Attacking right-to-left modular exponentiation with timely random faults

> Michele Boreale Dipartimento di Sistemi e Informatica Università di Firenze – Italy

FDTC 2006, Yokohama - October 10, 2006

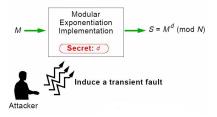
Attacking right-to-left modular exponentiation with timely rand

Smartcards applications and security

- Applications: digital signature, pay-TV, credit cards,...
- Security:
 - user authentication: PIN, biometric techniques
 - internal data access control
 - protection of internal data (tamper-resistance)
 - some data may not even accessible to the card owner (e.g. private keys in public key cryptography)
- Fault attacks: directed against tamper-resistance

Fault-based cryptanalysis

- Fault analysis: induce errors during the computation and observe the effect on the result of the computation
- We shall focus on faults attacks against smartcards implementing digital signature schemes based on traditional public key cryptography (e.g. RSA)
- Goal: extract the private signing key



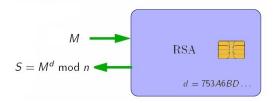
Fault Analysis: classification of faults

Permanent

- e.g. non-reversible modification of memory content
- may damage smartcard
- may require sophisticated equipment and expertise

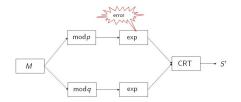
Transient

- Affect a single computation (e.g.: a single operation yields an incorrect result)
- difficult to detect
- (relatively) easy to induce using a glitch: an instant variation of voltage and/or clock frequency (see e.g. H. Bar-El at al. in FDTC 2004)
- We shall focus on transient faults



- Public parameters: modulus $n = p \cdot q$, public exponent e
- Secret parameters: private exponent *d*, primes *p*,*q* (protected inside the smartcard)
- The user transmits the card a document M to be signed (or its digest)
- The smartcard computes the signature as $S = M^d \mod n$
- The signature can be verified by checking if $M = S^e \mod n$

The Bellcore attack (D. Boneh at al. 1996)



Works against RSA implementation based on the CRT

 Exponentiation is computed separately mod p and mod q and recombined using CRT

•
$$S_p = M^d \mod p$$

•
$$S_q = M^a \mod q$$

•
$$S = CRT(S_p, S_q)$$

• $\operatorname{GCD}(S'^e - M, n) = q$

Differential Fault Analysis (Feng Bao et al., 1997)

Fault model: a transient fault during computation of S flips a few individual bits of d.

Safe Errors (Yen and Joye, 2000)

Fault model: a transient fault during a modular multiplication alters a selected portion of a data register

伺 ト イ ヨ ト イ ヨ ト

Differential Fault Analysis (Feng Bao et al., 1997)

Fault model: a transient fault during computation of S flips a few individual bits of d.

Safe Errors (Yen and Joye, 2000)

Fault model: a transient fault during a modular multiplication alters a selected portion of a data register

Unlike Bellcore's, these fault models presuppose the ability to modify the content of data registers in a selective manner. This can be regarded as being a bit too idealized.

Q: Is it possible to achieve similar results using truly random, hence practical faults?

A: Yes, under certain assumptions.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Our fault model

Assumptions

- Right-to-left Exponentiation
- 2 Multiplication and squaring take constant time δ
- Attacker has tight control on timing (supplies the clock signal!)
- A glitch-perturbed squaring z ← z² has same effect as z ← r, for a random r ∈ Z_n

$S = M^d \mod n$, computed by:

```
w \leftarrow 1
z \leftarrow M
phase 0 \begin{bmatrix} \text{if } d_0 = 1 \text{ then } w \leftarrow w \cdot z \mod n \\ z \leftarrow z^2 \mod n \end{bmatrix}
phase 1 \begin{bmatrix} \text{if } d_1 = 1 \text{ then } w \leftarrow w \cdot z \mod n \\ z \leftarrow z^2 \mod n \end{bmatrix}
\vdots
\vdots
phase I-1 \begin{bmatrix} \text{if } d_{l-1} = 1 \text{ then } w \leftarrow w \cdot z \mod n \\ z \leftarrow z^2 \mod n \end{bmatrix}
return w
```

Correct signature:

$$S =_{n} M^{d_{0}} \cdot M^{2d_{1}} \cdots M^{2^{i-1}d_{i-1}} \cdot M^{2^{i}d_{i}} \cdot M^{2^{i+1}d_{i+1}} \cdots M^{2^{l-1}d_{l-1}}$$

向下 イヨト イヨト

The attack

Let $d = (d_{l-1}, ..., d_1, d_0)_2$ and assume the least significant i - 1 bits $d_0, ..., d_{i-1}$ have been determined.

The attacker targets bit d_i :

- determines the time T at which phase *i* starts
- 2 applies a glitch at some time in $(T - \delta, T)$: at phase i - 1 $z \leftarrow z^2$ is replaced by $z \leftarrow r$, with r random

```
3 obtains a faulty signature S'
```

analyzes S'

glitch at phase i - 1

```
w \leftarrow 1
z \leftarrow M
phase 0 \begin{bmatrix} \text{if } d_0 = 1 \text{ then } w \leftarrow w \cdot z \mod n \\ z \leftarrow z^2 \mod n \end{bmatrix}
\vdots
phase i - 1 \begin{bmatrix} \underbrace{M_{i}}_{z \leftarrow z^2 \mod n} & \underbrace{glitch}_{z \leftarrow z^2 \mod n} \\ \vdots & \underbrace{ff \quad d_i = 1 \text{ then } w \leftarrow w \cdot z \mod n}_{z \leftarrow z^2 \mod n} \\ \vdots & \vdots \end{bmatrix}
```

(4回) (注) (注) (注) (三)

The attack

Let $d = (d_{l-1}, ..., d_1, d_0)_2$ and assume the least significant i - 1 bits $d_0, ..., d_{i-1}$ have been determined.

The attacker targets bit d_i :

- determines the time T at which phase *i* starts
- ② applies a glitch at some time in $(T - \delta, T)$: at phase i - 1 $z \leftarrow z^2$ is replaced by $z \leftarrow r$, with r random

3 obtains a faulty signature S'

analyzes S'

Correct vs. **faulty** signature:

$$S =_{n} M^{d_{0}} \cdot M^{2d_{1}} \cdots M^{2^{i-1}d_{i-1}} \cdot M^{2^{i}d_{i}} \cdot M^{2^{i+1}d_{i+1}} \cdots M^{2^{l-1}d_{l-1}}$$

$$S' =_{n} M^{d_{0}} \cdot M^{2d_{1}} \cdots M^{2^{i-1}d_{l-1}} \cdot r^{d_{i}} \cdot r^{2d_{i+1}} \cdots r^{2^{l-i-1}d_{l-1}}$$

glitch at phase i - 1

```
w \leftarrow 1
z \leftarrow M
phase 0
\begin{bmatrix} \text{if } d_0 = 1 \text{ then } w \leftarrow w \cdot z \mod n \\ z \leftarrow z^2 \mod n \end{bmatrix}
\vdots
phase i -1
\begin{bmatrix} \underbrace{M_{i} = 1 \text{ then } w \leftarrow w \cdot z \mod n}_{z \leftarrow z^2 \mod n} \\ \vdots \end{bmatrix}
i = \begin{bmatrix} \text{if } d_i = 1 \text{ then } w \leftarrow w \cdot z \mod n \\ z \leftarrow z^2 \mod n \end{bmatrix}
```

(ロ) (同) (E) (E) (E)

Analysis of S'

The attacker computes the Jacobi symbol of the faulty signature. Assume for simplicity $\left(\frac{M}{n}\right) = 1$ and $r \in \mathbb{Z}_n^*$. Then:

$$S' =_{n} M^{d_{0}} \cdot M^{2d_{1}} \cdots M^{2^{i-1}d_{i-1}} \cdot r^{d_{i}} \cdot r^{2d_{i+1}} \cdots r^{2^{l-i-1}d_{l-1}}$$

$$\left(\frac{S'}{n}\right) = \left(\frac{M^{d_{0}}}{n}\right) \cdot \left(\frac{M^{2d_{1}}}{n}\right) \cdots \left(\frac{M^{2^{i-1}d_{i-1}}}{n}\right) \cdot \left(\frac{r^{d_{i}}}{n}\right) \cdot \left(\frac{r^{2d_{i+1}}}{n}\right) \cdots \left(\frac{r^{2^{l-i-1}d_{l-1}}}{n}\right)$$

$$= \left(\frac{r}{n}\right)^{d_{i}}$$

•
$$\left(\frac{S'}{n}\right) = -1 \Rightarrow d_i = 1$$

• $d_i = 0 \Rightarrow \left(\frac{S'}{n}\right) \neq -1$ with "high probability"

・回 と く ヨ と く ヨ と

æ

In other words, the attacker applies the following probabilistic decision algorithm for d_i :

•
$$J = \left(\frac{S'}{n}\right);$$

- J = -1: conclude $d_i = 1$ with certainty;
- $J \neq -1$: conclude $d_i = 0$ with an error probability $\leq \epsilon$.

・日・ ・ヨ・ ・ヨ・

In other words, the attacker applies the following probabilistic decision algorithm for d_i :

•
$$J = \left(\frac{S'}{n}\right)$$
;
• $J = -1$: conclude $d_i = 1$ with certainty;

• $J \neq -1$: conclude $d_i = 0$ with an error probability $\leq \epsilon$.

Error probability ϵ . Under reasonable assumptions, for an RSA modulus *n*, we have $\epsilon \leq \frac{3}{7}$. By repeating the test *m* times independently, the error probability can be made lower than $(\frac{3}{7})^m$

・ 同下 ・ ヨト ・ ヨト

Several trials have been performed using randomly generated keys of different size

U		<u> </u>	•
RSA-256	RSA-384	RSA-512	RSA-768
1389	2110	2816	4227
1532	2285	3065	4206
1670	2502	3321	4970

Average numbers of signatures per trial

Rate of unsuccessful trials (%)

RSA-256	RSA-384	RSA-512	RSA-768
19	34	38	57
11	15	25	50
3	6	11	33

For RSA-768, about 5000 faulty signatures would in theory be sufficient to recover a key in about 70% of cases. Estimated time: 25 minutes, assuming a time of 300 μ -s per signature.

Extensions and SW countermeasures

- Extensions. The attack works well also in the following cases:
 - prime moduli (hence El Gamal decryption and Diffie-Hellman KE can be targeted)
 - multiplications taking non-constant, normally distributed execution times with moderate variance
 - RSA with message blinding.
- **SW countermeasures**. The following c.m. appear to thwart our attack:
 - Checking before output ($S^e = M$?), efficient if e is small
 - Blinding of the exponent (add $k \cdot \phi(n)$ to d, for k random, before exponentiation)
 - Shamir's method (Shamir, Eurocrypt 1997), in the case of prime moduli

イロン イヨン イヨン イヨン

- We have presented a fault analysis technique on non-CRT public key schemes that combines timing control and truly random computational faults
- Albeit not implemented on real devices, the attack points to more subtleties and dangers arising from faulty behaviour
- Directions for further work:
 - Left-to-right exponentiation, no obvious modification works!
 - Double-and-add algorithms used in ECC deserve further investigation

・ 同下 ・ ヨト ・ ヨト