
Attack Robustness and Centrality of Complex Networks

Swami Iyer1, Timothy Killingback2*, Bala Sundaram3, Zhen Wang4

1Computer Science Department, University of Massachusetts, Boston, Massachusetts, United States of America, 2Mathematics Department, University of Massachusetts,

Boston, Massachusetts, United States of America, 3 Physics Department, University of Massachusetts, Boston, Massachusetts, United States of America, 4 Physics

Department, University of Massachusetts, Boston, Massachusetts, United States of America

Abstract

Many complex systems can be described by networks, in which the constituent components are represented by vertices
and the connections between the components are represented by edges between the corresponding vertices. A
fundamental issue concerning complex networked systems is the robustness of the overall system to the failure of its
constituent parts. Since the degree to which a networked system continues to function, as its component parts are
degraded, typically depends on the integrity of the underlying network, the question of system robustness can be
addressed by analyzing how the network structure changes as vertices are removed. Previous work has considered how the
structure of complex networks change as vertices are removed uniformly at random, in decreasing order of their degree, or
in decreasing order of their betweenness centrality. Here we extend these studies by investigating the effect on network
structure of targeting vertices for removal based on a wider range of non-local measures of potential importance than
simply degree or betweenness. We consider the effect of such targeted vertex removal on model networks with different
degree distributions, clustering coefficients and assortativity coefficients, and for a variety of empirical networks.
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Introduction

Many complex interacting systems can be naturally represented

as networks, where the components of the system are represented

by the vertices of the network and the interactions between the

components are represented by edges connecting vertices in the

network [1,2]. In the last decade the study of networks has become

an important area of research in many disciplines, including

physics, mathematics, biology, computer science, and the social

sciences [3–5]. There are numerous notable examples of networks

in many fields of study (for more detailed discussions of many of

these examples see, for instance, [6]). Important examples of

technological networks are the Internet (in which the vertices are

computers and associated equipment and the edges are the data

connections between them) and the World Wide Web (in which

the vertices are web pages and the edges are hyperlinks). Examples

of important biological networks include: metabolic networks (in

which the vertices represent metabolites and the edges connect any

two metabolites that take part in the same reaction), protein-

protein interaction networks (where vertices represent proteins and

two proteins that interact biologically are connected by an edge),

food webs (in which species are represented by vertices and edges

represent predator-prey relationships between the species), and

neural networks (where the vertices represent neurons and the

edges represent neural connections). Social networks (in which the

vertices represent individuals or groups and the edges represent

some type of connection between them, such as acquaintance

between individuals) also provide many interesting and important

examples of networks.

The fundamental objective in studying the behavior of networks

is to obtain insight into the complex systems they represent. An

important aspect of this is to understand the effect of failure of the

individual components on the performance of the whole

networked system [7]. The detailed motivation for studying this

effect depends on the particular networked system under

consideration. For instance, it is clearly important to know how

the failure of individual routers in the Internet affects the overall

function of the network. Similarly, if the network in question is

a contact network on which a disease can spread, then it is critical

to understand how the effective removal of vertices from the

network (e.g. through vaccination) affects the spread of the disease.

It is clear from examples such as these that identifying those

vertices that most crucially affect the function of a networked

system is often of great importance. In some cases (such as the

Internet) we wish to identify these vertices so that the most crucial

elements of the system can be protected from failure or attack, and

the functioning of the whole system can be effectively maintained.

In other cases the goal is to identify the key vertices in a network so

that the whole system can be most effectively degraded by their

removal. Situations in which this latter goal pertains include

contact networks for infectious diseases, and criminal and terrorist

networks.

The precise degree to which a complex networked system

continues to function as the individual components which

constitute it are degraded will typically depend on subtle features

of the dynamics of the system. At a somewhat cruder level,

however, we may ignore the details of the particular dynamical

system defined on the network and focus instead on how the

structure of the network changes as it is degraded through the

removal of vertices. This approach is justified because it is usually

reasonable to assume that if a network has been so degraded by
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the removal of vertices that the largest connected part of the

network is sufficiently small (say, only 10% of the size of the

original network) then any sensible dynamical process will be

unable to function on the degraded network in an effective way.

A considerable amount of effort has been devoted to

understanding how network structure changes when vertices

are removed and we will briefly review the existing literature on

this subject. By far the largest amount of work on the

robustness of networks has focused on the effect of removing

vertices uniformly at random or in decreasing order of their

degree. References [7–10] study this question in considerable

detail, and also discuss the related issue of percolation on

networks. Much of this work is reviewed in [6]. In related work,

[11] studies the efficiency of networks under the removal of

vertices uniformly at random or in decreasing order of their

degree. Interesting recent work has considered the evolution of

network topologies that are robust to the removal of vertices

based on their degree [12,13]. Much less, however, is known

about how the structure of networks change when vertices are

removed according to more subtle non-local measures of their

possible importance. The most significant previous study of this

latter question is [14], in which the effect of removing vertices

both in decreasing order of degree and of betweenness centrality

is considered. Related work considering the effect of removing

vertices based on betweenness is also described in [15]. In

addition to these references there are more distantly related

works that study the effect of removing vertices based on

various centrality measures on certain processes defined on

networks. Reference [16] studies the effect of removing species

in a food web according to eigenvector centrality on coextinc-

tions of other species in the food web. The effect of vaccinating

individuals in a contact network according to different centrality

measures on the spread of an epidemic is discussed in [17].

The purpose of this paper is to extend these investigations by

systematically studying the effect on network structure of removing

vertices according to a wider variety of non-local schemes. We

investigate the effect of removal schemes based on degree,

betweenness, closeness, and eigenvector centrality on a wide

variety of model networks, including those with power-law and

exponential degree distributions, different clustering coefficients,

and different degrees of assortativity. In addition, we study, the

consequences of these methods of vertex removal for a variety of

empirical networks, such as, neural networks, protein-protein

interaction networks, and social networks. In all cases we quantify

the vulnerability of a network to a given scheme of vertex removal

by a single numerical quantity, which allows a precise comparison

of the efficacy of different removal schemes to be made.

Analysis

Percolation and Robustness
Understanding the robustness of networked systems against the

failure of their component parts is closely related to the study of

percolation on networks. The process that results from taking

a network and removing some fraction of its vertices (together with

the edges connected to the vertices) is refered to as percolation.

Percolation provides a natural model for studying the robustness of

networked systems [8,9]. For example, the failure of routers in the

Internet, or the vaccination of individuals to prevent the spread of

a disease, can be represented formally by the removal of the

corresponding vertices from the relevant networks. Although

a router that has failed or an individual that has been vaccinated is

still present in the network, from a functional point of view it may

as well have been removed.

One of the key aspects of studying percolation on a network N
is to understand how the size of the largest component changes as

Figure 1. Robustness against simultaneous attack for model networks with power-law and exponential degree distributions, with

N~10000, and different average degree k. (a)(b)(c) scale-free networks with k~4,6,8, respectively; (d)(e)(f) exponential networks with k~4,6,8,
respectively.
doi:10.1371/journal.pone.0059613.g001
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vertices are removed from the network [8,9]. This is clearly

relevant to the issue of network robustness since if the size of the

largest component is sufficiently small, relative to the original size

of the network, it is reasonable to assume that the networked

system will be unable to function in any sensible way. For an initial

network N of size N, let N r be the network that results from

removing a fraction r of the vertices according to some specified

procedure. We will denote by N
0

r the largest component of N r.

The key quantity that we will study here is the size s(r) of N
0

r

relative to the initial size of the network N : that is, s(r)~DN
0

rD=N,

where DN
0

rD denotes the number of vertices in N
0

r. Computing s as

a function of r allows us to quantify how the robustness of

a network depends on the fraction of vertices that are removed.

There are many ways in which vertices can be removed from

a network. The simplest is to remove the vertices uniformly at

random from the network. Studying how s depends on r when

vertices are removed uniformly at random is closely related to the

classical percolation process (in which vertices are removed at

random from a low dimensional lattice, such as the two-

dimensional square lattice, see [18]). There are other ways in

which vertices can be removed apart from uniformly randomly

and here we will follow [8], and also [6], and use the term

percolation to cover any specific procedure for vertex removal.

One particularly natural procedure is to remove vertices in order

of their degrees, from highest to lowest [7–10]. More generally, we

can consider removing vertices according to any quantity which

aims to measure the importance of different vertices. The concept

of a centrality measure attempts to provide precisely such

a quantification of the importance of the vertices in a network.

The simplest centrality measure is just the degree of the vertex.

Other well-known centrality measures attempt to quantify the

significance of a vertex by counting how many short paths between

other pairs of vertices pass through the vertex in question or by

calculating how close on average a given vertex is to all other

vertices in the network. The centrality measures of relevance to us

here are discussed in more detail in the next section.

Once a suitable centrality measure has been fixed, we can

compute s as a function of r for removing vertices in decreasing

order of that centrality measure. The robustness of a network

under this type of vertex removal can be quantified by the R- index,

which is defined by [13]

R~
1

N

X

N

i~1

s(i=N):

The normalization factor 1=N allows the robustness of networks

of different sizes to be compared [13]. It is straightforward to show

that for any scheme of removing vertices from any network, R

attains its minimum value of 1=N on the star graph and its

maximum value of 1
2
(1{1=N) on the complete graph. Thus, for

any network and method of vertex removal, R[½0, 1
2
�. Conse-

quently, we define the V - index V , which measures the vulnerability

of a network to a given scheme of vertex removal, to be the

complementary quantity to R,

V~
1

2
{R:

For uniform random removal of vertices and for removal of

vertices in decreasing order of degree the percolation process on

networks has been carefully studied, and elegant analytical results

have been obtained in the limit of large network size (i.e. in the

limit N??) [8,9]. One of the conclusions of these studies is that

scale-free networks are very robust to uniform random removal of

vertices, but highly susceptible to removal which targets the

Figure 2. Variance in V-index for scale-free networks with N~10000 and different average degree k. The variance is based on ten
different realizations of the network for each value of k, and the error bars represent the standard error.
doi:10.1371/journal.pone.0059613.g002
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highest degree vertices. These results are often paraphrased by

saying that scale-free networks are robust to ‘‘error’’, but

vulnerable to ‘‘attack’’.

Here we study the effect on network robustness of targeted

removal of vertices according to a number of more complex

centrality measures than simply degree. Since these centrality

Figure 3. Correlations between centrality measures of power-law and exponential networks with N~10000, k~4. (a) degree versus
betweenness, power-law network, (correlation= 0.878); (b) closeness versus eigenvector, power-law network (correlation = 0.564); (c) degree versus
betweenness, exponential network (correlation= 0.843); (d) closeness versus eigenvector, exponential network (correlation= 0.608).
doi:10.1371/journal.pone.0059613.g003

Figure 4. Robustness against simultaneous attack for model scale-free networks with N~10000, k~4, and different values of the

clustering coefficient C. (a) C~0:25; (b) C~0:5; (c) C~0:7.
doi:10.1371/journal.pone.0059613.g004
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measures are subtle non-local measures of a vertex’s significance it

seems unrealistic to anticipate any all-embracing analytical theory

of the corresponding percolation process, and hence our present

work is computational in nature.

Centrality Measures
The concept of a centrality measure attempts to identify which

vertices in a network are the most important or central [19,20]. A

number of different measures of centrality have been proposed for

networks, and here we will focus on the four most common: degree

centrality, eigenvector centrality, closeness centrality, and be-

tweenness centrality.

The networks that we consider here will be assumed to be

simple (i.e. no multi-edges or self-edges) and undirected. The

number of vertices in the network will be denoted by N and the

number of edges by M. Thus, for any such network N , the

adjacency matrix A, defined by

Aij~
1, if i and j are connected by an edge

0, otherwise,

�

is real symmetric, and consequently has real eigenvalues. Since N
is assumed to be simple it follows that Aii~0. We also introduce

the notation C(i) for the set of neighbors of vertex i:

C(i)~fj[N : Aij~1g. We now recall the definitions of the

centrality measures that will be important in this paper – see [6]

for a more detailed discussion.

Degree Centrality. The simplest measure of the centrality of

a vertex in a network is just the degree of the vertex. When degree

is used as a centrality measure it is often referred to as degree

centrality. It is clear from considering various examples of networks,

such as social networks or citation networks, that the number of

edges a given vertex is connected to (i.e. the vertex’s degree

centrality) may often be a good measure of the vertex’s

importance. Thus, if A is the adjacency matrix of the network

N then the degree centrality of a vertex i[N is simply the degree

di of i given by

Figure 5. Robustness against simultaneous attack for model scale-free networks with N~10000, k~4, and different values of the

coefficient of assortativity r. (a) r~{0:1; (b) r~0:1; (c) r~0:2.
doi:10.1371/journal.pone.0059613.g005

Figure 6. Variance in V-index for networks with N~1000, k~4 and varying clustering coefficients (a) and varying
assortativity coefficients (b). The variance is based on ten different realizations of the network for each value of clustering and assortativity
coefficient, and the error bars represent the standard error.
doi:10.1371/journal.pone.0059613.g006
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di~
X

N

j~1

Aij :

Eigenvector Centrality. Another widely employed centrality

measure, which can be viewed in a sense as a refinement of degree

centrality, is eigenvector centrality [21]. Whereas degree centrality

ranks a vertex as being important if it is connected to many other

vertices, eigenvector centrality is based on the more subtle notion

that a vertex should be viewed as important if it is linked to other

vertices which are themselves important. This notion naturally

leads to a recursive definition of eigenvector centrality [22]: the

eigenvector centrality ei of a vertex i is defined to be proportional

to the sum of the eigenvector centralities of the vertices it is

connected to, i.e.

ei~
1

r

X

j[C(i)

ej~
1

r

X

N

j~1

Aijej ,

where r is a constant. It will also be assumed that the eigenvector

centrality of each vertex is non-negative: i.e. ei§0, for all i. If e is

the vector of eigenvector centralities with elements ei, then we can

write the last equation in matrix form as e~ 1
r
Ae, or

Table 1. The V -indices of model networks in the case of simultaneous attack.

Degree Betweenness Closeness Eigenvector Random

Power-law network (N~10000, k~4) 0.402 0.381 0.212 0.188 0.092

Power-law network (N~10000, k~6) 0.311 0.277 0.139 0.127 0.044

Power-law network (N~10000, k~8) 0.249 0.213 0.097 0.090 0.030

Exponential network (N = 10000; k = 4) 0.292 0.272 0.173 0.141 0.089

Exponential network (N = 10000; k = 6) 0.188 0.173 0.102 0.082 0.044

Exponential network (N = 10000; k = 8) 0.134 0.123 0.066 0.051 0.026

Scale-free network with clustering (N = 10000;
k = 4; C = 0.25)

0.419 0.401 0.209 0.182 0.101

Scale-free network with clustering (N = 10000;
k = 4; C = 0.5)

0.444 0.433 0.232 0.211 0.111

Scale-free network with clustering (N = 10000;
k = 4; C = 0.7)

0.479 0.475 0.287 0.288 0.119

Scale-free network with assortativity (N = 10000;
k = 4; r =20.1)

0.397 0.346 0.133 0.100 0.082

Scale-free network with assortativity (N = 10000;
k = 4; r = 0:1)

0.274 0.240 0.194 0.190 0.147

Scale-free network with assortativity (N = 10000;
k = 4; r = 0.2)

0.272 0.236 0.193 0.190 0.153

The V -indices of model networks in the case of simultaneous attack by degree, betweenness, closeness, and eigenvector centralities.
doi:10.1371/journal.pone.0059613.t001

Table 2. The empirical networks we study and their basic properties.

N M k k , C r

Social network of frequent associations
between dolphins [36]

62 159 5.13 1 3.357 0.258 20.043

Coauthorships between scientists posting
preprints on the High-Energy Theory
E-Print Archive [37]

8361 15751 3.77 1332 7.025 0.442 0.294

Coauthorship network of scientists working
on network theory and experiment [38]

1589 2742 3.45 396 5.823 0.637 0.462

Network representing the topology of the
Western States Power Grid of the United
States [1]

4941 6594 2.67 1 18.989 0.080 0.003

Neural network of the worm C. elegans

[1,34]
297 2148 14.465 1 2.455 0.292 20.163

Network of protein-protein interactions in
the yeast S. cerevisiae [35]

2361 7182 6.084 101 4.376 0.130 20.085

Number of vertices N , number of edges M , average degree k, number of connected components k, average path length ‘, clustering coefficient C, and coefficient of
assortativity r.
doi:10.1371/journal.pone.0059613.t002
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Ae~re:

It follows from the non-negativity of e, using the Perron-

Frobenius theorem [23], that the eigenvector centralities of the

vertices in the network are given by the elements of the

eigenvector of A corresponding to the dominant eigenvalue.

The eigenvector centrality of a vertex has the attractive feature

that it can take a large value either by the vertex being

connected to many other vertices or by it being connected to

a small number of important vertices.

The eigenvector centrality also has an interesting relation to

a simple dynamical process on the network [6]. To see this let xi(t)

be a real valued dynamical variable associated to vertex i[N , at

time t. We can define a discrete dynamical process on N by

xi(tz1)~
X

j[C(i)

xj(t)~
X

N

j~1

Aijxj(t):

This can be written in vector form as x(tz1)~Ax(t), where

x(t) is the vector with elements xi(t). Given an initial vector x(0),

the vector x(t), at time t, is

x(t)~A
t
x(0):

We can obtain the asymptotic behavior of this system by writing

x(0) as a linear combination of the eigenvectors vi of A:

x(0)~
P

N

i~1

aivi:

Thus,

x(t)~A
t
X

N

i~1

aivi~
X

N

i~1

aiA
tvi~

X

N

i~1

ail
t
ivi,

where li is the eigenvalue of A corresponding to eigenvector vi.

Let lj be the largest eigenvalue and denote it by r. Then

x(t)~rt
X

N

i~1

ai
li

r

� �t

vi:

Since, li=rv1, for all i=j we have that x(t)?ajr
tvj as t??.

Therefore, in the asymptotic limit the value of the dynamical

variable associated to a vertex i[N is simply proportional to ei, the

eigenvector centrality of i. Thus, the eigenvector centrality can

also be interpreted as a measure of the relative asymptotic

distribution of the dynamical variable x(t) over the vertices of the

network.

The power method, which is an application of the equation

x(t)~A
t
x(0), provides an efficient method for computing the

eigenvalue centralities of the vertices of a network (see [6]).

Closeness Centrality. Closeness centrality provides a rather

different measure of centrality than degree or eigenvector

centrality, as it is based on the mean distance between a given

vertex and all other vertices in the network [24,25]. In order to

define closeness centrality we need the notion of a geodesic path in

a network. A geodesic path between two vertices i,j[N is simply

a path between i and j such that no path of shorter length exists

(where the length of a path between i and j is defined to be the

number of edges traversed in going from i to j). We note that

geodesic paths are not in general unique, since there can be several

paths between two given vertices with the same shortest length.

However, at least one geodesic path always exists between any two

vertices in the same connected component of a network.

Let cij be the length of a geodesic path from i to j in N . The

mean geodesic distance between i and all other vertices in the

network is

gi~
1

N

X

j[N
cij : ð1Þ

We note that it is natural to exclude the term i~j in calculating

this sum, since we are calculating the mean geodesic distance

between i and the other vertices in the network. However, since

cii~0 this term does not contribute to the sum, and (1) provides

a convenient definition of the mean geodesic distance. We now

define the closeness centrality ci of a vertex i by

ci~
1

gi
~

N
P

j[N cij
:

This quantity takes high values for vertices that are only a short

geodesic distance from many other vertices in the network, and is

a natural measure of centrality which is widely used in network

studies.

Here we adopt the standard convention that if a network has

more than one component then the closeness centrality of a vertex

i is calculated as the reciprocal mean geodesic distance from the

vertex to all other vertices in the same component – that is, the

sum in (1) is taken over only those vertices in the same component

as i (see, for example, [6]). We also note that there is an efficient

algorithm for computing closeness centrality [26].

Betweenness Centrality. A still different notion of centrality

is provided by betweenness centrality, which measures how many short

paths between vertices in the network pass through a given vertex

[27]. To be more precise let us first consider a network N for

which there is a unique geodesic path between any two vertices

(see [6]). If we consider the set of geodesic paths between all pairs

of vertices s,t[N , then the betweenness centrality of a vertex i[N
is defined to be the number of these paths that pass through i.

Thus, if we define

ni(s,t)~
1, if i lies on the geodesic path from s to t

0, otherwise,

�

then the betweenness centrality bi of i is given by

bi~
X

s,t[N

ni(s,t):

Robustness and Centrality of Networks
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Let us now consider the general case in which the network may

have more than one geodesic path connecting a pair of vertices

(see [6]). The standard way of extending the notion of betweenness

centrality to this situation is to give each geodesic path between

two vertices r,s a weight equal to the reciprocal of the number of

geodesic paths from r to s, and then to define the betweenness

centrality of a vertex to be the sum of the weights of all geodesic

paths that pass through it.

The betweenness centrality in the general case can, therefore,

be expressed in terms of the number of geodesic paths from s to t

that pass through i, mi(s,t), and the total number of geodesic paths

from s to t, t(s,t), as:

bi~
X

s,t[N

mi(s,t)

t(s,t)
,

where we define mi(s,t)=t(s,t)~0 if both mi(s,t)~0 and t(s,t)~0.

Betweenness centrality is interestingly different from the pre-

ceding three measures of centrality in that a vertex may have a high

betweenness centrality while being connected to only a small

number of other vertices, which need not have great importance

themselves. This is because vertices that act as ‘‘bridges’’ between

groups of other vertices will typically have high betweenness

centrality. Thus, vertices with high betweenness centrality play an

important role in governing the flow of information through

a network. This feature of betweenness centrality makes it an

important centrality measure for a wide range of social,

technological, and biological networks. Here again there is an

efficient algorithm to calculate betweenness centrality [28].

Results

In this section we investigate the effect on network structure of

removing vertices according to some specified procedure. Here the

procedure of interest will be to remove vertices in order of their

importance, as determined by one of the four centrality measures

discussed in the previous section. That is, for any network under

consideration, we determine the importance of the vertices in the

network by calculating the degree, betweenness, closeness, or

eigenvector centralities of the vertices, and then compute the effect

on the size of the largest connected component of the network of

removing a given fraction of the vertices in decreasing rank order

with respect to the specified centrality measure.

It is important to note that there are two distinct schemes

according to which a given centrality measure can be used to

target the removal of vertices in a network. In the first, the

centrality measure is calculated for all vertices in the network, and

then a specified fraction of the vertices are removed in order of the

centrality measure, from highest to lowest. We shall refer to this

procedure as simultaneous targeted attack. Simultaneous targeted

attack is a natural scheme for removing vertices in various

situations. For example, in the context of vaccinating the

individuals in a population to prevent the spread of an infectious

disease, it is reasonable to compute some measure of the

significance of each vertex in the contact network for acquiring

and/or transmitting the disease, and then vaccinate some fraction

of the population in decreasing order of that measure. When the

centrality measure is simply degree this type of vaccination scheme

has been well-studied [10].

In the second scheme, the centrality measure is calculated for all

vertices in the initial network, and the vertex with highest

centrality measure is removed. The removal of this vertex results

in a new network in which the centrality measures of the

Figure 7. Robustness against simultaneous targeted attack for some empirical networks. (a) dolphin social network; (b) high-energy
physics collaboration network; (c) network science collaboration network; (d) power grid network; (e) neural network of C. elegans; (f) protein-protein
interaction network of S. cerevisiae.
doi:10.1371/journal.pone.0059613.g007
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remaining vertices may be different from the values that were

calculated for them previously. We, therefore, recalculate the

centrality measures of all vertices in the new network and again

remove the highest ranked. This process of recalculation of

centrality measures and removal of the highest ranked vertex is

continued until the desired fraction of vertices has been removed.

We shall refer to the latter procedure as sequential targeted attack.

Sequential targeted attack is the more natural method of vertex

removal in certain situations. One example of such a situation is

the identification of the most vulnerable vertices in the Internet in

order to protect the network’s function. Since the failure of

different routers can realistically be assumed to be distributed over

some period of time, and since the failure of any one router will

affect the importance of the remaining ones, it is appropriate to

model the vulnerability of the system by sequential targeted attack.

A second example of the appropriateness of sequential targeted

attack arises in analyzing the effect of vertex removal in biological

networks, such as protein-protein interaction networks. If a muta-

tion in the gene coding for a particular protein results in the

protein being biologically inactive (e.g. being unable to form

a protein interaction complex) then the corresponding vertex in

the protein-protein interaction network is effectively removed. If

the mutation is not lethal then a subsequent gene mutation could

occur in a later generation resulting in the removal of another

vertex in the protein-protein interaction network of the organism.

This process could, in principle, continue for a number of

mutations. In such a situation vertex removal occurs sequentially

and the vulnerability of the protein-protein interaction network

should be modeled by sequential targeted attack.

Here we study the percolation processes on complex networks

for both simultaneous targeted attack and sequential targeted

attack based on degree, betweenness, closeness, and eigenvector

centrality. The effect of simultaneous and sequential targeted

attack on certain networks according to only degree and

betweenness was discussed in [14], and also in [15].

Simultaneous Targeted Attack
We now study the robustness of a variety of model and real-

world networks to simultaneous targeted attack according to

degree, betweenness, closeness, and eigenvector centrality mea-

Figure 8. Robustness of model networks with power-law and exponential degree distributions, with N~1000, and k~4. (a)(b) scale-
free network against simultaneous and sequential attacks, respectively; (c)(d) exponential network against simultaneous and sequential attacks,
respectively.
doi:10.1371/journal.pone.0059613.g008
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sures. For each network we calculate each of these four centrality

measures for all vertices, and then compute the fractional size of

the largest component s(r), when a fraction r of the vertices have

been removed in decreasing order of a specified centrality

Figure 9. Robustness of model scale-free networks with N~1000, k~4, and different values of the clustering coefficient C. (a)(b)(c)
networks with C~0:25, 0:5, 0:6, respectively, against simultaneous attack; (d)(e)(f) networks with C~0:25, 0:5, 0:6, respectively, against sequential
attack.
doi:10.1371/journal.pone.0059613.g009

Figure 10. Robustness of model scale-free networks with N~1000, k~4, and different values of the coefficient of assortativity r.
(a)(b)(c) networks with r~{0:1, 0:1, 0:2, respectively, against simultaneous attack; (d)(e)(f) networks with r~{0:1, 0:1, 0:2, respectively, against
sequential attack.
doi:10.1371/journal.pone.0059613.g010
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measure. We study this process for model networks with power-

law and exponential degree distributions, for model networks with

clustering and with assortativity and disassortativity, and for

a number of empirical networks.

Figure 1 shows robustness results for networks with power-law

degree distribution, generated using the Barabási-Albert prefer-

ential attachment model (in which each new vertex entering the

network attaches to a fixed number of existing vertices chosen in

proportion to their degrees [2]), and for networks with exponential

Figure 11. Robustness of empirical networks. (a) dolphin social network against simultaneous attack; (b) high-energy physics collaboration
network against simultaneous attack; (c) network science collaboration network against simultaneous attack; (d) dolphin social network against
sequential attack; (e) high-energy physics collaboration network against sequential attack; (f) network science collaboration network against
sequential attack; (g) power grid network against simultaneous attack; (h) neural network of C. elegans against simultaneous attack; (i) protein-protein
interaction network of S. cerevisiae against simultaneous attack; (j) power grid network against sequential attack; (k) neural network of C. elegans
against sequential attack; and (l) protein-protein interaction network of S. cerevisiae against sequential attack.
doi:10.1371/journal.pone.0059613.g011
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degree distribution, generated using the growing random graph

model (in which each new vertex entering the network attaches to

a fixed number of existing vertices chosen uniformly at random

[29]). Both power-law and exponential degree distributions

commonly occur in real-world networks [30].

It is apparent from both the graphs of s(r) against r and from

the corresponding V -indices that networks with both power-law

and exponential degree distributions are most vulnerable to

simultaneous targeted attack according to degree centrality. These

networks are almost as vulnerable to simultaneous targeted attack

according to betweenness centrality, with attack based on closeness

and eigenvector centrality being considerably less effective.

Random (i.e. non-targeted) attack is much less effective at

degrading the structure of these networks than targeted attack

based on any of the four centrality measures. It is rather striking

that degree which is a purely local centrality measure provides

a more effective means of targeting vertices than any of the other

centrality measures, which are non-local in nature and can

account for the global structure of the network. We believe that

degree centrality will prove in general to be superior to other

centrality measures at exposing the vulnerability under simulta-

neous targeted attack of any network which lacks certain specific

structural properties that would favor the efficacy of other

centrality measures. For instance, the presence in a network of

a large number of low degree vertices that act as ‘‘bridges’’

between different highly connected parts of the network might be

expected to favor betweenness centrality as the most effective

method of detecting highly vulnerable vertices. In the absence of

any particular structural properties the best estimator of the

vulnerability of a vertex under simultaneous targeted attack

appears to be simply the number of neighbors that the vertex has.

The networks considered in Figure 1, although having prescribed

degree distributions, are essentially random in nature and thus lack

Table 3. Comparison of the V -indices of model and empirical networks in the case of simultaneous and sequential attacks.

Degree Betweenness Closeness Eigenvector Random

Power-law network (N~1000, k~4) 0.391 0.377 0.207 0.183 0.067

0.394 0.409 0.402 0.398 0.077

Exponential network (N~1000, k~4) 0.297 0.278 0.187 0.161 0.103

0.321 0.335 0.329 0.325 0.082

Scale-free network with clustering
(N~1000, k~4, C~0:25)

0.402 0.390 0.226 0.206 0.079

0.406 0.424 0.418 0.410 0.095

Scale-free network with clustering
(N~1000, k~4, C~0:5)

0.431 0.428 0.264 0.251 0.128

0.434 0.456 0.453 0.431 0.124

Scale-free network with clustering
(N~1000, k~4, C~0:6)

0.456 0.449 0.303 0.307 0.145

0.457 0.470 0.467 0.455 0.138

Scale-free network with assortativity
(N~1000, k~4, r~{0:1)

0.387 0.375 0.215 0.192 0.124

0.396 0.413 0.401 0.402 0.078

Scale-free network with assortativity
(N~1000, k~4, r~0:1)

0.313 0.290 0.210 0.202 0.117

0.355 0.381 0.367 0.364 0.114

Scale-free network with assortativity
(N~1000, k~4, r~0:2)

0.341 0.330 0.254 0.245 0.124

0.374 0.391 0.382 0.378 0.130

Dolphin social network 0.220 0.249 0.121 0.097 0.116

0.271 0.325 0.315 0.262 0.125

High-energy physics collaboration network 0.448 0.448 0.393 0.266 0.250

0.452 0.470 0.465 0.444 0.248

Network science collaboration network 0.491 0.488 0.487 0.475 0.443

0.494 0.489 0.497 0.489 0.434

Power grid network 0.437 0.434 0.303 0.157 0.273

0.448 0.490 0.485 0.446 0.292

Neural network of C. elegans 0.169 0.152 0.106 0.115 0.023

0.214 0.289 0.281 0.210 0.034

Protein-protein interaction network of S. cerevisiae 0.391 0.386 0.334 0.298 0.109

0.399 0.418 0.408 0.397 0.107

Comparison of the V -indices of model and empirical networks in the case of simultaneous (top row) and sequential (bottom row) attacks by degree, betweenness,
closeness, and eigenvector centralities.
doi:10.1371/journal.pone.0059613.t003
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any specific structural properties that would allow other centrality

measures to be superior estimators of vulnerability than degree.

Here we have calculated the robustness results using a single

realization of each type of random network. It is important to

obtain some sense of the variance in the V-index that results from

different network realizations. This is shown for scale-free

networks of varying mean degrees in Figure 2. We note that

there is very little variance in the values of the V-index obtained

from different network realizations. Thus, the robustness results

obtained from a single realization of a given type of network

provide a true picture of the general robustness of networks of that

type.

An interesting result, that is immediately apparent from

Figure 1, is that targeting vertices according to either degree or

betweenness is very similar in effect. It is clearly also the case that

targeting vertices by either closeness or eigenvector centrality has

much the same effect. The explanation for these similarities is that

for networks with both power-law and exponential degree

distributions the degree and betweenness centralities of the

vertices are strongly correlated, and the closeness and eigenvector

centralities are also highly correlated. These correlation results are

shown in Figure 3.

A common property of real-world networks is that they have

non-trivial clustering coefficient. The clustering coefficient of

a network measures the average probability that two neighbors of

a vertex are themselves adjacent. The local clustering coefficient

Ci of a vertex i[N is defined to be [5].

Ci~
(number of pairs of neighbors of i that are adjacent)

(number of pairs of neighbors of i)
:

The global clustering coefficient C for the whole network is then

defined as the mean of the local clustering coefficients Ci [6]:

C~
1

N

X

N

i~1

Ci:

A network with C~1 has maximal clustering, while one with

C~0 has no clustering.

Figure 4 shows robustness results for scale-free networks with

different clustering coefficients (generated using the Holme-Kim

model [31]). It is clear from the graphs of s(r) and from the

corresponding V -indices, that for scale-free networks with

clustering, simultaneous targeted attack by degree is again most

effective at exposing network vulnerability. The efficacy of

Figure 12. A comparison of the structure of the neural network of C. elegans when 20% of the vertices have been removed
according to both simultaneous and sequential attack, in decreasing order of degree, eigenvector, closeness and betweenness
centrality measures. (a)(b)(c)(d) simultaneous attack based on degree, eigenvector, closeness and betweenness centrality measures, respectively;
(e)(f)(g)(h) sequential attack based on degree, eigenvector, closeness and betweenness centrality measures, respectively. For clarity, the vertices in the
largest component are colored blue, while all other vertices are colored black. The relative size of the largest component, s(0:2), for the different
cases are: (a) s(0:2)~0:731; (b) s(0:2)~0:761; (c) s(0:2)~0:761; (d) s(0:2)~0:734; (e) s(0:2)~0:721; (f) s(0:2)~0:723; (g) s(0:2)~0:401; (h)
s(0:2)~0:458.
doi:10.1371/journal.pone.0059613.g012
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simultaneous targeted attack by other centrality measures follows

a similar pattern as for networks without clustering. However, as

clustering increases the effectiveness of attack based on degree and

on betweenness becomes almost indistinguishable, as does that of

attack based on closeness and eigenvector centrality.

One additional unexpected result is that increasing clustering

coefficient results in decreasing robustness to simultaneous

targeted attack by any centrality measure, with the most dramatic

effect being displayed for attack based on degree and betweenness.

The networks with different clustering coefficients constructed

using the Holme-Kim model [31] have no significant differences in

their degree distributions or number of edges. There is, however,

an increase in average path length with increasing clustering

coefficient, which is characteristic of decreasing robustness [7]. We

find that the average path lengths for the networks studied in

Figure 4 are ‘~5:070, 5:211, 5:685 for C~0:25, 0:5, 0:70,
respectively. This increase in the average path length with

increased clustering is consistent with the increase in the V-index

with increased clustering, and supports the general conjecture that

networks exhibit decreased robustness with increased clustering

coefficient. This result has potentially important implications as

most real-world networks have significant levels of clustering, and

thus may be more fragile to targeted attack than networks with the

same degree distribution but lower clustering. This result raises the

possibility that one procedure for increasing the robustness of

certain real-world networks (such as some technological networks)

is to design them with as low a clustering coefficient as is consistent

with the functional requirements of the network. Understanding

the fundamental origin of the decrease in robustness of networks as

their clustering coefficient increases appears to be an important

topic for future research.

Another common property of real-world networks is that they

possess some amount of assortativity or disassortativity [32].

Assortative networks have the property that high degree vertices

tend to be connected to other high degree vertices and low degree

vertices to other low degree ones. In contrast, for disassortative

networks, high degree vertices tend to be connected to low degree

vertices and vice versa. Social networks are usually assortative,

while biological and technological networks are typically disas-

sortative [32].

The assortativity (or disassortativity) of a network can be

measured by the coefficient of assortativity r, defined by [32]

r~

PN
i,j~1 (Aij{didj=2M)didj

PN
i,j~1 (didij{didj=2M)didj

,

where di is the degree of vertex i[N and dij is the Kronecker delta.

Figure 13. A comparison of the structure of the protein-protein interaction network of S. cerevisiae when 15% of the vertices have
been removed according to both simultaneous and sequential attack, in decreasing order of degree, eigenvector, closeness and
betweenness centrality measures. (a)(b)(c)(d) simultaneous attack based on degree, eigenvector, closeness and betweenness centrality
measures, respectively; (e)(f)(g)(h) sequential attack based on degree, eigenvector, closeness and betweenness centrality measures, respectively. For
clarity, the vertices in the largest component are colored blue, while all other vertices are colored black. The relative size of the largest component,
s(0:15), for the different cases are: (a) s(0:15)~0:355; (b) s(0:15)~0:572; (c) s(0:15)~0:492; (d) s(0:15)~0:368; (e) s(0:15)~0:289; (f) s(0:15)~0:282;
(g) s(0:15)~0:027; (h) s(0:15)~0:011.
doi:10.1371/journal.pone.0059613.g013
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Networks with rw0 are assortative and those with rv0 are

disassortative. Networks with r~0 are neither assortative nor

disassortative. There are a variety of algorithms for generating

networks with a given degree distribution and coefficient of

assortativity. Here we generate assortative and disassortative

networks by applying the rewiring algorithm of [33] to

a Barabási-Albert’s scale-free network. Since the rewiring pro-

cedure maintains the degree sequence of a network, this procedure

results in a scale-free network with a non-zero coefficient of

assortativity.

The robustness results for such scale-free networks with different

coefficients of assortativity are shown in Figure 5. These results

show some interesting differences from the previous cases. For

disassortative networks (rv0), simultaneous targeted attack by

degree is again the most effective means of exposing the

vulnerability of a network. For such networks, the advantage of

targeting vertices by degree rather than betweenness is even

greater than for networks with zero degree of assortativity. This

result appears to reflect the fact that for disassortative networks the

high degree vertices are distributed throughout the network, and

so the removal of the high degree vertices rapidly degrades the

structure of the network.

In contrast, for assortative networks (rw0), simultaneous

targeted attack by betweenness is initially the most effective

method of degrading the network. Once the fraction of vertices

removed exceeds about 25%, targeting according to degree rather

than betweenness results in the network being degraded more

rapidly. This result is a consequence of the fact that for an

assortative network high degree vertices are preferentially con-

nected to other high degree vertices, and thus form a concentrated

interconnected core. Consequently, the network is relatively robust

against the removal of high degree vertices, since the removal of

a moderate number of vertices in the core will be unlikely to

dramatically affect the size of the largest connected component. In

this case the non-local information concerning the global structure

of the network contained in the betweenness centrality is better

able to identify the most critical vertices. Since removing vertices

according to betweenness centrality results in a rapid decrease in

the size of the largest component in the network, it follows that

once a sufficient fraction of the vertices have been removed the

core of high degree vertices will have been significantly di-

minished. Once this point is reached targeting vertices by degree

again becomes the most effective method of exposing network

vulnerability. The relevant V -indices show that despite the

differences in how assortative and disassortative networks are

degraded by vertex removal according to different centrality

measures, the overall effectiveness of the various attack schemes

follows the same pattern as that found above for networks with

zero coefficient of assortativity: namely, attack based on degree is

the most effective overall and that based in eigenvector centrality is

the least.

In the preceding discussion of the robustness of clustered and

assortative networks we have, as before, determined the robustness

results using a single realization of each type of network. Again, it

is important to understand the variance in the V-index that results

from different network realizations. This is shown for networks

with varying clustering coefficients and assortativity coefficients in

Figure 6. We note that there is little variance in the values of the

V-index obtained from different network realizations, and thus,

the robustness results obtained from a single realization of a given

type of network gives an accurate account of the general

robustness of networks of that type.

The V-indices under simultaneous targeted attack for all the

networks discussed above are summarized in Table 1.

The preceding results have focused on important types of

networks that have been generated using network models. We

have also studied the robustness of a number of empirical

networks: namely, the neural network of the nematode C. elegans

[1,34], the power grid of the western United States [1], the

protein-protein interaction network of the yeast S. cerevisiae [35],

a dolphin social network [36], a high-energy physics collaboration

network [37], and a network science collaboration network [38].

The basic properties of these networks are summarized in Table 2.

We note that the neural network of C. elegans is naturally a directed

network [34]. Here, however, following a common practice in

network studies, we shall ignore the orientation of this network

(see, for example, [1]), and consider it as an undirected network.

Figure 7 shows the robustness results for these empirical

networks. These results are broadly consistent with those found for

the different classes of model networks. The clearest feature of the

graphs and the corresponding V -indices is that in most cases

simultaneous targeted attack by degree and betweenness are the

most effective means of degrading the networks. In all cases these

two centrality measures are of very similar efficacy, with degree

being slightly better in some cases and betweenness in others. It is

interesting to note that the network science collaboration network,

which has a clustering coefficient of C~0:637, exhibits the

fragility to simultaneous targeted attack that was observed in

model networks with high clustering coefficient. We believe that

the lack of robustness exhibited by this network is an empirical

example of the previously conjectured general property of

networks exhibiting decreased robustness as their clustering

coefficient increases. We note that this network also has a high

assortativity coefficient of r~0:462, however, we do not believe

this to be the cause of the fragility of the network since we found in

our studies of model networks that robustness increases as the

assortativity coefficient increases.

Sequential Targeted Attack
We next turn to the study of the robustness of networks under

sequential targeted attack.

Figure 8 shows the robustness results for sequential targeted

attack on networks with power-law and exponential degree

distributions (in comparison with the corresponding results for

simultaneous targeted attack). It is immediately apparent from the

graphs of s(r) and the corresponding V -indices that networks are

degraded quite differently under sequential targeted attack as

compared to simultaneous targeted attack. First, it is clear that

networks exhibit greater vulnerability to sequential attack based on

any centrality measure than is the case under simultaneous attack.

Second, the large difference in the efficacy of targeted attack

according to different centrality measures (e.g., targeting according

to degree as opposed to targeting by eigenvector centrality) that

occurs with simultaneous attack is no longer present with

sequential attack. With sequential targeted attack the most

effective means of degrading these networks is through removing

vertices in decreasing order of betweenness centrality. Next most

effective are closeness and eigenvector centrality, and degree

centrality is the least effective. This is in stark contrast to the

situation for simultaneous targeted attack in which removing

vertices in decreasing order of degree proved to be consistently

superior to any other centrality measure. However, there are only

small differences in the effectiveness of sequential targeted attack

based on different centrality measures.

Figure 9 and Figure 10 show the robustness results for scale-free

networks with different clustering coefficients and with different

degrees of assortativity, respectively. The results for both classes of

networks follow the same pattern as found for networks without

Robustness and Centrality of Networks
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clustering or assortativity. In all cases for sequential attack the

networks are most effectively degraded by removing vertices in

decreasing order of betweenness centrality, while removing

vertices in reverse order of degree is the least effective method.

Again there are only small differences in the effectiveness of

sequential targeted attack based on different centrality measures;

and in the case of networks with clustering, attack based on

betweenness and closeness are almost indistinguishable in efficacy,

as are attack based on eigenvector and degree centrality.

We have also studied the robustness under sequential targeted

attack of the six empirical networks. Figure 11 shows these results.

The pattern that emerges here is that sequentially targeting

vertices according to betweenness centrality is the most effective

means of degrading these networks. Sequentially targeting vertices

by closeness centrality is almost as effective as using betweenness

centrality. It is interesting to note that the lack of any great

difference in the effectiveness of sequentially targeting vertices

according to different centrality measures that was observed for

model networks does not hold in general for these empirical

networks. Both the neural network and the dolphin network show

significant differences in the efficacy of sequential targeting based

on different centrality measures. In both cases, sequentially

targeting according to betweenness and closeness are most

effective, while targeting based on eigenvector and degree

centrality are considerably less so.

The V-indices under both simultaneous and sequential targeted

attack for all the synthetic and empirical networks discussed here

are summarized in Table 3.

Finally, it is interesting to visualize the structure of various

networks under both simultaneous and sequential targeted attack

according to different centrality measures. As an illustration of

such structure we show in Figure 12 the neural network of C.

elegans when a fraction of the vertices have been removed through

both simultaneous and sequential targeted attack according to the

four centrality measures. The corresponding results for the

protein-protein interaction network of S. cerevisiae are shown in

Figure 13. In both cases it is clear that the sizes of the largest

components do not change greatly for simultaneous targeted

attack based on any of the four centrality measures. In contrast to

this, the size of the largest component for both networks is

significantly smaller for sequential targeted attack according to

betweenness and closeness than for sequential targeted attack

according to eigenvector and degree centrality.

Discussion

Complex networked systems occur in many areas of the natural

and social sciences, and also in many technological areas. In view

of the prevalence of such systems, it is of great importance to

understand how the failure of their component parts impacts the

integrity of the overall system. This issue is closely related to

understanding how the structure of a complex network changes as

the vertices in it are removed. Here we have investigated how the

structure of complex networks changes as vertices are removed

according to simultaneous and sequential targeted attack based on

degree, betweenness, closeness, and eigenvector centrality mea-

sures. Our results extend those previously found in [14] for

targeted attack based only on degree and betweenness. For

simultaneous attack against most classes of model networks it is the

case that the most vulnerable vertices are those with highest

degree. Thus, removing vertices in decreasing order of degree is

most effective at degrading these types of networks. It is rather

striking that degree, which is a purely local centrality measure, is

more effective at identifying those vertices whose removal most

significantly impact the structure of the network than the other

three centrality measures, which are more complex and non-local

in nature. A significant caveat concerning this result is that for

assortative networks removing vertices in decreasing order of

betweenness centrality is initially more effective at degrading such

networks. Once a sufficient fraction of the vertices have been

removed according to betweenness it again becomes more

effective to remove vertices in reverse order of degree.

For sequential targeted attack, the results are significantly

different. For sequential attack against all of the networks we have

considered removing vertices in reverse order of betweenness is the

most effective means of degrading the network structure. Re-

moving vertices in decreasing order of closeness is in all cases

almost as effective as removing them based on betweenness.

Eigenvector and degree centrality are the least effective methods of

exposing network vulnerability under sequential attack. It is

important to note, however, that for all of the classes of model

networks that we have considered the differences in the

effectiveness of sequential targeted attack based on any of the

four centrality measures is small. In contrast to this is the

interesting fact that for empirical networks there can be significant

differences in the effectiveness of sequential targeted attack based

on different centrality measures. In these cases, betweenness and

closeness prove to be the most (and almost equally) effective means

of targeting vertices for removal, while eigenvector and degree

centrality are the least effective. It appears that this difference in

the vulnerability of model and empirical networks to sequential

targeted attack based on various centrality measures reflects subtle

structural properties that are possessed by certain empirical

networks but are absent from model networks, even when the

model networks have similar degree distributions, clustering

coefficients and coefficients of assortativity to the empirical

networks under consideration. Elucidation of the nature of these

structural differences appears to be an interesting and important

avenue for future research.
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