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Smartcards applications and security

Applications: digital signature, pay-TV, credit cards,...

Security:

1 user authentication: PIN, biometric techniques

2 internal data access control

protection of internal data (tamper-resistance)

some data may not even accessible to the card owner (e.g.
private keys in public key cryptography)

Fault attacks: directed against tamper-resistance
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Fault-based cryptanalysis

Fault analysis: induce errors during the computation and
observe the effect on the result of the computation

We shall focus on faults attacks against smartcards
implementing digital signature schemes based on traditional
public key cryptography (e.g. RSA)

Goal: extract the private signing key
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Fault Analysis: classification of faults

Permanent

e.g. non-reversible modification of memory content
may damage smartcard
may require sophisticated equipment and expertise

Transient

Affect a single computation (e.g.: a single operation yields an
incorrect result)
difficult to detect
(relatively) easy to induce using a glitch: an instant variation
of voltage and/or clock frequency (see e.g. H. Bar-El at al. in
FDTC 2004)

We shall focus on transient faults
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RSA signature

Public parameters: modulus n = p · q, public exponent e

Secret parameters: private exponent d , primes p,q (protected
inside the smartcard)

The user transmits the card a document M to be signed (or
its digest)

The smartcard computes the signature as S = Md mod n

The signature can be verified by checking if M = Se mod n
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The Bellcore attack (D. Boneh at al. 1996)

Works against RSA implementation based on the CRT

Exploits a single random fault

Exponentiation is computed separately mod p and mod q and
recombined using CRT

Sp = Md mod p
Sq = Md mod q
S =CRT(Sp,Sq)

GCD(S ′e −M, n) = q
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Beyond CRT

Differential Fault Analysis (Feng Bao et al., 1997)

Fault model: a transient fault during computation of S flips a few
individual bits of d .

Safe Errors (Yen and Joye, 2000)

Fault model: a transient fault during a modular multiplication
alters a selected portion of a data register

Unlike Bellcore’s, these fault models presuppose the ability to
modify the content of data registers in a selective manner. This
can be regarded as being a bit too idealized.

Q: Is it possible to achieve similar results using truly random,
hence practical faults?
A: Yes, under certain assumptions.
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Our fault model

Assumptions

1 Right-to-left Exponentiation

2 Multiplication and squaring
take constant time δ

3 Attacker has tight control
on timing (supplies the clock
signal!)

4 A glitch-perturbed squaring
z ← z2 has same effect as
z ← r , for a random r ∈ Zn

S = Md mod n, computed by:

Correct signature:

S =n Md0 ·M2d1 · · · M2i−1di−1 ·M2idi ·M2i+1di+1 · · ·M2l−1dl−1
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The attack

Let d = (dl−1, ..., d1, d0)2 and assume the least significant i − 1 bits

d0, ..., di−1 have been determined.

The attacker targets bit di :

1 determines the time T at
which phase i starts

2 applies a glitch at some time in
(T − δ,T ): at phase i − 1
z ← z2 is replaced by
z ← r , with r random

3 obtains a faulty signature S ′

4 analyzes S ′

glitch at phase i − 1

Correct vs. faulty signature:

S =n Md0 ·M2d1 · · · M2i−1di−1 ·M2idi ·M2i+1di+1 · · ·M2l−1dl−1

S ′ =n Md0 ·M2d1 · · · M2i−1di−1 · rdi · r2di+1 · · · r2l−i−1dl−1
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Analysis of S ′

The attacker computes the Jacobi symbol of the faulty signature.

Assume for simplicity

(
M

n

)
= 1 and r ∈ Z∗

n. Then:

S ′ =n Md0 · M2d1 · · · M2i−1di−1 · rdi · r2di+1 · · · r2l−i−1dl−1
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Thus:(
S ′

n

)
= −1⇒ di = 1

di = 0⇒
(

S ′

n

)
6= −1 with “high probability”
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A probabilistic decision test for di

In other words, the attacker applies the following probabilistic
decision algorithm for di :

J =

(
S ′

n

)
;

J = −1: conclude di = 1 with certainty;

J 6= −1: conclude di = 0 with an error probability ≤ ε.

Error probability ε. Under reasonable assumptions, for an RSA
modulus n, we have ε ≤ 3

7 . By repeating the test m times
independently, the error probability can be made lower than (3

7)m
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Software simulations

Several trials have been performed using randomly generated keys
of different size

Average numbers of signatures per trial
RSA-256 RSA-384 RSA-512 RSA-768

1389 2110 2816 4227

1532 2285 3065 4206

1670 2502 3321 4970

Rate of unsuccessful trials (%)
RSA-256 RSA-384 RSA-512 RSA-768

19 34 38 57

11 15 25 50

3 6 11 33

For RSA-768, about 5000 faulty signatures would in theory be
sufficient to recover a key in about 70% of cases. Estimated time:
25 minutes, assuming a time of 300 µ-s per signature.
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Extensions and SW countermeasures

Extensions. The attack works well also in the following cases:

prime moduli (hence El Gamal decryption and Diffie-Hellman
KE can be targeted)
multiplications taking non-constant, normally distributed
execution times – with moderate variance
RSA with message blinding.

SW countermeasures. The following c.m. appear to thwart
our attack:

Checking before output (Se = M?), efficient if e is small
Blinding of the exponent (add k · φ(n) to d , for k random,
before exponentiation)
Shamir’s method (Shamir, Eurocrypt 1997), in the case of
prime moduli
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Conclusions and further work

We have presented a fault analysis technique on non-CRT
public key schemes that combines timing control and truly
random computational faults

Albeit not implemented on real devices, the attack points to
more subtleties and dangers arising from faulty behaviour

Directions for further work:

Left-to-right exponentiation, no obvious modification works!
Double-and-add algorithms used in ECC deserve further
investigation
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