Journal Name, Vol. , No. , 20.



Attack-Resistant Location Estimation in Sensor Networks · 7

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30
Location error introduced by a malicious beacon

L
o
c
a
t
i
o
n
 
e
s
t
i
m
a
t
i
o
n
 
e
r
r
o
r e_max=0

e_max=2
e_max=4

Fig. 2. Location estimation error. Unit of measurement forx andy axes: meter

0

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25 30
Location error introduced by a malicious beacon

M
e
a
n
 
s
q
u
a
r
e
 
e
r
r
o
r

e_max=0
e_max=2
e_max=4

Fig. 3. Mean square errorς2. Unit of measurement forx-axis: meter

We assume the distance measurement error is uniformly distributed between−emax and
emax. We used 9 honest beacon nodes and 1 malicious beacon node evenly deployed in a
30m × 30m field. The node that estimates location is positioned at the center of the field.
The malicious beacon node always declares a false location that isx meters away from its
real location, wherex is a parameter in our experiment.

Figures 2 and 3 show the location estimation error (i.e., thedistance between a sensor’s
real location and the estimated location) and the mean square errorς2 whenx increases.
As these figures show, if a malicious beacon node increases the location estimation error
by introducing greater errors, it also increases the mean square errorς2 at the same time.
This further demonstrates that the mean square errorς2 is potentially a good indicator of
inconsistent location references.

In this paper, we choose a simple, threshold-based method todetermine if a set of loca-
tion references is consistent. Specifically, a set of location referencesL = {〈x1, y1, δ1〉,
〈x2, y2, δ2〉, ..., 〈xm, ym, δm〉} obtained at a sensor node isτ -consistent w.r.t. an MMSE-
based methodif the method gives an estimated location(x̂, ŷ) such that the mean square
error of this location estimation

ς2 =

m
∑

i=1

(δi −
√

(x̂ − xi)2 + (ŷ − yi)2)
2

m
≤ τ2.
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3.2 Determining Threshold τ

The determination of thresholdτ depends on the measurement error model, which can be
established before network deployment by, for example, conducting field experiments. We
assume that the threshold is stored on each sensor node. Usually, the movement of sensor
nodes (beacon or non-beacon nodes) does not have significantimpact on this threshold,
since the measurement error model will not change significantly in most cases. Moreover,
since such a model depends on the physical features of radio signals and the environments,
it is also difficult for an attacker to manipulate. Hence, we assume such model is available.
However, when the error model changes frequently and significantly, the performance of
our techniques may be affected. In this paper, we assume the measurement error model
will not change.

Note that the malicious beacon signals usually increase thevariance of estimation. Thus,
having a lower bound (e.g., Cramer-Rao bound) is not enough for us to filter malicious
beacon signals. In fact, the upper bound or the distributionof the mean square error are
more desirable. In this paper, we study the distribution of the mean square errorς2 when
there are no malicious attacks, and use this information to help determine the thresholdτ .

Since there is no other error besides the distance measurement error, a benign location
reference〈xi, yi, δ〉 obtained by a sensor node at(x, y) must satisfy:

|δ −
√

(x − xi)2 + (y − yi)2| ≤ ǫ,

whereǫ is the maximum distance measurement error.
All the localization techniques are aimed at estimating a location as close to the sensor’s

real location as possible. Thus, we may assume the estimatedlocation is very close to
the real location when there are no attacks. Next, we derive the distribution of the mean
square errorς2 using the real location as the estimated location, and compare it with the
distribution obtained through simulation when there are location estimation errors.

The measurement error of a benign location reference〈xi, yi, δi〉 can be computed as
ei = δi −

√

(x − xi)2 + (y − yi)2, where(x, y) is the real location of the sensor node.
Assuming the measurement errors introduced by different benign location references are
independent, we can get the distribution of the mean square error through the following
Lemma.

LEMMA 1. Let {e1, ..., em} be a set of independent random variables, andµi, σ2
i be

the mean and the variance ofe2
i , respectively. If the estimated location of a sensor node is

its real location, the probability distribution ofς2 is

lim
m→∞

F[ς2 ≤ ς2
0 ] = Φ(

mς2
0 − µ′

σ′
),

whereµ′ =
∑m

i=1 µi, σ′ =
√

∑m
i=0 σ2

i , andΦ(x) is the probability of a standard normal
random variable being less thanx.

PROOF. Obviously, the mean square error can be computed byς2 =
∑m

i=1
e2

i

m
. Thus,

the cumulative distribution function can be calculated by

F (ς2 ≤ ς2
0 ) = F (

m
∑

i=1

e2
i ≤ mς2

0 ).
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Since{e2
1, e

2
2, · · · , e2

m} are independent, according to the central limit theorem, wehave

lim
m→∞

P (
Sm − µ′

σ′
≤ x) = Φ(x),

whereSm =
∑m

i=1 e2
i . Thus, we have

limm→∞ F (ς2 ≤ ς2
0 ) = limm→∞ F (Sm ≤ mς2

0 )

= limm→∞ P (Sm−µ′

σ′
≤ mς2

0
−µ′

σ′
)

= Φ(
mς2

0
−µ′

σ′
)

Lemma 1 describes the probability distribution ofς2 based on a sensor’s real location.
Though it is different from the probability distribution ofς2 based on a sensor’s estimated
location, it can be used to approximate such distribution inmost cases.

Let us further assume a simple model for measurement errors,where the measurement
error is evenly distributed between−ǫ andǫ. Then the mean and the variance forei are 0
and ǫ2

3 , respectively, and the mean and the variance for anye2
i are ǫ2

3 and4ǫ4

45 , respectively.
Let c = ς0

ǫ
, we have

F (ς2 ≤ (c × ǫ)2) = Φ(

√
5m(3c2 − 1)

2
).

Figure 4 shows the probability distribution ofς2 derived from Lemma 1 and the sim-
ulated results using sensors’ estimated locations. We can see that when the number of
location referencesm is large (e.g.,m = 9) the theoretical result derived from Lemma 1
is very close to the simulation results. However, whenm is small (e.g.,m = 4), there
are observable differences between the theoretical results and the simulation. The reasons
are twofold. First, our theoretical analysis is based on thecentral limit theorem, which is
only an approximation of the distribution whenm is a large number. Second, we used the
MMSE-based method proposed in [Savvides et al. 2001] in the simulation, which estimates
a node’s location by onlyapproximatelyminimizing the mean square error. (Otherwise,
the value ofς2 for benign location references should never exceedǫ2.)

Figure 4 gives three hints about the choice of the thresholdτ . First, when there are
enough number of benign location references, a threshold less than the maximum mea-
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surement error is enough. For example, whenm = 9, τ = 0.8ǫ can guarantee the nine
benign location references are considered consistent withhigh probability. Besides, a large
threshold may lead to the failure to filter out malicious location references. Second, when
m is small (e.g. 4), the cumulative probability becomes flatter and flatter whenc > 0.8.
This means that setting a large thresholdτ for smallm may not help much to guarantee
the consistency test for benign location references; instead, it may give an attacker high
chance to survive the detection. Third, the threshold cannot be too small; otherwise, a set
of benign location references has high probability to be determined as a non-consistent
reference set.

Based on the above observations, we propose to choose the value for τ with a hybrid
method. Specifically, when the number of location references is large (e.g., more than
8), we determine the value ofτ based on Lemma 1. Specifically, we choose a value of
τ corresponding to a high cumulative probability (e.g., 0.9). When the number location
references is small, we perform simulation to derive the actual distribution of the mean
square error, and then determine the value ofτ accordingly. Since there are only a small
number of simulations to run, we believe this approach is practical.

3.3 Identifying the Largest Consistent Set

Since the MMSE-based methods can deal with measurement errors better if there are more
benign location references, we should keep as many benign location references as possi-
ble when the malicious ones are removed. This implies we should get the largest set of
consistent location references.

3.3.1 Brute-force Algorithm (BARMMSE).Given a setL of n location references and
a thresholdτ , a simple approach to computing the largest set ofτ -consistent location ref-
erences is to check all subsets ofL with i location references aboutτ -consistency, wherei
starts fromn and drops until a subset ofL is found to beτ -consistent or it is not possible
to find such a set. Thus, if the largest set of consistent location references consists ofm

elements, a sensor node has to use the MMSE method at least1 +
(

n
m+1

)

+ · · · +
(

n
n

)

times to find out the right one. Ifn = 10 andm = 5, a node needs to perform the MMSE
method for at least 387 times. It is certainly not desirable to do such expensive operations
on resource constrained sensor nodes.

3.3.2 Greedy Algorithm (GARMMSE).To reduce the computation on sensor nodes,
we may use a greedy algorithm, which is simple but suboptimal. This greedy algorithm
works in rounds. It starts with the set of all location references in the first round. In
each round, it first verifies if the current set of location references isτ -consistent. If yes,
the algorithm outputs the estimated location and stops. Optionally, it may also output the
set of location references. Otherwise, it considers all subsets of location references with
one fewer location reference, and chooses the subset with the least mean square error as the
input to the next round. This algorithm continues until it finds a set ofτ -consistent location
references or when it is not possible to find such a set (i.e., there are only 3 remaining
location references).

The greedy algorithm significantly reduces the computational overhead in sensor nodes.
To continue the earlier example, a sensor node only needs to perform MMSE operations
for about 50 times (instead of 387 times) using this algorithm. In general, a sensor node
needs to use a MMSE-based method for at most1+n+(n−1)+ · · ·+4 = 1+ (n−3)(n+4)

2

ACM Journal Name, Vol. , No. , 20.



Attack-Resistant Location Estimation in Sensor Networks · 11

times.
However, as we mentioned, the greedy algorithm cannot guarantee that it can always

identify the largest consistent set. It is possible that benign location references are re-
moved. In out earlier version of this paper [Liu et al. 2005a], we note that this generates
a big impact on the accuracy of location estimation – especially when there are multiple
malicious location references. To deal with this problem, we develop an enhanced greedy
algorithm in the following. The new algorithm is based on an efficient approach to identi-
fying the most suspicious location reference from a set of location references.

3.3.3 Enhanced Greedy Algorithm (EARMMSE).In the previous discussion, we only
consider the consistency of 3 or more location references. Afurther investigation also
reveals that two benign location references are usually “consistent” with each other in the
sense that there exists at least one location in the deployment field on which both location
references agree. Hence, when the majority of location references are benign, we can
usually find many location references that are consistent with a benign location reference.
In addition, when a malicious location reference tries to create a larger location error, the
number of location references that are consistent with the malicious one will decrease
quickly.

According to the above discussion, for each location reference, we simply count the
number of location references that are consistent with thislocation reference. We call
this number thedegree of consistencyand use it to rank the suspiciousness of the location
references received at a particular non-beacon node. The smaller the degree is, the more
likely that the corresponding location reference is malicious.

The consistency between two location references can be verified as follows. For any
location reference〈x, y, δ〉, the non-beacon node derives the area that it may reside based
on this location reference. This area can be represented by aring centered at(x, y), with
the inner radiusmax{δ− ǫ, 0} and the outer radiusδ + ǫ, whereǫ is the maximum distance
error. For the sake of presentation, we refer to such a ring acandidate ring (centered)
at location(x, y). The non-beacon node then check whether the candidate ringsof two
location references overlap each other. If yes, they are consistent; otherwise, they are not
consistent.

The algorithm to check whether the candidate rings of two location referencesa =
〈xa, ya, δa〉 and b = 〈xb, yb, δb〉 overlap can be done efficiently in the following way.
Let dab denote the distance between(xa, ya) and (xb, yb). Let rmax(x) andrmin(x)
denote the outer radius and the inner radius of the candidatering of location reference
x respectively. We can easily figure out that the candidate rings of location referencesa
and b will not overlap when either of the following three conditions is true: (1)dab >

rmax(a)+ rmax(b), (2)dab + rmax(a) < rmin(b) and (3)dab + rmax(b) < rmin(a).
Similar to the greedy algorithm, the enhanced algorithm to identify the largest consis-

tent set starts with the set of all location references in thefirst round. In each round, it
verifies whether the current set of location references isτ -consistent. If yes, the algorithm
outputs the estimated location and stops. Optionally, it may also output the set of location
references. If not, it removes the location reference corresponding to the smallest degree
and use the remaining location references as the input to thenext round. This algorithm
continues until it finds a set ofτ -consistent location references or when it is not possible
to find such a set (i.e., there are only 3 remaining location references).

The enhanced algorithm not only improves the accuracy of location estimation in the
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presence of malicious attacks, but also reduces the computation overhead significantly
since it can identify the most suspicious location reference efficiently and effectively. To
continue the earlier example, a non-beacon node only needs to perform MMSE operations
for 5 times. In general, a non-beacon node needs to use a MMSE-based method for at most
n − 3 times.

3.4 Incremental Evaluation

ARMMSE uses the basic MMSE method in multiple rounds, with overlapping location
references across rounds. In this section, we develop an efficient approach for perform-
ing multi-round MMSE operations in such situations. We callthis approachincremental
MMSE. It exploits the overlapping subsets of location references in different rounds to
reduce unnecessary computation. We will see in our experimental evaluation that this
approach significantly reduces the computation time (and thus the energy) required by
ARMMSE.

In the following, we first give a brief introduction to the basic MMSE method proposed
in [Savvides et al. 2001], and then discuss the incremental MMSE approach.

3.4.1 Basic MMSE Method.Assume a sensor node has obtained a set ofm location
references from the reachable beacon nodes,{(x1, y1, d1), (x2, y2, d2), . . . , (xm, ym, dm)}.
Suppose the estimated location is(x̂, ŷ). Thus, the error of the measured distance between
the regular node and theith (1 ≤ i ≤ m) beacon node can be expressed as the difference
between the measured distancedi and the estimated distancedi−

√

(x̂ − xi)2 + (ŷ − yi)2.
The basic MMSE method obtains the location estimate(x̂, ŷ) by minimizing the mean

square error (MSE)

MSE =
1

m

m
∑

i=1

[

√

(x̂ − xi)
2

+ (ŷ − yi)
2 − di

]2

.

To accommodate the limited computational power of current generation of sensor nodes
(e.g., MICAz motes), the basic MMSE method uses an approximate approach to estimating
the location(x̂, ŷ) [Savvides et al. 2001]. Specifically, the location estimate(x̂, ŷ) can be
calculated using equation (1) as follows:

b = (XT X)−1XT Y, (1)

where

b =

[

x̂

ŷ

]

,

X =











2(x1 − x2) 2(y1 − y2)
2(x1 − x3) 2(y1 − y3)

...
...

2(x1 − xm) 2(y1 − ym)











,
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and

Y =











x2
1 + y2

1 − d2
1 − x2

2 − y2
2 + d2

2

x2
1 + y2

1 − d2
1 − x2

3 − y2
3 + d2

3
...

x2
1 + y2

1 − d2
1 − x2

m − y2
m + d2

m











.

3.4.2 Incremental ARMMSE.The key to incremental ARMMSE is the careful ar-
rangement of the input of an earlier MMSE estimation to be a subset of input of a later
MMSE estimation. Given the partial results from a previous round, we only need to per-
form the computation related to the newly added data by reusing the intermediate results
in the earlier calculation.

Suppose that the basic MMSE method has been performed onm location references,
and that all intermediate matrices have been saved. For a newly added location reference
(xm+1, ym+1, dm+1), we can reuse all previous calculations, and only run a few new cal-
culations to complete the new MMSE estimation on them + 1 location reference.

Consider equation (2), which is a part of the basic MMSE computation. (See Section
3.4.1.) The new computation isx2

m+1 + y2
m+1 − d2

m+1, which is highlighted in equation
(2). Similarly, we highlight all the new calculations (in boxed frame) in equations (2-8).

Y =

2

6

6

6

6

6

6

4

x2
1 + y2

1 − d2
1 − x2

2 − y2
2 + d2

2

x2
1 + y2

1 − d2
1 − x2

3 − y2
3 + d2

3

...
x2

1 + y2
1 − d2

1 − x2
m − y2

m + d2
m

x2
1 + y2

1 − d2
1 − (x2

m+1 + y2
m+1 − d2

m+1)

3

7

7

7

7

7

7

5

(2)

X =

2

6

6

6

6

6

6

4

2(x1 − x2) 2(y1 − y2)
2(x1 − x3) 2(y1 − y3)

...
...

2(x1 − xm) 2(y1 − ym)

2(x1 − xm+1) 2(y1 − ym+1)

3

7

7

7

7

7

7

5

(3)

X
T
X =

»

a11 a12

a21 a22

–

(4)

a11 = 4
m

X

i=2

(x1 − xi)
2 + 4(x1 − xm+1)

2 (5)

a12 = a21 = 4
m

X

i=2

(x1 − xi)(y1 − yi) + 4(x1 − xm+1)(y1 − ym+1) (6)

a22 = 4

m
X

i=2

(y1 − yi)
2 + 4(y1 − ym+1)

2 (7)

X
T
Y =

2

6

6

6

4

2

m
X

i=2

(x1 − xi)y [i − 1] + 2(x1 − xm+1)y [m]

2

m
X

i=2

(y1 − yi)y [i − 1] + 2(y1 − ym+1)y [m]

3

7

7

7

5

(8)
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Fig. 5. The voting-based location estimation

By reusing intermediate results, we can avoid a large numberof redundant calculations,
thus speeding up schemes such as EARMMSE.

3.4.3 EARMMSE with Incremental Evaluation.In EARMMSE, the location refer-
ences are ordered in terms of the number of other “intersecting” location references. EAR-
MMSE starts with the entire set of location references, and gradually removes the most
suspicious location references based on the above order until an acceptable location esti-
mation is derived.

To mostly efficiently use incremental ARMMSE, we perform EARMMSE in two rounds.
In the first round, we start with three location references with the highest degree of consis-
tency to perform location estimation. We then add a new location reference with the next
highest degree of consistency, and complete the estimationusing incremental ARMMSE
method. We continue this process until all location references are used. We save location
estimate and the corresponding minimum MSE for every step. In the second round, we
check the minimum MSE for the sets of location references in the reverse order, similar to
the original EARMMSE method. However, no MMSE computation is needed due to the
saved results. The algorithm stops once we find a location estimate with a small enough
minimum MSE. This implementation allows us to use incremental ARMMSE to perform
EARMMSE efficiently without unnecessary, redundant computation.

4. VOTING-BASED LOCATION ESTIMATION

In this approach, we have each location reference “vote” on the locations at which the node
of concern may reside. To facilitate the voting process, we quantize the target field into a
grid of cells, and have each sensor node determine how likelyit is in each cell based on each
location reference. We then select the cell(s) with the highest vote and use the “center” of
the cell(s) as the estimated location. To deal with the resource constraints on sensor nodes,
we further develop an iterative refinement scheme to reduce the storage overhead, improve
the accuracy of estimation, and make the voting scheme efficient on resource constrained
sensor nodes.
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Fig. 6. Determine whether a ring overlaps with a cell

4.1 The Basic Scheme

After collecting a set of location references, a sensor nodeshould determine the target field.
The node does so by first identifying the minimum rectangle that covers all the locations
declared in the location references, and then extending this rectangle byRb, whereRb is
the maximum transmission range of a beacon signal. This extended rectangle forms the
target field, which contains all possible locations for the sensor node. The sensor node
then divides this rectangle intoM small squares (cells) with the same side lengthL, as
illustrated in Figure 5. (The node may further extend the target field to have square cells.)
The node then keeps a voting state variable for each cell, initially set to 0.

At the beginning of this algorithm, the non-beacon node needs to identify the candidate
ring of each location reference. For example, in Figure 5, the ring centered at point A is a
candidate ring at A, which is derived from the location reference with the declared location
at A.

For each location reference〈x, y, δ〉, the sensor node identifies the cells that overlap with
the corresponding candidate ring, and increments the voting variables for these cells by 1.
After the node processes all the location references, it chooses the cell(s) with the highest
vote, and uses its (their) geometric centroid as the estimated location of the sensor node.

4.2 Overlap of Candidate Rings and Cells

A critical problem in the voting-based approach is to determine if a candidate ring overlaps
with a cell. We discuss how to determine this efficiently below.
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Suppose we need to check if the candidate ring at A overlaps with the cell shown in
Figure 6(a). Letdmin(A) and dmax(A) denote the minimum and maximum distances
from a point in the cell to point A, respectively. We can see that the candidate ring does not
overlap with the cell only whendmin(A) > ro or dmax(A) < ri, whereri = max{0, δ −
ǫ} andro = δ + ǫ are the inner and the outer radius of the candidate ring, respectively.

To computedmin anddmax, we divide the target field into 9 regions based on the cell,
as shown in Figure 6(b). It is easy to see that given the centerof any candidate ring, we can
determine the region in which it falls with at most 6 comparisons between the coordinates
of the center and those of the corners of the cell. When the center of a candidate ring is in
region 1 (e.g., point A in Figure 6(b)), it can be shown that the closest point in the cell to
A is the upper left corner, and the farthest point in the cell from A is the lower right corner.
Thus,dmin(A) anddmax(A) can be calculated accordingly. These two distances can be
computed similarly when the center of a candidate ring fallsinto regions 3, 7, and 9.

Consider point B in region 2. Assume the coordinate of point Bis (xB , yB). We can see
thatdmin(B) = yB − y2. Computingdmax(B) is a little more complex. We first need to
check ifxB −x1 > x2 −xB . If yes, the farthest point in the cell from B must be the lower
left corner of the cell. Otherwise, the farthest point in thecell from B should be the lower
right corner of the cell. Thus, we have

dmax(B) =
√

(max{xB − x1, x2 − xB})2 + (yB − y1)2.

These two distances can be computed similarly when the center of a candidate ring falls
into regions 4, 6, and 8.

Consider a point C in region 5. Obviously,dmin(C) = 0 since point C itself is in the
cell. Assume the coordinate of point C is(xc, yc). The farthest point in the cell from C
must be one of its corners. Similarly to the above case for point B, we may check which
point is farther away from C by checkingxc − x1 > x2 − xc andyc − y1 > y2 − yc. As a
result, we get

dmax(C) =
√

(max{xc − x1, x2 − xc})2 + (max{tc − y1, y2 − yc})2.
Based on the above discussion, we can determine if a cell and acandidate ring overlap

with at most 10 comparisons and a few arithmetic operations.To prove the correctness of
the above approach only involves elementary geometry, and thus is omitted.

For a given candidate ring, a sensor node does not have to check all the cells for which
it maintains voting states. As shown in Figure 6(c), with simple computation, the node can
get the outer bounding box centered at A with side length2(δ + ǫ). The node only needs
to consider the cells that intersect with or fall inside thisbox. Moreover, the node can get
the inside bounding box with simple computation, which is centered at A with side length√

2(δ − ǫ), and all the cells that fall into this box need not be checked.

4.3 Iterative Refinement

The number of cellsM (or equivalently, the quantization stepL) is a critical parameter for
the voting-based algorithm. It has several implications tothe performance of our approach.
First, the largerM is, the more state variables a sensor node has to keep, and thus the more
storage is required. Second, the value ofM (or L) determines the precision of location
estimation. The largerM is, the smaller each cell will be. As a result, a sensor node can
determine its location more precisely based on the overlap of the cells and the candidate
rings.
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However, due to the resource constraints on sensor nodes, the granularity of the partition
is usually limited by the memory available for the voting state variables on the nodes. This
puts a hard limit on the accuracy of location estimation. To address this problem, we
propose aniterative refinementof the above basic algorithm to achieve fine accuracy with
reduced storage overhead.

In this version, the number of cellsM is chosen according to the memory constraint in
a sensor node. After the first round of the algorithm, the nodemay find one or more cells
having the largest vote. To improve the accuracy of locationestimation, the sensor node
then identifies the smallest rectangle that contains all thecells having the largest vote, and
performs the voting process again. For example, in Figure 5,the same algorithm will be
performed in a rectangle which exactly includes the 4 cells having 3 votes. Note that in a
later iteration of the basic voting-based algorithm, a location reference does not have to be
used if it does not contribute to any of the cells with the highest vote in the current iteration.

Due to a smaller rectangle to quantize in a later iteration, the size of cells can be reduced,
resulting in a higher precision. Moreover, a malicious location reference will most likely
be discarded, since its candidate ring usually does not overlap with those derived from
benign location references. For example, in Figure 5, the candidate ring centered at point
D will not be used in the second iteration.

The iterative refinement process should terminate when a desired precision is reached
or the estimation cannot be refined. The former condition canbe tested by checking if the
side lengthL of each cell is less than a predefined thresholdS, while the latter condition
can be determined by checking whetherL remains the same in two consecutive iterations.
The algorithm then stops and outputs the estimated locationobtained in the last iteration.
It is easy to see that the algorithm will fall into either of these two cases, and thus will
alway terminate. In practice, we may set the desired precision to 0 in order to get the best
precision.

5. SECURITY ANALYSIS

Both proposed techniques can usually remove the effect of the malicious location refer-
ences from the final location estimation when there are more benign location references
than the malicious ones. Theorem 1 shows that when the majority of location references
are benign, the location estimation error of the attack-resistant MMSE is bounded if we
can successfully identify the largest consistent set. Hence, to defeat the attack-resistant
MMSE approach, the attacker has to distribute to a victim node more malicious location
references than the benign ones, and control the declared locations and the physical fea-
tures (e.g., signal strength) of beacon signals so that the malicious location references are
considered consistent.

LEMMA 2. Assume there arem benign location references andn malicious location
references in aτ -consistent set. The location estimation error from this set of location ref-

erences using MMSE is no more than2R+
√

m+n
m

τ , whereR is the radio communication

range of a sensor node.

PROOF. Let O = (x0, y0) denote the real location of the non-beacon node andO′ =
(x′

0, y
′

0) denote the estimated location of the non-beacon node based on all location ref-
erences (including the malicious ones). Let|AB| denote the distance betweenA andB.
Thus, the location estimation error can be represented by|OO′|. Let{L1, · · · , Lm} denote

ACM Journal Name, Vol. , No. , 20.



18 · Liu, et al.

the set of benign location references and{Lm+1, · · · , Lm+n} denote the set of malicious
location references.

Consider a particular benign location referencesLi = 〈xi, yi, δi〉. Since the communi-
cation range of sensor nodes isR, we have|OLi| ≤ R. In addition,ei = δi − |O′Li| and
δi ≤ R. Thus, we have

|OO′| ≤ |OLi| + |LiO
′| ≤ R + δi − ei ≤ 2R − ei.

There are two different cases:ei ≥ 0 or ei < 0. Whenei ≥ 0, we have|OO′| ≤ 2R.
When ei < 0, we have|OO′| − 2R ≤ −ei. Assume|OO′| ≥ 2R, we havee2

i ≥
(|OO′|− 2R)2. Since{L1, · · · , Lm+n} is τ -consistent, we have

∑m+n

i=1 e2
i ≤ (m+n)τ2.

Therefore,

m(|OO′| − 2R)2 ≤
m

∑

i=1

e2
i ≤

m+n
∑

i=1

e2
i ≤ (m + n)τ2.

Hence, we have(|OO′| − 2R)2 ≤ (m+n)τ2

m
. It implies

|OO′| ≤ 2R +

√

m + n

m
τ.

According to the above analysis, we can conclude that the statement in Lemma 2 is
true.

THEOREM 1. Assume a non-beacon node receivesm benign location references and
n malicious location references, wherem > n. The location estimation error at this non-
beacon node using the attack-resistant MMSE scheme with thebrute-force algorithm is no

more than2R+
√

m
m−n

τ if the thresholdτ is set greater than the maximum distance error

ǫ, whereR is the radio communication range of a sensor node.

PROOF. It is easy to know that the set ofm benign location references is alwaysτ -
consistent ifτ ≥ ǫ. Thus, there are at leastm location references in the largest consistent
set. Assume there arek location references in the largest consistent set, wherek ≥ m.
According to Lemma 2, we have

|OO′| ≤ 2R +

√

k

k − n
τ ≤ 2R +

√

m

m − n
τ.

Similarly, theorem 2 shows that when the majority of location references are benign,
the location estimation error of the voting-based scheme isbounded. Hence, to defeat the
voting-based approach, the attacker needs similar effortsso that the cell containing the
attacker’s choice gets more votes than those containing thesensor’s real location.

THEOREM 2. When the majority of location references at a non-beacon node are be-
nign, the location estimation error at this non-beacon nodeusing the voting-based scheme
is no more than2R +

√
2L, whereL is the side length of the cell.

PROOF. Assume the real location of the sensor node isO = (x0, y0) and the estimated
location of the sensor node using the voting-based scheme isO′ = (x′

0, y
′

0).
Since the candidate ring of a benign location reference always covers the real locationO

of the sensor node, the number of votes in the cell that containsO is at leastm. Thus, the
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number of votes in the cell that containsO′ is at leastm. Since the number of votes coming
from the malicious location references is at mostn, we know that there is at least one
benign location reference whose candidate ring covers the cell that containsO′. Assume
one of such benign location references isLi = 〈xi, yi, δi〉, we have

|LiO
′| ≤ R +

√
2L,

whereL is the side length of a cell. Therefore, we have

|OO′| ≤ |OLi| + |LiO
′| ≤ 2R +

√
2L.

An attacker has two ways to satisfy the above conditions (in order to defeat our tech-
niques). First, the attacker may compromise beacon nodes and then generate malicious
beacon signals. Since all beacon packets are authenticated, and a sensor node uses at most
one location reference derived from the beacon signals sentby each beacon node, the at-
tacker needs to compromise more beacon nodes than the benignbeacon nodes from which
a target sensor node may receive beacon signals, besides carefully crafting the forged bea-
con signals.

Second, the attacker may launch wormhole attacks [Hu et al. 2003] (or replay attacks)
to tunnel benign beacon signals from one area to another. In this case, the attacker does
not have to compromise any beacon node, though he/she has to coordinate the wormhole
attacks. This paper does not provide techniques to address wormhole attacks. However,
our methods can still tolerate wormhole attacks to a certaindegree as long as the number
of malicious location references at a sensor node is less than the number of benign location
references. Moreover, in another related work [Liu et al. 2005b], we have developed an
approach for effectively detecting malicious beacon signals transmitted through wormholes
on the current sensor platforms (with low quality clocks). Thus, the proposed techniques
in this paper and the complementary detection techniques in[Liu et al. 2005b] can be
integrated to effectively defend attacks against range-based localization in wireless sensor
networks.

As discussed earlier, an attacker may also jam the communication channel to, for exam-
ple, prevent the successful transmission and receiving of beacon signals. This is a common
threat to all wireless networks. Thus, the approaches in this paper require additional mech-
anisms to ensure that the attacker cannot jam the communication channel continuously
without being detected and removed.

Our techniques certainly have a limit. In an extreme case, ifall the beacon nodes are
compromised, our techniques will fail. However, the proposed techniques offer a graceful
performance degradation as more malicious location references are introduced. In contrast,
an attacker may introduce arbitrary location error with a single malicious location refer-
ence in the previous schemes. To further improve the security of location discovery, other
complementary mechanisms (e.g., detection of malicious beacon nodes [Liu et al. 2005b],
anti-jamming techniques) should be used.

6. EXPERIMENTAL EVALUATION

We have given a preliminary experimental evaluation in the preliminary version of this
paper [Liu et al. 2005a]. In this section, we present a thorough experimental evaluation
to validate the new techniques proposed in this paper and compare existing secure and
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resilient localization schemes that can be used on the current generation of sensor platforms
(e.g., MICAz and MICA2 motes). Our evaluation uses both outdoor experiments in a
testbed of MICAz motes and simulation evaluation using channel profiles obtained from
the testbed. The schemes under evaluation include the ARMMSE schemes, voting based
scheme, and Least Median of Squares (LMS) based location estimation [Li et al. 2005].

There are several other secure and resilient localization schemes, including SeRLoc [La-
zos and Poovendran 2005], SPINE [Capkun and Hubaux 2005], and ROPE [Lazos et al.
2005]. However, SeRLoc requires directional antenna on sensor nodes, SPINE requires
nano-second scale time synchronization among nodes, and ROPE, which is an integra-
tion of SeRLoc and SPINE, requires both directional antennaand nano-second scale time
synchronization. These requirements cannot be met on the current generation of sensor
platforms such as MICA series of motes. Thus, we cannot include them in this evaluation.

6.1 Evaluation Methodology

6.1.1 Evaluation Criteria. Key issues with localization service in wireless sensor net-
works are resiliency and efficiency. For an unattended wireless sensor network, the best de-
fense against attacks is to build strong resiliency againstattacks, even when nodes are com-
promised. Given that a sensor node is severely constrained in both hardware resources and
battery power, it is extremely important to develop efficient algorithms. Under these key
requirements, we use four criteria to evaluate the secure and resilient localization schemes
under study.

First, we evaluate the algorithm implementation in terms ofROM and RAM usage.
ROM is used to store the compiled code. The ROM size reflects the total non-volatile stor-
age that is needed to store the localization code. RAM usage reflects the runtime memory
requirement. Since both ROM and RAM are premier resources ona resource constrained
sensor node (for example a MICAz mote has an Atmel ATmega 128 processor with 4KB
RAM and 128KB ROM), it is highly desirable for the localization algorithm to have as
small a footprint as possible.

We next compare the execution time of the localization algorithms. Localization schemes
need to be implemented efficiently. A fast execution time translates to a low energy con-
sumption, which extends the lifetime of a sensor node. In addition, a sensor network usu-
ally needs to carry out specific applications. It is always desirable to have network services
such as localization consume as few CPU cycles as possible.

The third, and the most important criteria is the resiliencyof an algorithm against dif-
ferent levels of attacks. In this study, we assume that message exchanges are cryptograph-
ically protected, and false injection of localization information is eliminated. Moreover,
we assume there are mechanisms that detect replayed localization messages, such as the
one proposed in [Liu et al. 2005b]. Thus, the focus is on the robustness and resiliency
against malicious location references. Obviously the moremalicious location references,
the harder it is for the resilient algorithm to defend. We evaluate the level of resiliency of
each localization algorithm in terms of localization accuracy. We confirm (the theoretical
analysis in the previous section) experimentally that our schemes may tolerate close to half
of malicious location references.

In addition, to correlate the study on localization accuracy, we also investigate the suc-
cess rate of each scheme to detect and filter out malicious location references. When the
success rate is 100%, the location estimation error is solely due to the measurement error
caused by the radio channel. When the success rate is low, some malicious location refer-
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ences are not filtered out. Their injected errors could significantly distort the final location
estimation.

6.1.2 Field Experiments using MICAz Motes.We perform a series of outdoor field ex-
periments using MICAz motes to compare the secure and resilient localization schemes
discussed earlier. These field experiments offer an opportunity to observe their perfor-
mance in a realistic setting.

We implemented the ARMMSE and the voting-based schemes in nesC on TinyOS. We
also implemented the LMS method based on matlab code obtained from the authors of [Li
et al. 2005]. We use the RSSI method to measure the distance, since this is the only option
for MICAz motes.

In the outdoor field experiments, we deploy 15 MICAz motes in a60feet× 60feet target
field, as shown in figure 7. We use up to 14 motes as beacon nodes to replicate a dense
deployment. The beacon nodes broadcast location referencemessages periodically. The
sensor node with ID 0 (in the middle of the field) is a representative of a non-beacon node
that needs its own location.

With this deployment setup, we perform experiments under four attack scenarios. In
the first scenario, one randomly selected beacon node is configured as being malicious,
which reports a faulty location referencex feet away from its true location in a random
direction. In the second scenario, we randomly pick up four malicious beacon nodes. Each
malicious beacon node adds a random location offset ofx feet from its true location. The
third scenario mimics node collusion. Four randomly selected beacon nodes collude with
each other and send out false but consistent location references. In this case, all malicious
beacon nodes report a falsified position shiftedx feet from its true location in the same
direction. In the fourth scenario, we experiment with a varying number of colluding nodes
ranging from 1 to 8 (out of 14 beacon nodes) to examine the impact on the estimated
location.

Under each attack scenario, we investigate the algorithm resiliency in terms of localiza-
tion error and malicious location reference detection rate, and the algorithm efficiency in
terms of execution time. In the experiment we vary the error injected from10 to 150 feet
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with a 10 feet increment.

6.1.3 TOSSIM Simulation.Due to the cost of conducting field experiments, we cannot
perform the evaluation with many different deployments using different nodes. To under-
stand the performance in a wider variety of situations, we resort to simulation through
TinyOS simulator TOSSIM [Levis et al. 2003]. TOSSIM is a discrete event simulator
that can be used to run TinyOS applications, aimed at providing a fidelity simulation for
TinyOS applications by simulating system interrupts and the network at the bit level.

Profiling of MICAz Radio Channel: Carrying out a simulation faithfully to a real de-
ployment experiment requires that the simulator incorporate sensor characteristics such as
timing model and radio channel model. Currently, TOSSIM does not provide a completely
true representation of a real network. For example, it does not model the node variations
typically seen in low cost sensor nodes, nor does it incorporate real world signal distortion
through reflection or attenuation. Since we use the RSSI method to obtain distance mea-
surement in the current performance evaluation study, we doneed to incorporate proper
radio channel characteristics in the simulation. Otherwise, the simulation results could
significantly deviate from those obtained through field experiments.

We use a set of 30 MICAz motes to profile the channel characteristics for the purpose
of RSSI-based distance measurement. Due to node and environmental variations, one ra-
dio channel between two nodes may differ from each other. Profiling per-radio channel
characteristics between each pair of sender and receiver isuseful when there is a need to
correct/compensate per-channel errors. However, gettingthe channel profile between any
two nodes (a total of 30*29/2 possible pairs) would be cost prohibitive. So instead we seek
to obtain the average channel profile for the nodes. To obtainaverage channel profile, we
randomly draw 7 nodes from the pool of 30 node. We select one node as the receiver, and
use the rest 6 nodes as the transmitter and place them at 10, 20, 30, 40, 50, and 60 feet
away, respectively, from the receiver. From the transmitter, 1,000 reference messages are
sent to each receiver. We use the received signal strength to“measure” theknownnode
distance and obtain a total of 6 sets of 1,000 distance measurements at 10, 20, ..., 60 feet
distances, respectively. We then rotate the positions of the 6 senders, so that we have the
data for each node at each distance. We repeat the same experiment 5 times, using a dif-
ferent batch of 7 nodes randomly drawn. To include the impactof battery variations, we
use different batteries with voltage between 2.7V and 3.1V.These experiments give 30,000
distance measurement samples with different battery voltages and different pairs of nodes
at each of the 6 distances, providing us a fairly good averagechannel profile. These results
are then incorporated into our simulation to mimic the channel characteristics.

We build a distance measurement error model based on the above data. For each of the
above distances, we use the median RSSI as the reference to convert an RSSI reading to
the given distance, and use interpolation for the other distances. Based on this conversion
and the collected RSSI readings, we then build error distributions for 10, 20, ..., and 60
feet. Figure 8 shows the distance measurement error model for these distances. The
error distributions for the other distances are calculatedusing interpolation based on these
distributions. In our simulation, distance measurement errors are generated based on the
error distributions in this model.

Simulation Setup: As discussed earlier, the simulation is aimed at evaluatingthe per-
formance of these secure and resilient localization schemes with different combinations
of deployments and distance measurement errors. In our simulations, we adopt the same
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target field setting used in the field experiment. We run two sets of simulations. The first
set of simulation replicates the same layout of beacon nodesas in the field test. In the sec-
ond set of simulations, a set of 14 beacon nodes are randomly deployed in the target field.
The non-beacon node, which needs to to be localized, is placed at the center of the target
field. The beacon nodes broadcast localization messages periodically. The non-beacon
node estimates its distance from each beacon node. The distance measurement error is
simulated with the channel profile we obtained through experiments. In each of the sce-
narios discussed in Section 6.1.1, we run 1,000 rounds of simulation in TOSSIM to obtain
the performance measures.

Given a maximum number of location references, all the schemes under investigation
require a few parameters to be configured. These parameters must be set appropriately
to ensure a fair comparison. For the EARMMSE scheme, we set the mean square error
thresholdτ = 0.8ǫ as discussed earlier, whereǫ is the maximum distance measurement
error. Based on the channel profiling results,ǫ = 7.4feet. Thus, we setτ = 0.8ǫ =
5.92feet.

The critical parameter for the voting-based scheme is the number of cellsM in the grid
in each iteration. The cell number needs be the square of an integer in our experiments. The
voting-based scheme is in general much slower than the EARMMSE scheme, no matter
how we configureM . To ensure a fair comparison, we set the parameterM in the voting-
based scheme in such a way that they consume a similar amount of RAM. As shown in
table I, we setM = 152 = 225 to match the RAM consumption in the EARMMSE
scheme. For further comparison, we also obtain the result withM = 100 besidesM = 225
for the voting-based scheme.

Similar to the voting-based scheme, the LMS scheme [Li et al.2005] is much slower
than the EARMMSE scheme. To ensure fair comparison, we set the subset sizen = 4.
Moreover, we set the numberM of subsets to be examined in such a way that the LMS
scheme has the same average execution time as the voting-based scheme when the grid
size is100 and225, respectively. As shown in table I, LMS has a fixed RAM consumption,
which is similar to the RAM consumption in the voting-based scheme.

6.2 Effectiveness of EARMMSE and Incremental Evaluation

In this subsection, we focus on the experimental evaluationof EARMMSE and the incre-
mental evaluation of EARMMSE. As we will see in the evaluation results, these techniques
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Fig. 9. Location estimation error for GARMMSE and EARMMSE

significantly outperform the previous techniques proposedin the preliminary version of this
paper [Liu et al. 2005a].

Figure 9 shows the location estimation errors of both GARMMSE and EARMMSE in
the four evaluation scenarios. As we can see in figure 9(a), both approaches can effec-
tively defeat 1 malicious location reference. However, as shown in figures 9(b) and 9(c),
GARMMSE cannot effectively bound the location error introduced by 4 colluding or non-
colluding malicious location references. (This result is consistent with the preliminary
evaluation reported in [Liu et al. 2005a].) In contrast, EARMMSE can effectively defeat
both 4 non-colluding and 4 colluding malicious location references. Figure 9(d) further
shows EARMMSE performs significantly better than GARMMSE intolerating colluding
malicious location references. All the above results demonstrate that EARMMSE is much
more effective than GARMMSE in bounding location estimation errors.

We also perform experiments to confirm the effectiveness of incremental evaluation in
reducing the computational cost of EARMMSE. We use EARMMSE both with and with-
out incremental evaluation in the four evaluation scenarios. Figure 10 shows the timing
results. When there is only 1 malicious location reference,incremental evaluation slightly
reduces the execution time, as shown in figure 10(a). When there are 4 colluding or non-
colluding malicious location references, incremental evaluation can reduce the execution
time by about 50%, as shown in figures 10(b) and 10(c). Figure 10(d) further shows that
incremental evaluation reduces more as there are more colluding malicious location ref-
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Fig. 10. Effectiveness of incremental evaluation

erences. Indeed, the more malicious location references, the more execution time incre-
mental evaluation can save. When the number of colluding malicious location references
reaches 8, the execution time for EARMMSE starts to drop. This is the point where EAR-
MMSE fails; there are more colluding malicious location references than the benign ones,
and the benign ones are considered “malicious” and removed.

The code sizes of GARMMSE and EARMMSE (with and without incremental evalua-
tion) are shown in table I. EARMMSE does have more ROM size than GARMMSE (442
bytes), and incremental evaluation further increases bothROM and RAM sizes (282 bytes
and 148 bytes, respectively). However, the increases in ROMand RAM sizes are still
affordable on current sensor platforms such as MICAz motes.

Due to the effectiveness of EARMMSE and incremental evaluation, we will use EAR-
MMSE with incremental evaluation as the representative of ARMMSE schemes in our later
comparison. By default, we assume an EARMMSE implementation includes incremental
evaluation, unless specified otherwise.

6.3 Comparison of Alternative Approaches

We now compare the various approaches for attack-resistantlocation estimation accord-
ing to the evaluation methodology discussed in Section 6.1,including basic MMSE (as a
reference), EARMMSE (with incremental evaluation), voting-based scheme, and the LMS
based approach [Li et al. 2005]. Our goal is to identify the scheme most suitable for the
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current generation of sensor platforms.

6.3.1 Code Size Comparison.Table I gives the code size of each localization algo-
rithm implementation. The code was compiled for MICAz, assuming that each scheme
handles up to 14 location references. These numbers were obtained using thechecksize.pl
script provided in the TinyOS distribution. Note that the RAM size does not include the
memory consumed by local variables on the stack. Since nesC Compiler optimizes the
whole program by default, to compare the size of code fairly,we disabled any optimization
of nesC compiler. From the table it is obvious that the voting-based scheme uses the most
ROM, while all schemes use a similar amount of RAM except for the voting-based scheme
whenM = 100.

Table I. Code Size (up to 14 location references)
Scheme ROM (bytes) RAM (bytes)

Basic MMSE 2,734 0
GARMMSE 4,422 100

EARMMSE (w/o inc. eval.) 4,864 100
EARMMSE 5,146 248

Voting (M=100) 7,074 100
Voting (M=225) 7,074 225

LMS 5,262 237

6.3.2 Results of Field Experiments.Figures 11, 12, and 13 show the location estima-
tion error, the execution time, and the success rate of removing malicious location refer-
ences for all schemes under study, respectively.

From figures 11(a), 11(b), and 11(c), we can see that all resilient schemes under study
have bounded location estimation error under each attack scenario while the basic MMSE
scheme [Savvides et al. 2001] cannot tolerate even one malicious location reference. For
the basic MMSE method, the location estimation error increases with the increase of the
injected error. Although the three schemes use completely different approaches to defend
against malicious location references, the level of tolerance (in terms of localization error)
of each scheme to the injected error is fairly comparable under the first three attack scenar-
ios. In general (from Figures 11(a), 11(b), and 11(c)) the LMS scheme provides a slightly
lower location estimation error in comparison to the voting-based and the EARMMSE
schemes, but the performance results are fairly close.

Another interesting discovery is that the largest locationestimation error happens when
the injected error is small (around 20 feet)! This phenomenacan be observed almost on
every scheme and under each attack scenario. Although counter intuitive, this observation
can be explained. Attack-resistant localization schemes typically rely on outlier detection
or consistency check to remove malicious location references before performing the final
location calculation. When the injected error is small, especially on the same scale or close
to the range of measurement error, these schemes are not ableto effectively distinguish and
remove the malicious ones. This leads to the enlarged location estimation error.

To support our explanation, we investigate the effectiveness of each scheme to filter
out malicious location references under different amountsof error injection. For each
scheme under every scenario, we capture the number of malicious location references that
have been successfully identified in each round and calculate the average detection rate
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Fig. 11. Location estimation error in field experiments

over 1,000 rounds. Figures 12(a), 12(b), and 12(c) show the probability of successfully
removing malicious location references in our experiments.

All three schemes fail to identify and remove malicious location references when the
injected errors are small (<70 feet). When the injected error is at 10 feet, no scheme is
able to identify and remove the malicious location references. Nevertheless, the injected
errors in such cases are very close to normal measurement errors, and do not introduce
significant errors into location estimation.

Figure 12(d) provides the results on the malicious locationreference detection probabil-
ity when we have 1∼8 malicious location references. Since the injected error is 100 feet,
all schemes should be able to identify and remove the malicious location references when
the number of colluding ones is small (1∼6). The Figure shows that the LMS scheme is
the first scheme to break down while the EARMMSE method provides the best detection
rate which translates to the best resiliency in our experiment.

We also evaluate the algorithm resiliency in terms of how many malicious location refer-
ences a scheme can tolerate. Setting the injected error to 100 feet, we experiment algorithm
resiliency by introducing 1∼8 malicious location references out of a total of 14 ones. Fig-
ure 11(d) displays the result of this study. It shows that allresilient schemes perform well
when we introduce up to 6 malicious location references. When half of them are malicious,
the EARMMSE method can still maintain an estimation error of10 feet, while the voting-
based scheme and the LMS scheme fail. Obviously, when more than half of the location
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Fig. 12. Success rate of removing malicious location references in field experiments

references are malicious, none of the scheme would work. Thefigure also shows that the
LMS scheme is sensitive to the selection of number of subsetsM. When M is set to 13, the
LMS scheme begin to fail with only 4 malicious location references.

We next perform study on efficiency in terms of execution time. Among all the schemes
evaluated, both the LMS and the basic MMSE schemes have a fixedexecution time. The
execution time of the LMS scheme depends on the number of random subset (M ) and size
of subset (n). The EARMMSE and the voting-based schemes have a variable runtime.

From Figure 13, we can see that the EARMMSE scheme has a much smaller running
time (<0.1 seconds) in comparison to the voting-based scheme or theLMS scheme (around
1 second). The basic MMSE scheme has the shortest running time, but it provides no
resilience at all. Among all the resilient schemes evaluated, the EARMMSE scheme is
about 10 times faster than the others.

From Figures 13(b) and 13(c), another observation is that the peak computation time is
observed when low error is injected by the malicious location references. This is consis-
tent to our earlier discussion on localization error, whichpeaks when the injected errors
are small. The algorithms have a tough time trying to identify the malicious location refer-
ences.

6.3.3 Results of Simulation.We carry out two sets of simulations. The first set of
simulation duplicates the exact topology and attack scenarios as those in the field test,
which was described in Section 6.1.2. To make a fair comparison, the same parameter
setup for each scheme is used. We also incorporate the channel profile we obtained through
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Fig. 13. Execution time in field experiments

experiments into simulation.
The results of the first set of simulation are in general consistent with those of the field

experiments. For space reasons, we do not include the performance results for all sce-
narios. Figure 14(a) shows the location estimation error for the attack scenario with 4
colluding nodes. The location estimation errors are in general larger that those in the field
experiments. This is because the randomly generated distance measurement errors are on
average larger than those encountered in the field experiments. Overall, the trend matches
the results in the field experiments very well. Except for thebasic MMSE method, all
resilient schemes have bounded location estimation error under each attack scenario. In
addition, all three schemes under study have comparable performance in terms of location
estimation error under non-colluding and colluding attacks.

The success rate of filtering malicious location referencesis another important criterion
we use to evaluate resiliency. Figure 14(b) provides results on how successful of each
scheme can filter out malicious location references in the 4 colluding node attack scenario.
Similar to the field experiments, we can observe that none of the resilient schemes can deal
with small error injection well. When the injected error is small, a malicious location ref-
erence may successfully blend itself among the rest. When a resilient localization scheme
fails to filter out malicious location references, the injected error directly contributes to
location estimation error. For example, in Figure 14(a) location estimation errors peak in
the low range of the injected errors.
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Fig. 14. Simulation results using the field experiment deployment

Topology may affect localization error potentially. (As anextreme example, one cannot
use three beacon nodes in a co-linear layout to perform localization.) In the second set of
simulation, we investigate how each scheme performs without the influence of a particular
topology. To achieve that, for each round of experiment, the14 location references are ran-
domly positioned. We run a total of 1,000 rounds of experiments. The location estimation
error and the success rate of filtering out malicious location references are obtained using
the average of the 1,000 rounds of experiments.

Figure 15 and figure 16 show the location estimation error andthe rate for successful
filtering, respectively.

By comparing Figure 14(a) with Figure 15(c), and Figure 14(b) with Figure 16(c), we
can observe that the results from the two sets of simulationsare very similar to each other.
For example, under both sets of simulation, the worst performance of malicious location
reference detection and filtering happen when the injected error is at 10 feet. This observa-
tion confirms that the topology we use in field experiments is atypical deployment scenario
and the topology of this deployment has not influenced much the localization estimation
accuracy or the rate of successful filtering.

We make another observation from the two sets of simulations. Although fairly com-
parable, the EARMMSE scheme provides a slightly better result in terms of malicious
location reference detection and elimination over the voting-based and the LMS schemes,
as can be seen in both figure 14(b) and figure 16.

6.4 Discussion

In this experimental evaluation, we compared all existing range-based secure and resilient
localization schemes suitable for the current generation of sensor nodes, through simula-
tion and field experiments using MICAz motes as a test platform. These include the LMS
scheme, the EARMMSE scheme, and the voting-based scheme. Tofacilitate the simula-
tion study, we performed substantial experiments to profilethe radio characteristics, which
was incorporated in the simulation experiments.

Results from the field experiments generally matched well with the two sets of sim-
ulations we performed. This confirms that the channel profilewe incorporated into the
simulation has enabled us to capture the characteristics ofthe radio channels effectively.
The first simulation confirms our field experiment results while the second set of simula-
tion using a random deployment of beacon nodes gives us a high-confidence results, since
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Fig. 15. Location estimation error in simulation (random placement of beacon nodes)

it eliminates the potential influence from beacon node placement.
Both field test and simulation lead to the following conclusions: 1) The current class

of resilient algorithms that can be implemented on MICAz motes can provide reasonable
resiliency against malicious location references; the location errors are well bounded, and
these schemes can resist close to half of the location references being malicious. 2) Re-
silient localization schemes can deal with large injected errors effectively, but they have
a hard time identifying malicious location references whenthe injected errors are small.
Nevertheless, when the injected errors are small, they are very close to normal measure-
ment errors, and do not introduce significant error into the final location estimation.

Based on our efficiency and resiliency criteria, we can conclude that the EARMMSE
scheme has the shortest execution time while providing a similar resiliency to the other
schemes. Thus, it is well suited for wireless sensor networkapplications running on current
resource constrained sensor platforms such as MICAz motes.

7. RELATED WORK

Many range-based localization schemes have been proposed for sensor networks [Savvides
et al. 2001; Savvides et al. 2002; Niculescu and Nath 2003a; Nasipuri and Li 2002; Do-
herty et al. 2001]. Savvides et al. developed AHLoS protocolbased on Time Difference
of Arrive [Savvides et al. 2001], which was extended in [Savvides et al. 2002]. Doherty
et al. presented a localization scheme based on connectivity constraints and relative signal
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Fig. 16. Success rate of removing malicious location references in simulation (random placement of beacon
nodes)

angles between neighbors [Doherty et al. 2001]. Angle of Arrival is used to develop lo-
calization scheme in [Niculescu and Nath 2003a] and [Nasipuri and Li 2002]. Range-free
schemes are proposed to provide localization services for the applications with less preci-
sion requirements [Bulusu et al. 2000; Niculescu and Nath 2003b; Nagpal et al. 2003; He
et al. 2003]. Bulusu, Heidemann and Estrin proposed to estimate a sensor’s location as the
centroid of all locations in the received beacon signals [Bulusu et al. 2000]. Niculescu and
Nath proposed to use the minimum hop count and the average hopsize to estimate the dis-
tance between nodes and then determine sensor nodes’ locations accordingly [Niculescu
and Nath 2003b]. None of these schemes will work properly when there are malicious
attacks.

The location verification technique proposed in [Sastry et al. 2003] can verify the relative
distance between a verifying node and a sensor node. It does not provide a solution to
conduct secure location estimation at non-beacon nodes. Inthis paper, we provide efficient
ways to estimate locations of sensor nodes securely. The location verification technique is
complementary to our techniques since it can be used to enhance the security of distance
measurement between two nodes.

A robust location detection is developed in [Ray et al. 2003]. However, it cannot be
directly applied in sensor networks due to its high computation and storage overheads. A
voting-based Cooperative Location Sensing (CLS) was proposed in [Fretzagias and Pa-
padopouli 2004]. However, CLS is designed for powerful nodes (e.g., PDAs), while our
scheme further uses iterative refinement to improve the performance with small storage
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overhead. Therefore, our technique can be implemented and executed efficiently on re-
source constrained sensor nodes.

Similar to our attack-resistant location estimation techniques, the following two tech-
niques are independently discovered to tolerate maliciousattacks against location discov-
ery in wireless sensor networks. A robust statistical methods that is similar to the attacker-
resistant MMSE scheme is discovered in [Li et al. 2005] to achieve robustness through
Least Median of Squares. A secure range-independent localization scheme (SeRLoc) that
is similar to our voting-based scheme is discovered in [Lazos and Poovendran 2004] to
protect location discovery with the help of sectored antennae at beacon nodes. Compared
to these two studies, we provide more alternative ways to tolerate malicious attacks and
also include the real implementation and field experiments in this paper.

SPINE [Capkun and Hubaux 2005] is developed to protect location discovery by using
verifiable multilateration. However, the distance bounding techniques required for verifi-
able multilateration may not be available due to the difficulties to (1) deal with the external
replay attacks in Ultrasound-based distance bounding and (2) achieve nanosecond process-
ing and time measurements in Radio-based distance bounding. ROPE [Lazos et al. 2005]
is developed by integrating SeRLoc and SPINE. However, it still requires nanosecond pro-
cessing and time measurements that are not desirable for thecurrent generation of sensor
networks. Compared with these two studies, we provide techniques to tolerate malicious
attacks without the above constraints. Moreover, our proposed techniques can be easily
combined with most of existing localization techniques.

To further enhance the security of location discovery, a practical technique is developed
to detect malicious beacon nodes that are providing malicious beacon signals [Du et al.
2005; Liu et al. 2005b]. This detection technique can be easily combined with our tech-
niques. We consider it complementary to the techniques in this paper.

In addition to secure location discovery, location privacybecomes a more and more
interesting topic recently. Several techniques are developed recently to protect the location
privacy in sensor networks [Ozturk et al. 2004; Kamat et al. 2005].

Security in sensor networks has attracted a lot of attentionin the past several years. To
provide practical key management, researchers have developed key pre-distribution tech-
niques [Eschenauer and Gligor 2002; Chan et al. 2003; Du et al. 2003]. To enable broad-
cast authentication, a protocol namedµTESLA has been explored to adapt to resource
constrained sensor networks [Perrig et al. 2001]. Securityof sensor data has been studied
in [Przydatek et al. 2003; Hu and Evans 2003]. Attacks against routing protocols in sensor
networks and possible counter measures were investigated in [Karlof and Wagner 2003].
The research in this paper addresses another fundamental security problem that has not
drawn enough attention.

8. CONCLUSION

In this paper, we developed several attack-resistant MMSE-based location estimation tech-
niques and a voting-based location estimation technique todeal with attacks in localization
schemes. The final schemes, the EARMMSE scheme with incremental evaluation and the
voting-based scheme are both effective. We also performed experimental evaluation of all
the secure and resilient location estimation schemes that can be used on the current gen-
eration of sensor platforms, through both simulation and field experiments with a network
of MICAz motes. Our evaluation indicated that the EARMMSE scheme with incremen-
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tal evaluation is most suitable for the current sensor platforms among all the alternative
approaches.
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