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Abstract— Electric power networks have been studied as a typical 
example of real-world complex networks. Different from previous 
approaches, in this brief, a hybrid algorithm for structural 
vulnerability analysis of power networks is proposed. In the 
algorithm a DC power flow model with hidden failures is embedded 
into the error and attack tolerance methodology. The scheme 
embodies some important characteristics of power networks, which 
had been ignored in previous approaches. Furthermore, the 
simulation test on the standard IEEE 118 bus system demonstrates 
different phenomena from previous results which said that power 
grids are robust to random failure but vulnerable to intentional 
attacks. We find that there exists a critical region and when the 
power grid operates in the critical region, it is vulnerable to both 
random and intentional attacks. Finally, an analytical method is 
presented to support the new result. 
Index terms- Complex networks, Power networks, Vulnerability, 
DC flow model 

I. INTRODUCTION 

Since its naissance, power networks have received much 
attention and electricity is recognized as a key to societal 
progress throughout the world. However, the frequency of 
large blackouts has not decreased in spite of technological 
progress and huge investments in system reliability and 
security. For instance, in July and August 1996, two blackout 
events took place successively in the power grid of west 
American, which led to more than 4 million people in 11 
states out of power service [1].  In August 2003, a historic 
blackout is triggered in the power grid of the United States 
and Canada, which disconnected 61,800 MW of power to an 
area spanning most of the north-eastern states and  two 
provinces of Canada, totally, containing 50 million people 
[2]. This event astonished the whole world and even 
reminded many people of 9.11. Although American 
government has ruled out terrorism as a possible cause for 
the blackout, it does not mean that power systems could not 
became the next targets to terrorists with a broad range of 
terrible motives [3].  
      Because the loss of large blackouts is usually huge, 
identifying the vulnerability of power grids and defending 
terrorist attacks become an urgent and important work for 
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government and researchers. The frequent occurrence of 
blackouts exposes potential problems of current 
mathematical models and analysis methodology in power 
systems, which simulates researchers to seek solutions from 
alternative means.  
      Recently, complex networks theory and its error and 
attack tolerance methodology have drawn the link between 
the topological structure and the vulnerability of networks. 
Initially, the methodology was proposed by physicists and 
they mainly focused on complex abstract networks, such as 
ER random networks, BA scale-free networks etc. [4-8]. 
Then some physicists tried to employ the methodology into 
analyzing structural vulnerability of power networks because 
mathematically, power networks can be described as a 
complex network with nodes connected by edges [9]. Motter 
et al. [1] discussed cascade-based attacks on real complex 
networks and pointed out that the Internet and power grids 
were vulnerable to important node attacks but evolved to be 
quite resistant to random failure of nodes. Casals et al. 
analyzed topological vulnerability of European power grid 
[10] and found that power grids display patterns of reaction 
to node loss similar to those observed in scale-free networks, 
namely robust-yet fragile property. Similar results could be 
found in Crucitti et al.’ and Kinney et al.’ work, in which 
they made structural vulnerability analysis for Italian electric 
power grid [11] and North American power grid [12] 
respectively.       
        Above work is a good start to analyze vulnerability of 
power networks and complex network theory inaugurates a 
new direction for power systems research. However, 
electrical power networks are quite different from those 
abstract networks. They are governed by Kirchoff's Voltage 
and Current Laws, not simply by topological structure, 
which might result in a unique pattern of interaction between 
different nodes. Consequently, whether these results [9-12] 
will remain valid when dealing with power systems given the 
characteristics of the system and power flow constraints is 
still unknown.  
     In this brief paper, a hybrid algorithm will be proposed, 
which includes a DC power flow model with hidden failures. 
The error and attack tolerance methodology is still adopted in 
the algorithm by which we will further investigate the 
structural vulnerability of power networks. 

II. ERROR AND ATTACK TOLERANCE METHODOLOGY 

       The aim of the methodology is to investigate structural 
vulnerability by removing a single or a group of nodes 
randomly (error) or intentionally (attack) and then evaluate 
how much the performance of the network is affected. In 
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fact, in most real complex networks the breakdown of a 
single node can be sufficient to cause the entire systems to 
collapse due to the dynamics of redistribution of flows on the 
networks. Therefore, a dynamical model is adopted widely 
[5-6 11-12].  
     The model iteratively applies a rule for mimicking the 
cascading failure by removing a node in each iteration. In 
order to evaluate how well a system works before and after 
the breakdown, the average efficiency or average efficiency 
loss of networks [5-6, 11-12] is introduced. To characterize 
the load distribution in the network, the concept of 
betweenness is used [5-6 11-12]. The betweenness at a node i 
is defined as the total number of shortest paths passing 
through this node. The capacity of a node is the maximum 
betweenness that the node can handle. For a real world 
network, the capacity is severely limited by cost. Thus it is 
natural to assume that the capacity Ci of a node i is 
proportional to its initial load carried by i 
                     ,,,2,1)0( NiLC ii                    (1) 

where >=1 is a tolerance parameter of the network and Li(0) 
is the initial betweenness handled by node i at iteration step 
t=0, viz. before the removal [5-6, 11-12]. With such a 
definition of capacity, the network is in a stationary state in 
which it operates with an initial average efficiency. The 
removal of a node triggers the dynamics of redistribution of 
flows on the network. In fact the removal of a node changes 
shortest paths between nodes and consequently the 
distribution of loads, which would create overloads on some 
nodes.  At each iteration step t, the following iterative rule is 
adopted [5-6, 11-12] 
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where w is the adjacency matrix of the network and j extends 
to all the first neighbors of i. In this way if at each iterative 
step, a node i is overloaded, the length of all the edges 
passing through it is increased, which can change the shortest 
paths between nodes, leading to a new redistribution of the 
loads and then some nodes may be overloaded. The process 
will continue and produce a dynamic evolution of networks 
namely a cascading failure, which can cause the average 
efficiency degradation.  
        The methodology has been employed in abstract 
networks and real world networks. However, it ignores some 
important characters of power systems when it was applied 
in this field directly. Firstly, the dynamical evolution of real 
power networks is based on power flow distribution not 
betweenness distribution. Secondly in power networks, 
cascading failures largely come from overloaded lines viz. 
transmission lines, and nodes (usually substation) are not 
easy to fail because of special protection. Thirdly, hidden 
failures are quite common in blackouts of power networks. 
Finally, electrical engineers usually use the amount of load 
shedding, namely loss of supply to customer, as a measure 
for damage of power networks, not average efficiency loss. 
Therefore, in order to better study the vulnerability of power 

networks, considering power systems characters and power 
flow equations are needed.  

III. THE HYBRID ALGORITHM 

A. Hidden failures in protection systems 

 Recent NERC [15] (North American Electric Reliability 
Council) studies of major blackouts have shown that more 
than 70% of those blackouts involved hidden failures, which 
are incorrect relay operations, namely removing a circuit 
element(s) as a direct consequence of another switching 
event [16-17]. When a transmission line trips, there is a small 
but significant probability that lines sharing a bus (those 
lines are called as expose to hidden failures) with the tripped 
line may incorrectly trip due to relay misoperation.  
    The probability of such occurrence is small but not 
negligible. In this paper, we model hidden failures in the 
following way [16]. Each exposed line has a different load 
dependent probability of incorrect failure that is modeled as 
an increasing function of the power flow on the line. The 
probability is low below the line security limit and increases 
linearly to 1 when the line flow is 1.4 times of the safe limit. 

B. The DC Power equations model 

 Usually the DC power flow equations [16, 18-19] can be 
defined as 

                    APF                                                   (3) 
where T

nline tFtFtFF ))(),...,(),(( 21  is the vector of 

real power flows on the transmission lines. A is a constant 

matrix and T
nbusppppP ),...,,( 13,21   is a vector whose 

nbus-1 components are real power injections at all buses 
except slack bus to avoid singularity of A. nline is the number 
of transmission lines and nbus is the number of buses in the 
system.  

When a line trips, it is necessary to redispatch the injected 
power to satisfy the system constraints. The redispatch is 
formulated as a linear programming problem [16, 18-19] 
there the cost function is minimized as, 





loadj
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subject to the DC load flow (3) and overall power balance. 
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where pi is generated power for generator i, cj is load 
shedding for load j and dj is initial load. Furthermore, this 
minimization is done with the following constraints: 
(a) Generation capacity limits for generator i 

      maxmin
iii ppp                                     (6) 

(b) The constraints of load shedding limits for load j         
                     

jj dc 0                                             (7) 

(c) The line flow limits 
       s

kk FF *4.1                                        (8) 

where s
kF is the secure line flow limit of line k. If 
s

kk FF  , the line k is considered as overload, and 1.4 



 
 

 

times of s
kF is the maximum flow that line k can bear. When 

a line is overloaded and if it is not exposed to hidden failures, 
it is still possible to fail. Thus, we set a probability p0 to 
consider this failure.  

      Similar with (1) s
kF can be defined as 

       k
s

k LF                                               (9) 

where the constant 1 is a tolerance parameter and Lk is 
the initial power flow on line k when power grids are 
operated normally before disturbance.   

This linear programming (LP) problem can be 
numerically solved by using the simplex method as 
implemented in [20].  

C.  Algorithm procedure 

The algorithm starts at a feasible solution of the system as 
in (3). The initial disturbance is triggered by different attacks 
on nodes or edges and then hidden failures are tested for 
possible lines tripping. Then the power flow equations and 
LP programming are recalculated. When a solution is found, 
the overloaded lines of the solution are tested for possible 
outages. The process will continue until a solution is found 
with no more line overloaded.  The flowchart of the 
procedure is shown in Figure 1. 

                        
                     Fig. 1:  Flowchart of the proposed algorithm 

IV. SIMULATIONS RESULTS AND THEORY ANALYSIS 

A. Numerical analysis 

In this paper, IEEE 118 bus test system is selected to test 
the proposed method. It has 54 generator buses, 64 load 
buses and 186 transmission lines. In the simulation, we 

choose nodes either randomly (random failure, the curve is 
an average over 50 different random choices) or selectively 
by highest degree (degree-based attack) or highest 
betweenness (betweenness-based attack).   
     For comparison purpose, firstly, we repeat the simulation 
of previous model described in section 2. Figure 2 displays 
the result of average efficiency loss under the three attacks 
and it clearly shows that power grids are robust to random 
failure but vulnerable to intentional attacks (degree and 
betweenness) in this scenario. 
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                                                        Fig. 2  Efficiency loss       
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                    Fig. 3  Load shedding ratio under node attacks 

    However, if we consider the proposed algorithm, the 
situation is different. Figure 3 displays the load shedding 
ratio after removing a node by the three attacks. It can be 
observed from the figure that when the tolerance parameter  
is above 1.6, the power network is quite robust to random 
attack and betweenness-based attack but vulnerable to 
degree-based attack, which might implicate that the measure 
“degree” is more important than the “betwenness” in power 
networks.  Furthermore, there exists a critical point 0 for the 
tolerance parameter at which the power loss will increase 
greatly. When tolerance parameter a is less than the 0, 
meaning that a enters into a region 

0 1 aa  ,in which the 

power network is fragile to all the three attacks. Similar 
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results can be seen from Figure 4 which displays the numbers 
of broken lines in this scenario. 
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                Fig. 4 number of broken lines under node attacks 
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                 Fig. 5 Load shedding ratio under line attacks 
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                Fig. 6 number of broken lines under line attacks 

     To study the problem further, we employ single line 
removal strategy, namely choosing lines either randomly or 
selectively by highest betweenness (note: there is no degree 
conception for lines.)  Figure 5 and Figure 6 illustrate the 
load shedding ratio and number of broken lines respectively, 

after occurrence of a breakdown of a line. It can be observed 
that a similar region of the tolerance parameter still exists, in 
which the power network is vulnerable to both the two 
attacks. Furthermore, betweeness still does not demonstrate 
its importance in this scenario. Therefore, it might be 
concluded that using betweenness distribution instead of real 
power flow distribution might be not practical in power 
networks.  

B. An analytical analysis 

Tolerance parameter  characterizes the capacity of nodes 
or lines in a network and the fall of  will cause the network 
or system more stressful. The simulation demonstrates that 
there exists a region in the tolerance parameter 

01 a  , 

in which power systems are fragile to both random and 
intentional attacks. In this section, a brief theory analysis is 
presented to support the simulated results. 
   The analytical approach to study errors and attacks 
tolerance has been traditionally based on percolation theory, 
by which Newman et al. [21] and Callaway et al. [22] have 
respectively investigated some abstract complex networks 
and found that a critical point widely exists: the nodes (site 
percolation) or edges (bond percolation) are removed with a 
probability 1-p, or are considered “keeping” with a 
probability p. Below a critical probability pc, the system will 
become disconnected into some smaller and disintegrated 
clusters. For a power network, if such pc exists, it will 
inevitably cause the lost of load increasing sharply, meaning 
that power systems will experience large blackouts. Here, we 
employ the theory to study power networks and try to 
quantify the critical point pc. 
    In this brief, for a power network, only edge outages are 
considered (exclude the initial attacked node). Therefore, it 
is a bond percolation problem: what a percentage (1- pc) of 
edges break, the system will be split into some smaller 
clusters. Here, we consider it in an inverse way, namely 
keeping edges above a percentage (pc), there exists a large 
connected cluster that spans the entire system. 

Suppose that we have a power network described by an 
undirected graph with N vertices and M edges. )(0 xG  is 

defined as the generating function for the degree distribution 
of vertex degree k. 
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where )(  )( Mkmkp   is the degree distribution that 

a randomly chosen vertex on the graph has degree k. The 
distribution p(k) is assumed correctly normalized, so that  

                  1)1(0 G                                               (11) 

The average of the degree distribution is given by   
                   

k

Gkkpkz )1(')( 0
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Moreover, the generating formula H1(x) is used to 
determine the probability that an edge chosen at random 
leads to a percolation cluster. For bond percolation with 
uniform occupation probability of edges, H1(x) is denoted as 
[22] 
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where zxGxG /)(')( 01   [21] and q is the overall 

fraction of keeping lines.  
  Moreover, the generation function for a vertex that exists in 
a percolation cluster can be given by [22] 
                    ))(()( 100 xHxGxH                            (14) 

Although it is not usually possible to find a closed-form 
expression for the complete distribution of component size in 
a network, we can derive a closed-form expression for the 
average component size <s> from eq. (14) as follows 
              )1(')1('1)1(' 100 HGHs             (15) 

From Eq.(13) we have 
               )1(')1(')1(' 111 HqGqH                      (16) 

And hence  
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We can see that this expression diverges when 
0)1('1 1  qG . Thus the critical point is  

                         )1('/1 1Gq c                                      (18) 

This point marks the percolation threshold of the system. 
)1('1G  is subject to initial degree distribution and qC is the 

critical fraction of keeping lines that can form a large 
connected cluster spanning the entire network. On the other 
hand, qC is also the critical point that the network can be spit. 
For a fixed power network, initial degree distribution is a 
constant. Therefore, qC is also a constant, meaning that 
breaking more than (1- qc)*M edges, the power network will 
be split. Under the three attacks, the fractions of malfunction 
lines denoted as R1, R2, R3 are different in a fixed . With the 
 decreases, R1,R2 and R3 rise respectively. Without of 
generalization, there exists 0 and a set {R10,R20,R30}, which 
satisfy that the minimum element in the set is larger than (1- 
qc). Thus, when tolerance parameter a is less than 0, namely 

01 a  , power networks will be spitted into smaller and 

disconnected parts under the three attacks, which will result 
in large scale blackouts. Therefore, in this region, power 
networks are fragile to both random and intentional attacks. 

V. CONCLUSIONS AND FUTURE WORK 

     Complex networks theory and its error and attack 
methodology were initially proposed by some physicists and 
then have been employed in different fields. They are general 
methods, which usually ignore some concrete characteristics 
of power systems. To better explain complex blackouts, 
power network features and power flow constraints are 
needed. In this brief, a hybrid algorithm is proposed to 
further investigate the vulnerability of power networks. This 
algorithm employs DC power flow equations, hidden 
failures and error and attack tolerance methodology together 
to form a comprehensive approach for power network 
vulnerability assessment and modeling. The numerical 
simulation reveals some new useful results which are also 
verified by an analytical method. 

Since power system cascading failure is diverse and 
complicated, it is impossible to consider all factors of 

cascading failure led blackouts in this brief. Instead, we 
demonstrate that complex networks theory provides a new 
direction for complex power networks research. However, at 
present this work is still in its early age and physicists’ work 
neglected some concrete engineering features. Therefore, 
there are good prospects for researchers to further investigate 
the complex problems by considering power system 
characteristics and complex network theory together, which 
are our further work.  
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