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Abstract. The SHA-256 hash function has started getting attention
recently by the cryptanalysis community due to the various weaknesses
found in its predecessors such as MD4, MD5, SHA-0 and SHA-1. We
make two contributions in this work. First we describe message mod-
ification techniques and use them to obtain an algorithm to generate
message pairs which collide for the actual SHA-256 reduced to 18 steps.
Our second contribution is to present differential paths for 19, 20, 21, 22
and 23 steps of SHA-256. We construct parity check equations in a novel
way to find these characteristics. Further, the 19-step differential path
presented here is constructed by using only 15 local collisions, as against
the previously known 19-step near collision differential path which con-
sists of interleaving of 23 local collisions. Our 19-step differential path
can also be seen as a single local collision at the message word level. We
use a linearized local collision in this work. These results do not cause
any threat to the security of the SHA-256 hash function.

1 Introduction

Cryptanalysis of hash functions has been an area of intense interest to the re-
search community since past decade and a half. Many hash functions were broken
in this time, most notable among them are MD4, MD5, SHA-0 and theoretical
break of SHA-1. This has directed the attention of the cryptology community to
the SHA-2 family of hash functions.

Known Results for the SHA-2 Family: Gilbert and Handschuh (GH) [5]
were the first to study local collisions in the SHA-2 family. They reported a 9-
round local collision and estimated the probability of the differential path to be
2−66. This probability estimate was later improved by [11] and [6]. Sanadhya and
Sarkar [16] recently presented 16 new 9-round local collisions for SHA-2 family
of hash functions. The message expansion of SHA-256 was studied by Mendel
et al. [11], who mentioned an 18-step collision for SHA-256 which was recently
corrected in [12]. The work [11] also provided a differential path for 19-step near
collision for SHA-256. An earlier work [10] studied a very simplified variant of
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SHA-256. The encryption mode of SHA-256 is analyzed in [23] and is not rele-
vant to collision search attacks. Recently, at FSE ’08, Nikolić and Biryukov [13]
reported 21-step collisions for SHA-256 using a nonlinear differential path.

Our Contributions: We make two independent contributions in this work :

1. We construct a 18-step collision characteristic using one of the local collisions
from [16]. We describe message modification techniques to find messages
following this differential characteristic. Using these techniques, we provide
an algorithm to generate pairs of messages which collide for 18 step SHA-256
with the standard IV. We show two such pairs of messages.

2. We show multiple differential paths for attacking up to 23-step SHA-256. In
obtaining these differential paths, we use coding theoretic methods in a novel
way. Using linearized local collisions, there were no colliding differential paths
known for SHA-256 beyond 18 rounds. Previously known best differential
path was for 19-step SHA-256 which used 23 local collisions and gave rise
to a near collision. In contrast, our 19-step characteristic uses only 15 local
collisions and is an exact collision path. All the 15 local collisions start in the
same word and therefore this differential path can also be seen as consisting
of a single local collision with the starting word difference having a weight
of 15 bits. In addition there are no impossible conditions caused by the fIF

and fMAJ functions for the differential paths reported here. Therefore the
search for actual colliding message pairs following these paths is likely to be
easier.

We also show that neutral bit technique may not be of much help in finding
actual colliding pair of messages while message modification methods seem to
hold much more promise.

Note that these results do not cause any threat to the security of the SHA-256
hash function since it has 64 steps per block.

2 Notation

In this paper we use the following notation:

– mi ∈ {0, 1}32, Wi ∈ {0, 1}32, W ′
i ∈ {0, 1}32 for any i.

– The colliding message pair is: {m0, m1, m2, . . . m15} and {m′
0, m′

1, m′
2,

. . . m′
15}.

– The expanded message pair is: {W0, W1, W2, . . . W63} and {W ′
0, W ′

1, W ′
2,

. . . W ′
63}.

– ⊕: bitwise XOR.
– +: addition modulo 232.
– ΔWi = Wi ⊕ W ′

i

– ROTRn(x): Right rotation of a 32 bit quantity x by n bits.
– SHRn(x): Right shift of a 32 bit quantity x by n bits.
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3 The SHA-256 Hash Function

The newest members of SHA family of hash functions were standardized by US
NIST in 2002 [18]. There are 2 differently designed functions in this standard:
the SHA-256 and SHA-512. In addition, the standard also specifies a truncated
version of SHA-512, namely the SHA-384. The number in the name of the hash
function refers to the length of message digest produced by that function. In
this work we are interested in reduced round collision attacks against SHA-256.
Next we briefly describe SHA-256. For details refer to [18].

The round function of SHA-256 hash function uses 8 registers. The initial
value in the registers is specified by an 8x32 bit IV. In Step i, the 8 registers are
updated from (ai−1, bi−1, ci−1, di−1, ei−1, fi−1, gi−1, hi−1) to (ai, bi, ci, di, ei,
fi, gi, hi) according to the following equations:

ai = Σ0(ai−1) + fMAJ (ai−1, bi−1, ci−1) + Σ1(ei−1)
+fIF (ei−1, fi−1, gi−1) + hi−1 + Ki + Wi

bi = ai−1
ci = bi−1
di = ci−1
ei = di−1 + Σ1(ei−1) + fIF (ei−1, fi−1, gi−1)

+hi−1 + Ki + Wi

fi = ei−1
gi = fi−1
hi = gi−1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)

The fIF and the fMAJ are three variable boolean functions “Choice” and
“Majority” respectively. The functions Σ0 and Σ1 are defined as:

Σ0(x) = ROTR2(x) ⊕ ROTR13(x) ⊕ ROTR22(x)
Σ1(x) = ROTR6(x) ⊕ ROTR11(x) ⊕ ROTR25(x)

Round i uses a 32 bit word Wi which is derived from the message and a
constant word Ki. There are 64 rounds in all. The hash function operates on a
512 bit message specified as 16 words of 32 bits. Given the message words m0,
m1, . . .m15, the Wi ’s are computed using the equation:

Wi =
{

mi for 0 ≤ i ≤ 15
σ1(mi−2) + mi−7 + σ0(mi−15) + mi−16 for 16 ≤ i ≤ 63 (2)

The functions σ0 and σ1 are defined as:

σ0(x) = ROTR7(x) ⊕ ROTR18(x) ⊕ SHR3(x)
σ1(x) = ROTR17(x) ⊕ ROTR19(x) ⊕ SHR10(x)

The IV = (a−1, b−1, c−1, d−1, e−1, f−1, g−1, h−1) is defined by 8 32-bit
constants. All additions in Equations 1 and 2 are modulo 232.

The output hash value of a one block (512 bit) message is obtained by chaining
the IV with the register values at the end of the final round as per the Merkle-
Damg̊ard construction. A similar strategy is used for multi-block messages, where
the IV for next block is taken as the hash output of the previous block.
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4 Collision Attacks Against Hash Functions

The aim of a hash function attack is to produce two different messages both of
which map to the same hash output. This is done by employing differential at-
tack against the hash function in question. First a suitable difference of messages
is found such that a pair of messages having that difference is likely to collide
to the same hash value with high probability. For example, if a given message
differential {ΔW0, ΔW1, . . . ΔW15} is likely to generate colliding pairs with prob-
ability 1

28 then one needs to try roughly 28 different pairs {W0, W1, . . . , W15} and
{W ′

0, W
′
1, . . .W

′
15} having the given difference to get a colliding pair of messages.

However, the probability of the specified differential to generate a collision is
likely to be very low for most of the practical hash functions. Hence some so-
phisticated methods are used to search for the right (colliding) pair, rather than
generating them at random. Message modification techniques [22,20] and neu-
tral bit technique [1] are the two widely used methods to find colliding message
pairs.

For a fuller discussion of linearized local collisions and differential paths, refer
to [17]. We next discuss the SHA-256 linearized local collisions.

4.1 Linearized Local Collisions in SHA-256

Let the first step in SHA-2 be denoted by Step 0. If a 9-step local collision is
started at step i, it defines the 9 word differences Wj ⊕ W ′

j for i ≤ j ≤ i+ 8. We
use two types of local collisions in the present work. The first is due to Gilbert
and Handschuh [5] and the second is one of the 16 local collisions presented
in [16]. From among the 16, we choose the 5th local collision because of the
following two reasons :

1. It is one of the 4 which are suitable for getting 18-step collision, as explained
later (the others being 7th, 14th and 16th).

2. It has the highest probability among these 4.

We call the two local collisions the GH local collision and the SS5 local collision
respectively. The other three local collisions from [16] are denoted by SS7, SS14
and SS16.

The following approximations are used in these local collisions :

1. Operator + is approximated by ⊕.
2. In GH, fIF and fMAJ are approximated by zero function. This causes certain

impossible conditions while searching for the message pair following this
differential path, as has been observed in [11].

3. In SS5, fIF and fMAJ are approximated by their middle arguments. These
linear approximations avoid two types of impossible conditions encountered
when using GH local collision.

See [16] for details on other local collisions.
All the local collisions mentioned above are:
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• GH : {x, Σ0(x) ⊕ Σ1(x), Σ0(Σ1(x)), 0, x, Σ0(x) ⊕ Σ1(x), 0, 0, x}
• SS5 : {x, Σ0(x) ⊕ Σ1(x), Σ0(Σ1(x)), Σ0(x) ⊕ Σ1(x), 0, Σ0(x) ⊕ Σ1(x), 0,

0, x}
• SS7 : {x, x ⊕ Σ0(x) ⊕ Σ1(x), Σ0(x)⊕ Σ0(Σ1(x)), x ⊕ Σ0(x) ⊕ Σ1(x), 0, x ⊕

Σ0(x) ⊕ Σ1(x), 0, 0, x}
• SS14 : {x, x ⊕ Σ0(x) ⊕ Σ1(x), x ⊕ Σ1(x)⊕ Σ0(Σ1(x)), Σ1(x), Σ0(x) ⊕ Σ1(x),

Σ0(x) ⊕ Σ1(x), 0, 0, x}
• SS16 : {x, Σ0(x)⊕Σ1(x), Σ0(x)⊕Σ1(x)⊕ Σ0(Σ1(x)), x⊕Σ1(x), x⊕Σ0(x)⊕

Σ1(x), x ⊕ Σ0(x) ⊕ Σ1(x), 0, 0, x}

Note that in all the above local collisions, Σ0 and Σ1 are used as operators
on 32 bit quantities, and x is any 32 bit message word difference. Once a start-
ing message difference x is chosen, next 8 words must have the difference in
accordance with the local collision.

5 Attacking 18 Rounds of SHA-256

It is possible to get up to 18 step reduced round collisions for SHA-256 using a
single local collision. Such an idea has already been used in [11] and mentioned
in [16]. We describe this for clarity of exposition.

First of all, note that any local collision under consideration spans 9 steps and
the message expansion of SHA-256 does not play any role in the first 16 steps.
Therefore if a local collision spans from Step i to Step (i + 8), and if we take
ΔW0 = ΔW1 = . . . = ΔWi−1 = ΔWi+9 = ΔWi+10 = . . . = ΔW15 = 0, we get
a differential path for 16-step collision for SHA-256.

The issue of message expansion is not considered in obtaining the 16 step col-
liding differential path described above. Next we tackle two steps of the message
expansion.

Message expansion rule for W16 and W17 are given by :

W16 = σ1(W14) + W9 + σ0(W1) + W0 (3)
W17 = σ1(W15) + W10 + σ0(W2) + W1 (4)

Let a local collision L start at Step 3 and hence end at Step 11. This local
collision defines the 9 word differences ΔW3, ΔW4, . . . ΔW11. The first step of
the local collision corresponds to ΔW3 and the 9th step corresponds to ΔW11.
Taking the differentials of all the message words outside the span of the local
collision to be zero, the differential path for L will have ΔW0 = ΔW1 = ΔW2
= ΔW12 = ΔW13 = ΔW14 = ΔW15 = 0.

Note that ΔWi = 0 means that Wi = W ′
i . Since ΔW0 = ΔW1 = ΔW14 = 0

for L, from Equation 3, W16 and W ′
16 may be different only due to the differences

in W9 and W ′
9.

ΔW9 corresponds to the 7th step word difference for L. If L is chosen such
that it’s 7th step word difference is zero, then W9 = W ′

9. Therefore even after
the message expansion recursion is used, we will have W16 = W ′

16. This results
in a 17-step differential path for SHA-256.
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Table 1. 18 step linear characteristic for SHA-256. Only 1 SS5 local collision is used
to build this path.

Step i ΔWi Δai Δbi Δci Δdi Δei Δfi Δgi Δhi
0-2 0 0 0 0 0 0 0 0 0
3 80000000 80000000 0 0 0 80000000 0 0 0
4 22140240 0 80000000 0 0 20040200 80000000 0 0
5 42851098 0 0 80000000 0 80000000 20040200 80000000 0

6 22140240 0 0 0 80000000 0 80000000 20040200 80000000
7 0 0 0 0 0 80000000 0 80000000 20040200
8 22140240 0 0 0 0 0 80000000 0 80000000
9 0 0 0 0 0 0 0 80000000 0
10 0 0 0 0 0 0 0 0 80000000
11 80000000 0 0 0 0 0 0 0 0

12-17 0 0 0 0 0 0 0 0 0

Similarly, if the 8th message word difference for L is zero, then by Equation 4,
W17 = W ′

17. This results in a 18-step differential path for SHA-256.
Both the 17 and the 18 Step paths discussed above use just one local collision.

To increase the probability of this differential path for the case of real SHA-256,
we can take starting messages differing in only 1 bit.

All the local collisions listed in the previous section have the 7th and the
8th message word differences zero. Therefore any one of them can be used to
obtain the 18 step colliding differential path for SHA-256. We list one of these
differential paths in Table 1. This 18-step colliding path is also a 17-step colliding
path for SHA-256.

Further, it can be seen that it is not possible to obtain a differential path for
19 or more steps with a single local collision where the weight of the perturbation
in first word is just 1-bit. This impossibility arises due to the message expansion
of SHA-256, and because there are no local collisions in which 3 consecutive word
differences are zero. We discuss the case of more than 18 steps in later sections.

6 Message Modification Techniques for SHA-256

We have used XOR differences for registers and message words in the differential
path for reduced round SHA-256. The differential path in Table 1 is obtained
by using linearized SHA-256. However our aim is to obtain a pair of messages
which follows this differential path for real SHA-256. The probability for this to
happen for random messages is 2−49 for 18-step SHA-256. If the message-pair
satisfies certain conditions then the probability of the differential path can be
increased significantly. We list conditions on the registers and the message words
which help in finding messages following the 18 step differential path shown in
Table 1 when actual SHA-256 is used. These conditions try to ensure that the
functions fIF and fMAJ both behave like their middle arguments, and that +
behaves like ⊕. These conditions are shown in Table 2. Sufficient conditions for
9 step SHA-256 collision have also been given in [7], Table 3. We next highlight
the advantages of our conditions with those in [7].

1. The conditions in [7] are for only 9-step collision in SHA-256. Our conditions
are for 18-step collision in SHA-256.
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Table 2. Conditions for the 18 step differential path in Table 1. xi denotes ith bit of
a 32 bit quantity x. x denotes the bitwise negation of x which can be a 32 bit or a 1
bit quantity. Operator + is addition modulo 232 and operator * is multiplication of 2
single bits. Both these operators are used in steps 6 and 8.

Step Due to Pr. Due to Pr. Due to Pr. Due to Pr. Step
k fMAJ fIF ak ek Pr.

0-3 - - - - - - - - 1

4 b313 = c313
1
2 f31

3 = g31
3

1
2 W i

4 = (Σ0(a3))i; i = 9, 18, 29 1
26

bit differences 1
23

1
211

W i
4 = (Σ1(e3))i; i = 6, 20, 25 ΔWi

4; i = 9, 18, 29
propagate into e4

5 a31
4 = c314

1
2 e31

4 = 1, 1
24

W i
5 = (Σ1(e4))i; 1

29
- - 1

214
ei
3 = fi

3; i = 3, 4, 7, 12, 16,

i = 9, 18, 29 18, 23, 25, 30

6 a31
5 = b315

1
2 e31

5 = 1; 1
24

Wi
5 = (Σ1(e5) + f5)i; 1

26
- - 1

211
i = 9, 18, 29 i = 6, 9, 18, 20, 25, 29

e31
4 = e31

5 ∗ e31
3

7 - - ei
6 = 1; 1

24
- - - - 1

24
i = 9, 18, 29, 31

8 - - e31
6 = e31

7 ∗ e31
5

1
2 Wi

8 = (Σ1(e7) + h7)i; 1
26

- - 1
27

i = 6, 9, 18, 20, 25, 29
9 - - e31

8 = 1 1
2 - - - - 1

2
10 - - e31

9 = 1 1
2 - - - - 1

2
11-17 - - - - - - - - 1

Prob. 1
249

2. The GH local collision is used in [7] whereas we use SS5 local collision.
Further, no explanation is provided in [7] on how these conditions are derived
whereas we provide complete details about our conditions. It is now possible
to use the method described in this work to derive conditions for 18-step
SHA-256 collision using any other local collision.

3. In [7] the conditions are claimed to be “sufficient” but it is not clear if
satisfying them will immediately lead to a collision. The conditions that we
identify are not claimed to be sufficient. We only note that satisfying them
will increase the probability of finding colliding message pairs.

6.1 Explanation of Conditions in Table 2

ΔWk = 0 for steps k=0, 1 and 2 and hence there are no restrictions due to these
steps. In Step 3, although ΔW3 �= 0, the difference is only in the most significant
bit. The + and ⊕ behave the same with probability 1 for a difference in MSB, so
even Step 3 does not impose any restrictions. Hence conditions are needed to tackle
the proper differential behavior for the message pair only from Step 4 onwards.

Conditions Due to fMAJ and fIF : In Step 4, fMAJ has inputs a3, b3 and
c3 with Δa3 = 0x80000000. In SS5 local collision fMAJ is approximated by
it’s middle argument, which will happen if b31

3 = c31
3 . Similarly the fIF function

having arguments e3, f3 and g3 will behave like it’s middle argument if f31
3 = g31

3 .

Conditions Due to Register a4: Once the two boolean functions are approx-
imated by their middle arguments, register a4 is evaluated for both the messages
as follows :
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a4 = Σ0(a3) + b3 + Σ1(e3) + f3 + h3 + K4 + W4 and
a′
4 = Σ0(a′

3) + b′3 + Σ1(e′3) + f ′
3 + h′

3 + K4 + W ′
4

Registers a3 and a′
3 (resp. e3 and e′3) differ in their MSB, and the operator

Σ0 (resp. Σ1) expands this difference to 3 bit positions 6, 20 and 25 (resp. 9, 18
and 29). The word difference ΔW4 at this step has been chosen to differ in these
6 bit positions (namely 6, 20, 25, 9, 18 and 29) with the aim of cancelling these
differences.

The cancellation will happen as desired if :

1. The difference of words W4 and W ′
4 is opposite to the difference in words

Σ0(a3) and Σ0(a′
3) on bit positions 9, 18 and 29. For example, if (Σ0(a3))i

= 1 and (Σ0(a′
3))i = 0, then we would like (W4)i = 0 and (W ′

4)i = 1 so that
W4 + Σ0(a3) and W ′

4 + Σ0(a′
3) are equal at the ith bit position; i = 9, 18

and 29.
2. Similarly, (W4)i and (W ′

4)
i have difference opposite to the difference in

(Σ1(e3))i and (Σ1(e′3))i at bit positions i = 6, 20 and 25.

All the 6 bit differences will be cancelled if the conditions shown in Table 2,
Step 4, column ak are met. Note that this is not a necessary way of cancelling
the differences, other possibilities exist when the sum of the terms in a4 and
a′
4 may behave as desired. In particular, we do not use bit carries in addition

modulo 232 to cancel these type of differences like Wang et. al do for SHA-1 [21].
We use XOR differences only, unlike [21] where modular differences are used.

Conditions due to register e4: Having cancelled the 6 bit differences to obtain
Δ(a4) = 0, it can be seen that 3 bits from Δ(W4) will certainly propagate into
Δ(e4) because there is no Σ0 term in calculating e4 and e′4. If the differential
path is to be followed, then these 3 differing bits in W4 and W ′

4 should not carry
forward to other positions. Carry propagation to other bits will cause problems
in adjusting the register differences in next steps since any single bit difference
in a or e register is expanded into 3 bit differences by the operators Σ0 and Σ1.
We have chosen the word differences in next steps considering these positions by
following the linear (XOR) characteristics. It is possible to allow some bit carries
here but it seems that it will only reduce the probability of the differential path.

To complete the analysis of step 4, we finally look at the difference Δ(e4).
The registers e4 and e′4 are computed as follows:

e4 = d3 + Σ1(e3) + fIF (e3, f3, g3) + h3 + K4 + W4,

and e′4 = d′3 + Σ1(e′3) + fIF (e′3, f
′
3, g

′
3) + h′

3 + K4 + W ′
4.

In these two computations, bits 6, 20 and 25 corresponding to Σ1 rotations
of the differing bit 31 in e3 have already been taken care of while considering
a4. Bit numbers 9, 18 and 29 are the places where W4 and W ′

4 differ and these
differences are required to be propagated to Δe4. Since d3 = d′3, h3 = h′

3 and
fIF (e3, f3, g3) = fIF (e′3, f

′
3, g

′
3);

if we write rest = Σ1(e3) + fIF (e3, f3, g3) + h4 + K4,
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then e4 = rest + W4,

and e′4 = rest + W ′
4.

If the ith bit of rest is 0 and there is no carry into the ith bit while addition
with W4 takes place, then the XOR difference W4⊕W ′

4 will propagate into e4⊕e′4
as desired. Alternately, if the ith bit of rest is 1 and there is a carry into the ith

bit while addition with W4 takes place, then too the XOR difference W4 ⊕ W ′
4

will propagate into e4 ⊕ e′4.
Thus either we would like no carry propagation in e4 and e′4 at bits 6, 20

and 25 if rest is 0 at these bit positions or we would like carry propagation in
both these registers if rest is 1 at these bits. We do not have a deterministic
way to ensure this since we do not have complete freedom to choose the registers
and the message words as desired at this stage. However, the probability of the
carries to happen as desired can be increased if we we set other free bits of W4
and W ′

4 according to the following conditions :

1. if rest9 is 0 then W 7
4 = W 8

4 = 0.
2. if rest9 is 1 then W 7

4 = W 8
4 = 1.

3. if rest18 is 0 then W 10
4 = W 11

4 = . . . = W 17
4 = 0.

4. if rest18 is 1 then W 10
4 = W 11

4 = . . . = W 17
4 = 1.

5. if rest29 is 0 then W 26
4 = W 27

4 = W 28
4 = 0.

6. if rest29 is 1 then W 26
4 = W 27

4 = W 28
4 = 1.

In setting these conditions, we have used the bits between 6, 9, 20 and 9, 18 and
29 which are not restricted.

Similarly we have set conditions for other steps so that the messages follow
the differential path as desired.

6.2 Method to Satisfy Conditions in Table 2

First 4 words in the differential path are free and hence we choose them randomly.
Thereafter, many conditions in Table 2 are easy to fulfill as they depend only
on word Wk in step k. Some of the conditions on registers can be tackled by
suitably choosing the word Wk at that step which we can choose as desired.
However, there may be instances when a previously selected message word causes
impossible condition at a later step. As an example, we may not get the bit
carry conditions for register e4 as described previously. Also we wish to have e31

6
following a particular pattern at step 8 whereas this bit has been set at step 6
itself. In such contradicting cases, we choose another message word randomly
at the previous step where the condition was breaking down. Then we apply
message modification techniques from that step onwards and continue the search
process for further steps. We search incrementally proceeding further only when
all the conditions at a step are fulfilled and the differential path is as desired. The
differential path in Table 1 holds with probability 2−49, but with the procedure
described above, we are able to get a much higher probability. In fact, Steps
0 to 7 become very easy to fulfill with the message modification and we are
able to satisfy all the conditions till Step 7 in about a minute on an ordinary



Attacking Reduced Round SHA-256 139

PC. The only difficult conditions are those imposed due to a8. We could find a
colliding message pair following exact differential characteristic in time varying
from about 40 minutes to a couple of hours on an ordinary PC. Repeatedly
running the program we could generate many such pairs. We show two such
colliding pairs of messages.

6.3 Colliding Message Pairs for 18-Step SHA-256

Tables 3 and 4 show the message pairs found using the techniques described
previously. All 18 words of the messages are given in the tables. First 16 words
can be used to compute the last two words using the message expansion of
SHA-256. Similar method can be used for finding 9-round pseudo collisions for
SHA-256 as well. Since we can already find message pairs colliding for 18-step
SHA-256 with the standard IV, the only utility for such an exercise would be
to see how easy it becomes to find these pseudo collisions due to the benefits of
relaxing the IV conditions. However, we found that the time required to find a
9-round pseudo collision is only marginally less than the time required to find
an 18-step collision. An example of such a pseudo collision in provided in [17].

Table 3. Colliding message pair for 18 step SHA-256 with standard IV. These two
messages follow the differential path given in Table 1.

M1 0-7 ccea5c17 53ad1a2d 141db23c b6acfaa8 5ee7fe4d 53c5b764 2bf20d44 87d63bf6
8-15 63a07869 f305fdea 26ee271f b973b91c d0f87828 b724a487 a295fa2a 0a67c97a

M2 0-7 ccea5c17 53ad1a2d 141db23c 36acfaa8 7cf3fc0d 1140a7fc 09e60f04 87d63bf6
8-15 41b47a29 f305fdea 26ee271f 3973b91c d0f87828 b724a487 a295fa2a 0a67c97a

Table 4. Another colliding message pair for 18 step SHA-256 with standard IV. These
two messages also follow the differential path given in Table 1.

M1 0-7 ed919421 aa75e4fe 8548d0e0 9c1888f7 1da3fc3d a11f7a02 bb463b64 e9b28365
8-15 323ecf28 8097e497 4343b78b dc484e91 bf588b4b 8401140a 42499da1 f88a3e2e

M2 0-7 ed919421 aa75e4fe 8548d0e0 1c1888f7 3fb7fe7d e39a6a9a 99523924 e9b28365
8-15 102acd68 8097e497 4343b78b 5c484e91 bf588b4b 8401140a 42499da1 f88a3e2e

It seems possible to use neutral bits to increase the efficiency of the search
for finding message pairs following the given differential path. We experimented
with this idea and found that the gains are not significant. More details about
our experiments with neutral bits are available in [17].

7 Using Coding Theoretic Methods to Find Linear
Differential Paths for Reduced Round SHA-256

In [15] and [14] coding theoretic techniques were used to search for differential
paths in SHA-1. Extension to SHA-2 was mentioned in [11]. We describe a new
way of forming parity check equations and then find low weight codewords for the
corresponding generator matrix. Each of these codewords can be used to build
a differential characteristic for reduced round SHA-256. This method results in
tackling up to 23-step reduced SHA-256.
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7.1 A New Way of Constructing Parity Check Equations

Tackling message expansion in SHA-2 can be a problem. A non-zero value of
ΔWi for i ≥ 16 necessitates tackling the recursion for message expansion. So
one way to avoid this is to ensure that ΔWi = 0 for i ≥ 16. Clearly, this cannot
work for full SHA-2. But, for reduced round versions, one can find differential
paths using this approach, as we describe below.

The technique described below assumes a local collision L. The description is
not for any particular local collision. It holds for any local collision. Obtaining
a particular local collision requires certain linear approximations of the con-
stituents of the SHA-256 round function. This converts the round function into
a linear map based on which we define our linear code. We note that the linear
code is not straightforwardly obtained from the linear map.

A message consists of 16 32-bit words for a total of 512 bits. We use the
Chabaud-Joux [3] type disturbance vector approach. Let DV = {d0, d1, d2, . . . ,
d255} be a 256-bit disturbance vector. If di = 1 then the two initial messages
differ in their ith bit, and further message bits differ as per the local collision.

We do not consider a 512-bit DV for the following reason. A local collision
defines the differences of 9 words of messages and only the first 16 words of
SHA-256 are unrestricted. Thereafter the message words are calculated using
the message expansion recurrence. This implies that a local collision can not be
started after first 8 steps without affecting the message expansion.

Let us now describe the linear code that we require. This is done in two steps.
In the first step, we express ΔWi (i ≥ 16) in terms of d0, . . . , d255. In the second
step, we define the parity check equations for the code by setting ΔWi = 0 for
i ≥ 16. Thus, any DV (d0, . . . , d255) which satisfies these parity check equations
is a codeword. Our task then is to look for a low weight codeword as this gives
a differential path with a small number of local collisions.

It is clear that such codes can be formed as long as there are less than 256
parity check equations. If we apply this procedure up to N rounds (corresponding
to step N −1), then we will obtain 32(N −16) parity check equations. Thus, the
maximum N that we can use with this method is N = 23. The minimum value
of N is clearly 17. Since we already report 18-round collision, we do not consider
N = 17 and 18. Instead we report differential paths from 19 to 23 rounds.

The first task is to express ΔWi (i ≥ 16) in terms of d0, . . . , d255. We describe
how this is done. For any local collision L, the first word determines the next
eight words. Consider the 32-bit vector (d0, 0, . . . , 0), where d0 is treated as a (bi-
nary) variable. Then L defines the next 8 32-bit words. At this point, the first 9
words have been defined. The rest 7 are taken to be zero. For i ≥ 16, ΔWi is now
obtained using the message recursion. This expresses all the ΔWis (i ≥ 16) as
linear function of d0. Next consider the 32-bit vector (0, d1, 0, . . . , 0); use L to ob-
tain the next eight words and the message expansion recursion to express ΔWis
(i ≥ 16) as linear function of d1. Now, for the 32-bit vector (d0, d1, 0, . . . , 0), we
can express ΔWis (i ≥ 16) as linear function of d0 and d1 by XORing the sepa-
rate linear functions corresponding to d0 and d1. Clearly, the procedure can be
extended to the entire DV (d0, . . . , d255). The exact details are given in Table 5.
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Table 5. Algorithm for generating parity check equations for linearized N step SHA-
256

external LC(x) : accepts a 32 bit input x and returns 9 words of 32 bits conforming to the local
collision chosen.

Set ΔWfinal := (U0, U1, . . . UN−1) Ui ∈ {0, 1}32

Set δWcur := (V0, V1, . . . V8) Vi ∈ {0, 1}32

Initialize ΔWfinal and δWcur to all zeros.

For(i = 0 to 8){
For(j = 0 to 31){

set D := (0, 0, . . . , d32i+j , 0, . . . , 0); /* The jth bit of D is given by d32i+j .

Each dn ∈ {0, 1} is the component of the disturbance vector and D ∈ {0, 1}32 */
set δWcur := LC(D);
For(k = i to i + 8){

ΔWfinal [k] = ΔWfinal[k] ⊕ δWcur [k − i];
}

}
}
/* At this point the ΔWfinal list contains Wi ⊕ W ′

i
for 0 ≤ i < 16 */

Obtain ΔWi for 16 ≤ i < N using linearized message expansion of SHA-256.
Equate all 32 bits of ΔWi for i ≥ 16 to zero to get 32 ∗ (N − 16) parity check equations.

Methods presented in [2], [8] and [19] are used to search for low weight code-
words from the check-matrices (and the corresponding generator matrices) ob-
tained using the algorithm in Table 5. Codewords of least weight found and the
linear differential path for that codeword are shown in Section 8.

8 Results and Comparison to Previous Work

Low weight disturbance vectors are searched for reduced round SHA-256 by using
the probabilistic methods described in [2], [8] and [19]. The minimum weights
of codewords found are listed in Table 6. For 19-step SHA-256 the weight of the
codeword found is 15 for both GH and SS5 local collision. This means that 15
local collisions are interleaved to obtain the 19-step characteristic. Interestingly,
all the 15 local collisions start at the same word for both GH and SS5. Thus
the case of 19-step characteristic can be considered as consisting of a single local
collision starting at Step 3 where the initial message difference is a word with
weight 15 bits. There is no colliding differential path known before this work
using the linearized local collision. Using this technique, the best known 19-step
differential path is for a near collision consisting of 23 GH local collisions [11]. As
has already been noted in [11], the GH local collision causes certain impossible
conditions in the search for actual colliding pairs. The use of SS5 local collision
ensures that we do not face two types of impossible conditions.

For 20 to 23 steps, no differential path using a linearized local collision is
known so far. We provide the first differential paths for these cases using the
linearization technique. For 23-step SHA-256, the size of the corresponding gen-
erator matrix is 32×256, i.e. there are only 32 codewords of length 256. It is
possible to do exhaustive search on this size, hence we did not use the proba-
bilistic methods for this case. For the 23-step case, the reported codeword weight
is actually the best possible. All these differential paths are reported in [17].
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Table 6. Summary of results. Least weight of the codeword found using different local
collisions. For 23 step case, the codeword weight is obtained by exhaustive search. For
all other cases, methods described in [2], [8] and [19] are used.

Step i Size of Check matrix using GH using SS5

18 - 1 1
19 96×256 15 15
20 128×256 33 31
21 160×256 45 45
22 192×256 59 60
23 224×256 79 75
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