
C.D. Walter et al. (Eds.): CHES 2003, LNCS 2779, pp. 426–440, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Attacking RSA-Based Sessions in SSL/TLS

Vlastimil Klíma1, Ond ej Pokorný, and Tomáš Rosa1,2

1 ICZ, Prague, Czech Republic
2 Dept. of Computer Science and Eng., FEE, Czech Technical University in Prague

vlastimil.klima@i.cz, ondrej.pokorny@i.cz, tomas.rosa@i.cz

Abstract. In this paper we present a practically feasible attack on RSA-based
sessions in SSL/TLS protocols. We show that incorporating a version number
check over PKCS#1 plaintext used in the SSL/TLS creates a side channel that
allows an attacker to invert the RSA encryption. The attacker can then either
recover the premaster-secret or sign a message on behalf of the server. Practical
tests showed that two thirds of randomly chosen Internet SSL/TLS servers were
vulnerable. The attack is an extension of Bleichenbacher’s attack on PKCS#1
(v. 1.5). We introduce the concept of a bad-version oracle (BVO) that covers
the side channel leakage, and present several methods that speed up the original
algorithm. Our attack was successfully tested in practice and the results of
complexity measurements are presented in the paper.

1 Introduction

In contemporary cryptography, it is widely agreed that one of the most important
issues of all asymmetric schemes is the way in which the scheme encodes the data to
be processed. In the case of RSA [14], the most widely used encoding methods are
described in PKCS#1 [9]. This standard also underlies RSA-based sessions in the
family of SSL/TLS protocols. These protocols became de facto the standard platform
for secure communication in the Internet environment. In this paper we assume a
certain familiarity with their architecture (c.f. §5). Since its complete description is far
beyond the scope of this article, we refer interested readers to the excellent book [10]
for further details. In 1998 Bleichenbacher showed that the concrete encoding method
called EME-PKCS1-v1_5, which is also employed in the SSL/TLS protocols, is
highly vulnerable to chosen ciphertext attacks [1]. The attack assumes that
information about the course of the decoding process is leaking to an attacker. We
refer to such attacks as side channel attacks, since they rely on side information that
unintentionally leaks out from a cryptographic module during its common activity.

Bleichenbacher showed that it is highly probable that side information exists
allowing the attacker to break the particular realization of the RSA scheme in many
systems based on EME-PKCS1-v1_5. He has also shown how to use such information
to decrypt any captured ciphertext or to sign any arbitrary message by using a
common interaction with the attacked cryptographic module. As a countermeasure to
his attack it was recommended to either use the EME-OAEP method (also defined in
PKCS#1) or to steer attackers away from knowing details about the course of the
decoding process. In the case of the SSL/TLS protocols it seemed to be possible to

Attacking RSA-Based Sessions in SSL/TLS 427

incorporate the second type of countermeasures. The story of the attack ended here by
incorporating appropriate warnings in appropriate standards [9], [10], [12], and [15].
Security architects were especially instructed not to allow an attacker to know
whether the plaintext P being decoded has the prescribed mandatory structure marks
or not.

Besides being warned to carry out the above-mentioned countermeasure, architects
were also instructed to carefully verify all possible marks of P that are specific for the
SSL/TLS protocols. In particular, they were told to check the correctness of a version
number (c.f. §5.2 and [12]), which is stored in the two left-most bytes of the
premaster-secret. Unfortunately, it has not been properly specified how such a test
may be combined with the countermeasure mentioned above and what to do if the
"version number test" fails. Designers may be very tempted to simply issue an error
message. In reality, however, such a message opened up a Pandora’s box bringing a
new variant of side channel attack. In this paper we present this attack. It turns out
that the version number, which was initially believed to rule out the original attack
[1], even allows a relatively optimized variant of the attack if the version number
check is badly implemented. Our practical tests showed that among hundreds of
SSL/TLS servers randomly chosen from the Internet, two thirds of them were
vulnerable to our attack (for details see §4.3).

We note that the TLS protocol may be historically viewed as an SSL bearing the
version number 3.1 [12], while the SSL with the version number 3.0 is often referred
to as a "plain" SSL. There are some minor changes between SSL and TLS, but these
changes are unimportant for the purpose of this paper, since we rely on the general
properties, which are common to both SSL v. 3.0 and TLS. Therefore, we will talk
about them as about the SSL/TLS protocols. We note that SSL protocols with version
numbers less than 3.0 will not be considered here, since they have already been
proven to have several serious weaknesses [10], [16].

The rest of the paper is organized as follows: in §2 we introduce a bad-version
oracle (BVO), which is a construction that mathematically encapsulates side
information leaking from the decoding process. The BVO is then used for mounting
our attack in §3. The attack is based on an extended variant of Bleichanbacher’s
algorithm from [1]. The complexity of the attack together with the statistics of the
vulnerable servers found on the Internet are given in §4. We note that due to page
constraints, paragraphs 5 (Technical details) and 6 (Countermeasures) are fully
elaborated in the extended version of the paper [19]. The conclusions are made in §7.
In the appendix we recall a slightly generalized version of the original
Bleichenbacher’s algorithm [1].

Proposition 1 (Connection and session). Unless stated otherwise, the term
connection means the communication carried out between a client and a server. It
lasts from when the client opened up a networked pipe with the server, until the pipe
is closed. The term session is used to refer to a particular part of this connection
which is protected under the same value of symmetrical encryption keys.

Proposition 2 (RSA-based session). We say that the session is RSA-based if it uses
the RSA scheme to establish its symmetrical keys.

428 V. Klíma, O. Pokorný, and T. Rosa

2 Bad-Version Oracle

We start by recalling the definition of PKCS-conforming plaintext [1]. Unless stated
otherwise, the term plaintext means an RSA plaintext. Furthermore, we denote RSA
instance parameters as (N, e, d), where N is a public modulus, e is a public exponent,
and d is a private exponent, such that for all x, x ∈ <0, N - 1> it holds that x = (xe mod
N)d mod N. We denote as k the length of the modulus N in bytes, i.e. k = (log2N)/8,
and the boundary B as B = 256k-2.

Definition 1 (PKCS-conforming plaintext). Let us denote the plaintext as P, P =
∑i=1

k(Pi*256k-i), 0 ≤ Pi ≤ 255, where P1 is the most significant byte of the plaintext. We
say that P is PKCS-conforming if the following conditions hold:

i) P1 = 0
ii) P2 = 2
iii) Pj ≠ 0 for all j ∈ <3, 10>
iv) ∃j, j ∈ <11, k>, Pj = 0; the string Pj+1||...||Pk is then called as a message

M or a data payload

The definition describes the set of all valid plaintexts for the given modulus of the
length k bytes. In the case of SSL/TLS protocols, however, only the subset of this set
is allowed, since these protocols introduce several extensions to the basic PKCS#1 (v.
1.5) format. Therefore, we define the term S-PKCS-conforming plaintext as follows.

Definition 2 (S-PKCS-conforming plaintext). We say that P is S-PKCS-conforming
if it is PKCS-conforming and the following conditions hold:

i) Pj ≠ 0 for all j ∈ <3, k - 49>
ii) Pk-48 = 0

The main restriction introduced here is the constant number of data bytes (which is
equal to 48). The number of padding bytes equals k - 51. Furthermore, SSL/TLS
protocols introduce a special interpretation for the first two data bytes Pk-47 and Pk-46,
which are respectively regarded as major and minor version numbers. This
extension was introduced to thwart so-called version rollback attacks. The data
payload, which is the concatenation of Pk-47 || Pk-46 || Pk-45 || ... || Pk, is called a premaster-
secret here. It is the only secret used in the key derivation process that produces the
session keys used by the client and the server in the given session. An attacker, who is
able to discover the premaster-secret, can decrypt the whole communication between
the client and server which has been carried out in the session. The value of Pk-45 || ... ||
Pk is generated randomly by the client who then adds the version number Pk-47 and Pk-

46, encrypts the whole value of the premaster-secret by the server’s public RSA key,
and sends the resulting ciphertext C to the server. The server decrypts it and creates
its own copy of the premaster-secret.

It is widely known that the server shall not report whether the plaintext P, P = Cd

mod N, is PKCS-conforming or not. In practice, a server is recommended to continue
with a randomly chosen value of the premaster-secret if the value of P is not S-
PKCS-conforming. Obviously, the communication breaks down soon after sending a
Finished message, since the client and the server will both use different values for
the session keys. However, the client (attacker) does not know whether the
communication has broken down due to an invalid format of P or due to incorrect

Attacking RSA-Based Sessions in SSL/TLS 429

value of the premaster-secret. So, the attack is effectively defeated in this way. Of
course, the attacker still gains some information from such an interaction with the
server. She may at least try to confirm her guesses of the correct value of the
premaster-secret. However, it has been shown by Jonsson and Kaliski [4] that it is
infeasible to exploit this information for an attack.

Let us suppose that the server incorporates the above-mentioned countermeasure,
the primary aim of which is to thwart Bleichenbacher’s attack [1]. Furthermore, let all
S-PKCS-conforming plaintexts be processed by the server to check the validity of
proprietary SSL/TLS extensions according to the following proposition.

Proposition 3 (Conjectured server’s behavior).
i) The server checks if the deciphered plaintext P is S-PKCS-conforming.

If the plaintext is not S-PKCS conforming, the server generates a new
premaster-secret randomly, thereby breaking down the communication
soon, after receiving the client’s Finished message.

ii) The server checks each S-PKCS-conforming plaintext P to see whether
Pk-47 = major and Pk-46 = minor, where major.minor is the
expected version number which is known to the attacker. For instance,
the most usual version numbers at the time of writing this paper were
3.0 and 3.1. If the test fails, the server issues a distinguishable error
message. The test is never done for plaintexts that are not S-PKCS-
conforming.

Practical tests showed that it is reasonable to assume Proposition 3 is fulfilled in
many practical realizations of SSL/TLS servers.

Definition 3 (Bad-Version Oracle - BVO). BVO is a mapping BVO: ZN → {0, 1}.
BVO(C) = 1 iff C = Pe mod N, where e is the server’s public exponent, N is the
server’s modulus, and P is an S-PKCS conforming plaintext, such that either Pk-47 ≠
major or Pk-46 ≠ minor, where major.minor is the expected version number.
BVO(C) = 0 otherwise.

BVO can be easily constructed for any SSL/TLS server that acts according to
Proposition 3. We send the ciphertext C to the server and if we receive the
distinguished message from (ii), we set BVO(C) = 1. Otherwise, we set BVO(C) = 0.

Theorem 1 (Usage of BVO). Let us have a BVO for given (e, N) and major.minor
and let C be an RSA ciphertext. Then BVO(C) = 1 implies that C = Pe mod N, where
P is an S-PKCS-conforming plaintext.

Proof. Follows directly from Definition 3.
■

Because S-PKCS-conforming plaintext is also PKCS-conforming, it follows from
Theorem 1 that we can use BVO to mount Bleichenbacher’s attack. We discuss the
details in §3. Now we introduce several definitions that will be useful in the rest of
this paper. We use a similar notation to the one used in [1].

Definition 4 (Probabilities concerning BVO). Let Pr(A) = B/N be the probability of
the event A that the conditions (i-ii) of Definition 1 hold for randomly chosen
plaintext P. Let Pr(S-PKCS|A) be the conditional probability that the plaintext P is S-
PKCS-conforming assuming that A occurred for P. Let Pr(BVO|S-PKCS) be the

430 V. Klíma, O. Pokorný, and T. Rosa

conditional probability that BVO(Pe mod N) = 1 assuming that P is S-PKCS-
conforming.

For Pr(A) we have 256-2 < Pr(A) < 256-1 as stated in [1]. The probability Pr(S-
PKCS|A) can be expressed as Pr(S-PKCS|A) = (255/256)(k-51)*256-1, since the length of
the non-zero padding bytes must be equal to k-51. There is usually one value of the
version number that is expected by BVO. Therefore, Pr(BVO|S-PKCS) = 1-256-2. Note
that the value of Pr(BVO|S-PKCS)*Pr(S-PKCS|A)*Pr(A) is the probability that for a
randomly chosen ciphertext C we get BVO(C) = 1.

3 Attacking Premaster-Secret

3.1 Mounting and Extending Bleichenbacher’s Attack

This attack allows us to compute the value x = yd mod N for any given integer y,
where d is an unknown RSA private exponent and N is an RSA modulus. This attack
works under the condition that an attacker has an oracle that for any ciphertext C tells
her whether the corresponding RSA plaintext P = Cd mod N is PKCS-conforming or
not. Theorem 1 shows that BVO introduced in the previous part can be used as such
an oracle. In the case of the SSL/TLS protocols this means that we can mount this
attack to either disclose a premaster-secret for an arbitrary captured session or to
forge a server’s signature. In the following text, we mainly focus on the premaster-
secret disclosure. Forging of signatures is discussed briefly in §3.4.

The main idea here is to employ Bleichenbacher’s attack with several changes
related to the specific properties of S-PKCS and BVO (§3.2). Furthermore, we
employed particular optimizations, which we have tested in our sample programs, and
which generally help an attacker (§3.3).

3.2 S-PKCS and BVO Properties

We show how to modify Bleichenbacher’s original RSA inversion algorithm for use
with the BVO and to increase its efficiency. For the sake of completeness we repeat
the necessary facts from [1] in the appendix together with a brief generalization of it.

Recall that PKCS-conforming plaintext P satisfies the following system of
inequalities

E ≤ P ≤ F,

where E = 2B, F = 3B–1, and B = 256k-2. The boundaries E, F are extensively used
through the whole RSA inversion algorithm. Since BVO as well as the SSL/TLS
protocols deal only with S-PKCS-conforming plaintexts, we may refine the
boundaries as

E’ ≤ P ≤ F’,

where the value of E’ is obtained by incorporating the minimum value of the
padding and the value of F’ is computed with respect to the fixed position of the zero
delimiter in the plaintext P:

Attacking RSA-Based Sessions in SSL/TLS 431

E’ = 2B + 1*256k-3 + 1*256k-4 + ... + 1*25649 = 2B + 25649(256k-51 - 1)/255 and

F’ = 2B + 255*(256k-3 + 256k-4 + ... +25649) + 0 + 255*(25647 + 25646 + ... + 2560) =
3B – 255*25648 – 1.

Substituting E’, F’ in place of E, F in the original algorithm (see the appendix)
increases its effectiveness.

It follows from the definition of the protocol SSL/TLS that the attacker knows the
expected value of the version number, which is checked by BVO. Therefore, when
attacking the ciphertext C0, such that BVO(C0) = 0, carrying the premaster-secret, the
attacker knows exactly the two bytes P0,k-47 and P0,k-46 of the S-PKCS-conforming
plaintext P0 = C0

d mod N. She also knows that P0,k-48 = 0. We used this knowledge in
our program to further trim the interval boundaries <a, b> computed in step 3 of the
algorithm (see the appendix).

3.3 Basic General Optimizations

Besides the optimizations that follow directly from §3.2, we also used the generally
applicable methods described in the following subparagraphs.

Definition 5 (Suitable multiplier). Let us have an integer C. The integer s is said to
be a suitable multiplier for C if it holds that C’ = seC mod N = (P’)e mod N, where P’
is a S-PKCS-conforming plaintext.

3.3.1 Beta Method
The following method (β-method) follows from a generalization of the remark
mentioned in [1], pp.7 - 8.

Lemma 1 (On linear combination). Let us have two ciphertexts Ci and Cj, such that
Ci = (si)

eC0 mod N, Cj = (sj)
eC0 mod N, where si and sj are suitable multipliers for C0.

I.e. Pi = Ci

d mod N = 2B + 25649PSi + Di and Pj = Cj

d mod N = 2B + 25649PSj + Dj,
where 0 < PSi,j and 0 ≤ Di,j < 25648. Then for C, C = seC0 mod N and β ∈ Z, where s =
[(1-β)si + βsj] mod N, it holds that Cd mod N = P, such that P = [2B + 25649((1-β)PSi

+ βPSj) + (1-β)Di + βDj] mod N.

Proof. It suffices to observe that P = [(1-β)si + βsj]P0 mod N = [(1-β)Pi + βPj] mod N,
where P0 = C0

d mod N.
■

It follows from the lemma written above that once we have suitable multipliers si,j

for a ciphertext C, we can try to search for the next suitable multiplier s as for a linear
combination of si and sj. In practice, we can try small positive and negative values of
β and test whether the particular linear combination s gives S-PKCS-conforming
plaintext or not. Working in this way, we may hope to accelerate the algorithm in step
2b (c.f. the appendix). Since we can reasonably assume that gcd(sj - si, N) = 1, there is
a particular value of β for every triplet of suitable multipliers (si, sj, s). However,
experiments have shown that there are also differences in how much information can
be obtained from such s depending on the size of β. For small values of β, it has been
observed that the obtained values of s do not reduce the size of Mi as fast as the values

432 V. Klíma, O. Pokorný, and T. Rosa

of s obtained for β close to N/2. The reason is perhaps a linear dependency on Z,
which is stronger for small β. On the other hand, β close to N/2 clearly cannot be
directly found by "brute force" searching. More precisely, we may find such β
directly, but we cannot assure that obtained s will be of moderate size for further
processing by the RSA inversion algorithm. Therefore, it remains to extract as much
information as possible from reasonably small values of β and then to either continue
with incremental searching used in the original version of the algorithm [1] or to use
the Parallel-Threads (PT) method described in §3.3.2. In advance of the following
discussion, we note that the source for the next incremental searching or for the PT-
method is the maximum suitable multiplier sj found, such that sj < N/2.

When using the above-mentioned method with negative values of β, we may get a
multiplier s that is close to N (it can be regarded as a small negative value modulo N).
Such an s cannot be directly processed, since it induces a very large interval for r in
the original algorithm (see step 3 in the appendix). We will show how the algorithm
can be adjusted to process small positive values of s as well as small negative values
of s modulo N.

Theorem 2 (On symmetry). Let us have integers s, P, and N satisfying
E1 ≤ sP mod N ≤ F1, where E1, F1 ∈ Z.

Then there is the integer v, v = N - s, satisfying
E2 ≤ vP mod N ≤ F2, where E2 = N - F1, F2 = N - E1.

Proof. We have that vP mod N = (N - s)P mod N = (-sP) mod N = N - (sP mod N).
The upper boundary of (sP mod N) is F1, therefore, the lower boundary E2 of (vP mod
N) is E2 = N – F1. Analogically, the upper boundary F2 of (vP mod N) is given by the
lower boundary E1 as F2 = N – E1.

■
We use the theorem as follows: if we get a high value of s using the β-method

described above, then we convert it to the corresponding symmetric value v = N – s
which is then processed in a modified version of step 3 of the algorithm (see the
appendix). The core of the modification is using boundaries E2, F2 instead of the
original boundaries E1 = E’, F1 = F’ (c.f. §3.2).

3.3.2 Parallel-Threads (PT) Method
Recall that the complexity of step 2 of the algorithm (see the appendix) for i > 1
depends on the size of Mi-1. Generally, the step is expected to be much faster if |Mi-1| =
1 than if |Mi-1| > 1. The reason is that |Mi-1| = 1 means there is only one interval
approximating the value of P0 left and therefore certain rules can be used when
searching for the next suitable multiplier si. Experimenting with our test program, we
observed that even if |Mi-1| > 1, the number of intervals was usually small enough that
it was better to start a parallel thread T for each I ∈ Mi-1 as if it was the only interval
left, i.e. it starts its own thread in step 2c of the algorithm. These threads T1, ..., Tw,
where w = |Mi-1|, were precisely multitasked on a per BVO call basis. They were
arranged in the cycle T1→T2 ... →Tw→T1 and stepping was done in the cycle after each
one BVO call. The results obtained when thread Tj found a suitable multiplier were
projected on the whole current set of intervals for all threads. After that, the threads

Attacking RSA-Based Sessions in SSL/TLS 433

belonging to the intervals that disappeared were discarded. We observed that the PT-
method increased the effectiveness of the original algorithm.

Using a certain amount of heuristics we set the condition that directs whether we
should use the PT-method or not. The PT-method is started in step i if the following
inequality holds

| Mi-1| < (2εPr(A))-1 + 1.

The value of ε estimates the number of passes it takes from the start of the PT-
method until there is only one interval left, i.e. |Mi+ε-1| = 1, where the PT-method
started in pass i. In our programs, we used ε = 2 which was the ceiling of the mean
value observed for ε.

3.4 Note on Forging a Server’s Signature

The BVO construction allows us to mount Bleichenbacher’s attack without any
restrictions on its functionality. As noted above, we can compute the RSA inverse for
any integer y, thereby obtaining the value x = yd mod N for the particular server’s
private exponent d and the modulus N. Discussing the so-called semantics of the
attack, there are only two cases in which it would be reasonable to compute this
inversion.

In the first case we compute the RSA inverse for a captured ciphertext carrying an
encrypted value of the premaster-secret. This approach allows us to decrypt the whole
communication that was carried out in a given session between a client and the server.
This is the main approach of this paper, which we have practically tested and
optimized.

In the second case we compute an RSA signature of a message m on behalf of the
server. The whole attack runs in a similar way, which means that the main activity
between an attacker and the server is still concerned on the phase of passing the
premaster-secret value during the handshake procedure of the SSL/TLS protocols.
However, this is only because we need to build up a BVO (c.f. §2) for computing the
RSA inversion. The source of this inversion (the ciphertext C) will no longer be an
encrypted premaster-secret itself, but the formatted value of h(m), where h is an
appropriate hash function. Currently, the SSL/TLS protocols sets h(m) =def MD5(m) ||
SHA-1(m) and the value of h(m) is further formatted according to the EMSA-PKCS1-
v1_5 method from PKCS#1 ([9], [10], [12], [13], [17]). At the end of the attack we
obtain Cd mod N which is the signature of our input C. It further depends on the
keyUsage property [18] of the certificate of the server’s RSA key, whether such a
signature can be used for further attacks or not. At first the server’s RSA key must be
attributed for signing purposes. Secondly, it depends on the specific system as to how
far the faked signature is important, directly implying how dangerous the attack is.
From the basic properties of SSL/TLS ([10], [12]) it follows that such a signature may
be abused to certify an ephemeral RSA or D-H [11] public key of a faked server. The
faked server can then be palmed on an ordinary user to elicit some secret information
from her. Generally speaking, this would be an attack on the authentication of a
server. The necessary condition here is that the user is willing to use either the so-
called export RSA key or the ephemeral Diffie-Hellman key agreement [11]. The
practical situation is that some clients will - some clients will not. It strongly depends

434 V. Klíma, O. Pokorný, and T. Rosa

on the attention paid to the configuration of such a client. Unfortunately, these
"minor" details are very often neglected in a huge amount of applications. Moreover,
we emphasize that the attack described here may not be the only one possible, since
the particular importance of a server’s signature depends on the role that the server
plays in a particular information system. The best way to avoid all these attacks is to
not attribute the server’s RSA key for signing purposes, unless it is absolutely
necessary.

From the effectiveness viewpoint, we can estimate that using the RSA inversion
based on BVO for signature forging will require more BVO calls, since we need to
insert an extra masking zero-step (see appendix, step 1 of the algorithm). The number
of additional BVO calls may be calculated as [Pr(BVO|S-PKCS)* Pr(S-PKCS|A)*
Pr(A)]-1, which is given by the probability that for a randomly chosen ciphertext C we
get BVO(C) = 1. Adding this value to the number of BVO calls in the former attack
on premaster-secret (c.f. §4) gives an estimate of the overall complexity of signature
forging.

4 Complexity Measurements

Basing on the elaboration from [1], we can estimate the number of BVO calls for
decrypting a plaintext C0 belonging to a S-PKCS-conforming plaintext P0 as

2*Pr(P)-1 + (16k - 32)*Pr(P|A)-1, where Pr(P|A) = Pr(BVO|S-PKCS)*Pr(S-PKCS|A),

Pr(P) = Pr(P, A) = Pr(P|A)*Pr(A),

where Pr(P) is the probability that for a randomly chosen ciphertext C we get
BVO(C) = 1.

This estimation does not cover the optimization described in §3.2 and §3.3.
Therefore we treat it as the worst-case estimation for a situation when these
optimizations are not notably helping an attacker. Experiments show that the
optimized algorithm is practically almost two times faster than this estimation (c.f.
§4.1) for the most widely used RSA key lengths. Let us comment on the expression of
the estimation now.

The first additive factor corresponds with our assumption that the attacker wants to
decipher C0 belonging to a properly formatted plaintext carrying a value of the
premaster-secret. In such a situation, she does not have to carry out initial blinding
(c.f. the appendix, step 1). According to [1], we can estimate that she needs to find
two suitable multipliers s1,2 for C0, until she can proceed with the generally faster step
2c. This gives the first factor as 2*Pr(P)-1. Note that, heuristically speaking, the
optimizations (§3) mainly reduce the necessity of finding s2 in the “hard” way,
thereby decreasing the first factor closely to the value Pr(P)-1. This hypothesis
corresponds well with the results of our measurements.

The second factor is a slightly modified expression presented in [1]. It corresponds
to the number of expected BVO calls for the whole number of passes through step 2c.
Recall that C0 = (P0)

e mod N, where 2B ≤ P0 ≤ 3B – 1, so P0 lays in the interval of the
length B, B = 256k-2. Conjecturing that each pass through step 3 roughly halves the
length of the interval for P0, we may estimate that we need 8(k - 2) passes.

Attacking RSA-Based Sessions in SSL/TLS 435

Furthermore, it is conjectured [1] that each pass through step 2c takes 2*Pr(P|A)-1

BVO calls. From here follows the estimation of BVO calls as (16k – 32)*Pr(P|A)-1.
Finally, we note that the complexity of the attack is mainly determined by the

amount of necessary BVO calls. This amount actually limits the attack in the three
ways. The first one is that an attacked server must bear such a number of corrupted
Handshakes [12] (i.e. not collapse due to a log overflow, etc.). The second limitation
comes from a total network delay that increases linearly with the number of BVO
calls. The third limit is determined by the computational power of the server itself,
which mainly means how fast it can carry out the RSA operation with a private key.
Other computations during the attack are essentially faster and therefore we do not
discuss them here.

4.1 Simulated Local BVO

In this paragraph, we present the measured complexity of the attack with respect to
the total amount of BVO calls. The data of our experiment was obtained for the four
particular randomly generated RSA moduli of 1024, 1025, 2048 and 2049 bits in
length. For every such modulus we implemented a local simulation of BVO that we
linked together with the optimized algorithm discussed in this paper. We then
measured the number of BVO calls for 1200 ciphertexts of the randomly generated
and encrypted values of the premaster-secret.

Due to the strong dependence of the number of BVO calls on Pr(A) we see that the
complexity of the attack is not strictly increasing with respect to the length of the
modulus N. This discrepancy was already mentioned in [1]. It follows that one should
use moduli with a bit length in the form 8r, where r is an integer, mainly avoiding the
moduli with the length 8r + 1.

Table 1. Basic statistics of a measured attack complexity in BVO calls

BVO calls
Practically measured

(with optimizations from §3)

Modulus
length
(bits)

Originally
estimated

(without
optimizations)

Min Max Median Mean

1024 36 591 001 815 835 278 903 416 13 331 256 20 835 297
1025 979 488 630 589 105 122 011 1 197 380 1 422 176
2048 48 054 328 2 824 986 354 420 492 19 908 079 28 728 801
2049 2 794 937 1 413 005 475 298 397 3 462 557 3 896 432

Analyzing the measured data, we observed that the distribution of the amount of
BVO calls can be approximated by a log-normal Gaussian distribution, i.e. the
logarithm of the amount of BVO calls roughly follows a normal Gaussian
distribution. Heuristically speaking, this means that the most basic random events

436 V. Klíma, O. Pokorný, and T. Rosa

governing the complexity of the attack primarily combine together in a multiplicative
manner. The values of median, and mean are presented in Table 1. These values were
obtained using the log-normal approximation of the data samples measured. These
approximations are plotted in Fig. 1. We can see that all the distributions skew to the
right. Therefore, the most interesting values are perhaps given by the medians. For
example, in the case of a 1024 bits long modulus, we can expect that the one half of
all attacks succeed in less then 13.34 million BVO calls. Furthermore, the data in
Table 1 supports our conjecture that the optimizations proposed in §3 mainly speed up
the first “hard” part of the algorithm. Therefore, this speeding up is clearly notable for
moduli of 1024 and 2048 bits, while there is no observable effect for the moduli of
1025 and 2049 bits.

Fig. 1. Log-normal approximation of BVO calls density functions: in the left graph for 1024
(the higher peak) and 2048, and in the right graph for 1025 (the higher peak) and 2049 bits long
moduli

4.2 Real Attack

We successfully tested the attack on a real SSL server (AMD Athlon/1 GHz, 256MB
RAM) using 1024 bits long RSA key. The total number of BVO calls for decryption
of a randomly selected premaster-secret was 2 727 042 and the whole attack took 14
hours 22 minutes and 45 seconds. It gives an estimated speed of 52.68 BVO
invocations per second. The server and the attacking client were locally connected via
a 100 Mb/s Ethernet network without any other notable traffic. With respect to the
whole conditions of this experiment, we can conclude that this is probably one of the
best practically achievable results. Therefore, we can expect that there would be few
practical attacks succeeding in less then 14 hours of sustained high effort (for a 1024
bits long RSA key). Using the value of the median for 1024 bits modulus from Table
1, we can roughly expect one half of all attacks in our setup to succeed in less than 70
hours and 18 minutes. For 2048 bits long RSA key in the same setup we get an
estimated speed of 11.47 BVO calls per second. Therefore, one half of all attacks
should then succeed in less than 21 days.

The experiment setup described above could be slightly improved by using a more
powerful server. Plugging in such a server (2x Pentium III/1.4 GHz, 1 GB RAM, 100
Mb/s Ethernet, OS RedHat 7.2, Apache 1.3.27), it was possible to achieve a speed of
67.7 BVO calls per second for a 1024 bits RSA key. The median time for a whole
attack on the premaster-secret could be then estimated as 54 hours and 42 minutes.

Attacking RSA-Based Sessions in SSL/TLS 437

Note that all these estimates assume achieving and sustaining high communication
and computation throughput on the server’s side.

4.3 Real Vulnerability

To assess the practical impacts of the attack presented here, we had randomly
generated a list of 611 public Internet SSL/TLS servers (we accepted servers
providing SSL v. 3.0 or TLS v. 1.0) and then tested these servers to see whether it was
possible to construct a BVO for them or not. We found that two thirds of these servers
were vulnerable to our attack. We emphasize that it does not necessarily mean that the
attack would always succeed on every such server. Despite the fact that all these
servers can be regarded as broken from a pure cryptanalytic viewpoint, the
complexity of the attack may still render it impractical in a large amount of cases. We
expect that a properly administrated server (e.g. log messages are often inspected,
suspicious clients are added to black-lists, etc.) should withstand the attack. Under
such an administration, the attack should be recognized and the attacking client would
soon be blocked. Of course, the cryptographic strength of all these SSL/TLS
implementations should definitely be improved. We strongly recommend applying
appropriate patches as soon as possible.

We observed an interesting anomaly for 110 out of 611 tested servers. All of them
provided both SSL v. 3.0 and TLS. 26 of them were primarily vulnerable only
through the SLL v3.0 protocol, while the remaining 84 servers were primarily
vulnerable only through the TLS protocol. We advisedly used the word "primarily",
since if these servers share the same RSA key for both protocols, which is a very
common practice, then an attacker can easily assault one protocol through an
interaction with the other one. Moreover, the format of the ciphertext carrying the
premaster-secret is the same for both protocols, so this cross-attacking actually does
not increase the complexity of the whole attack.

5 Technical Details

Please refer to the extended version of this paper [19].

6 Countermeasures

Due to the compatibility demands, it does not seem possible to simply leave the EME-
PKCS1-v1_5 method and use its successor EME-OAEP. Note that even the EME-
OAEP method must be implemented carefully (c.f. [5], [6]). On the other hand, it has
been recently shown by Jonsson and Kaliski in [4] that the EME-PKCS1-v1_5 can
offer reasonable security (the proof was carried out for the TLS protocol) assuming
that it is implemented properly – i.e. mainly that side channels are avoided. What
remains is to show what a proper implementation should look like. The current
guidelines in [12] together with [15] are obviously insufficient and should be updated
to avoid weaknesses like the one discussed in this paper. Moreover, it seems that the

438 V. Klíma, O. Pokorný, and T. Rosa

edge between secure and insecure implementation of EME-PKCS1-v1_5 is very
sharp. This implies that the standards regarding its implementation must really be
very precise.

We propose to keep generating Pk-45, ..., P0 randomly, if P is not S-PKCS-
conforming. Furthermore, we propose to replace Pk-47 and Pk-46 with the expected
version number in either case (i.e. if P is or is not S-PKCS-conforming). A more
detailed description and discussion of this subject is provided in the extended version
of the paper [19].

7 Conclusions

We have presented a new practically feasible side channel attack against the SSL/TLS
protocols. When Bleichenbacher presented his attack on PKCS#1 (v. 1.5) in 1998 [1],
it was generally assumed that the attack was impractical for the SSL/TLS protocols,
since these protocols add several proprietary restrictions on the plaintext format,
which increase the complexity of the attack. Of course, the protocols could not be
called secure from a pure cryptographical viewpoint. Therefore, a special
countermeasure was introduced and generally adopted [10], [12]. However in this
paper, we have shown that problems with Bleichenbacher’s-like attacks on the
SSL/TLS protocols are still not properly solved. We have identified a new possibility
of a substantial side channel occurring during an SSL/TLS Handshake. The side
channel originates when a receiver checks a version number value stored in the two
left-most bytes of the premaster-secret. Based on the receiver’s behavior during this
check, we have defined its mathematical encapsulation as a bad-version oracle (BVO,
c.f. §2). Such a check is widely recommended for SSL/TLS servers, but unfortunately
it is not properly specified how it should be performed. Practical tests showed that
two thirds of randomly chosen Internet servers carried out the test wrongly, thereby
allowing the construction of BVO resulting in a new attack on RSA-based sessions.
The attack itself may be viewed as an optimized and generalized variant of the
original Bleichenbacher’s attack [1]. The most obvious target of our attack would
probably be discovering the premaster-secret, thereby decrypting a captured RSA-
based session. It is also possible (with an additionally increased complexity, c.f. §3.4)
to compute the signature of any arbitrary message on behalf of the server.
The attack was carried out in practice and its efficiency was measured (§4). The
amount of time the attack takes in practice is mainly determined by the amount of
BVO calls. Each BVO call corresponds to one attempt to establish a SSL/TLS
connection with an attacked server. If the server uses a typical 1024 bits long RSA
key, then we can expect that roughly 50% of attacks succeed in less than 13.34
million BVO calls. This load may be further spread in time and even distributed to
many computers. The main aim would not be speeding up the attack, but making its
localization and blocking harder. Although the complexity presented here is definitely
very low from a pure cryptographic viewpoint, there may still be technical measures
that can thwart the attack in a practice. For instance, each BVO call should produce at
least one log record on the server’s side. If these logs are well maintained and
appropriately inspected, then the attack should be recognized in time. Unfortunately,
there also seem to be poorly administrated servers where SSL/TLS audit messages are

Attacking RSA-Based Sessions in SSL/TLS 439

almost ignored. These servers remain protected solely by their network and
computational throughput, which is obviously alarming.

Acknowledgements. We are grateful to �� �� ���� for technical support and
consultations. We also appreciate technical help of 	
��� ����� and Libor
Kratochvíl. The third author is grateful to his postgraduate supervisor Dr. Petr
Zemánek for continuous support in research projects.

References

1. Bleichenbacher, D.: Chosen Ciphertexts Attacks Against Protocols Based on the RSA
Encryption Standard PKCS#1, in Proc. of CRYPTO ’98, pp. 1–12, 1998

2. Canvel, B.: Password Interception in a SSL/TLS Channel,
http://lasecwww.epfl.ch/memo_ssl.shtml, February, 2003

3. Håstad, J., Näslund M.: The Security of Individual RSA Bits, in Proc. of FOCS ’98, pp.
510–521, 1998

4. Jonsson, J., Kaliski, B., S., Jr.: On the Security of RSA Encryption in TLS, in Proc. of
CRYPTO ’02, pp. 127–142, 2002

5. Klíma, V., Rosa, T.: Further Results and Considerations on Side Channel Attacks on RSA,
in Proc. of CHES ’02, August 13–15, 2002

6. Manger, J.: A Chosen Ciphertext Attack on RSA Optimal Asymmetric Encryption
Padding (OAEP) as Standardized in PKCS #1, in Proc. of CRYPTO’01, pp. 230–238, 2001

7. OpenSSL: OpenSSL ver. 0.9.7, http://www.openssl.org/, December 31, 2002
8. PKCS#5 ver. 2.0: Password-Based Cryptography Standard, RSA Laboratories, March 25,

1999
9. PKCS #1: RSA Encryption Standard, An RSA Laboratories Technical Note, Version 1.5,

Revised November 1, 1993
10. Rescorla, E.: SSL and TLS: Designing and Building Secure Systems, Addison-Wesley,

New York, 2000
11. RFC 2631: Rescorla, E.: Diffie-Hellman Key Agreement Method, June 1999
12. RFC 2246: Allen, C., Dierks, T.: The TLS Protocol, Version 1.0, January 1999
13. RFC 1321: Rivest, R.: The MD5 Message-Digest Algorithm, April 1992
14. Rivest, R., L., Shamir, A., Adleman L.: A Method for Obtaining Digital Signatures and

Public-Key Cryptosystems, Communications of the ACM, 21, pp. 120–126, 1978
15. RSA Labs: Prescriptions for Applications that are Vulnerable to the Adaptive Chosen

Ciphertext Attack on PKCS #1 v1.5, RSA Laboratories,
http://www.rsasecurity.com/rsalabs/pkcs1/prescriptions.html

16. Schneier, B., Wagner, D.: Analysis of the SSL 3.0 Protocol, The Second USENIX
Workshop on Electronic Commerce Proceedings, USENIX Press, November 1996, pp.
29–40

17. Secure Hash Standard, FIPS Pub 180-1, 1995 April 17
18. X509: ITU-T Recommendation X.509 (06/97) - Information Technology - Open System

Interconnection – The Directory: Authenticantion Framework, ITU, 1997
19. Klima V., Pokorny O., Rosa T.: Attacking RSA-based Sessions in SSL/TLS, Cryptology

ePrint Archive: Report 2003/052, http://eprint.iacr.org/2003/052/

440 V. Klíma, O. Pokorný, and T. Rosa

Appendix

For the sake of completeness we enclose here the algorithm from [1]. For our
purposes we define directly a slight generalization and modification of it. Recall that
in the original text E = 2B, F = 3B–1, where B = 256k-2. In our variant, we will use the
refined values E’ and F’ (c.f. §3). According to Definition 1 and the original notation
used bellow, we note that a ciphertext C is said to be PKCS conforming iff C = Pe

mod N, where P is PKCS-conforming plaintext. The modified algorithm is as follows.

Step 1: Blinding. Given an integer c, choose different random integers s0; then check,
by accessing the oracle, whether c(s0)

e mod N is PKCS conforming.
For the first successful s0, set

c0 ← c(s0)
e mod N

M0 ← {[E, F]}
i ← 1.

Step 2: Searching for PKCS conforming messages.
Step 2.a: Starting the search. If i = 1, then search for the smallest positive

integer s1 ≥ N/(F+1), such that the ciphertext c(s1)
e mod N is PKCS

conforming.
Step 2.b: Searching with more than one interval left. Otherwise, if i > 1 and

the number of intervals in Mi-1 is at least 2, then search for the smallest
integer si > si-1, such that the ciphertext c(si)

e mod N is PKCS conforming.
Step 2.c: Searching with one interval left. Otherwise, if Mi-1 contains exactly

one interval (i.e. Mi-1 = {[a, b]}), then choose small integer values ri, si such
that

ri ≥ 2(bsi-1 - E)/N
and

(E + riN)/b ≤ si < (F + riN)/a
until the ciphertext c(si)

e mod N is PKCS conforming.
Step 3: Narrowing the set of solution. After si has been found, the set Mi is
computed as

Mi ← ∩ (a,b,r) {[max (a, (E + rN)/si), min (b, (F + rN)/si)]}
for all [a, b] ∈ Mi-1 and (asi - F)/N ≤ r ≤ (bsi - E)/N.

Step 4: Computing the solution. If Mi contains only one interval of length 1 (i.e., Mi

= {[a, a]}), then set m ← a(s0)
-1 mod N, and return m as solution of m ≡ cd (mod N).

Otherwise, set i ← i + 1 and go to step 2.

	1 Introduction
	2 Bad-Version Oracle
	3 Attacking Premaster-Secret
	3.1 Mounting and Extending Bleichenbacher’s Attack
	3.2 S-PKCS and BVO Properties
	3.3 Basic General Optimizations
	3.4 Note on Forging a Server’s Signature

	4 Complexity Measurements
	4.1 Simulated Local BVO
	4.2 Real Attack
	4.3 Real Vulnerability

	5 Technical Details
	6 Countermeasures
	7 Conclusions

