
Attacking Large Industrial Code with

Bi-Abductive Inference

Dino Distefano

Queen Mary, University of London

Abstract. In joint work with Cristiano Calcagno, Peter O’Hearn, and
Hongseok Yang, we have introduced bi-abductive inference and its use
in reasoning about heap manipulating programs [5]. This extended ab-
stract briefly surveys the key concepts and describes our experience in
the application of bi-abduction to real-world applications and systems
programs of over one million lines of code.

1 Introduction

Automatic software verification has seen an upsurge of interest in recent years.
This is exemplified by tools such as SLAM [1] and ASTRÉE [4], which have been
used to verify properties of special classes of real-world software, e.g., device
drivers and avionics code. Crucial in this reinvigoration of software verification
has been the employment of methods from static program analysis which have
the advantage to lessen annotation burden (e.g., by automatically inferring loop
invariants and procedure summaries).

While these advances are impressive, a persistent trouble area stands in the
way of verification-oriented program analysis for a wider range of real software:
the heap. The heap is one of the hardest open problems in automatic verifica-
tion and prominent tools such as ASTRÉE and SLAM either eschew dynamic
allocation altogether or use coarse models that assume pointer safety.

Shallow pointer analyses, which infer dereferencing information of bounded
length, often do not give enough information for verification purposes. For ex-
ample, for automatically proving that a device driver manipulating a collection
of nested cyclic linked lists, does not dereference null or a dangling pointer, the
analysis technique needs to be able to look unboundedly deep into the heap. This
is done by shape analyses [13]. Shape analyses are program analyses which aim
to be accurate in the presence of deep-heap update—They go beyond aliasing
or points-to relationships to infer properties such as whether a variable points
to a cyclic or acyclic linked list.

Until very recently shape analyses could only be applied to tiny toy programs
written to test an analysis. SpaceInvader [8,2,10] is an automatic tool aiming
at bringing such analyses into the real world. The driving force behind Space
Invader is the idea of local reasoning, which is enabled by the Frame Rule of
separation logic [11]:

{P} C {Q}
{P ∗ R} C {Q ∗ R}

M. Alpuente, B. Cook, and C. Joubert (Eds.): FMICS 2009, LNCS 5825, pp. 1–8, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 D. Distefano

In this rule R is the frame, i.e., the part of the heap which is not touched by the
execution of the command C. The connective ∗ is called separating conjunction
and it states that its operands hold for disjoint parts of memory. The Frame Rule
allows pre and postconditions to concentrate on the footprint: the cells touched
by command C. In by-hand proofs this enables specifications to be much more
succinct than they might otherwise be. SpaceInvader takes as its aim to port the
concept of footprint into automatic verification in order to enjoy similar benefits
and keep the proof process manageable.

2 Bi-Abduction

In moving from by-hand to automatic verification the ability to deduce the frame
becomes a central task. Computation of the frame is done by frame inference,
which can be formally defined as:

Definition 1 (Frame inference). Given (separation logic) formulae H and
H ′ compute a formula F such that H � H ′ ∗ F holds.

An algorithm for inferring frames was introduced in [3]. Interestingly, crucial
tasks necessary to perform automatic heap analysis — such as rearrangement
(materialization) and abstraction — can be reduced to solving frame inference
questions [9].

In our attempts to deal with incomplete code and increase automation in
Space Invader, we discovered that the idea of abductive inference (or abduction)
— introduced by Charles Peirce in the early 1900s in his writings on the scientific
process [12] — is highly valuable. When reasoning about the heap, abductive
inference, often known as inference of explanatory hypotheses, is a natural dual
to the notion of frame inference, and can be defined as follows:

Definition 2 (Abductive Inference). Given (separation logic) formulae H
and H ′ compute a formula A such that H ∗ A � H ′ holds.

In this definition we call A the “anti-frame”.
Bi-abductive inference (or bi-abduction) is the combination of frame inference

and abduction. It consists of deriving at the same time frames and anti-frames.

Definition 3 (Bi-Abductive inference). Given (separation logic) formulae
H and H ′ compute a frame F and an anti-frame A such that H ∗ A � H ′ ∗ F
holds.

Many solutions are possible for A and F . A criterion to judge the quality of
solutions as well as a bi-abductive prover were defined in [5].

Example 1. Let H � z �→ nil ∗ x �→ nil and H ′ � list(x) ∗ list(y). Informally H
represents a heap with two disjoint cells allocated at addresses x and z which
contain the value nil1. H ′ stands for a heap with two disjoint allocated lists
starting at x and y, respectively. Consider now the bi-abduction question:
1 The semantics of the predicate a �→ b is a heap with precisely one allocated cell at

address a with content b.

Attacking Large Industrial Code with Bi-Abductive Inference 3

z �→ nil ∗ x �→ nil ∗ A � list(x) ∗ list(y) ∗ F
There are many solutions for the pair A and F , some of which are

A � list(y) F � z �→ nil

A � y �→ nil F � ∃v.z �→ v

A � y �→ nil F � list(z)
A � y �→ nil ∗ w �→ 0 F � list(z) ∗ ∃v.w �→ v

Notice how in synthesizing A we are discovering the part of the heap which is
missing in H w.r.t. H ′. Dually, F represents the part of the heap H which is
superfluous w.r.t. H ′. Given that there are many solutions, an automatic prover
will essentially make pragmatic choices in order to synthesize only one. In our
experience aiming for the “best” solution is hard.

3 Compositional Shape Analysis

Bi-abduction allows us to automatically compute (approximations of) footprints
of commands and preconditions of procedures. In particular, bi-abduction is the
main ingredient which allows for an analysis method where pre/post specs of pro-
cedures are inferred independently of their context. This has opened up a way to
design compositional shape analyses for sequential [5], and recently concurrent
programs [6]. Such analyses can be seen as the attempt to build proofs for Hoare
triples of a program. More precisely, given a program composed by procedures
p1(x1), . . . , pn(xn) a compositional analysis automatically synthesizes precondi-
tions P1, . . . , Pn and postconditions Q1, . . . , Qn such that the following are valid
Hoare triples:

{P1} p1(x1) {Q1}, . . . , {Pn} pn(xn) {Qn}
The triples are constructed by symbolically executing the program and by com-
posing existing triples. The composition (and therefore the construction of the
proof) is done in a bottom-up fashion starting from the leaves of the call-graph
and then using their triples to build other proofs for procedures which are on a
higher-level in the call-graph. To achieve that we use a special rule for sequential
composition which embeds directly the concept of bi-abduction:

{P1}C1 {Q1} {P2}C2 {Q2}
{P1 ∗ A}C1; C2 {Q2 ∗ F} Q1 ∗ A � P2 ∗ F

A compositional analysis has a great ability to scale since procedures are ana-
lyzed in isolation and, moreover, the analysis results of procedures can be easily
reused. When dealing with large programs, the ability to analyze parts of the
program independently of others, allows us to load only small parts of the source
program into memory avoiding to overspill the RAM and cause the analysis to
thrash. Finally, compositional analysis is incremental: that is, if the program
changes after being analyzed, only the modified part need to be re-analyzed.

4 D. Distefano

The results of the previous analysis are still valid for those parts of the program
which did not change. All these features provide a strong boost to accurate heap
analysis and make it scale up to millions of lines of code. Previous shape analyses
were whole-program, non-compositional and therefore did not scale.2

We have implemented a compositional shape analysis which uses abduction
in a new version of SpaceInvader called SpaceInvader/Abductor (or Abductor
for short).

4 Application to Real Code

In this section we discuss our experience of running SpaceInvader/Abductor on
large open source codebases (e.g. a complete Linux Kernel distribution with over
2.5 million lines of code). Figure 1 reports the results we obtained from these
experiments. The case studies were run on a machine with two 2.66GHz Quad-
Core Intel Xeon processors with 4GB memory. The number of lines of C code
was measured by instrumenting gcc so that only code actually compiled was
counted. The analysis was run using only one core in all examples except Linux
for which, instead, we used 8 cores. The experiments were run using a timeout
of one second.

The green bars indicate the percentage of procedures with at least one con-
sistent non-trivial specification found from the analyzer. The precondition of a
discovered specification denotes a set of states on which it is safe to run the
procedure: that is, states for which one will not get pointer errors such as a
double-free, dereference of null/dangling pointers, or memory leaks. Thus, for
example, if a procedure disposes an acyclic list the precondition will not de-
scribe cyclic lists, because otherwise the procedure would commit a null-pointer
violation.

The red bars instead show the percentage of procedures for which the ana-
lyzer was not able to synthesize any specification. The best results were obtained
for the IMAP experiment for which SpaceInvader/Abductor synthesized speci-
fications for 68.3% of the total number of procedures. The worst was OpenSSH
for which 45.3% of consistent specs were found. For Linux, specs for 58.4% of
procedures were discovered.

Focussing on the IMap example. Currently, Space Invader/Abductor provides
little support for interpreting the data resulting from the analysis. Given this
current user support and the huge quantity of results we decided to look closely
only at the data related to IMAP.3 Here we briefly summarize the outcomes.
As indicated above consistent specifications were found for 68.3% of the proce-
dures. Among the discovered specifications, we observed that 18 procedures (i.e.,
1% of the total and 1.5% of the successfully analyzed procedures) reported pre-
conditions involving complex data structures (e.g., different kinds of nested and
2 The largest example of whole-program shape analysis in the literature is around 10K

lines of code [10].
3 We used cyrus-impad-2.3.13 downloaded from http://cyrusimap.web.cmu.edu

Attacking Large Industrial Code with Bi-Abductive Inference 5

Fig. 1. Results of SpaceInvader/Abductor’s analysis on large open source projects

non-nested lists). This indicates that a minority of procedures actually traverse
data structures.

Figure 2 reports (in a pictorial form) one of the three (heap) specifications
discovered for the procedure freeentryatts. The precondition is given by the
box on the top labelled by “PRE1”. On the bottom there are two post-conditions
labelled by “POST1” and “POST2”, respectively. The intuitive meaning is that
when running the procedure freeentryatts starting from a state satisfying
PRE1, the procedure does not commit any pointer errors, and if it terminates it
will reach a state satisfying either POST1 or POST2. A pre (or a post) displays
a heap structure. A small white rectangle with a label denotes an allocated cell,
a red rectangle stands for a possibly dangling pointer and a green rectangle
denotes nil. A long grey rectangle represents a list. A dashed blue box shows
the internal structure of the elements of a list. Hence we can observe that the
footprint of freeentryatts consists of a nested non-circular singly linked-list.

Figure 3 shows one specification of the function freeattvalues. It deallo-
cates the fields in the list pointed to by its formal parameter l. The proce-
dure freeentryatts calls freeattvalues(l->attvalues) asking to free the
elements of the inner list. Notice how the bottom-up analysis composes these
specifications. In freeentryatts the elements of the inner list pointed to by
attvalues are deallocated by using (composing) the specification found for
freeattvalues which acts on a smaller footprint. The field entry is instead
deallocated directly inside freeentryatts.

This relation between freeentryatts and freeentryattvalues illustrates,
in microcosm, the modularizing effect of bi-abductive inference. The specifica-
tion of freeentryattvalues does not need to mention the enclosing list from
freeentryatts, because of the principle of local reasoning. In a similar way, if

6 D. Distefano

lsPE

lsPE

lsNE

lsPE

SPEC 1

POST 1 POST 2

PRE 1

NIL

&freeentryatts$l

siltmp$85928

...

Next

Next

Next

INTERNAL STRUCTURE 3

_siltmp$1

NIL

_siltmp$4

_siltmp$0

.next

_siltmp$2

.attvalues

_siltmp$3

.entry

...

Next

Next

Next

INTERNAL STRUCTURE 4

_siltmp$1

_siltmp$3 _siltmp$5

_siltmp$0

.next

_siltmp$2

.attrib

_siltmp$4

.value

_siltmp$0

NIL

&freeentryatts$retn_freeentryatts
siltmp$85928

!=0

...

Next

Next

Next

INTERNAL STRUCTURE 5

_siltmp$1 _siltmp$3

NIL

_siltmp$0

.next .entry

_siltmp$2

.attvalues

...

Next

Next

Next

INTERNAL STRUCTURE 6

_siltmp1_siltmp3 _siltmp$2

_siltmp$0

.next.value .attrib

_siltmp$0

&freeentryatts$retn_freeentryatts

Fig. 2. A specification automatically synthesized by SpaceInvader/Abductor for the
procedure freeentryatts of the IMap example

a procedure touches only two or three cells, there will be no need to add any
predicates describing entire linked structures through its verification. In general,
analysis of a procedure does not need to be concerned with tracking an explicit
description of the entire global state of a system, which would be prohibitively
expensive.

Only 4 procedures timed out (that is 0.4% of the total). Among the proce-
dures for which the analysis was unable to synthesize specifications, 84 potential

Attacking Large Industrial Code with Bi-Abductive Inference 7

lsPE

lsNE

SPEC 1

POST 1 POST 2

PRE 1

NIL

&freeattvalues$l

siltmp$2523

...

Next

Next

Next

INTERNAL STRUCTURE 1

_siltmp$1

_siltmp$3 _siltmp$5

_siltmp$0

.next

_siltmp$2

.attrib

_siltmp$4

.value

_siltmp$0

NIL

&freeattvalues$retn_freeattvalues
siltmp$2523

!=0

...

Next

Next

Next

INTERNAL STRUCTURE 2

_siltmp$1 _siltmp$3 _siltmp$2

_siltmp$0

.next .value .attrib

_siltmp$0

&freeattvalues$retn_freeattvalues

Fig. 3. A specification for the procedure freeattvalues called by freeentryatts

memory leaks were reported by SpaceInvader/Abductor. A quick inspection
of these possible errors revealed that 19 cases (22.6%) were clearly real leaks,
whereas 26 cases (30.9%) were false bugs. For the remaining 39 cases (46.4%),
it was not easy to establish whether or not they were genuine bugs. This would
require a good knowledge of the source code and/or better user support in report-
ing possible errors, a feature that is currently lacking in Abductor.4 Nevertheless,
given that SpaceInvader/Abductor was not designed as a bug catcher, but rather
as a proof tool, we found the unveiling of several real bugs a pleasant surpris-
ing feature of our technology. In this context, we add a final consideration. We
emphasize that SpaceInvader/Abductor computes a genuine over-approximation
(with respect to an idealized model) in the sense of abstract interpretation [7].
Thus, in contrast to several unsound bug-catching tools that can detect some

4 This feature has high priority in our to-do list of future work.

8 D. Distefano

heap errors, when Abductor finds a specification it has constructed a proof which
shows that no pointer errors can occur. For instance, from Figure 2 we can infer
that freeentryatts does not leak memory, does not dereference a null/dangling
pointer, and does not double-free memory.

Acknowledgments. I would like to thank Peter O’Hearn for many invaluable
suggestions and helpful ideas on preliminary versions of this paper. This work
was supported by a Royal Academy of Engineering research fellowship.

References

1. Ball, T., Majumdar, R., Millstein, T., Rajamani, S.: Automatic predicate abstrac-
tion of C programs. In: PLDI, pp. 203–213. ACM, New York (2001)

2. Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P., Wies, T., Yang,
H.: Shape analysis of composite data structures. In: Damm, W., Hermanns, H.
(eds.) CAV 2007. LNCS, vol. 4590, pp. 178–192. Springer, Heidelberg (2007)

3. Berdine, J., Calcagno, C., O’Hearn, P.: Symbolic execution with separation logic.
In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 52–68. Springer, Heidelberg
(2005)

4. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: A static analyzer for large safety-critical software. In: PLDI 2003,
pp. 196–207. ACM, New York (2003)

5. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape anal-
ysis by means of bi-abduction. In: POPL, pp. 289–300. ACM, New York (2009)

6. Calcagno, C., Distefano, D., Vafeiadis, V.: Compositional resource invariant syn-
thesis (submitted, 2009)

7. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL, pp.
238–252. ACM, New York (1977)

8. Distefano, D., O’Hearn, P., Yang, H.: A local shape analysis based on separation
logic. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp.
287–302. Springer, Heidelberg (2006)

9. Distefano, D., Parkinson, M.: jStar: Towards Practical Verification for Java. In:
OOPSLA, pp. 213–226. ACM, New York (2008)

10. Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn,
P.: Scalable shape analysis for systems code. In: Gupta, A., Malik, S. (eds.) CAV
2008. LNCS, vol. 5123, pp. 385–398. Springer, Heidelberg (2008)

11. O’Hearn, P., Reynolds, J., Yang, H.: Local reasoning about programs that alter
data structures. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS, vol. 2142,
pp. 1–19. Springer, Heidelberg (2001)

12. Peirce, C.: Collected papers of Charles Sanders Peirce. Harvard University Press,
Cambridge (1958)

13. Sagiv, M., Reps, T., Wilhelm, R.: Solving shape-analysis problems in languages
with destructive updating. ACM TOPLAS 20(1), 1–50 (1998)

	Attacking Large Industrial Code with Bi-Abductive Inference
	Introduction
	Bi-Abduction
	Compositional Shape Analysis
	Application to Real Code

