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Abstract

Controllability of complex networks has attracted much attention, and understanding the

robustness of network controllability against potential attacks and failures is of practical sig-

nificance. In this paper, we systematically investigate the attack vulnerability of network

controllability for the canonical model networks as well as the real-world networks subject to

attacks on nodes and edges. The attack strategies are selected based on degree and

betweenness centralities calculated for either the initial network or the current network dur-

ing the removal, among which random failure is as a comparison. It is found that the node-

based strategies are often more harmful to the network controllability than the edge-based

ones, and so are the recalculated strategies than their counterparts. The Barabási-Albert

scale-free model, which has a highly biased structure, proves to be the most vulnerable of

the tested model networks. In contrast, the Erdős-Rényi random model, which lacks struc-

tural bias, exhibits much better robustness to both node-based and edge-based attacks.

We also survey the control robustness of 25 real-world networks, and the numerical results

show that most real networks are control robust to random node failures, which has not

been observed in the model networks. And the recalculated betweenness-based strategy is

the most efficient way to harm the controllability of real-world networks. Besides, we find

that the edge degree is not a good quantity to measure the importance of an edge in terms

of network controllability.

Introduction

Complex networks are ubiquitous in nature and society describing various systems [1–3], the

dynamics taking place on them has become one of the most popular research fields in the

past decades [4–6]. Most previous works have been focused on dynamics such as epidemic

spreading [7, 8], synchronization [6, 9, 10], random walk [11, 12], opinion formation [13,

14], and so on. However, our ultimate goal of studying complex networks is to develop the

capacity to control them [15]. That is, driving the network from any initial state to any

desired final state in finite time [15–18]. Although great efforts [19–24] have been devoted to

understanding the controllability of networks, the results are less than satisfactory. Recently,
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Liu et al. [15] made a significant breakthrough, they applied the structural control theory

[25] to directed networks and proved that the minimal number of nodes needed to fully con-

trol a network is determined by its ‘maximum matching’ [26]. Following this seminal work,

some intensive and extensive issues have been carefully addressed, such as controlling linear

edge dynamics [27], effects of topological characteristics on controllability [28], energy

needed for control [29], control centrality [30] and controllability optimization [31]. Besides,

given the limitation that the structural controllability framework is only applicable to

directed networks, Yuan et al. [32] presented the exact controllability framework to explore

the controllability of arbitrary networks, especially for undirected networks and networks

with exact link weights.

Most of the existing works assume that networks are in a relatively safe environment.

However, the real-world networks are always confronting with random or intentional node

or edge attacks. For example, in the computer networks [33], node attacking can be inter-

preted as breakdowns of servers by malicious hackers while edge attacking may correspond

to the cutting-off of communication cables. In power grids [34], attacks on nodes can be

interpreted as substation failures while attacks on edges may correspond to the cases that the

connections of subsections are cut off so the power cannot be transmitted from one substa-

tion to another. Previous studies have shown that random failures and intentional attacks

can easily damage network functions such as connectivity [35] and synchronization [36].

Therefore, it is natural and interesting to ask how the attacks will affect the controllability of

networks. Liu et al. [15] first addressed this problem using core percolation, pointing out that

the robustness of network controllability is closely related to its core. Pu et al. [37] investi-

gated the robustness of control under node-based cascade failures and found that even if a

small range of node failures can trigger great harm to the network controllability. Inspired by

Pu et al.’s work, Nie et al. [38] studied edge-based cascade failures and showed that the larger

scale of cascades in scale-free networks does not mean that there will be more increments of

driver nodes.

In addition to cascade attacks [39], prominence based attacks, especially degree and

betweenness based attacks, are the most common attacks in practice [35]. For example, it

has been shown that even if 1% of the most highly connected routers were incapacitated, the

average performance of Internet would drop 50% [40]. Therefore, it is of practical signifi-

cance to study the robustness of network controllability subject to this kind of attacks. In

this paper, we systematically investigate the attack vulnerability of network controllability

for the canonical model networks as well as the real-world networks subject to degree and

betweenness based attacks on nodes and edges. For each case of attacks, five different strate-

gies are employed and the network controllability is quantitatively measured by the fraction

of driver nodes. Furthermore, we also investigate the control robustness of 25 real-world

networks.

The rest of the paper is organized as follows. Section II gives a brief review of network con-

trollability. Section III introduces our methods, including definitions, attack strategies and

benchmark networks. Our main results and discussions are presented in Section IV. Finally,

Section V concludes the whole paper.

Network Controllability

In this section, we briefly review the controllability of complex networks, both the structural

controllability framework [15] and the exact controllability framework [32] are introduced.

The former is only applicable to directed networks whereas the latter can treat arbitrary net-

works without any limitations [32].

Attack Vulnerability of Network Controllability
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Structural Controllability

Consider a network of N nodes governed by the following linear time invariant dynamics [15]:

_xðtÞ ¼ AxðtÞ þ BuðtÞ ð1Þ

where x(t) = (x1(t), . . ., xN(t))
T stands for the states of nodes at time t, the N × Nmatrix A

denotes the coupling strength between N nodes, where the element aij gives the strength or

weight that node-j can affect node-i. u(t) = (u1(t), u2(t), . . ., uM(t))
T is the vector of input sig-

nals and the N ×M (M� N) matrix B is called input matrix which defines how input signals

are connected to the nodes in the network, which are often called ‘driver nodes’.

According to the classic Kalman rank condition [16, 41], the system described by Eq (1) is

controllable if and only if

rankðCÞ ¼ rankð½B;AB;A2B; . . . ;AN�1B�Þ ¼ N ð2Þ

where C = [B, AB, A2B, . . ., AN − 1B] is called controllability matrix. Since the matrix A is fixed

for a given network, in order to make the network fully controllable, one need to choose a suit-

able matrix B having the minimal number of driver nodes to satisfy the Kalman rank condition.

However, the practical difficulty lies in that there are 2N − 1 possible combinations of selecting

driver nodes. To say the least, even one can enumerate all the combinations efficiently, the link

weights (aij) are often not known for real-world networks. In order to overcome the inherently

incomplete information of link weights, Liu et al. [15] introduced the concept of ‘structural

controllability’ [25] to complex networks. The structural controllability can ensure that a net-

work is controllable for almost all weight combinations except for some pathological cases

[15]. The authors also developed the minimum input theory to avoid brute-force searching,

which states that the minimal number of driver nodes needed to fully control a network, ND, is

determined by the maximum matching [26] in the network [15], where the unmatched nodes

are exactly driver nodes. This theory allows one to find the driver nodes within Oð
ffiffiffiffi

N
p

LÞ rather
than O(2N) time, where L denotes the number of links [15].

Liu et al.’s work also showed that a network’s controllability is mainly determined by its

underlying degree distribution, networks that are sparse and heterogeneous are more difficult

to control [15]. Let nD = ND/N denote the density of driver nodes, for Erdős-Rényi (ER) net-

works [42] with mean degree hki, Liu et al. give nD analytically as [15]

nD � e�
hki
2 ð3Þ

While for scale-free networks [2] with mean degree hki and degree exponent γ = γin = γout, nD
is given by [15]

nD � exp � 1

2
1� 1

g� 1

� �

hki
� �

ð4Þ

Exact Controllability

The exact controllability framework was proposed by Yuan et al. [32] to overcome the limita-

tion that the structural controllability framework can only treat directed networks. As an alter-

native, the new paradigm can be applied to arbitrary network structures and link weights

without any limitations [32].

Instead of empolying the Kalman rank condition, the exact controllability framework is

based on the equivalent Popov-Belevitch-Hautus (PBH) rank condition [43], which stipulates
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that the system (Eq (1)) is controllable, if and only if

rankðcIN � A;BÞ ¼ N ð5Þ

holds for any complex number ψ, where IN is the N × N identify matrix. It can be further

proved that full control can be guaranteed if and only if all the eigenvalues λ of A satisfy Eq (5)

[32]. From the perspective of matrix, the minimal number of driver nodes, ND, is defined by

matrix B with ND = min{rank(B)}. Equivalently, Yuan et al. proved that for any network with

arbitrary matrix A, ND is actually determined by the maximum geometric multiplicity μ(λi) of

the eigenvalue λi of A [32], i.e.

ND ¼ max
i
fmðliÞg ð6Þ

where λi(i = 1, . . ., l) is the nonidentical eigenvalues of A and μ(λi) = N−rank(λiIN−A) is the

geometric multiplicity of λi. In particular, for undirected networks, ND is simply determined by

the maximum algebraic multiplicity δ(λi) of λi [32], i.e.

ND ¼ max
i
fdðliÞg ð7Þ

For large sparse networks, ND can be dramatically simplified in terms of rank(A) [32], i.e.

ND ¼ maxf1;N � rankðAÞg ð8Þ

Methods

In this section, we introduce our experimental methods, which include definitions, attack strat-

egies and benchmark networks.

Definitions

In this paper, we allow the existence of self loops in the network but multiple (parallel) edges

are not allowed. We also denote the number of nodes as N and the number of edges as L.

The measure of controllability nD, or simply controllability, of a network is defined as the

ratio of the minimum number of driver nodes ND to the network size N [15], i.e.

nD ¼ ND=N ð9Þ

The degree kv of a node v is defined as the number of its direct connections to other nodes.

The degree ke of an edge e is defined as

ke ¼ kukv ð10Þ

where e connects nodes u and v with degrees ku and kv.

The betweenness centrality of a node v is defined as

CBðvÞ ¼
X

s 6¼v 6¼t2V

sstðvÞ
sst

ð11Þ

where σst is the total number of shortest paths from node s to node t and σst(v) is the number of

those paths that pass through v. Similarly, the edge betweenness centrality of an edge e is

defined as

CBðeÞ ¼
X

s6¼t2V

sstðeÞ
sst

ð12Þ
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where σst(e) is the number of shortest paths from node s to node t that include the edge e.

Throughout the present paper, we call CB(v) and CB(e) the node betweenness and the edge

betweenness for brevity.

Attack Strategies

Here we consider five different attack strategies for nodes and edges. The nodes are removed in

the descending order of degree or betweenness centrality calculated for either the initial net-

work or the current network during the removal procedure. Random attack (also called ran-

dom failure) is taken as a comparison. The five node attack strategies are described as follows:

• Random Attack (RA): to remove node one by one randomly.

• Initial Degree Attack (ID): to remove node one by one in the descending order of degree

using the degree distribution of the initial network.

• Initial Betweenness Attack (IB): to remove node one by one in the descending order of

betweenness using the betweenness distribution of the initial network.

• Recalculated Degree Attack (RD): to remove node one by one in the descending order of

degree using the recalculated degree distribution at every removal step.

• Recalculated Betweenness Attack (RB): to remove node one by one in the descending order

of betweenness using the recalculated betweenness distribution at every removal step.

Note that the degree-based attacks (ID and RD) are local strategies, whereas the between-

ness-based attacks (IB and RB) are global strategies. Another significant difference is that the

former concentrate on reducing the total edges as fast as possible whereas the latter concentrate

on destroying as many as the shortest paths as possible.

The above strategies can also be applied to edge attacks by simply replacing node degree

and betweenness with edge degree and betweenness. The attack vulnerability of network con-

trollability subject to such edge attacks is also investigated in this paper.

Networks

We select four canonical model networks as well as two real networks as benchmarks to study

the robustness of network controllability. All the six networks are undirected and in the follow-

ing experiments the exact controllability framework [32] will be adopted to calculate their

controllability.

The ER model [42] is a classic random network with a Poisson-type degree distribution

P(k) = e−hkihkik/k!, a logarithmically increasing average path length and a small clustering coef-

ficient close to zero. The Watts-Strogatz (WS) model [1] and Newman-Watts (NW) model

[44] are classic small world networks, which have short average path lengths (*ln N) and high

clustering coefficients. Both of them are constructed from a regular ring lattice with each node

linking to its left and right K/2 nearest neighbors, the only difference is that the former rewires

edges with probability p whereas the latter adds edges with probability p. The shape of their

degree distribution is similar to that of ER, having a pronounced peak at k = K and decaying

exponentially for large |k − K|. The Barabási-Albert (BA) model [2] is a representative scale

free network with the power-law degree distribution P(k)*k − 3.

The two real-world networks are the USAir97 network and the Erdos971 network. The

USAir97 [45] is a network formed by the direct air route between the American airports in

1997. It has 332 nodes and 2126 edges as shown in Fig 1(a). Each node stands for an airport

and each directed edge represents an airline from one airport to another. The weight of an edge

Attack Vulnerability of Network Controllability
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represents the number of seats available on the scheduled flights. USAir97 exhibits an approxi-

mate power-law degree distribution as shown in Fig 1(b). The airports with less connections

to/from other airports follow more closely with the fitting curve whereas the airports with

more connections show a slight deviation.

The Erdos971 [45] is a scientific collaboration network where each node represents an sci-

entist who co-authored at least one paper with Paul Erdős [42], and two scientists are joined by

an edge if they co-authored a paper. Note that the node corresponding to Paul Erdős himself

and all the isolated components have been removed throughout the paper, the truncated net-

work contains 429 nodes and 1312 edges. Its topology and degree distribution are displayed in

Fig 2(a) and 2(b), respectively.

The parameter settings and summaries of the benchmark networks are shown in Table 1.

Results and Discussions

Node Attack

Firstly, we investigate the control robustness of the ER random network under node attacks

and show the results in Fig 3. It can be seen that for all the attacks, nD increases with the

removal fraction f, indicating that we need constantly increase driver nodes to fully control the

network, i.e., the network’s controllability is decreasing. The intentional attacks (ID, RD, IB

and RB) are much more harmful than RA as their nD increases much faster. For the former

attacks, the difference among them is not significant in the early stage of removals (f ≲ 0:07),

which can be attributed to the high degree-betweenness correlation (high degree nodes tend to

have high betweenness) [35] and the negligible redistribution of degree and betweenness

Fig 1. The USAir97 network. (a) Its topology, in which the darkness of node color is proportional to its degree. (b) Its degree distribution, where the points
represent the frequency distribution of degree, the red line denotes the fitting curve with equation P(k) = 0.1948k−0.6959−0.01029, the goodness of fit is
0.9198.

doi:10.1371/journal.pone.0162289.g001
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information for small f. However, as the removals proceed (f> 0.07), they gradually separate

by harming the network controllability in the order RD> RB’ ID> IB (the inequality

RD> RB means that RD is more harmful than RB), revealing that degree-based attacks are

more harmful than betweenness-based attacks (RD> RB and ID> IB) and the attacks based

on recalculated information are, as expected, more harmful than their counterparts based on

initial information (RD> ID and RB> IB), which confirms the previous conclusions that net-

work controllability is mainly determined by degree distribution [15] but distance based mea-

sures such as betweenness can also affect the controllability [46].

Fig 2. The Erdos971 network. (a) Its topology, in which the darkness of node color is proportional to its degree. (b) Its degree distribution, where the
points represent the frequency distribution of degree, the red line denotes the fitting curve with equation P(k) = 0.2727k−0.4256−0.06745, the goodness
of fit is 0.9434.

doi:10.1371/journal.pone.0162289.g002

Table 1. The summaries of benchmark networks used in this paper.

Type Network N L hki
Random Network ER 200 400 4.0

Small World WS 200 400 4.0

Small World NW 200 440 4.4

Scale Free BA 200 591 5.91

Transportation USAir97 332 2126 6.4036

Scientific Collaboration Erdos971 429 1312 6.1166

All the networks are undirected and for each network, we show its type, name, number of nodes (N), number of edges (L), and average degree (hki). Note
that the original Erdos971 network has 472 nodes and 1314 edges, here we only keep its largest connected component.

doi:10.1371/journal.pone.0162289.t001
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For RA and ID attacks, we can give the analytical results of nD by employing the cavity

method [15]. The ER network follows a Possion degree distribution P(k) = e−hkihkik/k!, indicat-
ing that most nodes have almost the same degree close to hki0, the average degree of the origi-
nal network. Therefore, for RA it is reasonable to assume that every removed node has degree

hki0, then the average degree after removals hki0RA is

hki0RA ¼ hki0 � f hki0 ¼ ð1� f Þhki0 ð13Þ

According to Liu et al.’s work [15], for networks where in-degrees and out-degrees share the

similar distribution, nD can be obtained by

nD ¼ Gðw
2
Þ þ Gð1� w

1
Þ � 1þ hkiw

1
ð1� w

2
Þ ð14Þ

where GðxÞ ¼P1
k¼0

PðkÞxk is the predefined generating function, w1 and w2 can be derived

from the following equations:

w
1
¼ H½1� Hð1� w

1
Þ� ð15Þ

w
2
¼ 1� H½1� Hðw

2
Þ� ð16Þ

whereHðxÞ ¼P1
k¼0

Qðkþ 1Þxk with Q(k) = kP(k)/hki [31].

Fig 3. The density of driver nodes nD as a function of removal fraction f for ER network under different
node attacks. The black and blue dashed lines are theoretical results obtained from Eqs (24) and (26),
respectively. The numerical results are averaged over 100 independent realizations.

doi:10.1371/journal.pone.0162289.g003
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For RA, since the removal fraction is small (f� 0.2), we assume that the degree distribution

P(k) is not significantly affected. By plugging hki0RA into P(k) and P(k) into G(x), one has

GðxÞ ¼
X

1

k¼0

e�hki0ð1�f Þ½hki0ð1� f Þ�k

k!
xk ¼ e�hki0ð1�f Þð1�xÞ ð17Þ

Similarly, by plugging P(k) into Q(k) and Q(k) into H(x), one has

HðxÞ ¼
X

1

k¼0

e�hki0ð1�f Þ½hki0ð1� f Þ�k

k!
xk ¼ e�hki0ð1�f Þð1�xÞ ð18Þ

From Eqs (15) and (16) and the monotonicity of H(x), one can easily check that w1 = H(w2)

and w2 = 1 − H(1 − w1). Substituting H(x) gives

w
1
¼ e�hki0ð1�f Þ½Hð1�w1Þ� ¼ e�hki0ð1�f Þ½1�w2 � ð19Þ

w
2
¼ 1� e�hki0ð1�f ÞHðw2Þ ¼ 1� e�hki0ð1�f Þw1 ð20Þ

where w1 can be further reduced by substituting w2 into Eq (19), as follows

w
1
¼ exp ½�hki0ð1� f Þe�hki0ð1�f Þw1 � ð21Þ

Now nD can be simplified as

nD ¼ Gðw
2
Þ þ Gð1� w

1
Þ � 1þ hkiw

1
ð1� w

2
Þ

¼ e�hki0ð1�f Þ½1�w2� þ e�hki0ð1�f Þw1 � 1þ hki0ð1� f Þw
1
ð1� w

2
Þ

¼ w
1
� w

2
þ hki0ð1� f Þw

1
ð1� w

2
Þ

ð22Þ

For k� 1, one has w1* e−hki
0(1 − f), w

2
¼ 1� e�hki0ð1�f Þw1 � hki0ð1� f Þw

1
, and thus

nD � exp ½�hki0ð1� f Þ� � ðhki0ð1� f ÞÞ2 exp ½�2hki0ð1� f Þ� ð23Þ

Ignoring the higher order term in Eq (23) gives the final nD as

nD � exp ½�hki0ð1� f Þ� ð24Þ
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For ID attack, let kmax denote the maximum degree after removing Nf high degree nodes,

then f ¼
R1
kmax PðkÞdk. The average degree after removals, hki0ID, can be derived as follows

hki0ID ¼
Z kmax

0

kPðkÞdk ¼
Z kmax

0

e�hki0ðhki0Þk

ðk� 1Þ! dk

¼ hki0
Z kmax

0

e�hki0ðhki0Þk�1

ðk� 1Þ! dðk� 1Þ

¼ hki0
Z kmax�1

�1

e�hki0ðhki0Þk

k!
dk ¼ hki0

Z kmax�1

0

e�hki0ðhki0Þk

k!
dk

¼ hki0
Z kmax

0

e�hki0ðhki0Þk

k!
dk�

Z kmax

kmax�1

e�hki0ðhki0Þk

k!
dk

 !

¼ hki0
Z kmax

0

PðkÞdk�
Z kmax

kmax�1

PðkÞdk
� �

¼ hki0 1� f �
Z kmax

kmax�1

PðkÞdk
� �

ð25Þ

For simplicity, let
R kmax

kmax�1
PðkÞdk ¼ af where α is a constant coefficient, we have

hki0ID ¼ hki0ð1� ð1þ aÞf Þ. Using the similar method, nD can be approximated as

nD � exp ½�hki0ð1� ð1þ aÞf Þ� ð26Þ

where the specific α can be obtained by curve fitting. From Fig 3 we can see that the theoretical

results of Eqs (24) and (26) agree well with their corresponding numerical results.

Next, we compare the two small world model networks, WS and NW, both of which have

exponential cutoffs in the degree distribution. From Fig 4, we can see that the two networks

exhibit very similar vulnerability behavior: nD increases as the removals proceed, RB harm the

controllability most, followed by the degree-base attacks and IB, RA is the least harmful strat-

egy (RB> ID, RD> IB> RA). This phenomenon is mainly due to their similar construction

method that both are generated from the one dimensional regular ring lattice. The most inter-

esting and unexpected behavior is that for both networks, RB proves to be the most harmful

strategy and the superiority even becomes more obvious for large f (f> 0.1 for WS, f ≳ 0:15

for NW), which is beyond our expectation that degree-based attacks (at least RD) should be

more harmful than betweenness-based ones due to the decisive role of degree distribution to

network controllability.

To explain this behavior, we explore the correlation between the node betweenness CB and

the node degree k as shown in Fig 5a, from which we can see that the correlation is quite weak,

which excludes the possibility that degree helps to contribute the effects of RB. Recall that the

two prominent characteristics of small world networks are the short average path length (APL)

and the high clustering. Since recent study [28] has shown that clustering has no discernible

impact on network controllability, thus the effectiveness of RB can only be attributed to the

small APL, which again confirms that betweenness also affects network’s controllability [46].

Our results clearly show that RB is the most efficient way to destroy the controllability of small

world networks rather than RD.

From Fig 4, we can also see that the degree-based attacks on WS and NW networks behave

quite differently from those on the ER network. The nD value of the former has a clear slow-

down trend for large f whereas the latter does not. For WS network, both RD and ID harm the

network controllability equally in the interval 0� f� p, after that ID prevails RD but with less
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Fig 5. (a) Correlation between the node betweennessCB and the node degree k for WS and NW networks. (b) The degree distribution of WS, NW and ER
network.

doi:10.1371/journal.pone.0162289.g005

Fig 4. nD as a function of the removal fraction f under different node attacks for (a) WS network and (b) NW network. The results are averaged over
100 independent realizations.

doi:10.1371/journal.pone.0162289.g004
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and less superiority, finally coincides with the latter at f = 0.2. The emergence of watershed (f�
p = 0.1) can be explained since when f exceeds p, the original WS topology is lost, the network

degenerates into a regular ring lattice. It is worth noting that WS is the only case where a proce-

dure based on recalculated information is less harmful than its counterpart based on the initial

configuration (RD< ID). For NW network, RD retains as harmful as RB for f ≲ 0:14, then

slows down for f> 0.14, the emergence of the turning point (f� 0.14) occurs later than that of

WS (f� 0.1) due to its longer tail of degree distribution as shown in Fig 5b resulting from add-

ing instead of rewiring edges.

The BAmodel is in focus in the first study of the control vulnerability of scale-free networks.

From Fig 6, we can see that all the attacks except RA harm the network controllability equally

for f ≲ 0:15, after that the degree-based strategies prevail the betweenness-based ones with neg-

ligible advantages. This coincidence should not be attributed to the short APL like the WS and

NW network but the high correlation between the node betweenness and degree as shown in

Fig 7a. It can also be seen that nD rises from 0.01 to about 0.19 (ΔnD � 0.18), which is much

more significant than that of the ER (ΔnD � 0.10), WS (ΔnD � 0.07) and NW (ΔnD � 0.07)

network, indicating that the scale free networks are more control vulnerable than both the ER

random and small world networks, which is due to the existence of hub nodes resulting from

the power-law degree distribution as shown in Fig 7b. Another notable finding is that though

Liu et al. have shown that driver nodes tend to avoid to be hub nodes [15], here we show that

attacking the hub nodes is still the most efficient way to harm the controllability of scale free

networks.

The analytical result of nD for the RA attack can be obtained by employing the cavity

method [15]. The BA network follows a power-law degree distribution with P(k)*2m2k−3 [2],

since the removal fraction f is small, we assume that the degree distribution P(k) is not

Fig 6. nD as a function of removal fraction f under different node attacks for the BA scale-free network.
The simulation results are averaged over 100 independent realizations, the analytical result of RA is obtained
by Eq (27).

doi:10.1371/journal.pone.0162289.g006
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significantly affected, which gives us [15]

nD � exp �hki0ð1� f Þ 1� 1

g0 � 1

� �� �

ð27Þ

where hki0 and γ0 = −3 are the average degree and degree exponent of the original network,

respectively. From Fig 6 we can see that the theoretical prediction agrees well with the numeri-

cal result with negligible difference.

The two real-world networks, USAir97 and Erdos971, display very similar vulnerable

behaviors like the BA scale-free network for the intentional attacks as shown Fig 8, which is

mainly due to their power-law degree distributions as shown Figs 1b and 2b. Nevertheless, the

differences between them are significant. For USAir97, it can be seen that the intentional

attacks harm the network controllability almost equally in the early stage of removal

(f ≲ 0:12), which is due to the strong betweenness-degree correlation in the region of high

degrees as shown in Fig 9a, after that the strategies based on recalculated information prevail

those based on initial configuration (RB, RD> IB, ID) owing to the redistribution of degree

and betweenness information. Besides, the betweenness-based strategies outperform those

degree-based ones (RB> RD and IB> ID) with very slight superiorities. The most confusing

and unexpected behavior is that nD decreases with f for RA, which means that we need less and

less driver nodes to maintain the full control of network, i.e., the network controllability is

indeed increasing, this abnormal phenomenon has not been observed in other cases and the

reason behind is not clear and needs further research.

Erdos971 exhibits much similar behaviors like USAir97 as shown in Fig 8b. The intentional

attacks ID, IB, RD and RB coincide in the early stage of removal (f ≳ 0:08) due to the strong

betweenness-degree correlation in the region of high degrees as shown in Fig 9b; these attacks

Fig 7. (a) Node betweenness-degree correlation of the BA network. (b) The degree distribution of the BA network.

doi:10.1371/journal.pone.0162289.g007
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Fig 8. nD as a function of removal fraction f under different node attacks for the (a) USAir97 and (b) Erdos971 network. The results are averaged
over 100 independent runs.

doi:10.1371/journal.pone.0162289.g008

Fig 9. The node betweenness-degree correlation for the (a) USAir97 and (b) Erdos971 network.

doi:10.1371/journal.pone.0162289.g009
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also deviate in the last stage of removal (f ≳ 0:17) in the approximate order RD> RB>

IB> ID. The remarkable difference occurs in the interval 0:08≲ f ≲ 0:17, where RD prevails

RB with less and less advantages and finally coincides with the latter at f� 0.17, so does IB

with ID. The recalculated strategies RD and RB are, as expected, more harmful than their coun-

terparts ID and IB. Like the BA scale-free network, RD proves to be the most efficient way to

harm the network’s controllability.

Edge Attack

In this subsection, we study the attack vulnerability of network controllability against various

edge attacks (see Sec. III for details of the edge attack strategies). Generally speaking, the edge

attacks may be not as efficient as the node attacks since after removing Ef edges (Nf nodes), the

former only removes Nhkif/2 edges whereas the latter can at most remove Nfhki edges. It
should also be noted that the study presented here is different from that of Ref. [38], in which

cascading edge failure is assumed and the removal of one edge may trigger cascading removals

of other edges, here we do not make such assumption and the removal of one edge does not

affect other edges’ removals at all.

Fig 10 shows the numerical results of the control robustness of the ER random network sub-

ject to edge strategies. We can see that the edge strategies are indeed less efficient than those

node ones: ΔnD � 0.03 for the former compared with ΔnD � 0.11 for the latter (compare Figs

10 and 3). The RB procedure turns out to be the most destructive strategy, even so, it is just a

little bit better than RA with very slight superiority (nD(RBA) − nD(RA)� 0.003). nDs of others

attacks (IB, ID and RD) are even inferior to that of RA with growing gaps, indicating that these

strategies are even less efficient than random failures. Moreover, we can see that the degree-

Fig 10. nD as a function of the removal fraction fe under different edge attacks for the ER random
network. The results are averaged over 100 independent realizations.

doi:10.1371/journal.pone.0162289.g010
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based attacks, ID and RD, can hardly harm the controllability at all as evident from the almost

constant nD shown in Fig 10.

These phenomena may seem difficult to understand at first glance, however, they can be

explained by carefully analyzing the structural characteristics of ER. The ER random network

has a short APL (*ln N/lnhki) due to its high proportion of shortcuts, such edges are removed

by RB for their high betweenness and also have a great chance to be removed by RA. Therefore

both RB and RA remove almost the same set of edges, resulting in almost the same damage to

network controllability. This result may suggest that the distance measures like edge between-

ness also affect the networks controllability. Given the importance of shortcuts in small-world

networks, we infer that the edge betweenness-based strategies IB and RB, especially RB, will be

more harmful in WS and NW. In addition, the difference between RB and IB is caused by the

redistribution of edge betweenness, which is easy to understand, since as the removals proceed,

the less shortcuts have to bear the same amount of shortest paths.

The degree-based attacks, ID and RD, tend to preferentially remove edges that connect two

high degree nodes (Eq (10)), which will weaken the degree of hub nodes and thus increase the

number of medium degree nodes, resulting in a more centralized degree distribution as con-

firmed in Fig 11. This implies that the more homogeneous network may contribute to the

results. To confirm this observation, we define the network heterogeneity as the standard devi-

ation of degree distribution, i.e., H = [∑(ki−hki)2/N]1/2. We then calculate the average degree

hki, the degree heterogeneity H and the average betweenness centrality hBi under different fe
subject to ID attack and IB attack (as a comparison), the results are shown in Table 2. As hki
behaves identically for all the edge attacks, it does not require much elaboration. From Table 2,

we can see that H decays with fe whereas hBi increases with fe for ID attack. Note that hBi
exhibits almost the same behaviors for IB attack, which excludes the impact of hBi on the

experimental results. In contrast, the declining speed of H for ID attack is much faster than

Fig 11. The degree distribution P(k) of the ER random network under different edge removal fraction
fe subject to the ID attack. fe = 0 denotes the initial degree distribution.

doi:10.1371/journal.pone.0162289.g011
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that for IB attack, suggesting the homogeneous degree distribution is the key factor that con-

tributes to such results. Liu et al. have pointed out that the degree heterogeneity affects network

controllability and the homogeneous networks are easier to control [15]. As the degree-based

attacks always make the network more homogeneous and thus easier to control (smaller nD),

we infer that the two strategies are not efficient to attack the network controllability, especially

for scale-free networks with biased degree structure. One thing to note is that the edge-based

attacks also make hki smaller, resulting in larger nD according to Eq (3), which compensates

for the decrease of nD, thus nD stays almost unchanged.

The controllability of two small-world networks, WS and NW, again displays quite similar

vulnerability against edge attacks as shown in Fig 12. nD retains almost constant in the early

stage of attack (fe ≲ 0:05 for WS and fe ≲ 0:07 for NW), indicating that the network controlla-

bility is almost not affected, however, after that the attacks harm the network controllability in

the order RB> IB> ID� RD> RA. The betweenness-based strategies prove to be the most

Table 2. The structural characteristics of ER random network, including average degree hki, degree
heterogeneityH and average betweenness centrality hBi, vary with fe subject to ID and IB attacks.

fe 0% 5% 10% 15% 20%

hkiID 4.0 3.8 3.6 3.4 3.2

HID 2.24 1.87 1.64 1.52 1.38

hBiID 0.013 0.014 0.015 0.016 0.017

hkiIB 4.0 3.8 3.6 3.4 3.2

HIB 2.24 2.02 1.84 1.73 1.61

hBiIB 0.013 0.014 0.014 0.016 0.017

doi:10.1371/journal.pone.0162289.t002

Fig 12. nD as a function of removal fraction fe subject to different edge attacks for (a) WS network and (b) NW network. The results are averaged
over 100 independent realizations.

doi:10.1371/journal.pone.0162289.g012
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efficient way to damage the network controllability, which lives up to our previous conjecture.

The reason for this is that the shortcuts in small-world networks play an important role in

forming the so-called “small world” phenomenon, which shorten the distance between nodes

that would otherwise be much farther. As such, these shortcuts usually have higher edge

betweenness than ordinary edges and become the prior targets of the betweenness-based

attacks. The removals of such shortcuts make the network lose most resemblance to the origi-

nal topology and quickly degenerate into the one dimensional regular lattice with much larger

APL, making the network harder to control. The difference between RB and IB is due to the

redistribution of edge betweenness information: the less shortcuts have to bear the same num-

ber of shortest paths as the removals proceed. It should be noted that though RB and IB attack

the same set of shortcuts, RB is still more efficient than IB, suggesting that the distance-based

measures like edge betweenness indeed affect network’s controllability.

In contrast, the two edge degree-based attacks are much less harmful than the betweenness-

based ones and just comparable to random attack as seen in Fig 12. This is mainly because the

degree-based strategies make the network more homogeneous and thus easier to control as has

been analyzed previously. However, the real situation is slightly different. In Fig 13, we plot the

degree distribution under different fe subject to IDA for both networks, it can be seen that the

peak of the curve continues to shift to left as the removal goes on, revealing that the network

average degree is decreasing, while the network heterogeneity seems to be increasing judging

from the more dispersed degree distribution. The more accurate numerical results in Table 3

show that the network heterogeneity, in fact, first decreases for small fe (fe≲0:05 for WS and

fe ≲ 0:07 for NW) then increases until the end. This explains the behavior of nD: for small fe it

stays constant due to the opposite effects of hki and H, after that it starts to increase quickly as
both factors make the network more difficult to control.

Fig 13. The degree distribution under different fe subject to the ID attack for (a) WS network and (b) NW network.

doi:10.1371/journal.pone.0162289.g013
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Compared with the node attacks, the BA scale-free network for edge attacks exhibits strik-

ingly different behaviors as shown in Fig 14. The random attack proves to be the most harmful

strategy whereas the other attacks are far less efficient with broad range coincidence: nD for ID,

RD and IB stays constant throughout the removal; nD for RB also changes little for fe ≲ 0:1,

thereafter it starts to increase, but the growth is quite insignificant (ΔnD � 0.012) compared

with that of RA. Since all the strategies affect the network degree equally, the difference must

result from other factors. In Fig 15, we explore the variations of related structural characteris-

tics of the BA scale-free network as the removal procedure proceeds. It can be seen that the net-

work heterogeneity H under the deliberate attacks decays much faster than that of RA, which is

easy to understand since both the degree-based and betweenness-based strategies preferentially

remove edges that connect hub nodes, which weakens the high degree nodes and makes the

network become more homogeneous and thus easier to control (smaller nD), resulting in the

inferior performance of the deliberate attacks compared with that of RA. The difference

between RB and the other deliberate attacks can be attributed to the distance-based measures

as shown in Fig 15b and 15c, where both the APL and the average betweenness centrality hBi

Table 3. The average degree hki and degree heterogeneityH under different fe subject to IDA for WS and NW network.

f 0% 5% 10% 15% 20%

hki(WS) 4.00 3.80 3.60 3.40 3.20

H(WS) 0.640 0.600 0.671 0.762 0.819

hki(NW) 4.40 4.20 4.00 3.80 3.60

H(NW) 0.662 0.492 0.671 0.755 0.809

doi:10.1371/journal.pone.0162289.t003

Fig 14. nD as a function of fe under different edge attacks for the BA scale-free network. The results are
averaged over 100 independent realizations.

doi:10.1371/journal.pone.0162289.g014
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for RB prevail other attacks with increasing advantages for fe ≳ 0:1, which also explains the

sudden increase of its nD at fe � 0.1.

The two real-world networks, USAir97 and Erdos971, display again quite similar control

vulnerability under edge attacks as shown in Fig 16. The degree-based strategies still have little

effects on nD whereas RA continues to harm the controllability steadily as usual. The notable

difference is the behaviors of two betweenness-based strategies. For USAir97, both IB and RB

prevail RA with more and more advantages; while for Erdos971, the order is reversed—RA

Fig 15. The structural characteristics of BA network vary with the edge removal fraction fe. The characteristics include (a) the degree
heterogeneity H, (b) APL and (c) the average betweenness centrality hBi.

doi:10.1371/journal.pone.0162289.g015
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remains prevailing over IB and RB for fe ≲ 0:15, thereafter IB starts to damage the controlla-

bility drastically and becomes the most harmful strategy. Once again these behaviors can be

mainly attributed to the distanced-based measures like betweenness centrality. Nevertheless,

the behaviors cannot match any of the model networks, implying that there may be other fac-

tors contributing to the network controllability.

More Results

Despite that the canonical model networks can reveal general concepts of control robustness,

our ultimate goal is to understand the control robustness of real-world networks. Therefore, we

further investigate the attack vulnerability of network controllability for 25 real networks sub-

ject to different node and edge attacks using the same strategies, the results are shown in Tables

4 and 5.

From Table 4, we can see that the regulatory networks such as the transcriptional regulatory

network of Saccharomyces cerevisiae (TRN-Yeast-1 [48], TRN-Yeast-2 [49]) and Echerichia

coli (TRN-EC-2 [49]) and the ownership network of US telecommunications and media corpo-

rations (Ownership-USCrop [50]) exhibit strikingly control robust under attacks: nD decreases

instead of increases throughout the removal for all the five strategies, meaning that we need

ever less and less driver nodes to control the whole network and the network controllability is,

in fact, increasing. This phenomenon has not been observed before our work and clearly shows

that the control robustness of regulatory networks are more than good enough. The other class

of networks with great control robustness is the case of the intra-organizational networks [51,

52], in which nD stays constant for all five attacks, indicating that the attacking cannot affect

the network controllability at all. One exception is the university network [52], which can only

resist some attacks (ID, RD, RB) for small fe � 10%. The control robustness of other networks

Fig 16. nD as a function of fe subject to different edge attacks for (a) USAir97 network and (b) Erdos971 network. The results are averaged over 100
independent realizations.

doi:10.1371/journal.pone.0162289.g016
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can be, more or less, grasped from the model networks. The betweenness-based attacks and the

degree-based attacks are almost equal harmful for the food web networks [53–55] and the met-

abolic networks [56]. However, for most other networks, the former are usually more harmful

than the latter and so are the strategies based on recalculated information than those based on

initial information. The last interesting observation is that most of the real-world networks

seem to have a decreasing or constant nD for RA, indicating that the real-world networks tend

to be control robust against random node failures.

In Table 5, we display the attack vulnerability of real-world networks subject to edge attacks.

It can be seen that the edge degree-based attacks (both ID and RD) still cannot damage the net-

work controllability at all as observed in the model networks, which, as has been explained, is

because of the fact that such strategies make networks become more homogenous and thus eas-

ier to control. Our conclusion is that the edge degree defined as Eq (10) is not a good quantity

to measure the importance of an edge in terms of network controllability. Another significant

difference is the behaviors of the random edge failures. Here only the intra-organizational

Table 4. The node attack vulnerability of the real networks analyzed in this paper.

Type Name N L nD nD under node attack

RA IDA RDA IBA RBA

Regulatory TRN-Yeast-1 4,441 12,873 0.965 0.869 [0.771] 0.897 [0.798] 0.900 [0.800] 0.894 [0.794] 0.886 [0.787]

TRN-Yeast-2 688 1,079 0.821 0.738 [0.660] 0.815 [0.765] 0.823 [0.801] 0.773 [0.692] 0.769 [0.689]

TRN-EC-2 418 519 0.751 0.677 [0.612] 0.739 [0.691] 0.754 [0.754] 0.722 [0.639] 0.718 [0.636]

Ownership-USCrop 7,253 6,726 0.820 0.750 [0.680] 0.812 [0.731] 0.832 [0.800] 0.788 [0.688] 0.775 [0.675]

Trust College student 32 96 0.188 0.188 [0.250] 0.188 [0.219] 0.219 [0.250] 0.219 [0.250] 0.219 [0.281]

Prison inmate 67 182 0.134 0.164 [0.164] 0.149 [0.179] 0.164 [0.194] 0.164 [0.179] 0.164 [0.224]

WikiVote 7,115 103,689 0.666 0.600 [0.534] 0.668 [0.663] 0.664 [0.662] 0.677 [0.672] 0.678 [0.658]

Food web Ythan 135 601 0.511 0.467 [0.430] 0.563 [0.570] 0.556 [0.570] 0.548 [0.563] 0.563 [0.570]

Little Rock 183 2,494 0.541 0.497 [0.454] 0.541 [0.541] 0.541 [0.541] 0.541 [0.541] 0.546 [0.546]

Grassland 88 137 0.523 0.477 [0.409] 0.534 [0.580] 0.534 [0.580] 0.545 [0.545] 0.557 [0.602]

Seagrass 49 226 0.265 0.265 [0.245] 0.286 [0.265] 0.265 [0.265] 0.286 [0.265] 0.265 [0.265]

Metabolic E. coli 2,275 5,763 0.382 0.367 [0.346] 0.457 [0.424] 0.480 [0.581] 0.378 [0.350] 0.481 [0.578]

S. cerevisiae 1,511 3,833 0.329 0.325 [0.312] 0.406 [0.365] 0.428 [0.527] 0.326 [0.311] 0.428 [0.525]

C. elegans 1,809 1,303 0.657 0.603 [0.545] 0.641 [0.612] 0.655 [0.654] 0.655 [0.655] 0.655 [0.655]

Electronic s838 512 819 0.232 0.246 [0.244] 0.313 [0.305] 0.314 [0.354] 0.254 [0.275] 0.311 [0.367]

circuits s420 252 399 0.234 0.262 [0.274] 0.310 [0.313] 0.310 [0.353] 0.262 [0.274] 0.310 [0.369]

s208 122 189 0.238 0.230 [0.262] 0.303 [0.328] 0.303 [0.352] 0.279 [0.287] 0.311 [0.361]

Neuronal C. elegans 297 2,345 0.165 0.158 [0.152] 0.192 [0.219] 0.185 [0.222] 0.178 [0.205] 0.195 [0.242]

WWW Political blogs 1,224 19,025 0.356 0.334 [0.305] 0.408 [0.456] 0.408 [0.454] 0.417 [0.470] 0.425 [0.475]

Internet p2p-1 10,876 39,994 0.552 0.503 [0.454] 0.571 [0.571] 0.576 [0.581] 0.573 [0.576] 0.575 [0.590]

p2p-2 8,846 31,839 0.578 0.525 [0.473] 0.585 [0.579] 0.590 [0.595] 0.589 [0.591] 0.595 [0.605]

p2p-3 8,717 31,525 0.577 0.527 [0.474] 0.585 [0.583] 0.588 [0.592] 0.591 [0.593] 0.596 [0.604]

Organizational Consulting 46 879 0.043 0.043 [0.043] 0.043 [0.043] 0.043 [0.043] 0.043 [0.043] 0.043 [0.043]

Manufacturing 77 2,228 0.013 0.013 [0.013] 0.013 [0.013] 0.013 [0.013] 0.013 [0.013] 0.013 [0.013]

University 81 817 0.012 0.025 [0.025] 0.012 [0.025] 0.012 [0.025] 0.025 [0.037] 0.012 [0.025]

For each network, we show its type, name, number of nodes (N), number of edges (L), the initial density of driver nodes (nD) and nD after 10% [20%] nodes

are removed. All the networks are directed and nD is calculated with the structural controllability framework [15]. For networks with N� 3000, nodal

betweenness centrality is estimated with approximate algorithm [47] to speed up the computation. For data sources and references, see S1 Table.

doi:10.1371/journal.pone.0162289.t004
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networks [51, 52] show good control robustness against random edge failures while other net-

works do not. The rest cases are very similar. In general, RB is the most harmful strategy, fol-

lowed by IB, and RA is the least one. Two exceptions are the trust networks [57–59] in which

IB are more efficient than RB and the metabolic networks [56] in which RA suppresses both IB

and RB with slight advantage.

In summary, the real world networks display rather diverse control robust behaviors, which

may suggest that one should really choose the attack strategies carefully before harming the

controllability of real networks as it may affect the results to a very large extent.

Summary and Conclusions

In this paper, we have systematically investigate the attack vulnerability of network controlla-

bility for the canonical model networks as well as the real-world networks subject to five differ-

ent strategies on the basis of nodes and edges. The strategies are chosen based on degree and

betweenness centralities evaluated with the initial information as well as the recalculated

Table 5. The edge attack vulnerability of real networks analyzed in this paper.

Type Name N L nD nD under edge attack

RA IDA RDA IBA RBA

Regulatory TRN-Yeast-1 4,441 12,873 0.965 0.965 [0.965] 0.965 [0.965] 0.965 [0.965] 0.965 [0.965] 0.965 [0.965]

TRN-Yeast-2 688 1,079 0.821 0.826 [0.830] 0.821 [0.821] 0.821 [0.823] 0.830 [0.846] 0.830 [0.833]

TRN-EC-2 418 519 0.751 0.758 [0.778] 0.751 [0.751] 0.751 [0.751] 0.768 [0.778] 0.773 [0.785]

Ownership-USCrop 7,253 6,726 0.820 0.833 [0.843] 0.820 [0.821] 0.820 [0.820] 0.832 [0.849] 0.842 [0.852]

Trust College student 32 96 0.188 0.188 [0.188] 0.188 [0.188] 0.188 [0.188] 0.219 [0.313] 0.250 [0.281]

Prison inmate 67 182 0.134 0.164 [0.209] 0.134 [0.149] 0.134 [0.134] 0.179 [0.224] 0.164 [0.224]

WikiVote 7,115 103,689 0.666 0.667 [0.669] 0.666 [0.666] 0.666 [0.666] 0.674 [0.678] 0.666 [0.676]

Food web Ythan 135 601 0.511 0.533 [0.533] 0.511 [0.511] 0.511 [0.511] 0.541 [0.548] 0.533 [0.600]

Little Rock 183 2,494 0.541 0.541 [0.541] 0.541 [0.541] 0.541 [0.541] 0.557 [0.579] 0.568 [0.601]

Grassland 88 137 0.523 0.545 [0.591] 0.523 [0.523] 0.523 [0.523] 0.557 [0.602] 0.580 [0.659]

Seagrass 49 226 0.265 0.265 [0.286] 0.265 [0.286] 0.265 [0.265] 0.306 [0.347] 0.327 [0.327]

Metabolic E. coli 2,275 5,763 0.382 0.406 [0.436] 0.383 [0.385] 0.382 [0.383] 0.390 [0.410] 0.394 [0.410]

S. cerevisiae 1,511 3,833 0.329 0.355 [0.392] 0.330 [0.333] 0.329 [0.330] 0.343 [0.351] 0.343 [0.361]

C. elegans 1,809 1,303 0.657 0.666 [0.689] 0.657 [0.657] 0.657 [0.657] 0.669 [0.684] 0.669 [0.685]

Electronic s838 512 819 0.232 0.285 [0.340] 0.246 [0.264] 0.232 [0.246] 0.299 [0.334] 0.346 [0.422]

circuits s420 252 399 0.234 0.294 [0.333] 0.246 [0.274] 0.234 [0.242] 0.302 [0.341] 0.353 [0.425]

s208 122 189 0.238 0.262 [0.320] 0.238 [0.262] 0.238 [0.238] 0.295 [0.361] 0.352 [0.434]

Neuronal C. elegans 297 2,345 0.165 0.172 [0.178] 0.165 [0.165] 0.165 [0.165] 0.256 [0.269] 0.205 [0.273]

WWW Political blogs 1,224 19,025 0.356 0.373 [0.389] 0.356 [0.356] 0.356 [0.356] 0.431 [0.468] 0.404 [0.494]

Internet p2p-1 10,876 39,994 0.552 0.558 [0.566] 0.556 [0.562] 0.552 [0.553] 0.558 [0.564] 0.565 [0.573]

p2p-2 8,846 31,839 0.578 0.585 [0.591] 0.582 [0.585] 0.578 [0.578] 0.583 [0.588] 0.588 [0.597]

p2p-3 8,717 31,525 0.577 0.582 [0.589] 0.583 [0.586] 0.578 [0.578] 0.583 [0.587] 0.589 [0.597]

Organizational Consulting 46 879 0.043 0.043 [0.043] 0.043 [0.043] 0.043 [0.043] 0.065 [0.087] 0.130 [0.174]

Manufacturing 77 2,228 0.013 0.013 [0.013] 0.013 [0.013] 0.013 [0.013] 0.013 [0.026] 0.052 [0.065]

University 81 817 0.012 0.012 [0.012] 0.012 [0.012] 0.012 [0.012] 0.062 [0.074] 0.074 [0.099]

For each network, we show its type, name, number of nodes (N), number of edges (L), the initial density of driver nodes (nD) and nD after 10% [20%] edges

are removed. All the networks are directed and nD is calculated with the structural controllability framework [15]. For networks with N� 3000, nodal

betweenness centrality is estimated with approximate algorithm [47] to speed up the computation. For data sources and references, see S1 Table.

doi:10.1371/journal.pone.0162289.t005
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information, among which random failure is as a comparison. We found that for node attacks,

the ER random network is more control vulnerable to the degree-based attacks (RD and ID)

with ΔnD � 0.12 while the small-world networks (WS and NW) are more vulnerable to the

betweenness-based attack (RB) with ΔnD � 0.07. The BA scale-free model network with an

exponential degree distribution, which is one of the most important characteristics in real-

world networks [60–63], turns out to be the most vulnerable network (ΔnD � 0.19) due to the

existence of hub nodes and the high correlation between node degree and betweenness. The

similar vulnerability is also observed in the two real-world networks, USAir97 and Erdos971.

For edge attacks, the strategies are not as that efficient as the node-based ones. For example,

both RD and ID can hardly harm the controllability at all for all the tested networks, and even

the most harmful strategy RB only damages the ER random network with ΔnD � 0.033 and the

small-world networks with ΔnD � 0.065. The notable difference is the BA scale-free network,

which, out of our expectation, exhibits great control robustness to all the intentional attacks

with almost constant nD. The two real-world networks, USAir97 and Erdos971, display compli-

cated behaviors different from any of the model networks with ΔnD � 0.09 for the former and

ΔnD � 0.18 for the latter, which suggests that there may be other factors contributing to the

controllability.

We also investigate the control robustness of 25 real-world networks and find that the con-

trol vulnerability of real-world networks is much different from that of model networks. For

example, most of the real-world networks exhibit good control robustness against random

node failures, which are not observed in the model networks. The regulatory networks are even

excessively robust to all the node attacks with decreasing nDs (ΔnD � 0), followed by the intra-

organizational networks with constant nDs (ΔnD = 0). For other networks subject to node

attacks, the betweenness-based strategies are more harmful than the degree-based ones, and so

are the strategies based recalculated information than their counterparts. In contrast, for edge

attacks, only the intra-organizational networks are robust to random edge failures whereas

other networks are harmed by the attacks in the order RB> IB> RA. In addition, we find that

edge degree is not a good quantity to measure the importance of an edge in terms of network

controllability.

Our results raise several questions to answer to help us better understand the attack vulnera-

bility of network controllability. For example, we have shown that besides the degree distribu-

tion, there are other factors affecting the network controllability, what are the factors and how

do they affect the controllability? Besides, the real-world networks usually have certain defence

against attacks and failures, so how about the attack vulnerability of network controllability

with defence?

Supporting Information

S1 Table. Real networks analyzed in this paper.

(PDF)
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