
 Open access Book Chapter DOI:10.1007/978-3-319-10175-0_11

Attacking Randomized Exponentiations Using Unsupervised Learning
— Source link

Guilherme Perin, Laurent Imbert, Lionel Torres, Philippe Maurine

Published on: 13 Apr 2014 - International Workshop Constructive Side-Channel Analysis and Secure Design

Topics: Unsupervised learning

Related papers:

 Clustering Algorithms for Non-profiled Single-Execution Attacks on Exponentiations

 Resistance against Differential Power Analysis for Elliptic Curve Cryptosystems

 Differential Power Analysis

 Horizontal correlation analysis on exponentiation

 Sliding Windows Succumbs to Big Mac Attack

Share this paper:

View more about this paper here: https://typeset.io/papers/attacking-randomized-exponentiations-using-unsupervised-
1a9fnq413h

https://typeset.io/
https://www.doi.org/10.1007/978-3-319-10175-0_11
https://typeset.io/papers/attacking-randomized-exponentiations-using-unsupervised-1a9fnq413h
https://typeset.io/authors/guilherme-perin-2bvp4y0hom
https://typeset.io/authors/laurent-imbert-yjqn1o3bez
https://typeset.io/authors/lionel-torres-28gum5uq2w
https://typeset.io/authors/philippe-maurine-3cluf70ffv
https://typeset.io/conferences/international-workshop-constructive-side-channel-analysis-fbbxqwg8
https://typeset.io/topics/unsupervised-learning-1vjskm93
https://typeset.io/papers/clustering-algorithms-for-non-profiled-single-execution-q0vcjz38m8
https://typeset.io/papers/resistance-against-differential-power-analysis-for-elliptic-24bqar83rq
https://typeset.io/papers/differential-power-analysis-4t7fjmuc7b
https://typeset.io/papers/horizontal-correlation-analysis-on-exponentiation-1fws1z6jv1
https://typeset.io/papers/sliding-windows-succumbs-to-big-mac-attack-2osbsu5g8e
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/attacking-randomized-exponentiations-using-unsupervised-1a9fnq413h
https://twitter.com/intent/tweet?text=Attacking%20Randomized%20Exponentiations%20Using%20Unsupervised%20Learning&url=https://typeset.io/papers/attacking-randomized-exponentiations-using-unsupervised-1a9fnq413h
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/attacking-randomized-exponentiations-using-unsupervised-1a9fnq413h
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/attacking-randomized-exponentiations-using-unsupervised-1a9fnq413h
https://typeset.io/papers/attacking-randomized-exponentiations-using-unsupervised-1a9fnq413h

HAL Id: lirmm-01096039
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01096039

Submitted on 16 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Attacking Randomized Exponentiations Using
Unsupervised Learning

Guilherme Perin, Laurent Imbert, Lionel Torres, Philippe Maurine

To cite this version:
Guilherme Perin, Laurent Imbert, Lionel Torres, Philippe Maurine. Attacking Randomized Expo-
nentiations Using Unsupervised Learning. COSADE: Constructive Side-Channel Analysis and Secure
Design, Apr 2014, Paris, France. pp.144-160, 10.1007/978-3-319-10175-0_11. lirmm-01096039

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01096039
https://hal.archives-ouvertes.fr

Attacking Randomized Exponentiations Using

Unsupervised Learning

Guilherme Perin1, Laurent Imbert1, Lionel Torres1, and Philippe Maurine1,2

1LIRMM/UM2 - 161, Rue Ada 34095 Montpellier
2CEA-TECH LSAS laboratory - 880 Avenue de Mimet, 13541 Gardanne

Abstract. Countermeasures to defeat most of side-channel attacks on
exponentiations are based on randomization of processed data. The ex-
ponent and the message blinding are particular techniques to thwart
simple, collisions, differential and correlation analyses. Attacks based on
a single (trace) execution of exponentiations, like horizontal correlation
analysis and profiled template attacks, have shown to be efficient against
most of popular countermeasures. In this paper we show how an unsuper-
vised learning can explore the remaining leakages caused by conditional
control tests and memory addressing in a RNS-based implementation of
the RSA. The device under attack is protected with the exponent blind-
ing and the leak resistant arithmetic. The developed attack combines
the leakage of several samples over the segments of the exponentiation
in order to recover the entire exponent. We demonstrate how to find the
points of interest using trace pre-processing and clustering algorithms.
This attack can recover the exponent using a single trace.
Keywords: RSA, Randomized Exponentiation, Electromagnetic Analy-
sis, Unsupervised Learning, Clustering Algorithms, Single-Execution At-
tacks.

1 Introduction

Not only designers of cryptographic devices have to implement the algorithms
efficiently, they also have to ensure that sensible information that leaks through
several side-channels (time, temperature, power consumption, electromagnetic
emanations, etc.) during the execution of an algorithm, remains unexploited
by an attacker. If not sufficiently protected, both symmetric and asymmetric
cryptographic implementations are vulnerable to these so-called side-channel
attacks (SCA). For public-key algorithms such as RSA, the main operation to be
armoured consists of a multi-digit exponentiation over a finite ring. In this paper,
we present an improved single-execution attack on a randomized implementation
of RSA. However, the ideas and tools that we exploit would also apply in the
context of CRT-RSA and (hyper)elliptic curves.

Attacking an exponentiation consists of identifying the bits of the exponent,
a value that is often to be kept secret (it is either a secret key or a random secret
value). Simple side-channel attacks [2], which uses a single trace of execution,
are easily protected using so-called constant-time algorithms such as square-and-
multiply-always [4], the Montgomery ladder [7] or atomicity [23].

However, these constant-time algorithms are not sufficient to defeat the more
powerful differential [3] and correlation attacks [5]. Although very efficient on not
sufficiently protected implementations, these attacks suffer from the very large
number of traces to be collected in order to recover (part of) the secret. Colli-
sion attacks proposed by Fouque in 2003 [6] are very efficient; they only require
two traces of execution on well chosen inputs. All these attacks are generally
protected using exponent and/or message blinding using elementary algebraic
manipulations. For example, randomization of an RSA exponent relies on the
fact that md ≡ md+rϕ(n) mod n for any (random) value r (see Section 5). Apart
from these well known tricks, randomization can also take place at the arith-
metic level. The LRA concept [9], based on the Residue Number System, seems
to be a robust, yet efficient [24, 25] alternative to more expensive (hardware)
countermeasures.

Novel attacks [14–17] have recently emerged. Unlike the well studied family
of differential [3] and correlation attacks [5], these so-called horizontal correla-
tion attacks (HCA), aim at correlating the Hamming Weight HW(m) of a known
message m, with a set of well-chosen sample points ti from one single trace. Some
of them [15, 17] are indeed efficient in the presence of message blinding. They
exploit the very high regularity of multi-digit exponentiation algorithms and
represent a very serious threat against classical randomization countermeasures.
A major advantage of single-trace-based attacks is their natural immunity to ex-
ponent blinding, since, in many cases, recovering a random exponent is sufficient
to break the cryptosystem (see Section 5).

Profiled template attacks can recover the exponent using few traces. As the
original template attack [11] suggests, the attacker must have full control of
the device. In particular, he must be able to send plain-texts of his choice to a
known key device. In the case of public-key algorithms, the public-key is known
and also can be used in the profiling phase. In this case, the pre-computations
whose objective is to build the template set is refereed to as supervised learn-
ing. In [13] supervised template attacks are successfully applied on modular
exponentiations in order to differentiate squarings from multiplications. More
recently, a template attack on constant-time exponentiation algorithms was pre-
sented in [12], while [19] suggests a technique to attack the exponent blinding.
A template attack targeting the memory addressing was presented in [22]. All
those methods fall into the class of supervised attacks, i.e., a learning phase
is required during which the adversary constructs templates by exploring the
statistical characteristics of various types of operations.

When the adversary does not have a full control of the device, unsupervised
methods are necessary. In [18], unsupervised learning has been presented to
demonstrate the efficiency of localized EM attacks on exponentiations using a k-
means clustering algorithm to differentiate the attacked samples. Their attack is
performed on an ECC [27] implementation over a binary field using Lopez-Dahab
coordinates [26]. The scalar is recovered using leakages collected during the exe-
cution of a single scalar multiplication (k ∈ Z, P ∈ E(F2m) −→ [k]P ∈ E(F2m).
However, their attack relies on the ability to acquire several simultaneous EM

traces from different probe positions1. The leakages obtained from these multi-
measurement sources are then combined together in order to reduce the signal-
to-noise ratio. By doing so, they managed to classify the sampled points into
two distinct sets which correspond to the zero bits (resp. non-zero bits) of the
scalar k.

In this paper, we present a single-trace, single-probe unsupervised attack,
i.e. the side-channel data is collected from one EM probe only. In the next sec-
tions, we present the setting and statistical tools that we used to recover the
entire exponent of a constant-time, randomized RSA implementation. Our at-
tack is unsupervised because it does not require any a priori knowledge of the
device, in particular we did not use the public key or send any chosen mes-
sages in order to learn the characteristics of the device. The chip under attack
is a constant-time, RNS-based FPGA implementation of RSA protected with
the Leak Resistant Arithmetic [9] and exponent blinding. Since all manipulated
data is randomized, we explore the remaining leakages due to control instruc-
tions and memory activities. As previously demonstrated in the literature [20],
memory and register addresses leak information related to the secret key. In-
stead of using simultaneous measurements as in [18], we combine the cluster
classifications of several samples from each bit of the exponent. We thus process
the probabilities obtained from this first phase to recover the entire exponent.
Our attack requires four phases: trace pre-processing, points of interest identi-
fication, fuzzy k-means clustering, and exponent recovery. For this final phase,
we present results obtained with three different statistical techniques (majority
rule, normal probability density function and Bayesian classifier).

The paper is organized as follows: Section 2 gives details about the ran-
domized exponentiation and the device under attack. The unsupervised learning
based on clustering algorithms is detailed in Section 3. Section 4 presents the
attack in details and the results that we obtained with the three statistical tools
mentioned above. Possible countermeasures are suggested in Section 6.

2 The Randomized Exponentiation and the Device

Under Test

The device under attack is a RNS-based implementation of RSA mapped onto
a Spartan-3E xc3s1600 FPGA. For demonstration purposes, we considered a
very weak 512-bit RSA. The modular exponentiation is computed with the reg-
ular and SPA-protected Montgomery ladder [8] using two sets of RNS bases A
and B [10]. The atomic square-and-multiply [23] is also a regular and faster ex-
ponentiation. However as proposed in [15], randomized exponentiations can be
explored through horizontal correlation attacks (HCA) if one of the intermediate
operands, in the case the randomized input message, is used in several modular
multiplications.

1 Their setting simulates the use of 9 probes uniformly positioned over the chip under
attack.

According to the leak resistant arithmetic (LRA) concepts [9], the RNS mod-
uli can be randomized before each exponentiation. This countermeasure acts as
a message blinding technique because and offers a high degree of randomization
to the data. Furthermore, HCA exploits the regularity of long-integer multiplica-
tion (or squaring). The parallel RNS arithmetic is then a very limiting factor for
this attack. Moreover, our hardware is protected with exponent blinding. Alg. 1
shows the randomized exponentiation.

Algorithm 1: LRA-RNS Montgomery Powering Ladder [9]

Data: x in A ∪ B, where A = (a1, a2, ..., ak), B = (b1, b2, ..., bk), A =
∏

k

i=1
ai,

B =
∏

k

i=1
bi, gcd(A, B) = 1, gcd(B, N) = 1 and d = (dℓ...d2d1)2.

Result: z = xd mod N in A ∪ B

1 Pre-Computations: |AB mod N |A∪B

2 randomize(A, B)
3 dr = d + r.ϕ(N)
4 A0 = MM(1, AB mod N, N, A, B) (in A ∪ B)
5 A1 = MM(x, AB mod N, N, A, B) (in A ∪ B)
6 for i = ℓ to 1 do

7 A
dri

= MM(A
dri

, Adri
, N, B, A) (in A ∪ B)

8 Adri
= MM(Adri

, Adri
, N, B, A) (in A ∪ B)

9 end

10 A0 = MM(A0, 1, N, B, A) (in A ∪ B)

The operation MM(x, y, N, B, A) returns xyB−1 mod N in the two RNS
bases A and B. Both squarings and multiplications are computed with the same
number of clock cycles.

First, as the exponent is randomized, single-trace attack was the only option.
Further, because the manipulated data is randomized with LRA, the target in-
formation of our unsupervised attack is not the data contribution in the EM
traces. By data, we mean the intermediate variables which depend on the ran-
domly selected RNS bases and the input message. Exponent-dependent decisions
are taken by the architecture’s control in order to determine the memory address
for reading or writing operands before, during and after the modular multiplica-
tions. These conditional tests, as well as the accessed memory addresses, cause
subtle leakages of information. These are the only sources of leakages that we
exploit in the present unsupervised attack. We present the details of our attack
in the next sections.

3 Unsupervised Learning and the Clustering Algorithms

Clustering is one of the most frequently used data mining techniques, which is an
unsupervised learning process for partitioning a data set into sub-groups so that
the instances within a group are similar to each other and are very dissimilar to
the instances of other groups. That is, we shall see what can be done when the

collected samples are unlabelled and must be grouped in homogeneous clusters.
Two different clustering methods are used in this work: the k-means and the
fuzzy k-means algorithms [28].

The k-means algorithm is a geometric procedure for finding c means or cen-
ters (µ1, . . . , µc) considering a set of n samples xj , where 1 ≤ j ≤ n. The initial-
ization phase consists in defining the number of clusters c and setting a random
sample to each mean µi. Thereafter, the algorithm computes the Euclidean dis-
tances EDi,j =∥ xj − µi ∥2 for all n samples to obtain the maximum-likelihood
estimation of the means µi. The k-means algorithm is shown in Alg. 2.

Algorithm 2: K-Means Clustering Algorithm

1 begin initialize x, n, c, µ1, . . . , µc

2 do classify n samples xj according to nearest µi by computing EDi,j

3 recompute µi

4 until no change in µi

5 return µ1, . . . , µc

6 end

The k-means algorithm iterates until no changes in µi are verified. In all
iterations each sample is assumed to be in exactly one cluster. The fuzzy k-
means algorithm relaxes this condition and assumes that each sample xj has
some membership with different clusters ωi, rather than belonging completely
to just one cluster.

Initially, the probabilities of cluster membership for each point xj of a n
sample vector x are normalized according to all clusters ωi as:

c∑

i=1

P (ωi|xj) = 1 (1)

where P (ωi|xj) is the probability that the sample xj is in the cluster ωi. At
each iteration of the fuzzy k-means algorithm, the means (or centers) µi are
recomputed according to the following equation:

µj =

∑n
j=1[P (ωi|xj)]bxj∑n

j=1[P (ωi|xj)]b
(2)

and the new probabilities are recomputed:

P (ωi|xj) =
(1/EDij)1/(b−1)

∑c
r=1(1/EDrj)1/(b−1)

, EDij =∥ xj − µi ∥2 (3)

where b > 1 is a free parameter chosen to adjust the “blending” of different clus-
ters. Its appropriate choice can improve the cluster classification if the analyzed
data set is too much noisy. In this work, this parameter is set to 2. Alg. 3 shows
the fuzzy k-means algorithm.

Algorithm 3: Fuzzy K-Means Clustering Algorithm

1 begin initialize n, c, µ1, . . . , µc, P (ωi|xj)
2 normalize probabilities of cluster memberships by Eq. 1
3 do classify n samples according to nearest µi

4 recompute µi by Eq. 2
5 recompute P (ωi|xj) by Eq. 3
6 until no change in µi and P (ωi|xj)
7 return µ1, . . . , µc

8 end

The next section describes the unsupervised attack in four phases. The k-
means algorithm is used in the search for the points of interest. The fuzzy k-
means is employed in the cluster classification after having selected the points
of interest.

4 The Unsupervised Attack

In a realistic assumption for single-execution attacks on exponentiations, the
adversary works in a noisy environment and, as already stated in [19], "single

bits are never known with certainty [. . .] and an SPA attacker [. . .] can only

give a probability that any particular operation is a squaring or a multiplication",
if the attacked device executes the square-and-multiply algorithm. If a single-
execution attack is able of recovering 98% of the 1024 exponent bits and the
adversary does not know the wrong bit positions inside the exponent, a brute
force attack requires

∑21
j=0 C1024

j = 2144 steps to retrieve the incorrect bits.
Therefore, the number of wrong bits in the recovered exponent must be at least
very low, otherwise a single-execution attack is impracticable.

When applying non-profiled attacks on a single trace of an exponentiation,
the adversary has no knowledge about the operation features (mean µ, variance
σ2). All information must be recovered in a unsupervised manner. Regular bi-
nary algorithms [8][23] compute the exponentiation iteratively and for each bit
of the exponent (or segment) same operations are performed. Thus, a initial par-
titioning step is applied to the measured electromagnetic exponentiation trace
in order to have ℓ segments, each one representing one exponent bit interpre-
tation. The segments are aligned and compressed to reduce the noise and clock
jitter effects. Thereafter, as proposed in this attack, several points of interest
are identified in each segment by computing an estimated and approximated
difference of means. The cluster classification using the fuzzy k-means algorithm
is applied in each set of compressed samples, each set representing a selected
point of interest and providing an estimated exponent. The last step consists
in retrieving the randomized exponent using all estimated exponents obtained
with the cluster classification. The proposed attack, divided in four phases, is
detailed below.

4.1 Phase 1: Trace Pre-processings

The attack starts by acquiring a single execution exponentiation trace from the
device, considering the k-th randomized exponent d1:ℓ,k, where ℓ is the length
of the exponent. In our case, the exponentiation is computed using the regular
Montgomery ladder algorithm. The EM trace, with size L, is sliced in ℓ opera-
tions of multiplications and ℓ operations of squarings, as depicted in Fig. 1.

time

a
m

p
lit

u
d
e M MM MS SS S

...

L

l1 1 2 2 3 3 l

d1,k d2,k d3,k d...
l,kd1: ,kl =

Fig. 1. Exponentiation trace and the segmentation in multiplications and squarings.

Each multiplication (Mi) or squaring (Si) in the acquired EM trace contains
74 clock cycles. The oscilloscope sampling rate was set to 20GS/s during the
acquisition step and the hardware computes the exponentiation at a clock fre-
quency of 50MHz, resulting in 59200 samples per exponent bit interpretation
(MiSi). The device under attack does not feature any hardware countermeasure,
e.g., time disarrangement, dummy cycles or frequency dividers. Therefore, the
ℓ segments of multiplication-squarings MiSi, can be easily identified and com-
bined to explore the leakage of information. However, the clock jitter effect is
still present in the acquired EM trace and must be suppressed using a trace
alignment procedure.

Another important role in unsupervised single-execution attacks is to identify
the points of interest which present greater leakages. A simple solution consists
in averaging the 400 samples of one clock cycle into 1 sample and taking each
averaged sample as a point of interest. Here, in order to preserve the informa-
tion over smaller windows, the trace is compressed by averaging 100 samples
into 1 sample. Then, this allows reducing the amount of data from 59200 to
592 compressed samples during an exponent bit interpretation di,k (denoted by
operation ⟨MS⟩i in the sequel).

Now, the ℓ operations are represented by a matrix T :

T =

⟨MS⟩1

⟨MS⟩2

...
⟨MS⟩ℓ

 =

t1,1 t1,2 · · · t1,592

t2,1 t2,2 · · · t2,592

...
...

. . .
...

tℓ,1 tℓ,2 · · · tℓ,592

 (4)

Each row of the matrix T is a set of compressed samples ⟨MS⟩i = {ti,j}
representing an exponent bit interpretation di,k. The term ℓ is the exponent bit
length and, of course, is the iterations number in the algorithm 1 (steps 6 to
9). After the trace pre-processing, the attack enters in the second phase that
consists in finding the points of interest.

4.2 Phase 2: Finding the Points of Interest

The success of the attack depends on the choice of the points of interest. With
profiling or supervised attacks, these points can be found by computing a dif-
ference of means and observing the highest peaks of amplitude. In such a case,
the adversary has a known key d and computes averaged traces Tr0 and Tr1

representing the truncated windows of sampled points when the exponent bit is
zero and one, respectively and according to:

Tr0 =
∑

i

⟨MS⟩di=0 Tr1 =
∑

i

⟨MS⟩di=1 (5)

Because the presented attack aims at revealing the exponent through an un-
supervised manner, the attacker should be considered as having minimal knowl-
edge about the target implementation to identify the points of interest. Because
all data are randomized, the remaining leakage is related to addressing and con-
trol executions. Therefore, by observing and studying the collected EM trace,
the attacker can, for instance, localize the time points where the device per-
forms such operations and discard the points that clearly show no compromising
information.

Our unsupervised analysis needs a set of points of interest in each segment
⟨MS⟩i to retrieve the exponent. A basic idea is to initially apply a clustering
algorithm over each set of compressed samples {t1:ℓ,j} (each column of matrix

T) and find 592 approximated exponents d̂1:ℓ,j , for 1 ≤ j ≤ 592. In our practical
experiments, this leads to the recovery of around 93% of the entire exponent on
the most leaking set of compressed samples {t1:ℓ,j}. It is insufficient. However,

this result can be used for calculating approximated and averaged traces T̂r0

and T̂r1 from the approximated exponent d̂1:ℓ,j . For this initial step, we consid-
ered the k-means clustering algorithm because it is a simple and fast technique.
Fig. 2(a) shows the relation between the percentage of success recovery of the
exponent and the analyzed set of compressed samples {t1:ℓ,j}, for 1 ≤ j ≤ 592.

If the adversary selects the most likely exponent (in the case the set {t1:ℓ,465})

he computes the averaged traces T̂r0 and T̂r1. Fig. 2(b) shows the approximated

difference of mean traces D̂ = T̂r0 − T̂r1. The difference of means D = Tr0 −Tr1,
for the real randomized exponent running in the device, is depicted in Fig. 2(c).

Note that the results in Fig. 2(b) and (c) are quite similar and the adversary

can select points of interest observing the highest peaks of amplitude in D̂. In a
worst case, the adversary would try to compute approximated difference of mean

0 10000 20000 30000 40000 50000
-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0 100 200 300 400 500
50

55

60

65

70

75

80

85

90

95

100

A
m

p
lit

u
d
e
 (

V
)

Samples

Sample Set t

%
 o

f
C

o
rr

e
c
t
E

x
p
o
n
e
n
t
B

it
s (a)

D

i: ,jl

Mi Si

50 150 250 350 450 550

5000 15000 25000 35000 45000 55000

(b)Mi Si

0 10000 20000 30000 40000 50000
-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

A
m

p
lit

u
d
e
 (

V
)

Samples

D

5000 15000 25000 35000 45000 55000

(cMi Si
)

Fig. 2. (a) Percentage of correct exponent bits. (b) Approximated difference of mean

traces D̂ = T̂r0 − T̂r1 (c) Difference of mean traces D = Tr0 − Tr1.

traces, and selecting points of interest, from each one of the 592 possibilities.
It is clear that the selection of the most leaking point of interest reduces the
computational time of the unsupervised attack. Besides, we observed (see Fig.
2) that the highest percentages of correct exponent recovery match with the

highest peaks of amplitude in the approximated difference of means D̂. We used
this observation as a heuristic in order to select the points of interest.

4.3 Phase 3: Cluster Classification

After computing the approximated difference of mean traces from the set of
compressed samples {t1:ℓ,465}, let us suppose the selection of u points of interest
P = {pj}, for 1 ≤ j ≤ u, among the 592 possibilities. Observing the approxi-

mated difference of means D̂ in Fig. 2(b), 17 points of interest were selected (pj

= 165, 166, 169, 281, 282, 284, 285, 342, 461, 462, 464, 465, 497, 498, 577, 580,
581), which evidently are the most leaking points.

A clustering is computed for all set of compressed samples {t1:ℓ,pj
}, for

1 ≤ j ≤ u by applying the fuzzy k-means algorithm. Thus, a classification for
these samples in two classes (bits zeros and ones), which leads to one estimated

exponent d̂1:ℓ,pj
per set of samples {t1:ℓ,pj

}, is obtained. Because real attacks
work on noisy environments, the clustering over each point of interest pj con-
tains errors of classification. Fig. 3 illustrates the cluster classification error for
the set of compressed samples {t1:ℓ,169}. Fig. 3(a) shows the correct classification
according to the real randomized exponent d1:ℓ,k and the Fig. 3(b) presents the
cluster classification returned by the fuzzy k-means algorithm.

0 50 100 150 200 250 300 350 400 450 500
-0.020

-0.015

-0.010

-0.005

0

0.005

0

A
m

p
lit

u
d
e
 (

V
)

A
m

p
lit

u
d
e
 (

V
)

(a) (b)

-0.020

-0.015

-0.010

-0.005

0

0.005

50 100 150 200 250 300 350 400 450 500

bit 1bit 0 Centers bit 1bit 0 Centers

Fig. 3. Errors of cluster classification: (a) Correct classification. (b) Fuzzy k-means
classification.

For each point of interest pj , the fuzzy k-means clustering algorithm returns
two centers µ1 and mu2 and two groups of clustered samples. A common problem
would be to identify what class or operation (exponent bit zero or one) each
cluster center represents. With u = 17 cluster classifications into two classes,
there will be 217 = 131072 different possibilities. The identification of the classes
can be performed in two different ways:

1. Instead of selecting random samples to initialize the values µ1 and µ2 in the
Alg. 3, we select the minimum and maximum samples from the set {t1:ℓ,pj

}
according to their amplitudes. The initialization in Alg 3 is done by assigning
µ1 = min{t1:ℓ,pj

} and µ2 = max{t1:ℓ,pj
}. It ensures that µ1 < µ2 after the

clustering. Then, comparing the resulting cluster means µ1 and µ2 with the

amplitude of the approximated difference of means D̂, and also T̂r0 and T̂r1,
it is straightforward to identify the classes.

exponent classified exponent bits d̂i,k correct
̂d1:40,p1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 0 0 1 0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 76.02%
̂d1:40,p2 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 1 1 76.42%
̂d1:40,p3 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 1 0 0 1 1 0 0 0 0 0 1 76.42%
̂d1:40,p4 1 0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 0 1 1 1 1 1 1 0 0 1 1 1 0 1 0 0 1 1 1 1 0 0 1 0 76.42%
̂d1:40,p5 1 1 0 0 0 0 0 1 0 1 0 1 1 0 0 1 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0 0 0 1 78.86%
̂d1:40,p6 1 0 1 1 0 0 0 0 1 0 0 0 1 0 1 1 0 0 0 1 1 0 1 0 1 0 1 1 0 1 0 0 1 0 1 0 0 1 0 1 79.27%
̂d1:40,p7 1 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 0 1 1 1 1 1 1 0 0 1 1 1 0 1 0 0 1 0 0 1 0 0 0 1 78.86%
̂d1:40,p8 1 1 0 1 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 0 1 1 0 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 1 80.08%
̂d1:40,p9 1 0 0 0 0 0 1 1 0 1 0 0 1 1 1 1 0 0 1 1 0 1 1 0 1 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 80.08%
̂d1:40,p10 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 1 1 1 1 0 0 1 1 1 0 1 1 0 0 1 0 0 0 1 1 1 80.89%
̂d1:40,p11 1 0 1 0 0 0 0 1 1 0 1 0 1 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 1 82.52%
̂d1:40,p12 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 1 1 1 1 0 0 1 1 1 0 1 1 0 1 1 0 0 0 0 0 1 82.52%
̂d1:40,p13 1 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 1 0 0 0 0 1 0 1 83.74%
̂d1:40,p14 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 1 89.43%
̂d1:40,p15 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 1 0 1 0 0 1 0 0 0 0 0 0 1 90.65%
̂d1:40,p16 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 1 1 1 1 1 1 0 1 1 1 1 0 1 0 1 1 0 0 0 0 0 0 1 91.25%
̂d1:40,p17 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 0 1 1 1 1 1 0 1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 1 93.06%

d̂1:40,k 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0 1 0 0 1 0 0 0 0 0 0 1 100%
d1:40,k 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0 1 0 0 1 0 0 0 0 0 0 1 100%

Table 1. Cluster classification of the (first 40) exponent bits and the recovery of d̂1:ℓ,k

using the majority rule.

2. As all selected leaking points may lead to more than 50% of exponent re-

covery, we take one recovered exponent d̂1:ℓ,v from one point of interest v,
v ∈ {pj}, and compute the bitwise XOR between this exponent and the

other estimated exponent values. Let ℓ be the size of the exponent, d̂1:ℓ,pj

all the recovered exponents for 1 ≤ j ≤ u, pj ̸= v, and the bitwise re-

sults h1:ℓ =XOR(d̂1:ℓ,pj
, d̂1:ℓ,v) for pi ̸= v. If

∑ℓ
i=1 hi < ℓ/2 then returns

NOT(d̂1:ℓ,pj
), otherwise keep unchanged.

After the cluster classifications and respective association of the classes, the
attack enters in the last step in order to combine all estimated exponents into
one final exponent.

4.4 Phase 4: Exponent Recovery

The recovery of the final randomized exponent is computed through three differ-
ent statistical techniques: majority decision, probability density function (pdf)
and Bayesian classifier.

Majority Decision: Table 1 shows the cluster classification results for the

first 40 bits of each estimated exponent d̂1:ℓ,pj
considering the u = 17 points

of interest. Using the majority decision we can retrieve a randomized exponent

d̂1:ℓ,k.

Because the majority rule is a simple statistical procedure, it requires more
points of interest for achieving the correct exponent if compared to the next two
adopted techniques, as will be demonstrated at the end of this section.

Probability Density Function: In [19], the probability density function,
which is based on the normal distributions parameters N (µ0, σ0) and N (µ1, σ1),
where µ and σ are the mean and the standard deviation, returns the likelihood
that a sample ti,j is the operation when the exponent bit di,k = 0. As the pre-
sented analysis is unsupervised, we do not know µ0 and µ1. However, the fuzzy
k-means cluster classification returns two means or centers µ1 and µ2 for each
set of compressed samples {t1:ℓ,pj

} which can be used in place of the means. The
standard deviation σ is computed from all the set of samples {t1:ℓ,pj

}, consider-
ing the evaluated point of interest pi. Then, the likelihood that a sample ti,pj

is
an operation when di,k = 0 is given by the equation below:

p(ti,pj
, µ1) =

e− 1
2 (ti,pj

−µ1)2/2σ2

e− 1
2 (ti,pj

−µ1)2/2σ2

+ e− 1
2 (ti,pj

−µ2)2/2σ2
, 1 ≤ i ≤ ℓ, 1 ≤ j ≤ u (6)

Following, the defined sum of probabilities gives the likelihood that a set
of points of interest {ti,p1:u}, representing the operation ⟨MS⟩i, is an operation
performed when the randomized exponent bit di,k = 0 and is computed by:

S0,1:u =
1

u

u∑

j=1

p(ti,pj
, µ1) 1 ≤ i ≤ ℓ (7)

Then, for 1 ≤ i ≤ ℓ, the following decision returns the estimated randomized

exponent bit d̂i,k:

d̂i,k =

{
0, if S0,1:u ≥ 0.5)
1, if S0,1:u < 0.5)

(8)

Table 2 shows the final sum of probabilities S0,1:u and the exponent decision

from Eq. 8 considering the 20 first exponent bits d̂1:20,k (for space in Table 2)
and u = 17 points of interest.

Bayesian Classifier: The Bayesian decision theory makes the assumption that
the decision problem is posed in probability terms. The classifier lies on the
computation of the posterior probabilities P (µc|ti,pj

) which is computed from
the prior probabilities P (µc) and the probability density function for normal
distributions p(ti,pj

, µc), where c = {0, 1} and p(ti,pj
, µc) ∈ [0, 1]. Thus, the

classification starts by obtaining the pdf estimation for each point of interest
ti,pj

of each operation i. Again, this analysis considers the two cluster centers
µ1 and µ2 in the place of means and the standard deviation is computed from
all the set of compressed samples {t1:ℓ,pj

}:

point probabilities p(ti,pj
, µ1) correct

̂d1:20,p1 0.1 1.0 0.5 0.6 0.7 0.9 0.9 0.4 1.0 0.7 0.6 0.9 0.0 0.8 0.0 0.2 0.3 0.7 0.5 0.1 76.02%
̂d1:20,p2 0.3 1.0 0.8 0.6 0.8 0.5 0.4 0.1 0.9 0.7 0.9 0.5 0.7 0.9 0.5 0.2 0.8 0.4 0.1 0.2 76.42%
̂d1:20,p3 0.5 76.83%
̂d1:20,p4 0.2 0.9 0.9 0.8 0.6 0.3 0.5 0.2 0.5 0.3 0.7 0.9 0.6 0.2 0.1 0.2 0.8 0.2 0.1 0.1 76.42%
̂d1:20,p5 0.5 0.5 0.9 0.9 0.9 0.6 0.8 0.3 0.9 0.1 0.8 0.3 0.2 0.6 0.7 0.1 0.8 0.0 0.3 0.3 78.86%
̂d1:20,p6 0.1 0.7 0.5 0.4 0.8 0.7 0.7 0.9 0.5 1.0 0.8 0.6 0.2 0.9 0.5 0.3 0.9 0.6 0.7 0.4 78.86%
̂d1:20,p7 0.5 0.8 0.9 0.8 0.9 0.8 0.8 0.0 0.9 0.6 0.9 0.5 0.1 0.6 0.2 0.1 0.9 0.0 0.3 0.1 78.86%
̂d1:20,p8 0.3 0.4 0.8 0.5 0.6 0.9 0.7 0.0 0.7 0.5 1.0 0.8 0.2 0.8 0.4 0.1 0.8 0.3 0.0 0.2 80.08%
̂d1:20,p9 0.4 0.7 1.0 0.9 0.9 0.5 0.4 0.1 0.8 0.2 1.0 0.8 0.1 0.4 0.3 0.1 0.7 0.7 0.1 0.4 80.08%
̂d1:20,p10 0.2 0.9 0.8 0.5 0.7 0.8 1.0 0.4 0.7 1.0 0.8 0.7 0.2 0.5 0.8 0.3 0.6 0.5 0.4 0.1 80.89%
̂d1:20,p11 0.1 0.7 0.3 0.9 0.7 0.7 0.7 0.2 0.5 0.9 0.3 0.8 0.1 0.5 0.0 0.2 0.2 0.3 0.0 0.2 82.52%
̂d1:20,p12 0.1 0.6 1.0 0.8 0.6 0.9 0.8 0.2 0.8 0.9 0.9 0.8 0.1 0.9 0.3 0.6 0.8 0.2 0.5 0.1 82.52%
̂d1:20,p13 0.1 0.8 0.7 1.0 0.7 0.9 0.8 0.7 0.5 0.8 0.9 1.0 0.1 0.2 0.2 0.6 0.6 0.3 0.2 0.3 83.74%
̂d1:20,p14 0.3 0.7 0.7 1.0 0.9 0.3 0.8 0.2 0.9 0.7 0.9 0.6 0.2 0.6 0.4 0.1 0.9 0.1 0.6 0.2 89.43%
̂d1:20,p15 0.1 0.7 0.7 0.9 0.7 0.7 0.7 0.6 0.7 0.9 0.6 0.9 0.2 0.9 0.2 0.4 0.8 0.4 0.2 0.7 89.43%
̂d1:20,p16 0.2 0.8 1.0 0.8 1.0 0.9 0.9 0.3 0.5 0.9 0.7 0.7 0.0 0.8 0.1 0.7 0.8 0.2 0.0 0.2 90.65%
̂d1:20,p17 0.3 0.7 0.6 0.6 1.0 0.7 1.0 0.1 0.8 1.0 0.8 0.7 0.3 0.8 0.3 0.1 0.6 0.5 0.3 0.1 93.06%

S0,1:17 0.3 0.6 0.6 0.6 0.7 0.6 0.6 0.3 0.7 0.7 0.7 0.6 0.2 0.6 0.3 0.3 0.7 0.3 0.2 0.3 100%

d̂1:20,k 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 100%
d1:20,k 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 100%

Table 2. Cluster classification of the (first 20) exponent bits and the recovery of d̂1:ℓ,k

using the probability density function for normal distributions.

p(ti,pj
, µ1) =

1

σ
√

2π
e−

(ti,pj
−µ1)2

2σ2 (9)

p(ti,pj
, µ2) =

1

σ
√

2π
e−

(ti,pj
−µ2)2

2σ2 (10)

The probability density functions p(ti,pj
, µ1) and p(ti,pj

, µ2) are obtained for
1 ≤ i ≤ ℓ and 1 ≤ j ≤ u. Considering P (µc) as the prior probabilities for
the points of interest pj−1, where c = {0, 1}, by Bayes’s formula we obtain the
posterior probabilities P (µc|ti,pj

) for the operations i and points of interest pj :

P (µ1|ti,pj
) =

p(ti,pj
, µ1)P (µ1)

p(ti,pj
, µ1)P (µ1) + p(ti,pj

, µ2)P (µ2)
(11)

P (µ2|ti,pj
) =

p(ti,pj
, µ2)P (µ2)

p(ti,pj
, µ1)P (µ1) + p(ti,pj

, µ2)P (µ2)
(12)

The Bayes’s formula is repeated for all points of interest pj over the same
operation i. At the end, this estimation returns the probabilities that a certain
operation ⟨MS⟩i is being executed when the exponent bit di,k = 0. Table 3 shows
the evolution of posterior probabilities P (µ1|ti,pj

) over all points of interest ti,pj
,

for 1 ≤ j ≤ u, and the respective percentage of correct exponent bits. Again, in
this example we consider the first 20 exponent bits.

point probabilities P (µ1|t1:20,pj
) correct

P (µ1|t1:20,p1) 0.7 0.4 0.6 0.8 0.7 0.8 0.6 0.4 0.8 0.8 0.9 0.8 0.4 0.7 0.4 0.3 0.6 0.2 0.4 0.6 75.23%
P (µ1|t1:20,p2) 0.5 1.0 0.8 0.9 0.7 0.9 0.4 0.2 1.0 1.0 0.9 0.8 0.2 0.9 0.0 0.0 0.8 0.2 0.1 0.6 82.89%
P (µ1|t1:20,p3) 0.5 1.0 0.8 0.9 0.7 1.0 0.5 0.1 1.0 1.0 0.9 0.8 0.1 0.9 0.0 0.1 0.9 0.3 0.1 0.6 89.02%
P (µ1|t1:20,p4) 0.1 1.0 0.9 1.0 0.7 0.9 0.9 0.0 1.0 1.0 1.0 0.8 0.0 1.0 0.0 0.0 1.0 0.1 0.0 0.1 93.45%
P (µ1|t1:20,p5) 0.4 1.0 1.0 1.0 0.9 1.0 0.8 0.0 0.9 1.0 1.0 0.6 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.3 96.34%
P (µ1|t1:20,p6) 0.4 1.0 1.0 1.0 0.9 1.0 0.8 0.0 0.9 1.0 1.0 0.6 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.3 97.56%
P (µ1|t1:20,p7) 0.4 1.0 0.9 1.0 1.0 1.0 0.7 0.0 1.0 1.0 1.0 1.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.3 99.59%
P (µ1|t1:20,p8) 0.0 1.0 1.0 1.0 1.0 1.0 0.7 0.0 1.0 1.0 1.0 1.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 99.59%
P (µ1|t1:20,p9) 0.0 1.0 1.0 1.0 1.0 1.0 0.8 0.0 1.0 1.0 1.0 1.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 99.59%
P (µ1|t1:20,p10) 0.0 1.0 1.0 1.0 1.0 1.0 0.9 0.0 1.0 1.0 1.0 1.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 99.18%
P (µ1|t1:20,p11) 0.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 100.00%
P (µ1|t1:20,p12) 0.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 100.00%
P (µ1|t1:20,p13) 0.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 100.00%
P (µ1|t1:20,p14) 0.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 100.00%
P (µ1|t1:20,p15) 0.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 100.00%
P (µ1|t1:20,p16) 0.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 100.00%
P (µ1|t1:20,p17) 0.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 100.00%

d̂1:20,k 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 100%
d1:20,k 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 100%

Table 3. Cluster classification of the (first 20) exponent bits and the recovery of d̂i:ℓ,k

using the Bayesian classifier.

2 4 6 8 10 12 14 16
70

75

80

85

90

95

100

Majority Decision
Normal PDF
Bayesian Classifier

(a)

Points of Interest

%
 o

f
C

o
rr

e
c
t

E
x
p

o
n

e
n

t
B

it
s

1 2 3 4 5 6 7 8
85

90

95

100

Majority Decision
Normal PDF
Bayesian Classifier

(b)

Points of Interest

%
 o

f
C

o
rr

e
c
t

E
x
p

o
n

e
n

t
B

it
s

3 5 7 9 11 13 15 171

Fig. 4. Relation between the exponent recovery and the number of points of interest:
(a) from the least to the most leaking point and (b) from the most to the least leaking
point (this Figure is represented in a different scale).

For the three presented methods, we showed the cluster classification results
for u = 17 points of interest. Fig. 4 demonstrates the evolution of the exponent
recovery related to the number of points. In Fig. 4(a), it was considered the
evolution from the least to the most leaking point. Note that using the Bayesian
classifier are necessary 11 points to recovery the entire exponent. The same result
can be observed in Table 3. On the other hand, in Fig. 4(b), if the evolution is
from the most to the least leaking point, the Bayesian classifier achieves 100%
of the exponent using only 4 points of interest per exponentiation segment.

5 Obtaining the Private Key from Randomized

Exponents

For decryption and message signing, the retrieval of the randomized exponent
dr = d + r.ϕ(N) is the same as retrieving d. Therefore, a single-execution attack
is sufficient to break the target device. However, for non-CRT implementations of
RSA and in the case when the recovered randomized exponents present few error
bits, the adversary can also improve the procedure using a step-by-step attack,
as proposed in [19]. In this case, the recovering of several blinding factors r in
the exponent randomization is used to derive the exponent d.

Approximately the ℓ/2 most significant bits of the exponent d are exposed
when the public key e is small (3, 17 or 216 + 1). In this procedure, the term
ϕ(N) is approximated by N and the approximated exponent is given by, k ∈ Z:

d̃ =
⌊1 + kN

e

⌋

Consequently, the adversary can obtain the ℓ/2 most significant bits of all
the possible randomized exponents by computing d̃ri

= d̃ + ri.N , for all i and
ri ∈ [0, 232 − 1]. Considering λ as being the bit length of the blinding factor r,
the λ most significant bits of d + r.ϕ(N) are equivalent to the most significant
bits of d̃ + r.N . Then, the adversary can compute all possible values for r and
by observing the recovered randomized exponent dr, he can deduce r. Finally,
he constructs the attack on exponentiation traces containing possibly known
blinding factors.

6 Countermeasures

The efficiency of single-execution attacks on exponentiations are related to the
signal-to-noise ratio (SNR) of acquired traces. Theoretically, the Alg. 1 is SPA-
protected because it is regular and all manipulated data are randomized due to
algorithmic (exponent blinding) and arithmetic (leak resistant arithmetic) coun-
termeasures. If different operands are read and written depending on the expo-
nent bits, in a practical implementation of the Montgomery ladder the memory
accesses cause addressing related leakages, as demonstrated through the unsu-
pervised attack.

Hardware countermeasures as the insertion of time disarrangement, dummy
cycles or frequency dividers reduce the SNR. Balancing the power consumption
is an alternative to avoid the leakage of information due conditional tests or
control decisions.

If the leakage is related to memory access, a possible solution is the ran-
domization of the RAM addresses during the exponentiation. By doing so, the
unsupervised attack was unable to entirely recover the randomized exponent.
By selecting the same points of interest P = {pj}, we applied the fuzzy k-means
clustering algorithm and recovered approximately 80% of the exponent using the
Bayesian classifier technique.

7 Conclusions

This paper presented an unsupervised attack on randomized exponentiations.
The explored leakages are based on control executions and memory addressing.
We proposed to combine the cluster classification for several points of interest
over each exponent bit interpretation in order to derive the randomized expo-
nent using a single EM trace. The results were presented through three different
statistical techniques and specifically for the probability density function and
Bayesian Classifier techniques, we showed the likelihood for the randomized ex-
ponent bits.

The presented unsupervised attack demonstrated the efficiency of cluster-
ing algorithms against single execution of exponentiations even in the presence
of algorithmic and arithmetic countermeasures. The obtained results show the
importance of employing hardware countermeasures in public-key architectures.

References

1. R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures
and public key cryptosystems,” Communications of the ACM, vol. 21, no. 2, pp.
120–126, Feb. 1978.

2. P.C. Kocher, “Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems”, CRYPTO, ser. Lecture Notes in Computer Science, vol. 1109,
pp. 104–1113. Springer, 1996.

3. P.C. Kocher, J. Jaffe and B. Jun, “Differential Power Analysis”, CRYPTO, ser.
Lecture Notes in Computer Science, vol. 1666, pp. 388–397. Springer, 1999.

4. J.-S. Coron, “Resistance against differential power analysis for elliptic curve cryptog-
raphy,” in Cryptographic Hardware and Embedded Systems, CHES’99, ser. Lecture
Notes in Computer Science, vol. 1717, pp. 292–302, Springer, 1999.

5. E. Brier, C. Clavier, and F. Olivier, “Correlation power analysis with a leakage
model,” in Cryptographic Hardware and Embedded Systems, CHES’04, ser. Lecture
Notes in Computer Science, vol. 3156, pp. 16–29, Springer, 2004.

6. P.-A. Fouque and F. Valette, “The doubling attack - why upwards is better than
downwards,” in Cryptographic Hardware and Embedded Systems, CHES’03, ser. Lec-
ture Notes in Computer Science, vol. 2523, pp. 269–280, Springer, 2003.

7. P. L. Montgomery, “Speeding the Pollard and elliptic curve methods of factoriza-
tion”, Mathematics of Computation, 48(177), pp. 243-264, January, 1987.

8. M. Joye and S.-M. Yen, “The Montgomery powering ladder,” in Cryptographic Hard-
ware and Embedded Systems, CHES’02, ser. Lecture Notes in Computer Science, vol.
2523, pp. 291–302, Springer, 2002.

9. J.-C. Bajard, L. Imbert, P.-Y. Liardet, and Y. Teglia, “Leak resistant arithmetic,”
in Cryptographic Hardware and Embedded Systems, CHES’04, ser. Lecture Notes in
Computer Science, vol. 3156, pp. 62–75, Springer, 2004.

10. J.-C. Bajard, L-Stéphane Didier and P. Kornerup “An RNS Montgomery Modular
Multiplication Algorithm,” in IEEE Trans. Computers, vol. 47, n.7, p. 766-776,
1998.

11. S. Chari, J.R. Rao and P. Rohatgi, “Template Attacks”, Cryptographic Hardware
and Embedded Systems, CHES’02, ser. Lecture Notes in Computer Science, vol.
2523, pp. 13–28, Springer, 2002.

12. C. Herbst and M. Medwed, “Using Templates to Attack Masked Montgomery
Ladder Implementations of Modular Exponentiation”, WISA, LCNS 5379, pp. 1-
13, 2009.

13. N. Hanley, M. Tunstall and W.P. Marnane, “Using templates to distinguish mul-
tiplications from squaring operations”, IJIS, 10, number 4, pp. 255-266, 2011.

14. C. Clavier, B. Feix, G. Gagnerot, M. Roussellet and V. Verneuil, “Horizontal Cor-
relation Analysis on Exponentiation,” Proc. ICICS, ser. Lecture Notes in Computer
Science, vol. 6476, pp. 46-61, Springer, 2010.

15. C. Clavier, B. Feix, G. Gagnerot, M. Roussellet, C. Giraud and V. Verneuil,
“ROSETTA for Single Trace Analysis”, Proc. INDOCRYPT, ser. Lecture Notes
in Computer Science, vol. 7668, pp. 140-155, Springer, 2012.

16. A. Bauer,E. Jaulmes, E. Prouff and J. Wild “Horizontal and Vertical Side-Channel
Attacks against Secure RSA Implementations,” Proc. CT-RSA, ser. Lecture Notes
in Computer Science, vol. 7779, pp. 1-17, Springer, 2013.

17. A. Bauer and E. Jaulmes “Correlation Analysis against Protected SFM Implemen-
tations of RSA,” Proc. INDOCRYPT, ser. Lecture Notes in Computer Science, vol.
8520, pp. 98–115, Springer, 2013.

18. J. Heyszl, A. Ibing, S. Mangard, F. Santis and G. Sigl “Clustering Algorithms
for Non-Profiled Single-Execution Attacks on Exponentiations”, IACR Cryptology
ePrint Archive, vol. 2013:438, 2013.

19. S. Bauer, “Attacking Exponent Blinding in RSA without CRT,” COSADE, ser.
Lecture Notes in Computer Science, vol. 7275 pp. 82-88, 2012.

20. K. Itoh, T. Izu and M. Takenaka, “Address-Bit Differential Power Analysis of
Cryptographic Schemes OK-ECDH and OK-ECDSA”, Cryptographic Hardware and
Embedded Systems, CHES’02, ser. Lecture Notes in Computer Science, vol. 2523.
Springer, 2002, pp. 129–143.

21. C. D. Walter, “Sliding Windows Succumbs to Big Mac Attack”. Cryptographic
Hardware and Embedded Systems, CHES’01, volume 2162 of Lecture Notes in Com-
puter Science, pp. 286–299, Springer, 2001.

22. G. O. Dyrkolbotn and E. Snekkenes, “Modified Template Attack Detecting Ad-
dress Bus Signals of Equal Hamming Weight”, The Norwegian Information Security
Conference (NISK), pp. 43–56, 2009.

23. B. Chevallier-Mames, M. Ciet and M. Joye, “Low-Cost Solutions for Preventing
Simple Side-Channel Analysis: Side-Channel Atomicity”, IEEE Trans. Computers,
vol. 51, n.6, pp. 760–768, 2004.

24. N. Guillermin, “A coprocessor for secure and high speed modular arithmetic,”
Cryptology ePrint Archive, Report 2011/354, 2011, http://eprint.iacr.org/.

25. G. Perin, L. Imbert, L. Torres and P. Maurine, “Electromagnetic Analysis on RSA
Algorithm Based on RNS”, In Proc. 16th Euromicro Conference on Digital System
Design (DSD), pages 345–352. IEEE, September 2013.

26. J. Lopez and R. Dahab, “Fast multiplication on elliptic curves over GF(2m) without
precomputation”. Cryptographic Hardware and Embedded Systems, CHES’99, ser.
Lecture Notes in Computer Science, vol 2523, pp. 13-28, Springer-Verlag, London,
UK (1999).

27. D. Hankerson, A. J. Menezes and S. Vanstone, “Guide to Elliptic Curve Cryptog-
raphy”, Springer Professional Computing, 2004.

28. R.O. Duda, P.E. Hart, D.G. Stork, “Pattern Classification”, (2nd Edition), Wiley-
Interscience, 2 edn, Nov 2001.

