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ABSTRACT

In a traditional DRAM-based main memory architecture, a memory

access operation requires much more time and energy than a simple

logic operation. This fact is exploited to build time-consuming and

power-hungry memory-hard cryptographic functions that serve

the purpose of hindering brute-force security attacks.

The security of such memory-hard functions depends entirely on

the non-trivial costs of memory access. However, various compute-

capable memory technologies have recently emerged as promising

ways to reduce the memory access bottleneck, yet no one has

looked into how they may impact the security of memory-hard

cryptographic functions. In this preliminary work, we investigate

the impact of near-data-processing (NDP) on scrypt, a widely used

memory-hard password-based key-derivation function, and discuss

the opportunities to further undermine scrypt using compute-

capable memory.

CCS CONCEPTS

·Hardware→Memory and dense storage; · Security and pri-

vacy → Hash functions and message authentication codes.
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1 INTRODUCTION

In a traditional DRAM-based main memory architecture, a memory

access operation requires much more time and energy than a simple

logic operation. This fact is exploited to build time-consuming

and power-hungry memory-hard cryptographic functions, which

serve the purpose of hindering brute-force security attacks. The

computation cost of the memory-hard function is negligible for an

honest user, who would compute it only once, but the cumulative
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computation cost is significant and therefore prohibitive for a brute-

force attacker, who would need to compute the function a large

number of times.

To this end, Colin Percival [34] defined the memory-hard algo-

rithm: an algorithm that requires amount of memory approximately

proportional to the number of operations to be performed. If suf-

ficiently large amount of memory is required, not only would the

compute time and power be bounded by memory access, but the

algorithms would also be resistant to brute-force attacks using cus-

tomized hardware. Memory is expensive and takes up large chip

area, and therefore requiring large amounts of memory for a single

function computation limits the amount of customized hardware

that can be built to execute large-scale parallel attacks.

The security of memory-hard functions depends entirely on the

non-trivial costs of memory access. However, various compute-

capable memory technologies have recently emerged as promising

ways to address the problems of slow and energy-intensive memory

access [18, 44]. Compute-capable memory supplements memory

devices with compute units, so that simple data-intensive computa-

tions can be done near memory (near-data-processing) or even in

memory (processing-in-memory). There has been extensive research

in improving application performance and reducing energy con-

sumption using compute-capable memory [1ś4, 11ś13, 15ś17, 21ś

23, 25ś33, 37ś39, 45ś47], but to the best of our knowledge, no one

has looked into how compute-capable memory may impact the

security of memory-hard cryptographic functions.

In this preliminary work, we investigate the impact of near-

data-processing (NDP) on scrypt [34, 35], a widely used maximally

memory-hard password-based key derivation function. We show

that the scrypt algorithm can be accelerated with a simple NDP

architecture and provide realistic evaluations with a cycle-accurate,

full-system NDP architecture framework. We also suggest how

scrypt can be further accelerated with various compute-capable

memory technologies.

2 SCRYPT OVERVIEW

Scrypt is a sequential memory-hard [34] password-based key deriva-

tion function, meaning that the fastest sequential algorithm to solve

the function is memory-hard, and it is impossible for a parellel al-

gorithm to asymptotically achieve a significantly lower cost. The

algorithm was first proposed in 2009 [34] and was published as RFC

7914 [35] in 2016.

Algorithm 1 shows the scrypt algorithm as described in [34,

35]. Lines 1ś4 give the high-level flow of scrypt. Inputs P and S

are password and salt phrases, respectively, and dkLen is the de-

sired key length. The password and salt are first passed through
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Algorithm 1 scrypt algorithm

1: function Scrypt(P , S,p,N , r ,dkLen)

2: (B0 | |B1 | |...| |Bp−1) ← PBKDF2SHA256(P , S, 1, 128rp)

3: for i = 0 to p − 1 do

4: Bi ← SMixr (Bi ,N )
return PBKDF2SHA256(P ,B0 | |B1 | |...| |Bp−1, 1,dkLen)

5: function SMixr (B,N )

6: X ← B

7: for i = 0 to N − 1 do

8: Vi ← X

9: X ← BlockMixSalsa20/8,r (X )

10: for i = 0 to N − 1 do

11: j ← Integerify(X ) mod N

12: X ← BlockMixSalsa20/8,r (X ⊕ Vj )
return X

13: function BlockMixSalsa20/8,r (B0 | |B1 | |...| |B2r−1)

14: ▷ each Bi must be 64-bytes (enforced by Salsa20/8 definition)

15: X ← B2r−1
16: for i = 0 to 2r − 1 do

17: X ← Salsa20/8(X ⊕ Bi )

18: Yi ← X
return Y0 | |Y2 | |...| |Y2r−2 | |Y1 | |Y3 | |...| |Y2r−1

PBKDF2SHA256
1 to generate a 128rp-byte string. The generated

string is divided into p equal-length blocks, and the SMix func-

tion is called on each of them. The results from the SMix function

are concatenated back together to be used as the salt in a final

PBKDF2SHA256 call, which takes the original password and new salt

to generate a final dkLen-byte output key.

p, N , and r are scrypt-specific parameters. p determines the

number of times SMix is called in scrypt (lines 3ś4). It is referred to

as the parallelization parameter, for thep SMix calls are independent

of one another and can be computed in parallel.N is a cost parameter

passed to the SMix function; it controls the CPU and memory usage

of scrypt by requiring the SMix function to compute, store, and

pseudorandomly access N different BlockMix hashes (lines 5ś12).

r is the block size parameter that determines the size of a block that

the BlockMix function operates on (lines 13ś14).

The SMix function is central to the scrypt algorithm and makes

up the memory-hard component of scrypt. The scrypt RFC [35]

recommends the block size parameter to be r = 8. With this param-

eter, the initial input block to SMix is only 1kB in size and can easily

fit in cache. However, the SMix function expands this 1kB block

into an array of N blocks, and the blocks are iteratively accessed

in a pseudorandom order, based on the contents of the previously-

accessed block. Assuming a sufficiently large N , the SMix function

is bound by memory access and makes up the non-trivial cost of

running scrypt.

1PBKDF2 iteratively applies a designated pseudorandom function on the password and
salt a specified number of times to generate a cryptographic key. In scrypt, SHA256
is used as the pseudorandom function and is iterated only once. SHA256 is easy to
compute and is not memory-hard.

Figure 1: Generic near-data-processing architecture. Our in-

vestigations of scrypt with NDP are based on this generic

architecture.

3 SCRYPT ACCELERATEDWITH
NEAR-DATA-PROCESSING

As a preliminary investigation into scrypt’s vulnerability to compute-

capable memory, we implement and evaluate the scrypt algorithm

on a generic near-data-processing architecture.

3.1 Generic NDP Architecture

Figure 1 describes the generic NDP architecture that our work is

based on. NDP architectures are implemented via 3D die-stacked

memory, in which a logic die is stacked together with multiple

DRAM dies. The memory is divided into vertical sections, referred

to as NDP vaults, and each NDP vault has a tightly coupled compute

unit, referred to as the NDP core, placed in the stacked logic die. The

NDP core’s low-latency memory access is enabled by its physical

proximity to the NDP vault and the high-performance through-

silicon via (TSV ) interconnect. NDP cores are generally assumed

to have minimal functionality with exclusive access to data in its

coupled NDP vault. Data-intensive parts of computation can be

offloaded to the NDP cores to exploit the low-latency memory

access.

We assume that the NDP core is a simple, lightweight processor

without cache. Instead, each NDP core is equipped with a small

scratchpad memory to which data in the NDP vault can be read

in via DMA. The scratchpad memory also stores the NDP core’s

programmemory, and a reserved portion of the scratchpad memory

is memory-mapped into host address space for the NDP core’s

communication with host processors.

3.2 NDP-Aware scrypt Implementation

As described in Section 2, SMix makes up the memory-hard com-

ponent of scrypt, and therefore we offload it to the NDP core.

PBKDF2SHA256 computations are not memory-hard and are run on

the host processor.

An SMix call runs entirely on a single NDP core-vault pair. The

host processor communicates the 128r -byte input block B and pa-

rameters r and N for SMix through the memory-mapped portion of

the NDP core’s scratchpad memory. The output of SMix is also com-

municated back to the host via the memory-mapped region. The

128rN -byte array V generated in SMix (lines 7ś9 of Algorithm 1)
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Figure 2: The host-NDP interaction and data placement for

the SMix function in theNDP-aware scrypt implementation.

Table 1: Evaluation framework details.

Host Configuration

processor 8 in-order processors (ARMv7 Cortex-A15)

L1 cache 32kB icache, 64kB dcache, private, 2-way set-associative

0.8 ns dcache access latency, 256B/block

L2 cache 2MB, shared, 8-way set associative

1.8ns access latency, 256B/block

memory 2GB

NDP configuration

NDP core 1 in-order processor/vault (ARMv7 Cortex-A15)

scratchpad 40kB/NDP core, stores program memory

memory 8kB reserved for memory-map

DMA capability between scratchpad and NDP vault

NDP vault 128MB/vault

is stored in the NDP vault. However, the pseudorandomly chosen

128r -byte block Vj (lines 11ś12) is always read into the scratchpad

memory prior to the bitwise-xor operation in line 12. Figure 2 de-

scribes the host-NDP interaction and the data placement for the

SMix function in the NDP-aware scrypt implementation.

Reading the random blocks into scratchpad memory is necessary

in order to reduce redundant DRAM activity that causes delays

and power consumption that cannot be reduced by NDP, as was

identified in [15]. Because the NDP core is simple and does not

have any sophisticated functionality, the bitwise-xor is expected to

be executed as a sequence of simple xor instructions that operate

on word-length data. Since the NDP core also does not have cache,

every one of these xor instructions would incur DRAM operations

to access the small portion of the block being xor-ed. Reading a

word-length portion of interest from Vj in memory goes through

the following process: the DRAM row containing the portion is

activated, the corresponding columns are selected, and then the

bits are transferred to the NDP core. Each of these steps with non-

negligible delays would all be repeated for every word in Vj , even

though the DRAM row contains several contiguous words of Vj .

Therefore, the entire blockVj must be read into scratchpad memory

using DMA in order to eliminate redundant DRAM row activations.

4 EVALUATION

Our evaluations are made on Brown-SMCSim2, a gem5 [8]-based

cycle-accurate, full-system NDP architecture simulator with real

2Originally SMCSim [6], extensively modified to conform to the NDP architecture
design described in 3.1. Brown-SMCSim had been used for evaluations in [15].

hardware constraints. Table 1 summarizes the details of the evalua-

tion framework.

We referred to code in the scrypt git repository [40] to imple-

ment the scrypt algorithm on Brown-SMCSim. Our host-based

and NDP-based scrypt implementations and the Brown-SMCSim

framework are available as open-source at https://github.com/jiwon-

choe/Brown-SMCSim/tree/scrypt.

We compare the total execution time of scrypt with the SMix

function executed on the host processor and on the NDP core. We

varied the scrypt parameters for these measurements ś Table 2

shows the execution times with varying values of N ; table 3 shows

the execution times with varying values of r . For all experiements,

p was set to 1, and the desired key length was set to 64 bytes. We

used the password and salt łpleaseletmeinž and łSodiumChloridež

that were used to generate some of the test vectors provided in the

RFC [35].

Table 2: Scrypt execution times on host and NDP with vary-

ing values of N (r = 8, p = 1).

execution time (seconds)

host NDP

N = 16384 2.223813 1.507814

N = 32768 4.455462 3.014112

N = 65536 8.910643 6.026549

Table 3: Scrypt execution times on host and NDP with vary-

ing values of r (N = 16384, p = 1).

execution time (seconds)

host NDP

r = 8 2.223813 1.507814

r = 16 4.434392 3.002565

r = 32 8.848431 5.986616

From the evaluation, we see that offloading the SMix function

to the NDP core yields a 1.5x speedup in scrypt execution time,

regardless of the N and r values. Note that this speedup would not

be affected much by varying p either, for an increased p would only

require more NDP core-vault pairs to run in parallel.

5 OPEN PROBLEMS & DISCUSSION

Parts of the scrypt algorithm have the potential to be further accel-

erated with compute-capable memory. For example, the Salsa20/8

stream cipher [7] used in BlockMix (line 17 of Algorithm 1) is sim-

ply bitwise add-rotate-xor operations repeated over several rounds

on a 64-byte block, and the BlockMix function output is just a

reordering of the 64-byte output blocks from Salsa20/8. These

functions have the potential to be accelerated with specialized near-

memory accelerators or even with processing-in-memory (PIM). In

fact, computing bitwise operations in memory has been frequently

explored in PIM research [1, 16, 21, 30, 39], but extending the prior

PIM work to accelerate scrypt computation is still an open prob-

lem.

Scrypt is only one of many memory-hard cryptographic hash

functions. Argon2 [9], Catena [20], Lyra2 [5], and yescrypt [36]

https://github.com/jiwon-choe/Brown-SMCSim/tree/scrypt
https://github.com/jiwon-choe/Brown-SMCSim/tree/scrypt
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are all memory-hard password hashing algorithms that received

recognition in the Password Hashing Competition3. In particular,

Argon2was the winner of this competition, and its implementations

using compute-capable memory would be interesting to look into.

More recently, memory-hard algorithms are being explored not

only as password hashing algorithms, but also as proof-of-work

(PoW ) puzzles for blockchainmining. Ethash [19] (used in Ethereum

[42]), Equihash [10] (used in Zcash [24]), and Cuckoo Cycle [41]

(used in Cortex [14]) are some examples of memory-hard algorithms

being used as Blockchain PoW puzzles. Building accelerators for

these memory-hard PoW puzzles can undermine the tamper-proof

quality of blockchains, making this an interesting area of future

work. Wu et al. [43] have proposed a memory architecture-aware

accelerator design for Ethash, but further work remains in applying

compute-capable memory to accelerate memory-hard puzzles.

6 CONCLUSION

Our results show that even the simplest NDP hardware can yield a

stable 1.5x speedup in evaluating the scrypt function. Although

the 1.5x speedupmay not be a great threat to the security of scrypt,

we pose an important research question: how much can scrypt

be accelerated with compute-capable memory, and at what point

would scrypt be considered insecure?
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