
Attacking an Obfuscated Cipher
by Injecting Faults

Matthias Jacob1, Dan Boneh2, and Edward Felten1

1 Princeton University
{mjacob,felten}@cs.princeton.edu

2 Stanford University
dabo@cs.stanford.edu

Abstract. We study the strength of certain obfuscation techniques used
to protect software from reverse engineering and tampering. We show
that some common obfuscation methods can be defeated using a fault
injection attack, namely an attack where during program execution an
attacker injects errors into the program environment. By observing how
the program fails under certain errors the attacker can deduce the ob-
fuscated information in the program code without having to unravel the
obfuscation mechanism. We apply this technique to extract a secret key
from a block cipher obfuscated using a commercial obfuscation tool and
draw conclusions on preventing this weakness.

1 Introduction

In recent years the advent of mass distribution of digital content fueled the
demand for tools to prevent software and digital media from illegal copying. The
goal is to make it harder for a malicious person to reverse engineer or modify
a given piece of software. One well known technique for preventing illegal use
of digital media is watermarking for audio and video content [1] which had
only limited success. Another common approach is to only distribute encrypted
content (see, e.g., CSS [2], Intertrust [3], MS Windows Media Technologies [4],
Adobe EBooks [5]). Users run content players on their machines and these players
enforce access permissions associated with the content. In most of these systems
the software player contains some secret information that enables it to decrypt
the content internally. Clearly the whole point is that the user should not be
able to emulate the player and decrypt the content by herself. As a result, the
secret information that enables the player to decrypt the content must be hidden
somehow in the player’s binary code. We note that hardware solutions, where
the decryption key is embedded in tamper-resistant hardware [6,7,8], have had
some success [9,10], but clearly a software only solution, assuming it is secure,
is superior because it is more cost efficient and easier to deploy.

This brings us to one of the main challenges facing content protection ven-
dors: is it possible to hide a decryption key in the implementation of a block
cipher (e.g. AES) in such a way that given the binary code it is hard to extract
the decryption key. In other words, suppose Dk(c) is an algorithm for decrypting

J. Feigenbaum (Ed.): DRM 2002, LNCS 2696, pp. 16–31, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.
You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.

GENERAL --
File Options:
 Compatibility: PDF 1.2
 Optimize For Fast Web View: Yes
 Embed Thumbnails: Yes
 Auto-Rotate Pages: No
 Distill From Page: 1
 Distill To Page: All Pages
 Binding: Left
 Resolution: [600 600] dpi
 Paper Size: [439 666.2] Point

COMPRESSION --
Color Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 150 dpi
 Downsampling For Images Above: 225 dpi
 Compression: Yes
 Automatic Selection of Compression Type: Yes
 JPEG Quality: Medium
 Bits Per Pixel: As Original Bit
Grayscale Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 150 dpi
 Downsampling For Images Above: 225 dpi
 Compression: Yes
 Automatic Selection of Compression Type: Yes
 JPEG Quality: Medium
 Bits Per Pixel: As Original Bit
Monochrome Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 600 dpi
 Downsampling For Images Above: 900 dpi
 Compression: Yes
 Compression Type: CCITT
 CCITT Group: 4
 Anti-Alias To Gray: No

 Compress Text and Line Art: Yes

FONTS --
 Embed All Fonts: Yes
 Subset Embedded Fonts: No
 When Embedding Fails: Warn and Continue
Embedding:
 Always Embed: []
 Never Embed: []

COLOR --
Color Management Policies:
 Color Conversion Strategy: Convert All Colors to sRGB
 Intent: Default
Working Spaces:
 Grayscale ICC Profile:
 RGB ICC Profile: sRGB IEC61966-2.1
 CMYK ICC Profile: U.S. Web Coated (SWOP) v2
Device-Dependent Data:
 Preserve Overprint Settings: Yes
 Preserve Under Color Removal and Black Generation: Yes
 Transfer Functions: Apply
 Preserve Halftone Information: Yes

ADVANCED --
Options:
 Use Prologue.ps and Epilogue.ps: No
 Allow PostScript File To Override Job Options: Yes
 Preserve Level 2 copypage Semantics: Yes
 Save Portable Job Ticket Inside PDF File: No
 Illustrator Overprint Mode: Yes
 Convert Gradients To Smooth Shades: No
 ASCII Format: No
Document Structuring Conventions (DSC):
 Process DSC Comments: No

OTHERS --
 Distiller Core Version: 5000
 Use ZIP Compression: Yes
 Deactivate Optimization: No
 Image Memory: 524288 Byte
 Anti-Alias Color Images: No
 Anti-Alias Grayscale Images: No
 Convert Images (< 257 Colors) To Indexed Color Space: Yes
 sRGB ICC Profile: sRGB IEC61966-2.1

END OF REPORT --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue false
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed []
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [576.0 792.0]
 /HWResolution [600 600]
>> setpagedevice

Attacking an Obfuscated Cipher by Injecting Faults 17

the ciphertext c using the key k. Is it possible to modify the implementation of
Dk(c) so that extracting k by reverse engineering is sufficiently hard? If hiding
the key in a binary is possible, it has a crucial advantage over alternative key
hiding techniques: in order to decrypt content the binary needs to be executed,
and efficient access control mechanisms exist in the operating system in order
to prevent unauthorized execution, whereas hiding a stored key in memory is
difficult [11]. Key obfuscation is a very old question already mentioned in the
classic paper of Diffie and Hellman [12].

Code obfuscation is a common technique for protecting software against re-
verse engineering and is commonly used for hiding proprietary software systems
and sensitive system components such as a cipher. Commercial obfuscation tools
often work by taking as input arbitrary program source code, and they output
obfuscated binary or source code that is harder to reverse engineer and thus
to manipulate than the original software [13,14,15,16,17]. However, it is unclear
whether obfuscation techniques can be strong enough to protect sensitive soft-
ware systems such as a cipher implementation.

In this paper we investigate a commercial state-of-the-art obfuscated cryp-
tosystem [18] that hides a secret key. An ideal obfuscation tool turns program
code into a black-box, and therefore it is impossible to find out any properties
of the program. In practice however, obfuscation tools often only approximate
the ideal case. When obfuscating a cryptosystem the obfuscator embeds a secret
key into the program code and obfuscates the code. It should be hard to figure
out any properties about the key by just investigating the code. However, we
show how to extract the secret key from the system in only a few cryptographic
operations and come to the conclusion that current obfuscation techniques for
hiding a secret key are not strong enough to resist certain attacks.

Our attack is based on differential fault analysis [19] in which an attacker
injects errors into the code in order to get information about the secret key. The
impact of this attack is comparable to an attack on an RSA implementation
based on the Chinese Remainder Theorem that requires only one faulty RSA
signature in order to extract the private key [20].

Fault attacks are a threat on tamper-resistant hardware [9], and in this paper
we show that an adversary can also inject faults to extract a key from obfuscated
software. Based on our experience in attacking an obfuscated cryptosystem we
propose techniques for strengthening code obfuscation to make fault attacks
more difficult and make a first step in understanding the limits of practical
software obfuscation.

2 Attacking an Obfuscated Cipher Implementation

In this section we describe our attack on a state-of-the-art obfuscator [18] il-
lustrated in Figure 1. We were given the obfuscated source code for both DES
encryption and decryption of the iterated block cipher. Our goal was to reverse
engineer the system only based on knowledge of this obfuscated source code. For
the given obfuscated code the attacker does not learn more properties about the

18 Matthias Jacob, Dan Boneh, and Edward Felten

Key+ Obfuscator

Fig. 1. Operation of the obfuscator on the round-based cipher: It transforms the key
and the original source code into code that implements every round as a lookup table
of precomputed values. The intermediate results after each round are encoded

program by investigating the obfuscated source code than by just disassembling
the binary because most of the program is composed of lookup tables.

In this particular approach the obfuscation method hides the secret key of
a round-based cipher in the code. Because a round-based cipher exposes the
secret key every time it combines the key with the input data of a round, the ob-
fuscator injects randomness and redundancies and refines the resulting boolean
operations into lookup tables. Instead of executing algorithmic code, the program
steps through a chain of precomputed values in lookup tables and retrieves the
correct result. Therefore it is difficult to obtain any information about the sin-
gle rounds by just looking at the source code or binary code, but in our attack
we obtain information by observing and changing data during the encryption
process.

2.1 Obfuscating an Iterated Block Cipher

The obfuscation process of the cipher implementation is shown in Figure 1. The
obfuscator transforms the original source code and the key into a cipher in which
the key is embedded and hidden in the rounds. The single rounds of the cipher
are unrolled, but the boundaries of each round are clearly recognizable. The
cipher contains n rounds πk

i for each i = 1, .., n with the key k. Including the
initial permutation λ the cipher computes the function

Ek(M) :=
[
λ−1 · πk

n · πk
n−1 · ... · πk

1 · λ]
(M).

However, interpretation of any intercepted intermediate results is difficult
since the obfuscator maps the original intermediate results after each round to
a new representation. This transformation is described in detail in [18].

In the following paragraphs we give an algebraic definition for the transfor-
mation into the 96-bit intermediate representation of the obfuscator in [18]. In
the first step we define some basic operations. x|mi extracts bits i through i+m
from a bit string. EP (x) computes the DES expansion permutation.

x1x2...xn|mi = xixi+1...xi+m

x1x2...xn|i = xi

EPi(x) = EP (x)|66i

Attacking an Obfuscated Cipher by Injecting Faults 19

R′k
r = EP (Rk

r)
R′k

r,i = EPi(Rk
r)

The t-box T k
r,i(Lr, R

′k
r) computes the i-th DES s-box in round r for i = 0..7 and

appends R(Lr, R
′k
r) which takes the first and sixth bit from R′k

r,i and appends
two random bits from Lr. The bits from Lr are used to forward the left hand side
information in the t-boxes, and the first and sixth bit from R′k

r,i to reconstruct
Rk

r from the s-box result in order to forward it to round r + 1 as the left hand
side input.

T k
r,i(Lr, R

′k
r) = Sk

r,i(R
′k
r,i) || R(Lr, R

′k
r,i)

T k
r (Lr, R

′k
r) = T k

r,γr(0)(Lr, R
′k
r) || T k

r,γr(1)(Lr, R
′k
r) || ... || T k

r,γr(11)(Lr, R
′k
r)

For i = 8...11 T k
r,i(Lr, R

′k
r) outputs either random dummy values or bits from

Lr.
In order to obfuscate the result γr permutes the order of the t-boxes on

Tr = {T k
r,0....T

k
r,11}. Additionally, φr applies a bijective non-linear encoding on

4-bit blocks xj for j = 1...24 where
φr(x) = (φr,1(x1), φr,2(x2), ..., φr,24(x24)) and x = x1x2...x24. Since a single t-
box consists of 8 bit outputs, two different bijective non-linear encodings belong
to one t-box.

In order to do the second step the obfuscated DES implementation needs to
be able to recover the original right hand side input to round r, and this gets
implemented using function αk

r,i(y) which takes the forwarded bits x1 and x2
that describe the row of the s-box.

αk
r,i(y, x1, x2) = EP−1

i ((Sk
r,i)

−1
(y, x1, x2))

Lr = L0
r || L1

r || L2
r || ... || L7

r

R′
r = R′0

r || R′1
r || R′2

r || ...|| R′7
r

The second step then implements the function τk
r,i in which µr(n) describes the

corresponding position of the bit in the output of the t-boxes, and PB is the
DES p-box operation:

τk
r,i(x)(L

i
r, R

′i
r) = αk

r,i(x|48γr(i), x|8γr(i)+4, x|8γr(i)+5)
︸ ︷︷ ︸

depends on Rr−1 only

||

EPi

[
PB (x|4γr(0) || x|4γr(1) || ... || x|4γr(11)︸ ︷︷ ︸

depends on Rr−1 only

) ⊕

(x|µr(0) || ... || x|µr(32)︸ ︷︷ ︸
depends on Lr−1 only

)
]

τk
r (x) = τk

r,0(x) || τk
r,1(x) || ... || τk

r,11(x)

ψr and φr are different non-linear bijective encodings on 4-bit blocks, and δr

20 Matthias Jacob, Dan Boneh, and Edward Felten

δr(L,R′) = γr(µr((L|024), R′))

µr(x0x1...x47, y0...y47) = y0...y5xµ−1
r (0)xµ−1

r (1)y6...y11xµ−1
r (2)xµ−1

r (3)...y42...y47
xµ−1

r (22)xµ−1
r (23)...xµ−1

r (47)
γr(z0z1...z95) = zγ−1

r (0)...z(γ−1
r (0)+5)z6z7...zγ−1

r (11)...z(γ−1
r (11)+5)z94z95

The obfuscated t-box is

T ′k
r (x) = (φr T

k
r ψ

−1
r−1)(x).

Hence the transformed function is:

Ek(x) =
[
(λ−1δ−1

n ψ−1
n) · ((

ψnδnτ
k
nφ

−1
n

) · (
φnT

k
nψ

−1
n−1

)) · ... ·((
ψ1δ1τ

k
1 φ

−1
1

) · (
φ1T

k
1 ψ

−1
0

) · (ψ0δ0βλ)
)]

(x)

with
β(L,R) = L || EP (R)

By setting

τ ′k
r =






ψ0 δ0 β λ r = 0
ψr δr τ

k
r φ

−1
r r = 1, .., n

λ−1 δ−1
n ψ−1

n r = n+ 1

the resulting encryption operation is

Ek(x) =
[
τ ′k
n+1 · (

τ ′k
n · T ′k

n

) · ... · (
τ ′k
1 · T ′k

1
) · τ ′k

0
]
(x)

Every component τ ′k
i and T ′k

i is implemented within a separate lookup table.
For convenience set

τ ′′k
r =

{
τ ′k
r r = 0, r = n+ 1
τ ′k
r · T ′k

r r = 1, .., n

and obtain
Ek(x) =

[
τ ′′k
n+1 · τ ′′k

n · ... · τ ′′k
0

]
(x)

Figure 2 shows the deobfuscation problem. Given one DES round and the obfus-
cated intermediate representations an attacker wants to find out the intermediate
representation which is encoded by the unknown function σr. This σr is the in-
verse of the encoded input to the t-box (by ψ), the permutation of the t-boxes
γr, and the random distribution of the left hand side µr:

σr(Lr, Rr) = ψr(δr(Lr, EP (Rr)))

Ek(x) contains the key k implicitly in τ ′′k
r (in [18] τ ′k

0 corresponds to M1,
τ ′k
n+1 to M3 and all other τ ′k

r to M2). In other words, the implementation of τ ′′k
r

hides the decomposition into its components σ−1
r−1, π

k
r , and σr. Hence, recovering

the key boils down to the problem of extracting πk
r out of τ ′′

r . In any further
explanations we remove λ from any computation since it does not play any role
in the attack and can be easily inverted. Therefore τ ′′k

0 = ψ0 and τ ′′k
n+1 = ψn.

Attacking an Obfuscated Cipher by Injecting Faults 21

L

L

R

R

32

32

96

96

32

f

σr−1

r r

r−1 r−1

r(Lr, Rr)

L)r−1R,r−1(

σ

r
k

Fig. 2. Round r with the function fk
r hiding the key k. σr is the intermediate represen-

tation and Lr and Rr are the left hand and the right hand side of the intermediate result
respectively. The rounds πk

r correspond to πk
r = fk

r (Rr−1 ⊕ Lr−1, Rr−1) for r = 1..n

2.2 Attacking an Obfuscated Iterated Block Cipher

In an example for a naive approach for attacking the obfuscated cipher an ad-
versary encrypts some arbitrary plaintext and intercepts intermediate results to
obtain σr(Lr, Rr). The adversary starts the attack by encrypting plaintexts p
that have one single bit set, and afterward examines the obfuscated intermediate
results after the first round πk

1 during encryption. By heuristically computing the
differences between (τ ′′

1 τ
′′
0)(p) and (τ ′′

1 τ
′′
0)(0) for p �= 0 we find that (τ ′′

1 τ
′′
0)(p)

changes deterministically for all p that have one bit set in the left hand side
of the plaintext L0 due to the construction of the t-boxes. However, since the
adversary is not able to compute σ−1

1 in order to retrieve R1 any knowledge of
R0 and L0 is meaningless if she wants to extract the key. An attack that works
on the first round by recovering σ−1

1 of the cipher is the statistical bucketing at-
tack [18]. This attack exploits some properties of the DES s-boxes and requires
about 213 encryptions. In contrast our attack works for any round-based block
cipher and requires only dozens of encryptions.

We now describe how we use a simplified differential cryptanalysis called
differential fault analysis [19] to recover the key in a few operations. In this
attack an adversary flips bits in the input to the last round function fk

n and
computes the different outputs to find out the round function fk

n of the last round
n. When injecting single bit faults into the last round using chosen ciphertexts
only dozens of cryptographic operations are necessary in order to find fk

n . The
implementation of this attack requires less information about the intermediate
representation than the naive attack since an attacker only needs to flip a single
bit in the obfuscated intermediate representation, and it is not necessary to figure
out any inverse mappings σ−1

r . Also, this attack is independent from the DES
structure and can be applied to any round-based block cipher. We try to apply
deterministic changes to σn−1(Ln−1, Rn−1), the state going into the last round,
and then run the last round operation.

22 Matthias Jacob, Dan Boneh, and Edward Felten

f

L

L R

32

32

32

n

Rn−1 n−1

n

n
k

Fig. 3. Last round with the round function fk
n . In the last round the right hand side

and the left hand side of the output are usually not crossed over

Figure 3 shows the last round of the cipher. An attacker knows Rn = Rn−1
from the ciphertext which is also the input to the round function of the last
round. In addition an attacker can modify Rn−1 even if the mapping of σn−1
is unknown by changing Rn in the ciphertext, decrypting the ciphertext, and
encrypting the resulting plaintext afterward. Therefore we have two precondi-
tions for the attack: First, both encryption and decryption operations need to
be available, and second, the attacker needs to be able to modify the cipher-
text arbitrarily. Using this technique we can find out the positions of µr(i) for
i = 0...32 which describe the bits for the left-hand side. From the definition of
T k

r,i it is clear, that if the attacker keeps the right-hand side input constant, the
observed changes in the input to the t-boxes uniquely refer to changes in the
left-hand side of the input. The attacker is not able to set Ln−1 to 0 since she
would need to know the round function and hence the key. Therefore, Rn = 0
and Ln−1 = fk

n(0) ⊕ Ln.
Now the attacker builds a table of

∆(c) := σn−1(c, 0) ⊕ σn−1(0, 0)

for c = 1...232.
Since σr contains the unknown non-linear bijection δr−1 it is not possible to

build a linear operator in ∆. However, using the table the attacker can always
reconstruct the left-hand side of the input in the scenario where the right-hand
side is 0. Furthermore, different bits of the left-hand side Ln−1 can correspond
to the same t-box, and in this case the encoding depends on two bits. Therefore,
in the first part the attacker tests which bits correspond to the same t-box and
then tries all possible bit combinations into this t-box. In this way the attacker
gets all possible values for σr induced by the left-hand side Ln−1. Determining
the original value Ln−1 ⊕ fk

n(0) given the intermediate representation is just a
table lookup.

The idea now is to inject faults into the input to the s-box and observe the
output. Unfortunately, the attacker does not know how the right-hand side gets
encoded in σr. In order to get around this problem the attacker feeds a value
x into Rn−1 that is different from 0 and then resets Ln−1 to 0. Finally, Ln

contains fk
n(x) ⊕ fk

n(0), and the attacker can extract the key for the last round

Attacking an Obfuscated Cipher by Injecting Faults 23

using differential cryptanalysis. Getting the DES key from the round key requires
a 28 brute-force search.

The problem is that if the right hand side Rn−1 changes to some value �= 0
the t-box inputs collide with the 16 bits of the left-hand side Ln−1. Therefore
it is not possible to decode the left-hand side Ln−1 uniquely since complete
new values might show up in the t-boxes that are taking as input bits from the
left-hand side.

However, if the attacker sets only one bit in Rn−1 at most two different t-box
outputs are affected, and hence the attacker can simply count the occurrences
of the encoded 4-bit values at a certain position in σr.

We describe the algorithm for the attack when the specification of the round
function is known. We will explain at the end of the algorithm how the algo-
rithm needs to be changed to attack an unknown round function. For conve-
nience we use Dk(c) to describe the decryption of ciphertext c using key k,
and Ek

i (p) = (Li, Ri) to describe iteration of plaintext p for i rounds in the
encryption operation using key k. sn(k) = s1n(k)|...|s8n(k) is the key sched-
ule for key k in round n, m is the size of the input word, and the sboxes
sbn(x) = sb1n(x1)|...|sb8n(x8):

fk
n(x1|...|x8) := sb1n(x1 ⊕ s1n(k))|...|sb8n(x8 ⊕ s8n(k))

In our simplified model the in- and outputs of the s-box have the same size, and
the system computes the xor of the key and the input to the s-box. The algorithm
consists of 3 basic operations: A Set operation changes any arbitrary variable.
When we do a Compute we execute an operation in the iterated block cipher.
This can be encryption, decryption, or just a single round of the cipher. De-
rive computes values on known variables without executing the cipher. Figure 4
illustrates the single steps of the algorithm.

Our attack algorithm works as follows:

1. Initialization: (Figure 4 top left)
Set Ln := 0, Rn := 0
Compute σn−1(Ln−1, Rn−1) = Ek

n−1(D
k(Ln, Rn))

Result: Ln−1 = fk
n(0), Rn−1 = 0

Derive Ω = σn−1(Ln−1, Rn−1) = σn−1(fk
n(0), 0)

2. Reconstruct ∆(x): (Figure 4 top right)
For j = 0 to 23:

Set m(j) := 0
For i = 0 to 31:

Set Ln := 2i, Rn := 0
Compute σn−1(Ln−1, Rn−1) = Ek

n−1(D
k(Ln, Rn))

Set ∆(Ln) := σn−1(Ln−1, Rn−1) ⊕Ω
For j = 0 to 23:

If
(
∆(Ln)|44j �= 0

)

Set b[j][m(j)] := i
Set m(j) := m(j) + 1

24 Matthias Jacob, Dan Boneh, and Edward Felten

i2

0fn
k()

fnk fnk

fnk fnk

fn
k(0) fn

k(0) i2

i2

i2

i2

i2i2fn
k()

i2fn
k() 0fn

k()

0 0

000

0

Fig. 4. Attacking the last round of the iterated block cipher. Boxes having a white
background indicate that the attacker changed values. The picture on the top left shows
the initialization of the algorithm (step 1). Afterward, on the top right we change Ln

to 2i in order to reconstruct ψn−1(x) (step 2). In the bottom left we set 2i to be input
to the round function. The fault injection takes place on the bottom right (step 3): We
reset Ln−1 to fk

n(0) and obtain the difference fk
n(2i) ⊕ fk

n(0) in Ln

For j = 0 to 23:
For l = 0 to 2m(j) − 1:

Set e := 0
For k = 0 to m(j):
If (((l >> k) & 1) = 1)
Set e := e+ 2b[j][k]

Set Ln := e, Rn := 0
Compute σn−1(Ln−1, Rn−1) = Ek

n−1(D
k(Ln, Rn))

Set ∆(Ln) := σn−1(Ln−1, Rn−1) ⊕Ω

3. Reset Ln−1 to fk
n(0): (Figure 4 bottom left)

For i = 0 to 31:
Set Ln := 0, Rn := 2i

Compute σn−1(Ln−1, Rn−1) = Ek
n−1(D

k(Ln, Rn)),
Result: Ln−1 = fk

n(2i), Rn−1 = 2i

Derive w := σn−1(Ln−1, Rn−1) ⊕Ω = σn−1(fk
n(2i), 2i) ⊕ σn−1(0, 0)

For x in ∆−1

For j = 0 to 23
If

(
∆(x)|44j = w|44j

)

w|44j := 0
Compute (L′

n, R
′
n) = (τ ′′

nτ
′′
n+1)(w) = (σ−1

n−1π
k
n)(w)

Result: L′
n ≈ fk

n(2i) ⊕ fk
n(0), R′

n ≈ 2i

Attacking an Obfuscated Cipher by Injecting Faults 25

4. Do differential cryptanalysis to extract the key
for the round function fk

n :
ls = L′

n|44(s−1), r
s = EP (R′

n)|66(s−1)
For s = 1 to 8:

ds = 0
For s = 1 to 8:

For i = 0 to 31:
Compute cs[i]: sbsn(rs[i] ⊕ cs[i]) = ls[i]
Compute ds[i] = ds[i] + 1

Set c̃s := cs[maxm
i=1 d

s[i]]

5. Reconstruct the original key:
k:= c̃1|c̃2|...|c̃8
Compute sn(k)−1 to retrieve original key
brute-force search on the remaining bits of the key.

Step 2 of the algorithm reconstructs ∆(x), in step 3 we inject the fault by
resetting Ln−1 to fk

n(0) and computing Ln = fk
n(Rn)⊕fk

n(0). In steps 4 and 5 we
compute the key given a round function fk

n by concatenating the components
going into the s-boxes, inverting the key schedule, and running a brute-force
search on the remaining key bits.

If the key schedule sn(k) for round n is unknown, we cannot do step 5 to
get the key out. In this case we have to compute the key for round n and then
use this key to attack round n− 1 until we extract all round keys. If the round
function fk

i is unknown, we can first try out different known round functions
(e.g. Skipjack, Blowfish, DES etc) for fk

i . If none of them works, we have to do
cryptanalysis to recover the s-boxes from scratch. We make the basic assumption
that the round function is based on an s-box with fixed inputs.

This attack is fully automated and can be run without any knowledge of
the system. Given the plaintext length as 2n and the length of the intermediate
representation as 4m the attack in steps 1-5 extracts the key in O(max(m,n))
cryptographic operations, and therefore undermines the security of the obfusca-
tion system.

2.3 Summarizing the Attack

We exploit two weaknesses in this attack: First, the boundaries of the rounds are
identifiable and protection of intermediate results against tampering is not strong
enough. This means that a) hiding the rounds can strengthen the implementation
and b) data needs to be safe against leaking of information during execution.

In this attack we show that faults in ciphers are a cheap and efficient tech-
nique to extract a secret key from an obfuscated cipher implementation in soft-
ware. Our attack on obfuscated cipher implementations in software requires only
a few cryptographic operations, and therefore an adversary can run the attack
on any inexpensive hardware.

26 Matthias Jacob, Dan Boneh, and Edward Felten

We had to modify the original algorithm for differential fault analysis [19] in
several steps. The main difference is that it is not possible to inject random faults
since the intermediate representation is obfuscated and has multiple points of
failure. However, it is still possible to find out a sufficient amount of information
about the obfuscated intermediate representation that make it possible for an
attacker to inject faults.

In the underlying attack model it is the goal to decrypt some media stream on
different machines at the same time. To do this we assume that copy protection
of the decryption system is sufficiently strong, and therefore an attacker has to
extract the secret key. In the current implementation our attack requires that a
decryption system colludes with an encryption system, but actually an attacker
only needs to obtain plaintexts for 2m chosen plaintexts and the decryption
system. Or, since the system is a symmetric block cipher, we run the attack
on the encryption system and need 2m chosen ciphertexts from the decryption
operation. Furthermore, it is an open question how difficult it is to turn an
obfuscated decryption system into an encryption system. In this case having the
decryption system is sufficient for the attack.

In the recommended variant the system executes the encryption operation
E′(x) = (f−1Eg)(x) and the decryption operation D′(x) = (g−1Df)(x) where f
and g are non-linear bijective encodings. The current attack is now impossible,
but the disadvantage is that given a ciphertext it is only possible to decrypt
when f , g, and the key k are known, or the obfuscated decryption program is
being used. It is not implementing DES anymore.

It is crucial to fix the weaknesses in the system or implement other techniques
to prevent any common attacks that recover the secret key. In the following
sections we explore what we can do about the weaknesses and investigate how
to strengthen obfuscation techniques against common attacks.

3 Theoretical Considerations

The weaknesses in this attack are specific to the implementation of the obfus-
cated cipher. We were able to use specific properties of the DES cipher and the
obfuscation method in order to extract the secret key. However, theoretical con-
siderations do not necessarily limit any stronger obfuscation techniques. Here we
give a simple argument why the general problem of retrieving embedded data
from a circuit is NP-hard, and therefore no efficient general deobfuscator exists
for this problem.

In MATCH-FIXED-INPUT we are given two circuits, one of which has addi-
tional input k. It is the goal to find a k such that the two circuits are equivalent.

Definition: MATCH-FIXED-INPUT: Given circuits two C(x, k) and C ′(x) where
x ∈ {0, 1}n and k ∈ {0, 1}c where c ∈ N is constant, find k′ ∈ {0, 1}c such that
∀x : C(x, k′) = C(x).

Theorem: MATCH-FIXED-INPUT is NP -hard.

Attacking an Obfuscated Cipher by Injecting Faults 27

Proof: We reduce SAT to MATCH-FIXED-INPUT which is almost trivial. In order
to test satisfiability of circuit D(x), set C(x, k) = D(k) and C ′(x) = true,
and run MATCH-FIXED-INPUT. If MATCH-FIXED-INPUT returns a k′ such that
C(x, k′) = C ′(x), then according to the definition there exists an x such that
D(x) = true. If MATCH-FIXED-INPUT does not return a k′, then for all x
D(x) = false. Hence, we reduce SAT to MATCH-FIXED-INPUT. �

For practical purposes, however, this theoretical observation is not much of
a relevance since the problem is hard in the worst case but can still be easy for
practical purposes. On the average the problem MATCH-FIXED-INPUT is NP -
hard, but in several cases heuristic methods can extract the fixed input as in the
example of this obfuscated DES cipher.

4 Strengthening Obfuscation

In this section we briefly discuss various mechanisms for defending against our
attack using software faults. We first describe some common attacker goals when
attacking obfuscated code:

– Hide data in the program: The attacker wants to find out certain data
values. This case subdivides into the possibility of tracing values during
runtime and discovering static values in the code.

– Protect the program from controlled manipulation: In this case the
attacker wants to force the program to behave in a certain way, e.g. to remove
copy protection mechanisms or to cause damage on a system.

– Hide algorithms of the program: According to Kerckhoff’s principle
cryptographic algorithms are usually public, but in some cases it is useful
to hide certain properties by which an attacker can recognize the algorithm,
i.e. distinguish for example between AES, IDEA or Blowfish [21,22,23].

Often when obfuscating a cipher, commercial tools first encode the plaintext
using some hidden encoding function, then run the cipher, and finally decode
the ciphertext using some other hidden decoding function. More precisely, the
encryption process looks like E′

k(x) = (F ·Ek ·G−1)(x) where Ek is the original
DES encryption [18]. Note that F and G must be one-to-one functions so that
decryption is possible. The decryption process is similar: D′

k(x) = (G · Dk ·
F−1)(x). This pre- and post-encoding makes chosen ciphertext attacks more
difficult since an adversary first needs to recover G. As a result, these encoding
makes our fault attack harder to mount. One can still potentially attack the
system by using a fault attack against inners levels of the Feistel cipher.

4.1 Defending against a Fault-Based Attack

We mention a few mechanisms for protecting obfuscated systems from a fault
attack. One approach is to protect all intermediate results using checksums.
These checksums are frequently checked by the obfuscated code. We refer to this

28 Matthias Jacob, Dan Boneh, and Edward Felten

approach as local checking. Clearly the code for checking these checksums must
be hidden in the total program code so that an attacker cannot disable these
checkers. One approach for using checksums to ensure code integrity is explained
in [24]. In this approach we compute checksums for parts of the program and
verify them during program execution. In the extreme we verify a checksum for
every single instruction and every data element.

Another approach for checking the computation of obfuscated code is to use
global checking. The idea is to execute the obfuscated program k times (e.g.
k = 3) by interleaving the k executions. At the end of the computation the code
verifies that all k executions resulted in the same value. As before, the checker
must be obfuscated in the code so that it cannot be targeted by the attacker.
This global checking approach makes our attack harder since the attacker now
has to modify internal data consistently in all k executions of the code.

The problem with the checking approaches is the vulnerability of the checker
since it is unprotected against any tampering attack. One approach to make
the checker more robust is to obfuscate it and have it verify its own integrity
repeatedly while it is checking the program. This variant reduces the maximum
time interval an attacker has to run the modified program. In any case the
attacker needs to modify to system at more than one place. We note that if the
integrity check fails the program should not stop execution immediately since
this will tell an attacker where the checker is.

Another approach for making the fault attack more difficult is to diversify
the obfuscation mechanism. In other words, each user gets a version of the code
that is obfuscated differently (e.g. by using different encoding functions). In
diversification we add randomness to the obfuscation methods, and therefore two
obfuscated programs are always different after obfuscation. Especially vulnerable
places in a program such as the intermediate results of the iterated round-based
cipher need to be diversified.

5 Related Work

Informally tamper-resistance of a software implementation measures to what ex-
tent the implementation resists arbitrary or deliberate modifications. For exam-
ple, an implementation can be protected from removing a copy protection mecha-
nism. Thus, obfuscation is a common technique for improving tamper-resistance.
Barak et al. [25] give a formal definition of obfuscation using a black-box ap-
proach which is the ideal case. They show that in their model, that obfuscation
is not possible.

Encrypting the executable binary [26] is the most common approach for
hiding code. In binary encryption the program is encrypted and decrypts itself
during runtime. The problem is that the program is available in the clear at
some point before it gets executed on the processor, and it can be intercepted.
Furthermore, the system needs to hide the decryption key, and that reduces
recursively to the key obfuscation problem itself.

A common approach for obfuscation is to obstruct common static program
analysis [27,28,29]. The main technique for doing this is to insert of additional

Attacking an Obfuscated Cipher by Injecting Faults 29

code that creates pointer aliasing situations. Applying static program analysis
to analyze a program containing possible pointer aliasing turns out to be NP-
hard [30]. This obfuscation technique only protects against attacks by static
program analysis. It is still possible to do dynamic attacks with a debugger or
any type of tampering.

The goal of obfuscation is to hide as many program properties as possible.
The principle of improving tamper-resistance by obfuscation is that if an attacker
cannot find the location for manipulating a value, it is impossible to change this
value. In addition an obfuscator can eliminate single points of failure. On the
other hand obfuscation never protects against existential modification.

Collberg et al define some metrics for obfuscation in [28]. They classify ob-
fuscation schemes by the confusion of a human reader (“potency”), the suc-
cessfulness of automatic deobfuscation (“resilience”), the time/space overhead
(“cost”), and the blending of obfuscated code with original code (“stealth”). But
obfuscation of a secret key requires stronger properties of obfuscation, since any
definition of tamper-resistance is missing. A program that is a good obfuscator
in these metrics can still have a single point of failure, and therefore it does not
protect the program against fault attacks.

Tamper-resistance can also be improved by techniques other than obfusca-
tion. We already mentioned self-checking of code as one possibility [24,31,16].
Protection by software guards is another technique to prevent tampering [32].
Software guards are security modules that implement different tasks of a program
and thus eliminate single points of failure. In addition a program can implement
anti-debugging techniques in order to prevent tampering with a debugger [33].
Anti-debugging inserts instructions into a program or changes properties in order
to confuse a debugger. For example a program can arbitrarily set break points
or misalign code. Furthermore, virtual software processors are are a technique
for making tampering difficult [13]. Virtual software processors run the original
program on a software processor, and in order to reverse engineer the original
program, an attacker needs to compromise any protection mechanism of the
virtual software processor as well.

Goldreich and Ostrovsky show in [34] that software protection against eaves-
dropping can be reduced to oblivious simulation of RAMs. In their definition
a RAM is oblivious if two different inputs with the same running time create
equivalent sequences of memory accesses. Oblivious RAM protects against any
passive attack and therefore strengthens an obfuscator because it is impossible to
find out the memory locations a program accesses. However, it does not protect
against the fault injection attack.

Current hardware dongles are based on the idea of oblivious RAM, since the
code implementing the license check sits on the dongle.

6 Open Problems

In other areas of information hiding techniques, such as watermarking, bench-
mark programs are available to measure the strength of a technique to hide

30 Matthias Jacob, Dan Boneh, and Edward Felten

information. For example, StirMarks [35] uses a variety of different generic at-
tacks on a watermarked image to make the watermark illegible. It is an open
problem to build such a benchmark for code obfuscation and tamper resistance
tools. Such a benchmark would take as input some tamper resistant code and
attempt to break the tamper resistance. Currently no such benchmark exists
and there is no clear model for building such a benchmark.

One of the main open problems in code obfuscation is to come up with a
model for obfuscation that can be realized in practice. [25] defines obfuscation
using a black-box model that hides all properties of a program. They show that
it is not possible to achieve obfuscation in that model. For practical purposes a
black box model might not always be necessary. In the example of the obfuscated
DES cipher in this paper we only need to make sure that it is impossible to get
information about the secret key. The open research problem is to find the most
general definition for obfuscation that can be realized in practice.

7 Conclusion

Code obfuscation provides some protection against attackers who want to find
out secret data or properties of a program, but it is not sufficient as a stand-
alone system. In this study we evaluate the usability of obfuscation when hiding
a secret key in an iterated round-based software cipher. We find weaknesses in a
commercial state-of-the-art obfuscator. Our attack enables automated extraction
of the secret key from the obfuscated program code. We discuss a few methods
for defending against these attacks.

References

1. Craver, S.A., Wu, M., Liu, B., Stubblefield, A., Swartzlander, B., Wallach, D.S.,
Dean, D., Felten, E.W.: Reading between the lines: Lessons from the SDMI chal-
lenge. In: Proceedings of the 10th USENIX Security Symposium. (2001)

2. CSS: http://www.dvdcca.org/css (2002)
3. Intertrust: http://www.intertrust.com (2002)
4. Microsoft Windows Media Technologies:

http://www.microsoft.com/windows/windowsmedia (2002)
5. Adobe EBooks: http://www.adobe.com/epaper/ebooks (2002)
6. Abraham, D.G., Dolan, G.M., Double, G.P., Stevens, J.V.: Transaction Security

System. IBM Systems Journal 30 (1991) 206–229
7. Dallas Semiconductor: Soft Microcontroller Data Book. (1993)
8. Trusted Computing Platform Alliance: http://www.trustedpc.org (2002)
9. Anderson, R., Kuhn, M.: Low cost attacks on tamper resistant devices. In: Pro-

ceedings of the 5th International Security Protocols Conference. (1997) 125–136
10. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. Lecture Notes in Com-

puter Science 1666 (1999) 388–397
11. Shamir, A., van Someren, N.: Playing “hide and seek” with stored keys. Lecture

Notes in Computer Science 1648 (1999) 118–124
12. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Transactions on

Information Theory IT-22 (1976) 644–654

Attacking an Obfuscated Cipher by Injecting Faults 31

13. Microsoft Corporation: World Intellectual Property Organization, WO 02/01327
A2 (2002)

14. Cloakware Corporation: World Intellectual Property Organization, WO 00/77596
A1 (2000)

15. Intertrust Corporation: US Patent Office, US 6,157,721 (2000)
16. Intel Corporation: US Patent Office, US 6,205,550 (2000)
17. RetroGuard Java Obfuscator: http://www.retrologic.com (2002)
18. Chow, S., Johnson, H., van Oorschot, P.C., Eisen, P.: A White-Box DES Imple-

mentation for DRM Applications. In: Proceedings of Workshop on Digital Rights
Management 2002. (2002)

19. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems.
Lecture Notes in Computer Science 1294 (1997) 513–525

20. Boneh, D., DeMillo, R.A., J.Lipton, R.: On the importance of checking cryp-
tographic protocols for faults. Lecture Notes in Computer Science 1233 (1997)
37–51

21. Schneier, B.: Applied Cryptography. Wiley (1994)
22. Menezes, A.J., Van Oorschot, P.C., Vanstone, S.A.: Handbook of applied cryptog-

raphy. CRC Press (1997)
23. Daemen, J., Rijmen, V.: Rijndael for AES. In NIST, ed.: The Third Advanced

Encryption Standard Candidate Conference, National Institute for Standards and
Technology (2000) 343–347

24. Aucsmith, D.: Tamper-resistant software: An implementation. Lecture Notes in
Computer Science 1174 (1996) 317–333

25. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang,
K.: On the (im)possibility of obfuscating programs. Lecture Notes in Computer
Science 2139 (2001) 1–18

26. grugq, scut: Armouring the ELF: Binary encryption on the UNIX platform. Phrack
Inc. 58 (2001)

27. Wang, C., Davidson, J., Hill, J., Knight, J.: Protection of software-based surviv-
ability mechanisms. Proceedings of the 2001 Dependable Systems and Networks
(DSN’01) (2001)

28. Collberg, C., Thomborson, C., Low, D.: Manufacturing cheap, resilient, and
stealthy opaque constructs. In: The 25th Symposium on Principles of Programming
Languages (POPL ’98), Association for Computing Machinery (1998) 184–196

29. Steensgaard, B.: Points-to analysis in almost linear time. In: The 23th Symposium
on Principles of Programming Languages (POPL ’96), Association for Computing
Machinery (1996) 32–41

30. Landi, W.: Undecidability of static analysis. ACM Letters on Programming Lan-
guages and Systems 1 (1992) 323–337

31. Horne, B., Matheson, L., Sheehan, C., Tarjan, R.E.: Dynamic self-checking tech-
niques for improved tamper-resistance. Lecture Notes in Computer Science 2320
(2001) 141–159

32. Chang, H., Atallah, M.J.: Protecting software code by guards. Lecture Notes in
Computer Science 2320 (2001) 160–175

33. Cesare, S.: Linux anti-debugging techniques (fooling the debugger). Security Focus
(2000)

34. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
RAMs. Journal of the Association for Computing Machinery 43 (1996) 431–473

35. Petitcolas, F.A.P., Anderson, R.J., Kuhn, M.G.: Attacks on copyright marking
systems. Lecture Notes in Computer Science 1525 (1998) 219–239

	1 Introduction
	2 Attacking an Obfuscated Cipher Implementation
	2.1 Obfuscating an Iterated Block Cipher
	2.2 Attacking an Obfuscated Iterated Block Cipher
	2.3 Summarizing the Attack

	3 Theoretical Considerations
	4 Strengthening Obfuscation
	4.1 Defending against a Fault-Based Attack

	5 Related Work
	6 Open Problems
	7 Conclusion
	References

