
Attacking Memory-Hard scrypt with Near-Data-Processing

Jiwon Choe
Brown University

jiwon_choe@brown.edu

Tali Moreshet
Boston University
talim@bu.edu

R. Iris Bahar
Brown University

iris_bahar@brown.edu

Maurice Herlihy
Brown University
mph@cs.brown.edu

ABSTRACT

In a traditional DRAM-based main memory architecture, a memory

access operation requires much more time and energy than a simple

logic operation. This fact is exploited to build time-consuming and

power-hungry memory-hard cryptographic functions that serve

the purpose of hindering brute-force security attacks.

The security of such memory-hard functions depends entirely on

the non-trivial costs of memory access. However, various compute-

capable memory technologies have recently emerged as promising

ways to reduce the memory access bottleneck, yet no one has

looked into how they may impact the security of memory-hard

cryptographic functions. In this preliminary work, we investigate

the impact of near-data-processing (NDP) on scrypt, a widely used

memory-hard password-based key-derivation function, and discuss

the opportunities to further undermine scrypt using compute-

capable memory.

CCS CONCEPTS

·Hardware→Memory and dense storage; · Security and pri-

vacy → Hash functions and message authentication codes.

ACM Reference Format:

Jiwon Choe, Tali Moreshet, R. Iris Bahar, and Maurice Herlihy. 2019. At-

tacking Memory-Hard scryptwith Near-Data-Processing. In Proceedings of

the International Symposium on Memory Systems (MEMSYS ’19), September

30-October 3, 2019, Washington, DC, USA. ACM, New York, NY, USA, 5 pages.

https://doi.org/10.1145/3357526.3357570

1 INTRODUCTION

In a traditional DRAM-based main memory architecture, a memory

access operation requires much more time and energy than a simple

logic operation. This fact is exploited to build time-consuming

and power-hungry memory-hard cryptographic functions, which

serve the purpose of hindering brute-force security attacks. The

computation cost of the memory-hard function is negligible for an

honest user, who would compute it only once, but the cumulative

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7206-0/19/09. . . $15.00
https://doi.org/10.1145/3357526.3357570

computation cost is significant and therefore prohibitive for a brute-

force attacker, who would need to compute the function a large

number of times.

To this end, Colin Percival [34] defined the memory-hard algo-

rithm: an algorithm that requires amount of memory approximately

proportional to the number of operations to be performed. If suf-

ficiently large amount of memory is required, not only would the

compute time and power be bounded by memory access, but the

algorithms would also be resistant to brute-force attacks using cus-

tomized hardware. Memory is expensive and takes up large chip

area, and therefore requiring large amounts of memory for a single

function computation limits the amount of customized hardware

that can be built to execute large-scale parallel attacks.

The security of memory-hard functions depends entirely on the

non-trivial costs of memory access. However, various compute-

capable memory technologies have recently emerged as promising

ways to address the problems of slow and energy-intensive memory

access [18, 44]. Compute-capable memory supplements memory

devices with compute units, so that simple data-intensive computa-

tions can be done near memory (near-data-processing) or even in

memory (processing-in-memory). There has been extensive research

in improving application performance and reducing energy con-

sumption using compute-capable memory [1ś4, 11ś13, 15ś17, 21ś

23, 25ś33, 37ś39, 45ś47], but to the best of our knowledge, no one

has looked into how compute-capable memory may impact the

security of memory-hard cryptographic functions.

In this preliminary work, we investigate the impact of near-

data-processing (NDP) on scrypt [34, 35], a widely used maximally

memory-hard password-based key derivation function. We show

that the scrypt algorithm can be accelerated with a simple NDP

architecture and provide realistic evaluations with a cycle-accurate,

full-system NDP architecture framework. We also suggest how

scrypt can be further accelerated with various compute-capable

memory technologies.

2 SCRYPT OVERVIEW

Scrypt is a sequential memory-hard [34] password-based key deriva-

tion function, meaning that the fastest sequential algorithm to solve

the function is memory-hard, and it is impossible for a parellel al-

gorithm to asymptotically achieve a significantly lower cost. The

algorithm was first proposed in 2009 [34] and was published as RFC

7914 [35] in 2016.

Algorithm 1 shows the scrypt algorithm as described in [34,

35]. Lines 1ś4 give the high-level flow of scrypt. Inputs P and S

are password and salt phrases, respectively, and dkLen is the de-

sired key length. The password and salt are first passed through

https://doi.org/10.1145/3357526.3357570
https://doi.org/10.1145/3357526.3357570

MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA Jiwon Choe, Tali Moreshet, R. Iris Bahar, and Maurice Herlihy

Algorithm 1 scrypt algorithm

1: function Scrypt(P , S,p,N , r ,dkLen)

2: (B0 | |B1 | |...| |Bp−1) ← PBKDF2SHA256(P , S, 1, 128rp)

3: for i = 0 to p − 1 do

4: Bi ← SMixr (Bi ,N)
return PBKDF2SHA256(P ,B0 | |B1 | |...| |Bp−1, 1,dkLen)

5: function SMixr (B,N)

6: X ← B

7: for i = 0 to N − 1 do

8: Vi ← X

9: X ← BlockMixSalsa20/8,r (X)

10: for i = 0 to N − 1 do

11: j ← Integerify(X) mod N

12: X ← BlockMixSalsa20/8,r (X ⊕ Vj)
return X

13: function BlockMixSalsa20/8,r (B0 | |B1 | |...| |B2r−1)

14: ▷ each Bi must be 64-bytes (enforced by Salsa20/8 definition)

15: X ← B2r−1
16: for i = 0 to 2r − 1 do

17: X ← Salsa20/8(X ⊕ Bi)

18: Yi ← X
return Y0 | |Y2 | |...| |Y2r−2 | |Y1 | |Y3 | |...| |Y2r−1

PBKDF2SHA256
1 to generate a 128rp-byte string. The generated

string is divided into p equal-length blocks, and the SMix func-

tion is called on each of them. The results from the SMix function

are concatenated back together to be used as the salt in a final

PBKDF2SHA256 call, which takes the original password and new salt

to generate a final dkLen-byte output key.

p, N , and r are scrypt-specific parameters. p determines the

number of times SMix is called in scrypt (lines 3ś4). It is referred to

as the parallelization parameter, for thep SMix calls are independent

of one another and can be computed in parallel.N is a cost parameter

passed to the SMix function; it controls the CPU and memory usage

of scrypt by requiring the SMix function to compute, store, and

pseudorandomly access N different BlockMix hashes (lines 5ś12).

r is the block size parameter that determines the size of a block that

the BlockMix function operates on (lines 13ś14).

The SMix function is central to the scrypt algorithm and makes

up the memory-hard component of scrypt. The scrypt RFC [35]

recommends the block size parameter to be r = 8. With this param-

eter, the initial input block to SMix is only 1kB in size and can easily

fit in cache. However, the SMix function expands this 1kB block

into an array of N blocks, and the blocks are iteratively accessed

in a pseudorandom order, based on the contents of the previously-

accessed block. Assuming a sufficiently large N , the SMix function

is bound by memory access and makes up the non-trivial cost of

running scrypt.

1PBKDF2 iteratively applies a designated pseudorandom function on the password and
salt a specified number of times to generate a cryptographic key. In scrypt, SHA256
is used as the pseudorandom function and is iterated only once. SHA256 is easy to
compute and is not memory-hard.

Figure 1: Generic near-data-processing architecture. Our in-

vestigations of scrypt with NDP are based on this generic

architecture.

3 SCRYPT ACCELERATEDWITH
NEAR-DATA-PROCESSING

As a preliminary investigation into scrypt’s vulnerability to compute-

capable memory, we implement and evaluate the scrypt algorithm

on a generic near-data-processing architecture.

3.1 Generic NDP Architecture

Figure 1 describes the generic NDP architecture that our work is

based on. NDP architectures are implemented via 3D die-stacked

memory, in which a logic die is stacked together with multiple

DRAM dies. The memory is divided into vertical sections, referred

to as NDP vaults, and each NDP vault has a tightly coupled compute

unit, referred to as the NDP core, placed in the stacked logic die. The

NDP core’s low-latency memory access is enabled by its physical

proximity to the NDP vault and the high-performance through-

silicon via (TSV) interconnect. NDP cores are generally assumed

to have minimal functionality with exclusive access to data in its

coupled NDP vault. Data-intensive parts of computation can be

offloaded to the NDP cores to exploit the low-latency memory

access.

We assume that the NDP core is a simple, lightweight processor

without cache. Instead, each NDP core is equipped with a small

scratchpad memory to which data in the NDP vault can be read

in via DMA. The scratchpad memory also stores the NDP core’s

programmemory, and a reserved portion of the scratchpad memory

is memory-mapped into host address space for the NDP core’s

communication with host processors.

3.2 NDP-Aware scrypt Implementation

As described in Section 2, SMix makes up the memory-hard com-

ponent of scrypt, and therefore we offload it to the NDP core.

PBKDF2SHA256 computations are not memory-hard and are run on

the host processor.

An SMix call runs entirely on a single NDP core-vault pair. The

host processor communicates the 128r -byte input block B and pa-

rameters r and N for SMix through the memory-mapped portion of

the NDP core’s scratchpad memory. The output of SMix is also com-

municated back to the host via the memory-mapped region. The

128rN -byte array V generated in SMix (lines 7ś9 of Algorithm 1)

Attacking Memory-Hard scrypt with Near-Data-Processing MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA

HOST NDP core NDP vault

scratchpad memory

B r N

output

V[0]

V[1]

V[2]

V[j] V[N-1]

…
DMA

B r N

output

1

2

Figure 2: The host-NDP interaction and data placement for

the SMix function in theNDP-aware scrypt implementation.

Table 1: Evaluation framework details.

Host Configuration

processor 8 in-order processors (ARMv7 Cortex-A15)

L1 cache 32kB icache, 64kB dcache, private, 2-way set-associative

0.8 ns dcache access latency, 256B/block

L2 cache 2MB, shared, 8-way set associative

1.8ns access latency, 256B/block

memory 2GB

NDP configuration

NDP core 1 in-order processor/vault (ARMv7 Cortex-A15)

scratchpad 40kB/NDP core, stores program memory

memory 8kB reserved for memory-map

DMA capability between scratchpad and NDP vault

NDP vault 128MB/vault

is stored in the NDP vault. However, the pseudorandomly chosen

128r -byte block Vj (lines 11ś12) is always read into the scratchpad

memory prior to the bitwise-xor operation in line 12. Figure 2 de-

scribes the host-NDP interaction and the data placement for the

SMix function in the NDP-aware scrypt implementation.

Reading the random blocks into scratchpad memory is necessary

in order to reduce redundant DRAM activity that causes delays

and power consumption that cannot be reduced by NDP, as was

identified in [15]. Because the NDP core is simple and does not

have any sophisticated functionality, the bitwise-xor is expected to

be executed as a sequence of simple xor instructions that operate

on word-length data. Since the NDP core also does not have cache,

every one of these xor instructions would incur DRAM operations

to access the small portion of the block being xor-ed. Reading a

word-length portion of interest from Vj in memory goes through

the following process: the DRAM row containing the portion is

activated, the corresponding columns are selected, and then the

bits are transferred to the NDP core. Each of these steps with non-

negligible delays would all be repeated for every word in Vj , even

though the DRAM row contains several contiguous words of Vj .

Therefore, the entire blockVj must be read into scratchpad memory

using DMA in order to eliminate redundant DRAM row activations.

4 EVALUATION

Our evaluations are made on Brown-SMCSim2, a gem5 [8]-based

cycle-accurate, full-system NDP architecture simulator with real

2Originally SMCSim [6], extensively modified to conform to the NDP architecture
design described in 3.1. Brown-SMCSim had been used for evaluations in [15].

hardware constraints. Table 1 summarizes the details of the evalua-

tion framework.

We referred to code in the scrypt git repository [40] to imple-

ment the scrypt algorithm on Brown-SMCSim. Our host-based

and NDP-based scrypt implementations and the Brown-SMCSim

framework are available as open-source at https://github.com/jiwon-

choe/Brown-SMCSim/tree/scrypt.

We compare the total execution time of scrypt with the SMix

function executed on the host processor and on the NDP core. We

varied the scrypt parameters for these measurements ś Table 2

shows the execution times with varying values of N ; table 3 shows

the execution times with varying values of r . For all experiements,

p was set to 1, and the desired key length was set to 64 bytes. We

used the password and salt łpleaseletmeinž and łSodiumChloridež

that were used to generate some of the test vectors provided in the

RFC [35].

Table 2: Scrypt execution times on host and NDP with vary-

ing values of N (r = 8, p = 1).

execution time (seconds)

host NDP

N = 16384 2.223813 1.507814

N = 32768 4.455462 3.014112

N = 65536 8.910643 6.026549

Table 3: Scrypt execution times on host and NDP with vary-

ing values of r (N = 16384, p = 1).

execution time (seconds)

host NDP

r = 8 2.223813 1.507814

r = 16 4.434392 3.002565

r = 32 8.848431 5.986616

From the evaluation, we see that offloading the SMix function

to the NDP core yields a 1.5x speedup in scrypt execution time,

regardless of the N and r values. Note that this speedup would not

be affected much by varying p either, for an increased p would only

require more NDP core-vault pairs to run in parallel.

5 OPEN PROBLEMS & DISCUSSION

Parts of the scrypt algorithm have the potential to be further accel-

erated with compute-capable memory. For example, the Salsa20/8

stream cipher [7] used in BlockMix (line 17 of Algorithm 1) is sim-

ply bitwise add-rotate-xor operations repeated over several rounds

on a 64-byte block, and the BlockMix function output is just a

reordering of the 64-byte output blocks from Salsa20/8. These

functions have the potential to be accelerated with specialized near-

memory accelerators or even with processing-in-memory (PIM). In

fact, computing bitwise operations in memory has been frequently

explored in PIM research [1, 16, 21, 30, 39], but extending the prior

PIM work to accelerate scrypt computation is still an open prob-

lem.

Scrypt is only one of many memory-hard cryptographic hash

functions. Argon2 [9], Catena [20], Lyra2 [5], and yescrypt [36]

https://github.com/jiwon-choe/Brown-SMCSim/tree/scrypt
https://github.com/jiwon-choe/Brown-SMCSim/tree/scrypt

MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA Jiwon Choe, Tali Moreshet, R. Iris Bahar, and Maurice Herlihy

are all memory-hard password hashing algorithms that received

recognition in the Password Hashing Competition3. In particular,

Argon2was the winner of this competition, and its implementations

using compute-capable memory would be interesting to look into.

More recently, memory-hard algorithms are being explored not

only as password hashing algorithms, but also as proof-of-work

(PoW) puzzles for blockchainmining. Ethash [19] (used in Ethereum

[42]), Equihash [10] (used in Zcash [24]), and Cuckoo Cycle [41]

(used in Cortex [14]) are some examples of memory-hard algorithms

being used as Blockchain PoW puzzles. Building accelerators for

these memory-hard PoW puzzles can undermine the tamper-proof

quality of blockchains, making this an interesting area of future

work. Wu et al. [43] have proposed a memory architecture-aware

accelerator design for Ethash, but further work remains in applying

compute-capable memory to accelerate memory-hard puzzles.

6 CONCLUSION

Our results show that even the simplest NDP hardware can yield a

stable 1.5x speedup in evaluating the scrypt function. Although

the 1.5x speedupmay not be a great threat to the security of scrypt,

we pose an important research question: how much can scrypt

be accelerated with compute-capable memory, and at what point

would scrypt be considered insecure?

ACKNOWLEDGEMENTS

We thank Erfan Azarkhish for his efforts in implementing the origi-

nal SMCSim simulator [6] and providing it as open-source software.

This work was supported by National Science Foundation grants

1561807 and 1908806.

REFERENCES
[1] Shaizeen Aga, Supreet Jeloka, Arun Subramaniyan, Satish Narayanasamy, David

Blaauw, and Reetuparna Das. 2017. Compute caches. In 2017 IEEE International
Symposium on High Performance Computer Architecture (HPCA). IEEE, 481ś492.

[2] Paula Aguilera, Dong Ping Zhang, Nam Sung Kim, and Nuwan Jayasena. 2016.
Fine-Grained Task Migration for Graph Algorithms using Processing in Memory.
In Parallel and Distributed Processing Symposium Workshops, 2016 IEEE Interna-
tional. IEEE, 489ś498.

[3] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi.
2015. A scalable processing-in-memory accelerator for parallel graph process-
ing. In Computer Architecture (ISCA), 2015 ACM/IEEE 42nd Annual International
Symposium on. IEEE, 105ś117.

[4] Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. 2015. PIM-enabled
instructions: A low-overhead, locality-aware processing-in-memory architec-
ture. In Computer Architecture (ISCA), 2015 ACM/IEEE 42nd Annual International
Symposium on. IEEE, 336ś348.

[5] Ewerton R Andrade, Marcos A Simplicio, Paulo SLM Barreto, and Paulo CF
dos Santos. 2016. Lyra2: Efficient password hashing with high security against
time-memory trade-offs. IEEE Trans. Comput. 65, 10 (2016), 3096ś3108.

[6] Erfan Azarkhish, Davide Rossi, Igor Loi, and Luca Benini. 2016. Design and
evaluation of a processing-in-memory architecture for the smart memory cube.
In International Conference on Architecture of Computing Systems. Springer, 19ś31.

[7] Daniel J Bernstein. 2008. The Salsa20 family of stream ciphers. In New stream
cipher designs. Springer, 84ś97.

[8] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The Gem5 simulator. ACM SIGARCH Computer
Architecture News 39, 2 (2011), 1ś7.

[9] Alex Biryukov, Daniel Dinu, and Dmitry Khovratovich. 2016. Argon2: new gener-
ation of memory-hard functions for password hashing and other applications. In
2016 IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, 292ś302.

[10] Alex Biryukov and Dmitry Khovratovich. 2017. Equihash: Asymmetric proof-of-
work based on the generalized birthday problem. Ledger 2 (2017), 1ś30.

3https://password-hashing.net/

[11] Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun,
Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy
Ranganathan, and Onur Mutlu. 2018. Google Workloads for Consumer De-
vices: Mitigating Data Movement Bottlenecks. In Proceedings of the Twenty-
Third International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS ’18). ACM, New York, NY, USA, 316ś331.
https://doi.org/10.1145/3173162.3173177

[12] Amirali Boroumand, Saugata Ghose, Brandon Lucia, Kevin Hsieh, Krishna Mal-
ladi, Hongzhong Zheng, and Onur Mutlu. 2017. LazyPIM: An efficient cache
coherence mechanism for processing-in-memory. IEEE Computer Architecture
Letters (2017).

[13] Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan Hassan, Brandon Lucia,
Rachata Ausavarungnirun, Kevin Hsieh, Nastaran Hajinazar, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutlu. 2019. CoNDA: Efficient Cache Coherence
Support for Near-data Accelerators. In Proceedings of the 46th International Sym-
posium on Computer Architecture (ISCA ’19). ACM, New York, NY, USA, 629ś642.
https://doi.org/10.1145/3307650.3322266

[14] Ziqi Chen, Weiyang Wang, Xiao Yan, and Jia Tian. [n. d.]. Cortex-AI on
Blockchain. ([n. d.]).

[15] Jiwon Choe, Amy Huang, Tali Moreshet, Maurice Herlihy, and R Iris Bahar.
2019. Concurrent Data Structures with Near-Data-Processing: an Architecture-
Aware Implementation. In Proceedings of the 31st ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA ’19). ACM, New York, NY, USA. https:
//doi.org/10.1145/3323165.3323191

[16] Zamshed Chowdhury, Jonathan D. Harms, S. Karen Khatamifard, Masoud Zabihi,
Yang Lv, Andrew P. Lyle, Sachin S. Sapatnekar, Ulya R. Karpuzcu, and Jian-Ping
Wang. 2018. Efficient In-Memory Processing Using Spintronics. IEEE Comput.
Archit. Lett. 17, 1 (Jan. 2018), 42ś46. https://doi.org/10.1109/LCA.2017.2751042

[17] Palash Das, Shivam Lakhotia, Prabodh Shetty, and Hemangee K Kapoor. 2018.
Towards Near Data Processing of Convolutional Neural Networks. In VLSI Design
and 2018 17th International Conference on Embedded Systems (VLSID), 2018 31st
International Conference on. IEEE, 380ś385.

[18] Reetuparna Das. 2017. Blurring the Lines between Memory and Computation.
IEEE Micro 37, 6 (2017), 13ś15.

[19] Ethereum Wiki. 2017. Ethash. (2017). https://github.com/ethereum/wiki/wiki/
Ethash

[20] Christian Forler, Stefan Lucks, and Jakob Wenzel. [n. d.]. Catena: a memory-
consuming password-scrambling framework. Technical Report. Citeseer.

[21] Daichi Fujiki, Scott Mahlke, and Reetuparna Das. 2018. In-Memory Data Parallel
Processor. In Proceedings of the Twenty-Third International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS ’18).
ACM, New York, NY, USA, 1ś14. https://doi.org/10.1145/3173162.3173171

[22] M. Gao, G. Ayers, and C. Kozyrakis. 2015. Practical Near-Data Processing for
In-Memory Analytics Frameworks. In 2015 International Conference on Parallel
Architecture and Compilation (PACT). 113ś124. https://doi.org/10.1109/PACT.
2015.22

[23] Byungchul Hong, Gwangsun Kim, Jung Ho Ahn, Yongkee Kwon, Hongsik Kim,
and John Kim. 2016. Accelerating Linked-list Traversal Through Near-Data
Processing. In Proceedings of the 2016 International Conference on Parallel Ar-
chitectures and Compilation (PACT ’16). ACM, New York, NY, USA, 113ś124.
https://doi.org/10.1145/2967938.2967958

[24] Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. 2016. Zcash
protocol specification. Tech. rep. 2016–1.10. Zerocoin Electric Coin Company, Tech.
Rep. (2016).

[25] Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K Chang, Amirali
Boroumand, Saugata Ghose, and Onur Mutlu. 2016. Accelerating pointer chasing
in 3D-stacked memory: Challenges, mechanisms, evaluation. In Computer Design
(ICCD), 2016 IEEE 34th International Conference on. IEEE, 25ś32.

[26] Mohsen Imani, Saransh Gupta, Yeseong Kim, and Tajana Rosing. 2019. FloatPIM:
In-memory Acceleration of Deep Neural Network Training with High Precision.
In Proceedings of the 46th International Symposium on Computer Architecture (ISCA
’19). ACM, New York, NY, USA, 802ś815. https://doi.org/10.1145/3307650.3322237

[27] Mohsen Imani, Saransh Gupta, and Tajana Rosing. 2018. GenPIM: Generalized
Processing In-Memory to Accelerate Data Intensive Applications. (2018).

[28] Dong-Ik Jeon, Kyeong-Bin Park, and Ki-Seok Chung. 2018. HMC-MAC:
Processing-in Memory Architecture for Multiply-Accumulate Operations with
Hybrid Memory Cube. IEEE Comput. Archit. Lett. 17, 1 (Jan. 2018), 5ś8. https:
//doi.org/10.1109/LCA.2017.2700298

[29] Jeremie S Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose,
Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu. 2018.
GRIM-Filter: Fast seed location filtering in DNA read mapping using processing-
in-memory technologies. BMC genomics 19, 2 (2018), 89.

[30] Shuangchen Li, Cong Xu, Qiaosha Zou, Jishen Zhao, Yu Lu, and Yuan Xie. 2016.
Pinatubo: A processing-in-memory architecture for bulk bitwise operations
in emerging non-volatile memories. In Proceedings of the 53rd Annual Design
Automation Conference. ACM, 173.

[31] Zhiyu Liu, Irina Calciu, Maurice Herlihy, and Onur Mutlu. 2017. Concurrent
Data Structures for Near-Memory Computing. In Proceedings of the 29th ACM

https://doi.org/10.1145/3173162.3173177
https://doi.org/10.1145/3307650.3322266
https://doi.org/10.1145/3323165.3323191
https://doi.org/10.1145/3323165.3323191
https://doi.org/10.1109/LCA.2017.2751042
https://github.com/ethereum/wiki/wiki/Ethash
https://github.com/ethereum/wiki/wiki/Ethash
https://doi.org/10.1145/3173162.3173171
https://doi.org/10.1109/PACT.2015.22
https://doi.org/10.1109/PACT.2015.22
https://doi.org/10.1145/2967938.2967958
https://doi.org/10.1145/3307650.3322237
https://doi.org/10.1109/LCA.2017.2700298
https://doi.org/10.1109/LCA.2017.2700298

Attacking Memory-Hard scrypt with Near-Data-Processing MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA

Symposium on Parallelism in Algorithms and Architectures (SPAA ’17). ACM, New
York, NY, USA, 235ś245. https://doi.org/10.1145/3087556.3087582

[32] Lifeng Nai, Ramyad Hadidi, Jaewoong Sim, Hyojong Kim, Pranith Kumar, and
Hyesoon Kim. 2017. Graphpim: Enabling instruction-level pim offloading in graph
computing frameworks. In High Performance Computer Architecture (HPCA), 2017
IEEE International Symposium on. IEEE, 457ś468.

[33] Lifeng Nai and Hyesoon Kim. 2015. Instruction Offloading with HMC 2.0 Stan-
dard: A Case Study for Graph Traversals. In Proceedings of the 2015 International
Symposium onMemory Systems (MEMSYS ’15). ACM, NewYork, NY, USA, 258ś261.
https://doi.org/10.1145/2818950.2818982

[34] Colin Percival. 2009. Stronger key derivation via sequential memory-hard func-
tions. (2009).

[35] C. Percival and S. Josefsson. 2016. The scrypt Password-Based Key Derivation
Function. RFC 7914. RFC Editor.

[36] Alexander Peslyak. 2014. Yescrypt-a password hashing competition submission.
Password Hashing Competition. v0 edn 14 (2014).

[37] Seth H Pugsley, Jeffrey Jestes, Huihui Zhang, Rajeev Balasubramonian, Vijay-
alakshmi Srinivasan, Alper Buyuktosunoglu, Al Davis, and Feifei Li. 2014. NDC:
Analyzing the impact of 3D-stacked memory+ logic devices on MapReduce
workloads. In Performance Analysis of Systems and Software (ISPASS), 2014 IEEE
International Symposium on. IEEE, 190ś200.

[38] Paulo C Santos, Geraldo F Oliveira, João P Lima, Marco AZ Alves, Luigi Carro,
and Antonio CS Beck. 2018. Processing in 3D memories to speed up operations
on complex data structures. In Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2018. IEEE, 897ś900.

[39] Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali
Boroumand, Jeremie Kim, Michael A Kozuch, Onur Mutlu, Phillip B Gibbons, and
Todd C Mowry. 2017. Ambit: In-memory accelerator for bulk bitwise operations
using commodity DRAM technology. In Proceedings of the 50th Annual IEEE/ACM

International Symposium on Microarchitecture. ACM, 273ś287.
[40] Tarsnap. 2019. Tarsnap/scrypt. (2019). https://github.com/Tarsnap/scrypt
[41] John Tromp. 2015. Cuckoo cycle: a memory bound graph-theoretic proof-of-

work. In International Conference on Financial Cryptography and Data Security.
Springer, 49ś62.

[42] GavinWood et al. 2014. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper 151, 2014 (2014), 1ś32.

[43] Kun Wu, Guohao Dai, Xing Hu, Shuangchen Li, Xinfeng Xie, Yu Wang, and
Yuan Xie. 2019. Memory-Bound Proof-of-Work Acceleration for Blockchain
Applications. In Proceedings of the 56th Annual Design Automation Conference
2019 (DAC ’19). ACM, New York, NY, USA, Article 177, 6 pages. https://doi.org/
10.1145/3316781.3317862

[44] Yuan Xie. 2018. IntelligentMemoryArchitecture with NewMemory Technologies.
Computer Architecture Today Blog (2018). https://www.sigarch.org/intelligent-
memory-architecture-with-new-memory-technologies/ https://www.sigarch.
org/intelligent-memory-architecture-with-new-memory-technologies/.

[45] Salessawi Ferede Yitbarek, Tao Yang, Reetuparna Das, and Todd Austin. 2016.
Exploring specialized near-memory processing for data intensive operations. In
Design, Automation & Test in Europe Conference & Exhibition (DATE), 2016. IEEE,
1449ś1452.

[46] Dongping Zhang, Nuwan Jayasena, Alexander Lyashevsky, Joseph L Greathouse,
Lifan Xu, and Michael Ignatowski. 2014. TOP-PIM: throughput-oriented pro-
grammable processing in memory. In Proceedings of the 23rd international sympo-
sium on High-performance parallel and distributed computing. ACM, 85ś98.

[47] Mingxing Zhang, Youwei Zhuo, Chao Wang, Mingyu Gao, Yongwei Wu, Kang
Chen, Christos Kozyrakis, and Xuehai Qian. 2018. GraphP: Reducing Commu-
nication for PIM-based Graph Processing with Efficient Data Partition. In High
Performance Computer Architecture (HPCA), 2018 IEEE International Symposium
on. IEEE, 544ś557.

https://doi.org/10.1145/3087556.3087582
https://doi.org/10.1145/2818950.2818982
https://github.com/Tarsnap/scrypt
https://doi.org/10.1145/3316781.3317862
https://doi.org/10.1145/3316781.3317862
https://www.sigarch.org/intelligent-memory-architecture-with-new-memory-technologies/
https://www.sigarch.org/intelligent-memory-architecture-with-new-memory-technologies/
https://www.sigarch.org/intelligent-memory-architecture-with-new-memory-technologies/
https://www.sigarch.org/intelligent-memory-architecture-with-new-memory-technologies/

	Abstract
	1 Introduction
	2 Scrypt Overview
	3 Scrypt Accelerated with Near-Data-Processing
	3.1 Generic NDP Architecture
	3.2 NDP-Aware scrypt Implementation

	4 Evaluation
	5 Open Problems & Discussion
	6 Conclusion
	References

