
Attacking RSA–CRT Signatures

with Faults on Montgomery Multiplication

Pierre-Alain Fouque1,2, Nicolas Guillermin3, Delphine Leresteux3,
Mehdi Tibouchi4, and Jean-Christophe Zapalowicz2

1 École normale supérieure
pierre-alain.fouque@ens.fr

2 INRIA Rennes
jean-christophe.zapalowicz@inria.fr

3 DGA IS
nicolas.guillermin@m4x.org

delphine.leresteux@dga.defense.gouv.fr
4 NTT Secure Platform Laboratories

tibouchi.mehdi@lab.ntt.co.jp

Abstract. In this paper, we present several efficient fault attacks against implementations of RSA–CRT
signatures that use modular exponentiation algorithms based on Montgomery multiplication. They apply to
any padding function, including randomized paddings, and as such are the first fault attacks effective against
RSA–PSS.

The new attacks work provided that a small register can be forced to either zero, or a constant value, or a
value with zero high-order bits. We show that these models are quite realistic, as such faults can be achieved
against many proposed hardware designs for RSA signatures.

Keywords: Fault Attacks, Montgomery Multiplication, RSA–CRT, RSA–PSS

1 Introduction

The RSA signature scheme is one of the most used schemes nowadays. An RSA signature is computed by
applying some encoding function to the message, and raising the result to d-th power modulo N , where d
and N are the private exponent and the public modulus respectively. This modular exponentiation is the
costlier part of signature generation, so it is important to implement it efficiently. A very commonly used
speed-up is the RSA–CRT signature generation, where the exponentiation is carried out separately modulo
the two factors ofN , and the results are then recombined using the Chinese Remainder Theorem. However,
when unprotected, RSA–CRT signatures are vulnerable to the so-called Bellcore attack first introduced
by Boneh, DeMillo and Lipton in [6], and later refined in a number of subsequent publications [7,2,41]: an
attacker who knows the padded message and is able to inject a fault in one of the two half-exponentiations
can factor the public modulus using a faulty signature with a simple GCD computation.

Many workarounds have been proposed to patch this vulnerability, including extra computations and
sanity checks of intermediate and final results. A recent taxonomy of these countermeasures is given
in [30]. The simplest countermeasure may be to verify the signature before releasing it. This is reasonably
cheap if the public exponent e is small and available in the signing device. In some cases, however,
e is not small, or even not given—e.g. the JavaCard API does not provide it [28]. Another approach
is to use an extended modulus. Shamir’s trick [32] was the first such technique to be proposed; later
refinements were suggested that also protect CRT recombination when it is computed using Garner’s
formula [5,12,39,14]. Finally, yet another way to protect RSA–CRT signatures against faults is to use
redundant exponentiation algorithms, such as the Montgomery Ladder. Papers including [19,30] propose
such countermeasures. Regardless of the approach, RSA–CRT fault countermeasures tend to be rather
costly: for example, Rivain’s countermeasure [30] has a stated overhead of 10% compared to an unprotected
implementation, and is purportedly more efficient than previous works including [19,39].

Relatedly, while Boneh et al.’s original fault attack does not apply to RSA signatures with probabilistic
encoding functions, some extensions of it were proposed to attack randomized ad hoc padding schemes
such as ISO 9796-2 and EMV [15,17]. However, Coron and Mandal [16] were able to prove that Bellare
and Rogaway’s padding scheme RSA–PSS [3,4,22] is secure against random faults in the random oracle
model. In other words, if injecting a fault on the half-exponentiation modulo the second factor q of N
produces a result that can be modeled as uniformly distributed modulo q, then the result of such a fault
cannot be used to break RSA–PSS signatures. It is tempting to conclude that using RSA–PSS should
enable signers to dispense with costly RSA–CRT countermeasures. In this paper, we argue that this is
not necessarily the case.

Our contributions. The RSA–CRT implementations targeted in this paper use the state-of-the-art
modular multiplication algorithm due to Montgomery [26], which avoids the need to compute actual divi-
sions on large integers, replacing them with only multiplications and bit shifts. A typical implementation
of the Montgomery multiplication algorithm will use small registers to store precomputed values or short
integer variables throughout the computation. The size of these registers varies with the architecture,
from a single bit in certain hardware implementations to 16 bits, 32 bits or more in software. This pa-
per presents several fault attacks on these small registers during Montgomery multiplication, that cause
the result of one of the half-exponentiations to be unusually small. The factorization of N can then be
recovered using a GCD, or an approximate common divisor algorithm such as [20,10,13].

We consider three models of faults on the small registers. In the first model, one register can be forced
to zero. In that case, we show that causing such a fault in the inverse Montgomery transformation of the
result of a half-exponentiation, or a few earlier consecutive Montgomery multiplications, yields a faulty
signature which is a multiple of the corresponding factor q of N . Hence, we can factor N by taking a
simple GCD. In the second model, another register can be forced to some (possibly unknown) constant
value throughout the inverse Montgomery transformation of the result of a half-exponentiation, or a few
earlier consecutive Montgomery multiplications. A faulty signature in this model is a close multiple of the
corresponding factor q of N , and we can thus factor N using an approximate common divisor algorithm.
Finally, the third model makes it possible to force some of the higher-order bits of one register to zero.
We show that, while injecting one such fault at the end of the inverse Montgomery transformation results
in a faulty signature that isn’t usually close enough to a multiple of q to reveal the factorization of N on
its own, a moderate number of faulty signatures (a dozen or so) obtained using that process are enough
to factor.

The RSA padding scheme used for signing, whether deterministic or probabilistic, is irrelevant in our
attacks. In particular, RSA–PSS implementations are also vulnerable. Of course, this does not contradict
the security result due to Coron and Mandal [16], as the faults we consider are strongly non-random.
Our results do suggest, however, that exponentiation algorithms based on Montgomery multiplication
are quite sensitive to a very realistic type of fault attacks and that using RSA–CRT countermeasures is
advisable even for RSA–PSS.

Organization of the paper. In §2, we recall some background material on the Montgomery multipli-
cation algorithm, on modular exponentiation techniques, and on RSA–CRT signatures. Our new attacks
are then described in §§3–5, corresponding to three different fault models: null faults, constant faults,
and zero high-order bits faults. Finally, in §6, we discuss the applicability of our fault models to concrete
hardware implementations of RSA–CRT signatures, and find that many proposed designs are vulnerable.

2

1: function SignRSA–CRT(m)
2: M ← µ(m) ∈ ZN ⊲ message encoding
3: Mp ←M mod p
4: Mq ←M mod q

5: Sp ←M
dp
p mod p

6: Sq ←M
dq
q mod q

7: t← Sp − Sq

8: if t < 0 then t← t+ p

9: S ← Sq +
(

(t · π) mod p
)

· q
10: return S

Fig. 1. RSA–CRT signature generation with Garner’s
recombination. The reductions dp, dq modulo p − 1, q −
1 of the private exponent are precomputed, as is π =
q−1 mod p.

1: function CIOS(x, y)
2: a← 0
3: y0 ← y mod b
4: for j = 0 to k − 1 do

5: a0 ← a mod b
6: uj ← (a0 + xj · y0) · q

′ mod b

7: a←
⌊a+ xj · y + uj · q

b

⌋

8: if a ≥ q then a← a− q

9: return a

Fig. 2. The Montgomery multiplication algorithm. The
xi’s and yi’s, i = 0, . . . , k − 1, are the digits of x and y
in base b; q′ = q−1 mod b is precomputed. The returned
value is (xy · b−k mod q).

2 Preliminaries

2.1 Montgomery multiplication

First proposed by Montgomery in [26], the Montgomery multiplication algorithm provides a fast way
method for computing modular multiplications and squarings. Indeed, the Montgomery multiplication
algorithm only uses multiplications, additions and shifts, and its cost is about twice that of a simple
multiplication (compared to 2.5 times for a multiplication and a Barett reduction), without imposing any
constraint on the modulus.

Usually, one of two different techniques is used to compute Montgomery multiplication: either Separate
Operand Scanning (SOS), or Coarsely Integrated Operand Scanning (CIOS). Consider a device whose
processor or coprocessor architecture has r-bit registers (typically r = 1, 8, 16, 32 or 64 bits). Let b = 2r,
q be the (odd) modulus with respect to which multiplications are carried out, k the number of r-bit
registers used to store q, and R = bk, so that q < R and gcd(q,R) = 1. The SOS variant consists in
using the Montgomery reduction after the multiplication: for an input A such that A < Rq, it computes
Mgt(A) ≡ AR−1 (mod q), with 0 ≤ Mgt(A) < q. The CIOS mixes the reduction algorithm with the
previous multiplication step: considering x and y with xy < Rq, it computes CIOS(x, y) = xyR−1 mod q
with CIOS(x, y) < q.

Algorithm 2 presents the main steps of the CIOS variant, which will be used thereafter. However,
replacing the CIOS by the SOS or any other variant proposed in [23] does not protect against any of our
attacks.

Among all the variants proposed for this algorithm, the optimization of [40] is well-known: if Rq > xy,
then the result of algorithm 2 without the final reduction (line 8) is between 0 and 2q. Therefore for an
exponentiation algorithm, there is no need to execute this final reduction if R > 4q. Besides its efficiency,
this variant has the advantage of thwarting timing attacks [31,9,1], which essentially rely on detecting
whether the reduction is executed or not. Nevertheless, these attacks do not work with randomized
paddings, since the attacker needs to carefully choose the message. On the contrary, our attacks work on
any padding, with or without this reduction.

2.2 Exponentiation algorithms using Montgomery multiplication

Montgomery reduction is especially interesting when used as part of a modular exponentiation algorithm.
A large number of such exponentiation algorithms are known, including the Square-and-Multiply algo-
rithm from either the least or the most significant bit of the exponent, the Montgomery Ladder (used as a
side-channel countermeasure against cache analysis, branch analysis, timing analysis and power analysis),

3

Square-and-Multiply MSB Square-and-Multiply LSB Montgomery Ladder

1: function ExpMSB(x, e, q)
2: x̄← CIOS(x,R2 mod q)
3: A← R mod q
4: for i = t down to 0 do

5: A← CIOS(A,A)
6: if ei = 1 then

7: A← CIOS(A, x̄)

8: A← CIOS(A, 1)
9: return A

1: function ExpLSB(x, e, q)
2: x̄← CIOS(x,R2 mod q)
3: A← R mod q
4: for i = 0 to t do
5: if ei = 1 then

6: A← CIOS(A, x̄)

7: x̄← CIOS(x̄, x̄)

8: A← CIOS(A, 1)
9: return A

1: function ExpLadder(x, e, q)
2: x̄← CIOS(x,R2 mod q)
3: A← R mod q
4: for i = t down to 0 do

5: if ei = 0 then

6: x̄← CIOS(A, x̄)
7: A← CIOS(A,A)
8: else if ei = 1 then

9: A← CIOS(A, x̄)
10: x̄← CIOS(x̄, x̄)

11: A← CIOS(A, 1)
12: return A

Fig. 3. The three exponentiation algorithms considered in this paper. In each case, e0, . . . , et are the bits of the exponent e
(from the least to the most significant), b is the base in which computations are carried out (gcd(b, q) = 1) and R = bk.

the Square-and-Multiply k-ary algorithm (which boasts greater efficiency thanks to fewer multiplications),
etc. Detailed descriptions of the first three of those are given in Figure 3.

Note that using the Montgomery multiplications inside any exponentiation algorithm requires all
variables to be in Montgomery representation (x̄ = xR mod q is the Montgomery representation of x)
before applying the exponentiation process. In line 2 of each algorithm from Figure 3, the message is
transformed in Montgomery representation by computing CIOS(x,R2) = xR2R−1 mod q = x̄. At the
end, the very last CIOS call allows to revert to the classical representation by performing a Montgomery
reduction: CIOS(Ā, 1) = (Ā · 1)R−1 mod q = ARR−1 mod q = A. Finally the other CIOS steps compute
the product in Montgomery representation: CIOS(Ā, B̄) = (AR)(BR)R−1 mod q = AB.

2.3 RSA–CRT signature generation

Let N = pq be a n-bit RSA modulus. The public key is denoted by (N, e) and the associated private
key by (p, q, d). For a message M to sign, we note S = md mod N the corresponding signature, where
m is deduced from M by an encoding function, possibly randomized. A well-known optimization of
this operation is the RSA–CRT which takes advantage of the decomposition in prime factor of N . By
replacing a full exponentiation of size n by two n/2, it divides the computational cost by a factor of around
4. Therefore RSA–CRT is almost always employed: for example, OpenSSL [38] as well as the JavaCard
API [28] use it.

Recovering S from its reductions Sp and Sq modulo p and q can be done either by the usual CRT
reconstruction formula (1) below, or using the recombination technique (2) due to Garner [18]:

S = (Sq · p−1 mod p) · p+ (Sp · q−1 mod p) · q mod N (1)

S = Sq + q · (q−1 · (Sp − Sq) mod p) (2)

Garner’s formula (2) does not require a reduction modulo N , which is interesting for efficiency reasons and
also because it prevents certain fault attacks [8]. On the other hand, it does require an inverse Montgomery
transformation Sq = CIOS(S̄q, 1), whereas that step is not necessary for formula (1), as it can be mixed
with the multiplication with q−1 mod p. This is an important point, as some of our attacks specifically
target the inverse Montgomery transformation. The main steps of the RSA–CRT signature generation
with Garner’s recombination are recalled in Figure 1.

4

3 Null Faults

We first consider a fault model in which the attacker can force the precomputed value q′ to zero in certain
calls to the CIOS algorithm during the computation of Sq.

Under suitable conditions, we will see that such faults can cause the q-part of the signature to be
erroneously evaluated as S̃q = 0, which makes it possible to retrieve the factor q of N from one such

faulty signature S̃, as q = gcd(S̃, N).

3.1 Attacking CIOS(A, 1)

Suppose first that the fault attacker can force q′ to zero in the very last CIOS computation during the
evaluation of Sq, namely the computation of CIOS(A, 1). In that case, the situation is quite simple.

Theorem 1. A faulty signature S̃ generated in this fault model is a multiple of q (for any of the expo-
nentiation algorithms considered herein and regardless of the encoding function involved, probabilistic or
not).

Proof. The faulty value q̃′ = 0 causes all of the variables u in the CIOS loop to vanish; indeed, for
j = 0, . . . , k − 1, they evaluate to:

ũj = (a0 +Aj · 1) · q̃′ mod 2r = 0.

As a result, the value S̃q computed by this CIOS loop can be written as:

S̃q =

⌊(⌊
· · ·
⌊(⌊

A0 · 2−r
⌋
+A1

)
· 2−r

⌋
+ · · ·

⌋
+Ak−1

)
· 2−r

⌋
.

Now, the values Aj are r-words, i.e. 0 ≤ Aj ≤ 2r − 1. It follows that each of the integer divisions by 2r

evaluate to zero, and hence S̃q = 0. As a result, the faulty signature S̃ is a multiple of q as stated. ⊓⊔

It is thus easy to factor N with a single faulty signature S̃, by computing gcd(S̃, N). Note also that if
this last CIOS step is computed as CIOS(1, A) instead of CIOS(A, 1), the formulas are slightly different
but the result still holds.

3.2 Attacking consecutive CIOS steps

If Garner recombination is not used or the computation of CIOS(A, 1) is somehow protected against
faults, a similar result can be achieved by forcing q′ to zero in earlier calls to CIOS, provided that a
certain number of successive CIOS executions are faulty.

Assuming that the values x̄ and A in Montgomery representation are uniformly distributed modulo q
before the first faulty CIOS, we show in Appendix A that faults across ℓ = ⌈log2⌈log2 q⌉⌉ iterations in the
loop of the exponentiation algorithm are enough to ensure that S̃q will evaluate to zero with probability
at least 1/2. For example, if q is a 512-bit prime, we have ℓ = 9. This means that forcing q′ to zero in
9 iterations (from 9 to 18 calls to CIOS depending on the exponentiation algorithm under consideration
and on the input bits) is enough to factor at least 50% of the time—and more faulty iterations translate
to higher success rates.

The k-ary Square-and-Multiply exponentiation process is vulnerable as well whatever k is, although
details are omitted for lack of space.

5

Simulation results. We have carried out a simulation of null faults on consecutive CIOS steps for each of
the three exponentiation process algorithms, with varying numbers of faulty iterations; for the Square-
and-Multiply MSB and the Montgomery Ladder algorithms, two sets of experiments have been conducted
for each parameter set: one with faults starting from the first iteration, and another one with faults
starting from a random iteration somewhere in the exponentiation loop. Results are collected in Table 1
in Appendix C. As we can see, success rates are noticeably higher than the lower bounds obtained in
Appendix A.

4 Constant Faults

In this section, we consider a different fault model, in which the fault attacker can force the variables uj
in the CIOS algorithm to some (possibly unknown) constant value ũ.

Just as with null faults, we consider two scenarios: one in which the last CIOS computation is attacked,
and another in which several inner consecutive CIOS computations in the exponentiation algorithm are
targeted.

4.1 Attacking CIOS(A, 1)

Faults on all iterations. Consider first the case when faults are injected in all iterations of the very
last CIOS computation. In other words, the device computes CIOS(A, 1), except that the variables uj ,
j = 0, . . . , k − 1, are replaced by a fixed, possibly unknown value ũ. In that case, we show that a single
faulty signature is enough to factor N and recover the secret key. The key result is as follows.

Theorem 2. Let S̃ be a faulty signature obtained in the fault model described above. Then, (2r − 1) · S̃ is
a close multiple of q with error size at most 2r+1, i.e. there exists an integer T such that:

∣∣(2r − 1) · (S̃ + 1)− qT
∣∣ ≤ 2r+1.

Proof. Up to the possible subtraction of q, which clearly doesn’t affect our result, the value S̃q computed
in the faulty execution of CIOS(A, 1) can be written as:

S̃q =

⌊(⌊
· · ·
⌊(⌊

(A0 + ũ · q) · 2−r
⌋
+A1 + ũ · q

)
· 2−r

⌋
+ · · ·

⌋
+Ak−1 + ũ · q

)
· 2−r

⌋
.

We claim that this value S̃q is close to the real number ũ · q/(2r − 1). Indeed, on the one hand, by using
the fact that ⌊x⌋ ≤ x for all x and Aj ≤ 2r − 1 for j = 0, . . . , k − 1, we obtain:

S̃q ≤
A0 + ũ · q

2rk
+ · · ·+ Ak−1 + ũ · q

2r
≤ 1

2r − 1
(2r − 1 + ũ · q) ≤ ũ · q

2r − 1
+ 1.

On the other hand, since ⌊x⌋ > x− 1 and Aj ≥ 0, we get:

S̃q >
ũ · q
2rk

− 1

2r(k−1)
+ · · ·+ ũ · q

2r
− 1 =

1− 2−rk

2r − 1
· (ũ · q − 2r)

>
ũ · q
2r − 1

− ũ

2r − 1
· q

2rk
− 2r

2r − 1
>

ũ · q
2r − 1

− 3

as we have both ũ ≤ 2r − 1 and q < 2rk. As a result, we obtain:
∣∣∣∣(S̃q + 1)− ũ · q

2r − 1

∣∣∣∣ ≤ 2

and hence: ∣∣∣(2r − 1) · (S̃q + 1)− ũ · q
∣∣∣ ≤ 2r+1.

Since S̃ = S̃q + ((t̃ · π) mod p) · q, the stated result follows, with T = ũ+ (2r − 1) · ((t̃ · π) mod p). ⊓⊔

6

Thus, a single faulty signature yields a value V = (2r − 1) · (S̃ + 1) mod N which is very close to a
multiple of q. It is easy to use this value to recover q itself. Several methods are available:

– If r is small (say 8 or 16), it may be easiest to just use exhaustive search: q is found among the values
gcd(V +X,N) for |X| ≤ 2r+1, and hence can be retrieved using around 2r+2 GCD computations.

– A more sophisticated option, which may be interesting for r = 32, is the baby step, giant step-like
algorithm by Chen and Nguyen [10], which runs in time Õ(2r/2).

– Alternatively, for any r up to half of the size of q, one can use Howgrave-Graham’s algorithm [20] based
on Coppersmith techniques. It is the fastest option unless r is very small (a simple implementation in
Sage [34] runs in about 1.5 ms on our standard desktop PC with a 512-bit prime q for a any r up to
≈ 160 bits, whereas exhaustive search already takes over one second for r = 16).

Faults on most iterations. Howgrave-Graham’s algorithm is especially relevant if the constant faults do
not start at the very first iteration in the CIOS loop. More precisely, suppose that the fault attacker can
force the variables uj to a constant value ũ not for all j but for j = j0, j0 + 1, . . . , k − 1 for some j0.

Then, the same computation as in the proof of Theorem 2 yields the following bound on S̃q:

ũ · q
2r − 1

− 2rj0 − 2 < S̃q ≤
ũ · q
2r − 1

+ 2rj0 + 1.

It follows that (2r − 1) · S̃ is a close multiple of q with error size . 2r(j0+1).
Now note that Howgrave-Graham’s algorithm [20] will recover q given N and a close multiple with

error size at most q1/2−ε. This means that one faulty signature S̃ is enough to factor as long as j0+1 < k/2,
i.e. the constant faults start in the first half of the CIOS loop.

Moreover, if the faults start even later, a single signature will no longer suffice, but q can be recovered
if several faults are available, using the generalization of Howgrave-Graham’s algorithm due to Cohn and
Heninger [13]. That algorithm is discussed in a different context in §5.

4.2 Attacking other CIOS steps

As in §3.2, if Garner recombination is not used or CIOS(A, 1) is protected against faults, we can adapt to
previous attack to target earlier calls to CIOS and still reveal the factorization of N . However, the attack
requires two faulty signatures with the same constant fault ũ. Details are given in Appendix B.

In short, depending on the ratios q/2⌈log2 q⌉ and ũ/(2r − 1), two faulty signatures S̃, S̃′ with the same
faulty value ũ have a certain probability of being equal modulo q. Thus, we recover q as gcd(N, S̃ − S̃′).
This attack works with the Square-and-Multiply LSB and Montgomery Ladder algorithms, but not with
Square-and-Multiply MSB exponentiation.

Simulation results are presented in Table 2 in Appendix C. For various 512-bit primes q, the attack
has been carried out for 1000 pairs of random messages, with a random constant fault ũ for each pair. It
is successful if the two resulting faulty signatures S̃, S̃′ satisfy that gcd(N, S̃ − S̃′) = q.

5 Zero High-Order Bits Faults

In this section, we consider yet another fault model, in which the fault attacker targets the very last
iteration in the evaluation of CIOS(A, 1) during the computation of Sq. We assume that the attacker is
able to force a certain number h of the highest-order bits of uk−1 to zero, possibly but not necessarily all
of them (i.e. 1 ≤ h ≤ r). Then, while a single faulty signature is typically not sufficient to factor, multiple
such signatures will be enough if h is not too small.

Theorem 3. Let S̃ be a faulty signature obtained in this fault model. Then, S̃ is a close multiple of q
with error size at most 2−h · q + 1, i.e. there exists an integer T such that |S̃ − qT | ≤ 2−h · q + 1.

7

Proof. The iterations numbered 0, 1, . . . , k− 2 in the evaluation of CIOS(A, 1) are all computed correctly.
Let a1, a2, . . . , ak−1 be the values of the variable a at the end of these respective iterations. We have:

a1 =

⌊
0 +A0 + u0 · q

2r

⌋
≤ 0 + (2r − 1) + (2r − 1) · q

2r
≤ q + 1

a2 =

⌊
a1 +A1 + u1 · q

2r

⌋
≤ (q + 1) + (2r − 1) + (2r − 1) · q

2r
≤ q + 1

and it is then easy to see by induction that 0 ≤ ak−1 ≤ q+1. Then, the computation of the last iteration
is attacked, with a value ũk−1 of u satisfying 0 ≤ ũk−1 ≤ 2r−h−1. Thus, the value of a after that iteration
becomes:

ak =

⌊
ak−1 +Ak−1 + ũk−1 · q

2r

⌋
≤ (q + 1) + (2r − 1) + (2r−h − 1) · q

2r
≤ q

2h
+ 1.

In particular, ak < q, so that the q-part of the signature S̃q is ak, and hence |S̃q| ≤ 2−h · q + 1. Since

S̃q = S̃ − qT for T = (t · p) mod p, this concludes the proof. ⊓⊔

Note that exactly the result still holds if previous values of u are attacked in the same fashion, so
there is no need to synchronize the attack extremely precisely so as to target only the last iteration.

Now, recovering q from faulty signatures of the form S̃ is a partial approximate common divisor
(PACD) problem, as we know one exact multiple of q, namely N , and several close multiples, namely the
faulty signatures. Since the error size ≈ q/2h is rather large relative to q, the state-of-the-art algorithm
to recover q in that case is the one proposed by Cohn and Heninger [13] using multivariate Coppersmith
techniques.

The algorithm by Cohn and Heninger is likely to recover the common divisor q ≈ N1/2 given ℓ close
multiples S̃(1), . . . , S̃(ℓ) provided that the error size is significantly less than N (1/2)1+1/ℓ

. Thus, we should
have:

log2 q − h .

(
1

2

)1+1/ℓ

log2N ≈ 21/ℓ · log2 q.

Hence, if the faults cancel the top h bits of uk−1, we need ℓ of them to factor the modulus, where:

ℓ & − 1

log2

(
1− h

log2 q

) . (3)

In practice, if a few more faults can be collected, it is probably preferable to simply use the linear case
of the Cohn-Heninger attack (the case t = k = 1 in their paper [13]), since it is much easier to implement
(as it requires only linear algebra rather than Gröbner bases) and involves lattice reduction in a lattice
of small dimension that is straightforward to construct. More precisely, reducing the lattice L generated
by the rows of the following matrix:

B −S̃(1)

. . .
...

B −S̃(ℓ)

N

where B = 2kr−h, gives a lattice basis consisting of affine forms the first ℓ of which vanish on the vector

of “error values”
(
S̃
(1)
q /B, . . . , S̃

(ℓ)
q /B

)
if ℓ is large enough. More precisely, they vanish on this vector

modulo q, and also do over the integers provided that their coefficients are much smaller than q. If we

8

assume that L behaves like a random lattice, the length of vectors in the reduced basis should be roughly
det(L)1/ dim(L) = (Bℓ ·N)1/(ℓ+1). This gives the condition:

Bℓ ·N ≪ qℓ+1

ℓ(log2 q − h) + log2N . (ℓ+ 1) log2 q.

Hence, this method should recover the error vector and thus make it possible to factor N provided that:

ℓ &
log2 q

h
(4)

which is always a worse bound than (3) but usually not by a very large margin. Table 3 in Appendix C
gives the theoretical number of faulty signatures required to factor for various values of h, both in the
general attack by Cohn and Heninger and in the simplified linear case.

We carried out a simulation of the linear version of the attack on a 1024-bit modulus N with various
values of h, and found that it works very well in practice with a number of faulty signatures consistent
with the theoretical minimum. The results are collected in Table 4. The attack is also quite fast: a naive
implementation in Sage [34] runs in a fraction of a second on a standard PC.

6 Fault Models

In this section we discuss how realistic the setup of the attacks described above can be. In principle,
all the RSA–CRT implementations using Montgomery multiplication may be vulnerable, but we have to
note that the fault setup (and how realistic it is) depends heavily on implementation choices, since many
variations around the algorithm from Figure 2 have been proposed in recent literature. After a discussion
about the characteristics of the tools needed to get the desired effects, we focus on several implementation
proposals [37,24,21,27,35,25,11], chosen for their relevance, and discuss whether our fault model is realistic
in those settings.

6.1 Characteristics of the perturbation tool

First all the perturbations needed to carry out our attacks need to be well controlled and local to some
gates of the chip. Therefore, before the attacker implements the fault, she needs to identify the localization
of the vulnerable gates and registers. The null fault attacks described in §3 need either a q′ value set to
0, or multiple consecutive faults in line 6 of the main loop of CIOS(A, 1) or during multiple consecutive
CIOS. The attacks described in §4 also need these multiple consecutive faults. Considering that state-
of-art secure micro-controllers embed desynchronization countermeasures such as clock jitters and idle
cycles, if the target of the perturbation is some shared logic with other treatments (like in the ALU of a
CPU), the fault must be accurately space and time controlled, and the effects must be repeatable as well.
Identification of the good cycles to inject the perturbation may be a very difficult task, and our attacks
seem to be irrelevant. The only exception may be the null fault of §3, if the fault is injected when the q′

register is loaded.

Nevertheless a large part of secure microcontrollers embed a modular arithmetic acceleration copro-
cessor, which is specifically designed to implement the modular operations. A large part among them
specifically use the Montgomery multiplication CIOS algorithm (or one of its described variants [23]).
Therefore, if the q′ or the uj value is isolated in a specific small size register, a unique long duration
perturbation can be sufficient for our attack to succeed. The duration of the perturbation varies of course
with the implementation choices and can vary from one cycle to log2 q, which does not exceed a hundred
of microseconds on actual chips. To get this kind of effect, laser diodes are the best-suited tool, since the
duration of the spot is completely controlled by the attacker.

9

6.2 Analysis of classical implementations of the Montgomery multiplication

The Montgomery coprocessors proposed in the literature can be divided in 3 different categories :

– the first category [37,24,21] contains variations on the Tenca and Koç Multiple Word Radix-2 Mont-
gomery Multiplication algorithm (MWR2MM)[36], which can be seen as a CIOS algorithm with
r = 1. The characteristic of these implementations is that they use no multiplier architecture, and are
therefore really suitable for constrained ASIC implementations.

– the second category [35,25] is an intermediate where r is a classical size for embedded architecture,
such as 8,16 or 32 bits, or even 36 bits if we consider FPGA architectures. These designs are more
suitable for FPGA targets, since these technologies embed very powerful built-in multipliers blocks.
Nevertheless they can also be used in ASIC for intermediate area/latency trade-offs.

– finally, the last category [27,11] propose a version of CIOS/SOS with only one loop, implying that
r ≥ ⌈log2 q⌉. The main difficulty of these implementation techniques is to deal with the very large
multiplications they require (one r× r and two half r× r multiplications per CIOS). For that purpose
they use interpolation techniques, like Karatsuba in [11] or the Residue Number System (RNS) in [27].
These implementations are designed to achieve the shortest latency, and are therefore area consuming.

Architectures based on MWR2MM (r = 1). In this kind of architecture, it is not feasible to
manipulate the value of q′, since it is always equal to 1, so no wire nor register carry its value. On the
other hand, the value of uj is computed at every loop of the CIOS, and since it is only one bit, a simple
shot on any of the logical level during the final multiplication CIOS(A, 1) is sufficient to get an exploitable
result (uj = 0 corresponds to the null fault of §3, and uj = 1 to the constant fault of §4).

The first proposal [37] is a fully systolic 5 array of processing elements (PE) executing consecutively
line 6 of the CIOS algorithm in one cycle, and line 7 in k cycles from LSB to MSB. Figure 4 proposes an
overview of the architecture. Each PE consists in a w-word carry save adder, able to compute a w word
addition and to keep the carry for the next cycle. On the figure T (j) stands for the jth least significant w
word of T .

Fig. 4. Systolic Montgomery Multiplier of [37] and potential target of the fault

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

RAM

RAM

PE 1 PE 2 PE t

1 11

CS to binary

conversion

data path

CS adder

ai−1(j)

xi

Control logic

ai(j)

q(j)

y(j) y(j)

q(j)· · ·

xi xi+1 xi+t−1

queue

Control logic

y(j)

ai(j)

input

result Vulnerable areas

q(j)

n-bit Right t-shifter for x

w

2w

w

At each clock cycle, the PE presents the computed result ai(j) to the next one, and the value ui is kept
in the PE for the computation of the next word ai(j + 1). The value of ui is computed before the word
ai(0) is presented, and then is kept in each PE during the whole computation of ai in a register. After a

5 Meaning that all the PE are the same.

10

complete multiplication, the result an is transformed from a carry save representation to binary thanks
to the CS to binary converter. This architecture has the great advantage of being completely scalable
(whatever the number of PE and the size of M , this architecture can compute the expected result as long
as the RAM are correctly dimensioned).

To achieve our attack, the register keeping ui can be the targeted, but every PE must be targeted
simultaneously in order to get the correct result. Therefore it is more interesting to target the control
logic responsible for the sequencing of the register loading, since all the PE are connected.

In [24], the authors manage to get rid of the CS to binary converter by redesigning the CS adder of
every PE. The vulnerability to our attack is therefore the same, since the redesign does not affect the
targeted area.

Huang et al. [21] proposed a new vision of the data dependency in the MWR2MM algorithm and
rearranged the architecture of [37], in a semi systolic form. Figure 5 gives an overview of the architecture.
In this architecture, the intermediate value ai is manipulated in carry save format (ai = ci+si). A specific
PE, PE0 is specialized in generating the ui values at each cycle, while the jth PE is in charge for computing
the sequence ai(j). The scalability is lost in exchange for a better time/area trade-off.

Fig. 5. Overview of the [21] architecture and potential target of the fault

������
������
������
������
������
������

������
������
������
������
������
������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

���������
���������
���������
���������

��������
��������
��������
��������

��������
��������
��������
��������

ui−1 ui−2 ui−j

y(0) q(0) y(1) q(1) y(2) q(2) y(j) q(j)

Vulnerable areas

1 bit Right shift register containing x

1 bit Right shift register containing U

· · ·

x(i)

PE1 PEjPE2PE0

x(i− 1) x(i− 2) x(i− j)

re
gi
st
er

logic

Combinational

xi

Vulnerable areas

si(1)

ci(1)

ui y(0) q(0)

ui

si(1)

ci(1) ci−1(2)

si−1(2)

· · ·

This architecture is very vulnerable to our attacks, since a simple n-cycle long shot on the right logic
in the PE0 (see Figure 5) is sufficient to get the expected result.

According to the authors, the design works at 100 MHz on their target platform (a Xilinx Virtex II
FPGA), therefore the duration of the perturbation is at least 10 µs for a 1024 bits multiplication (2048
bits RSA) if the Garner recombination is used (using the attack from §3.1 or §4.1). If classical CRT
reconstruction is used, according to Table 1 in Appendix C, 200 µs will be enough for a null fault.

As a conclusion we can see that this kind of implementation is very vulnerable, since the setup of the
attack is quite simple.

High radix architecture (1 < r < ⌈log2 q⌉). In this type of implementation choice the value
q′ = −p−1 mod 2r is computed in a register, unless the quotient pipelining approach [29] is used. In all
the implementations, the value q′ is an r-bit register and can be the target of the attack.

For example, the implementation of [25] is described in Figure 6. It relies on the coordinated usage of
multiplier blocks of the Xilinx Virtex II together with specifically designed carry save adders. The CIOS
algorithm from Figure 2 is completely respected in this implementation. The values uj can be the target
of any fault described in this paper, but it may be easier to put once for all the q′ register to 0, with a

11

100% success rate of the attack if properly carried out. Another implementation is mentioned in [25] with
a four-deep pipeline, but it suffers from the same vulnerability.

Fig. 6. Overview of the [25] architecture and potential target of the fault

���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������

��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������

���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

q′

3 input carry save adder

ai register

Vulnerable areas

y(i)

x(0) · y(i)

x y

ui

ai(0)

q

ui · q

x · y(i)

On the contrary, the attack may be more difficult to achieve on the architecture of [35, Figure 4].
First, it uses quotient determination [29], and therefore does not need to store q′ anywhere. Second, the
multiplier in charge of computing uj is shared for all the Montgomery computation. Realizing the attack of
§4 on this architecture means that the attacker is able to evaluate the specific cycles where uj is computed
to generate a perturbation. For that particular design, the attacks seem out of reach.

Full radix architecture (r ≥ ⌈log2 q⌉). In this kind of implementation, a single round is enough
to compute the Montgomery algorithm. This implementation choice reports all the complexity on the
design of a log2 q× log2 q multiplier, fully used once during the multiplication process and partially twice
during the Montgomery reduction. To reduce the full complexity of the big multiplication, interpolation
techniques are used. In [11], a classical nested Karatsuba multiplication is used, whereas [27] proposes
RNS. Both can be seen as derived from the Lagrange interpolation, with different bases.

In these architectures, a specific laser shot must swap all the u0 or q′ at the same time to produce a
null fault. To have a chance, a better solution is to use non invasive attacks (in the sense of [33]), such
as power or clock glitches. Indeed u0 or q′ are fully manipulated on the same clock cycle (or in very few),
therefore it may be more practical to make the sequencer missing an instruction instead of aiming directly
the registers.

The zero high-order bits fault attack from §5 is more feasible. In the architecture of [11], the most
significant bits of u0 can be set to 0. On the other hand, the architecture of [27] is more immune to this
attack, since the RNS representation makes it impractical to modify the significant bits of u0.

7 Conclusion

In this paper, we have shown that specific realistic faults can defeat unprotected RSA–CRT signatures
with any padding scheme, probabilistic or not. While it is not difficult to devise suitable countermeasures
(for example, checking that Sq is not too small before outputting a signature is enough to thwart all of
our attacks), this underscores the fact that relying on probabilistic signature schemes does not, in itself,
protect against faults.

12

References

1. O. Aciiçmez, W. Schindler, and Ç. K. Koç. Improving Brumley and Boneh timing attack on unprotected SSL implemen-
tations. In V. Atluri, C. Meadows, and A. Juels, editors, ACM Conference on Computer and Communications Security,
pages 139–146. ACM, 2005.

2. C. Aumüller, P. Bier, W. Fischer, P. Hofreiter, and J.-P. Seifert. Fault attacks on RSA with CRT: Concrete results and
practical countermeasures. In B. S. Kaliski, Ç. K. Koç, and C. Paar, editors, CHES, volume 2523 of Lecture Notes in
Computer Science, pages 260–275. Springer, 2002.

3. M. Bellare and P. Rogaway. PSS: Provably secure encoding method for digital signatures. Submission to IEEE P1363,
1998.

4. M. Bellare and P. Rogaway. Probabilistic signature scheme. Patent, July 2001. US 6266771.

5. J. Blömer, M. Otto, and J.-P. Seifert. A new CRT-RSA algorithm secure against Bellcore attacks. In S. Jajodia, V. Atluri,
and T. Jaeger, editors, ACM Conference on Computer and Communications Security, pages 311–320. ACM, 2003.

6. D. Boneh, R. A. DeMillo, and R. J. Lipton. On the importance of checking cryptographic protocols for faults. In
EUROCRYPT, pages 37–51, 1997.

7. D. Boneh, R. A. DeMillo, and R. J. Lipton. On the importance of eliminating errors in cryptographic computations. J.
Cryptology, 14(2):101–119, 2001.

8. E. Brier, D. Naccache, P. Q. Nguyen, and M. Tibouchi. Modulus fault attacks against RSA-CRT signatures. In B. Preneel
and T. Takagi, editors, CHES, volume 6917 of Lecture Notes in Computer Science, pages 192–206. Springer, 2011.

9. D. Brumley and D. Boneh. Remote timing attacks are practical. Computer Networks, 48(5):701–716, 2005.

10. Y. Chen and P. Q. Nguyen. Faster algorithms for approximate common divisors: Breaking fully homomorphic encryption
challenges over the integers. In T. Johansson and D. Pointcheval, editors, EUROCRYPT, volume 7237, 2012. To appear.

11. G. C. T. Chow, K. Eguro, W. Luk, and P. Leong. A Karatsuba-based Montgomery multiplier. In FPL’10, pages 434–437,
2010.

12. M. Ciet and M. Joye. Practical fault countermeasures for Chinese remaindering based cryptosystems. In L. Breveglieri
and I. Koren, editors, FDTC, pages 124–131, 2005.

13. H. Cohn and N. Heninger. Approximate common divisors via lattices. Cryptology ePrint Archive, Report 2011/437,
2011. http://eprint.iacr.org/.

14. J.-S. Coron, C. Giraud, N. Morin, G. Piret, and D. Vigilant. Fault attacks and countermeasures on Vigilant’s RSA-CRT
algorithm. In L. Breveglieri, M. Joye, I. Koren, D. Naccache, and I. Verbauwhede, editors, FDTC, pages 89–96. IEEE
Computer Society, 2010.

15. J.-S. Coron, A. Joux, I. Kizhvatov, D. Naccache, and P. Paillier. Fault attacks on RSA signatures with partially unknown
messages. In C. Clavier and K. Gaj, editors, CHES, volume 5747 of Lecture Notes in Computer Science, pages 444–456.
Springer, 2009.

16. J.-S. Coron and A. Mandal. PSS is secure against random fault attacks. In M. Matsui, editor, ASIACRYPT, volume
5912 of Lecture Notes in Computer Science, pages 653–666. Springer, 2009.

17. J.-S. Coron, D. Naccache, and M. Tibouchi. Fault attacks against EMV signatures. In J. Pieprzyk, editor, CT-RSA,
volume 5985 of Lecture Notes in Computer Science, pages 208–220. Springer, 2010.

18. H. L. Garner. The residue number system. In IRE-AIEE-ACM ’59 (Western), pages 146–153. ACM, 1959.

19. C. Giraud. An RSA implementation resistant to fault attacks and to simple power analysis. IEEE Trans. Computers,
55(9):1116–1120, 2006.

20. N. Howgrave-Graham. Approximate integer common divisors. In J. H. Silverman, editor, CaLC, volume 2146 of Lecture
Notes in Computer Science, pages 51–66. Springer, 2001.

21. M. Huang, K. Gaj, S. Kwon, and T. A. El-Ghazawi. An optimized hardware architecture for the Montgomery multipli-
cation algorithm. In R. Cramer, editor, Public Key Cryptography, volume 4939 of Lecture Notes in Computer Science,
pages 214–228. Springer, 2008.

22. B. S. Kaliski. Raising the standard for RSA signatures: RSA-PSS. CryptoBytes Technical Newsletter, February 2003.
http://www.rsa.com/rsalabs/node.asp?id=2005.

23. Ç. K. Koç and T. Acar. Analyzing and comparing Montgomery multiplication algorithms. IEEE Micro, 16(3):26–33,
1996.

24. C. McIvor, M. McLoone, and J. McCanny. Modified Montgomery modular multiplication and RSA exponentiation
techniques. IEE Proceedings - Computers and Digital Techniques, 151(6):402–408, 2004.

25. N. Mentens, K. Sakiyama, B. Preneel, and I. Verbauwhede. Efficient pipelining for modular multiplication architectures
in prime fields. In Proceedings of the 17th ACM Great Lakes symposium on VLSI, GLSVLSI ’07, pages 534–539, New
York, NY, USA, 2007. ACM.

26. P. L. Montgomery. Modular multiplication without trial division. Mathematics of Computation, 44:519–521, 1985.

27. H. Nozaki, M. Motoyama, A. Shimbo, and S. Kawamura. Implementation of RSA algorithm based on RNS Montgomery
multiplication. In Ç. K. Koç, D. Naccache, and C. Paar, editors, CHES, volume 2162 of Lecture Notes in Computer
Science, pages 364–376. Springer, 2001.

28. Oracle. JavaCard 3.0.1 Platform Specification. http://www.oracle.com/technetwork/java/javacard/overview/.

13

http://eprint.iacr.org/
http://www.rsa.com/rsalabs/node.asp?id=2005
http://www.oracle.com/technetwork/java/javacard/overview/

29. H. Orup. Simplifying quotient determination in high-radix modular multiplication. In IEEE Symposium on Computer
Arithmetic’95, pages 193–193, 1995.

30. M. Rivain. Securing RSA against fault analysis by double addition chain exponentiation. In M. Fischlin, editor, CT-RSA,
volume 5473 of Lecture Notes in Computer Science, pages 459–480. Springer, 2009.

31. W. Schindler. A timing attack against RSA with the Chinese remainder theorem. In Ç. K. Koç and C. Paar, editors,
CHES, volume 1965 of Lecture Notes in Computer Science, pages 109–124. Springer, 2000.

32. A. Shamir. Improved method and apparatus for protecting public key schemes from timing and fault attacks. Patent
Application, November 1998. WO 1998/052319 A1.

33. S. P. Skorobogatov and R. J. Anderson. Optical fault induction attacks. In B. S. Kaliski, Ç. K. Koç, and C. Paar,
editors, CHES, volume 2523 of Lecture Notes in Computer Science, pages 2–12. Springer, 2002.

34. W. Stein et al. Sage Mathematics Software (Version 4.8). The Sage Development Team, 2012. http://www.sagemath.
org.

35. D. Suzuki. How to maximize the potential of FPGA resources for modular exponentiation. In P. Paillier and I. Ver-
bauwhede, editors, CHES, volume 4727 of Lecture Notes in Computer Science, pages 272–288. Springer, 2007.

36. A. F. Tenca and Ç. K. Koç. A scalable architecture for Montgomery multiplication. In Proceedings of the First Interna-
tional Workshop on Cryptographic Hardware and Embedded Systems, CHES ’99, pages 94–108, London, UK, UK, 1999.
Springer-Verlag.

37. A. F. Tenca and Ç. K. Koç. A scalable architecture for modular multiplication based on Montgomery’s algorithm. IEEE
Trans. Comput., 52:1215–1221, September 2003.

38. The OpenSSL Project. OpenSSL: The open source toolkit for SSL/TLS. http://www.openssl.org/.
39. D. Vigilant. RSA with CRT: A new cost-effective solution to thwart fault attacks. In E. Oswald and P. Rohatgi, editors,

CHES, volume 5154 of Lecture Notes in Computer Science, pages 130–145. Springer, 2008.
40. C. D. Walter. Montgomery’s multiplication technique: How to make it smaller and faster. In Ç. K. Koç and C. Paar,

editors, CHES, volume 1717 of Lecture Notes in Computer Science, pages 80–93. Springer, 1999.
41. S.-M. Yen, S.-J. Moon, and J. Ha. Hardware fault attack on RSA with CRT revisited. In P. J. Lee and C. H. Lim,

editors, ICISC, volume 2587 of Lecture Notes in Computer Science, pages 374–388. Springer, 2002.

A Null Faults in Successive CIOS

We consider here the fault model where we force q′ to zero on consecutive CIOS steps. We will examine
how this plays out in each on the three exponentiation algorithms in turn. Throughout this appendix, we
let ℓ = ⌈log2⌈log2 q⌉⌉.

In all cases, we also assume, heuristically, that the values x̄, A in Montgomery representation involved
in our computation are uniformly distributed modulo q before the first fault is injected; this means, in
particular, that they are smaller than 2⌈log2 q⌉ − 1 with probability at least 1/2.

Square-and-Multiply LSB. We first consider a fault model in which the attacker can force the pre-
computed value q′ to zero during ℓ calls of CIOS(x̄, x̄) in the Square-and-Multiply LSB algorithm (line
7), during the computation of Sq.

Theorem 4. With probability at least 1/2, a faulty signature S̃ generated in this fault model, using Square-
and-Multiply LSB, is a multiple of q (regardless of the encoding function involved, probabilistic or not).

Proof. Suppose faults are injected starting from iteration i = α in the loop of the exponentiation algo-
rithm, and that before then, |x̄| ≤ ⌈log2 q⌉−1: this happens with probability at least 1/2. The fault q′ = 0
has to occur in CIOS(x̄, x̄) (the CIOS at line 6 does not modify x̄ and then is ignored in this case). Then,
the output x̄ of this faulty CIOS is, up to rounding errors:

x̃ =
⌊ x̄0x̄
2rk

⌋
+ · · ·+

⌊ x̄k−1x̄

2r

⌋
=
⌊ x̄k−1x̄

2r

⌋
+ o(2r(k−1))

With our assumption on the size of x̄, we obtain |x̃| ≤ ⌈log2 q⌉−2. Therefore, for i = α+1 and with q′ = 0,
the size of the output of CIOS(x̃, x̃) will be reduced to at most ⌈log2 q⌉ − 4, and so on. By induction,
keeping the fault q′ = 0 up to iteration i = α+ ℓ− 1, i.e. through ℓ executions of CIOS, brings the value
x̄ down to 0. Clearly, the faulty half-exponentiation thus outputs S̃q = 0, hence the stated result. ⊓⊔

14

http://www.sagemath.org
http://www.sagemath.org
http://www.openssl.org/

Square-and-Multiply MSB. For now, we force q′ to zero during ℓ consecutive steps of the loop of the
Square-and-Multiply MSB. That represents at worst 2ℓ faulty calls to CIOS.

Theorem 5. With probability at least 1/2, a faulty signature S̃ generated in this fault model, using Square-
and-Multiply MSB, is a multiple of q (regardless of the encoding function involved, probabilistic or not).

Proof. The main difference in the case of the Square-and-Multiply MSB is that the CIOS at line 7 affects
the same value A as CIOS(A,A). Consequently, the fault has to be injected in execution of CIOS(A,A)
as well, and, when it occurs, CIOS(A, x̄) to reduce the size of A. The details are the same as for the
Square-and-Multiply LSB algorithm and the required number of consecutive faulty CIOS is 2ℓ in the
worst case, still with probability ≥ 1/2. ⊓⊔

Remark 1. While the occurrence of CIOS(A, x̄) demands one fault, if the size of x̄ is less than ⌈log2 q⌉, it
induces a reduction of the size of A too, decreasing the required number of faults to have A = 0. Moreover,
the probability 1/2 can be removed if the faults are initiated at the begin of the Square-and-Multiply
MSB algorithm. Indeed, the initial value of A is equal to R mod q, and so A < 2⌈log2 q⌉.

Montgomery Ladder. Finally, we consider the case when q′ can be forced to zero in 2ℓ − 1 suitable
consecutive CIOS steps of the Montgomery Ladder.

Theorem 6. With probability at least 1/2, a faulty signature S̃ generated in this fault model, using Mont-
gomery Ladder, is a multiple of q (regardless of the encoding function involved, probabilistic or not).

Proof. The principle is to cancel A or x̄, depending on the values of ei during the attack. For instance,
we cause a fault in the CIOS that affect A (line 7 and 10). With probability at least 1/2, A < 2⌈log2 q⌉

and we assume that ℓ CIOS(A,A) are computed before ℓ CIOS(x̄, x̄) (otherwise, the choice x̄ is more
efficient). Hence, by faulting the CIOS at line 7 when ei = 0 and the CIOS at line 10 else, the worst case
requires at worst 2ℓ− 1 consecutive faults to bring A to zero. ⊓⊔

Remark 2. In practice, it may not be possible to decide which CIOS should be attacked since that de-
pends on the secret exponent bits. So one can instead cause faults throughout 2ℓ − 1 iterations of the
exponentiation process, amounting to 4ℓ− 2 consecutive faulty CIOS, to ensure that Sq = 0 (always with
the probability ≥ 1/2). Note that this worst case is rarely reached since the size of the non chosen value
(x̄ in our example) has an active role in the reduction of the size of the chosen value (here A) during the
computation of CIOS(A, x̄). Moreover, the probability 1/2 can be lifted if the faults are injected from the
start of the Montgomery Ladder algorithm, in view of the initial value of A.

B Constant Faults in Successive CIOS

We focus on the Square-and-Multiply LSB algorithm and assume that constant faults are injected in
the evaluations of CIOS(x̄, x̄) and CIOS(A, x̄) during the exponentiation process computing Sq. More
precisely, suppose that ui = ũ (i = 0, . . . , k − 1) for these particular CIOS, and write:

ℓ = 2⌈log2 q⌉−1

√
1− ũ

(2r − 1)2⌈log2 q⌉−2
.

We claim that if the initial value of x̄ is such that ℓ < x̄ < 2⌈log2 q⌉−1, then the computed value A of the
Square-and-Multiply LSB approaches ℓ.

Indeed, one can see that the output x̃ of each faulty CIOS(x̄, x̄) is roughly:

x̃ ≈ x̄2

2⌈log2 q⌉
+

ũq

2r − 1
− ε · q (ε ∈ {0, 1})

15

Looking at the sequence vn+1 = f(vn) = av2n + c with a = 1
2⌈log2 q⌉ , c = ũq

2r−1 and v0 represents the
message in Montgomery representation. This sequence will tend to a limit ℓ if ∆ = 1 − 4ac > 0, i.e.

ũ
2r−1 < 2⌈log2 q⌉−2

q . Our assumption on the value of v0 implies that f(I) ∈ I. Referring to the graph below,
it appears then that the sequence will tend to ℓ = min(ℓ1, ℓ2) where ℓ1 and ℓ2 denote the two roots of
f(ℓ) = ℓ.

0

c
ℓ

f(x) = ax2 + c

g(x) = xg(x) = x

v0

However, we want that this limit be reached before the end of the exponentiation process. Let us
determine the convergence speed of this sequence:

|vn+1 − ℓ| = |f(vn)− f(ℓ)| ≤ |f ′(ℓ)| · |vn − l| ≤ |f ′(ℓ)|n+1 · |v0 − ℓ|

Since ℓ and v0 are integer values, we look for the condition |f ′(ℓ)|n+1 · |v0 − ℓ| ≤ 1. Hence, the limit is
reached for n such as:

n+ 1 ≥ − log2(|v0 − ℓ|)
log2(|f ′(ℓ)|)

For example, we search a condition in order to have CIOS(x̄, x̄) = ℓ before the half (|q|/2) of the exponen-
tiation process. Since log2(|v0 − ℓ|) ≈ |q|, this condition is −1

log2(|f
′(ℓ)|) < 1/2, i.e. |f ′(ℓ)| < 1/4. Moreover,

f ′(ℓ) = 2aℓ = 1 −
√
∆ > 0 leads to 9/16 < ∆ and then to ũ

2r−1 < 9
16

2⌈log2 q⌉−2

q . We see on this example

that the success of the attack will depend on the ratio q/2⌈log2 q⌉ and on the ratio ũ/(2r − 1).

Looking at CIOS(A, x̄), the output Ã is roughly:

Ã ≈ Ax̄

2⌈log2 q⌉
+

ũ

2r − 1
− ε · q (ε ∈ {0, 1})

and the associated sequence is a little more complicated:

g(wn) = wn+1 =

wn if en+1 = 0

awnvn + c else

It is clear that if vn = ℓ, wn will tend to this limit too. We just have to verify that this sequence reaches ℓ
before the end of the exponentiation process. In fact, both sequences are linked by the following relation:

wn+1 − vn+1

wn − vn
=

vn

2⌈log2 q⌉

16

With our assumption, the sequence (vn) is decreasing, and we have:

w⌈log2 q⌉
− v⌈log2 q⌉

w0 − v0
<

1

2⌈log2 q⌉

Hence the range between the two sequences constantly decreases during the exponentiation process and
if (vn) tends to ℓ before the end of the exponentiation process, then (wn) will reach this value too.

The attack consists on computing two signatures S̃, S̃′ by faulting them with the same fault ũ. In
consequence, with a certain probability depending on the ratios q/2⌈log2 q⌉ and ũ/(2r − 1), these two
signatures will be equal modulo q. Thus, we recover q as gcd(N, S̃ − S̃′).

Remark 3. In Table 2 below, the success rates are even better than expected. In fact, if ∆ < 0, the value
x̄ can enter in a cycle of a few different values. As a consequence, with some probability, two messages
can have the same value Sq. Geometrically, that can be explained by the representation of the function
f ◦ · · · ◦ f which is flatter and can intersect the line representing g(x) = x.

17

C Simulation Results

S&M LSB S&M MSB Montgomery Ladder

Faulty iterations (%) Start (%) Anywhere (%) Start (%) Anywhere (%)

8 31 93 62 45 30

9 65 100 93 87 76

10 89 100 100 99 93

Table 1. Success rate of the null fault attack on consecutive CIOS steps, for a 512-bit prime q and r = 16. 100 faulty
signatures were computed for each parameter set. For the Square-and-Multiply MSB and Montgomery Ladder algorithms,
we compare success rates when faults start at the beginning of the loop vs. at a random iteration.

q/2⌈log2 q⌉ 0.666 0.696 0.846 0.957

Success rate (%) 36 34.4 26.7 20.4

Table 2. Success rate of the constant fault attack on successive CIOS steps, when using Square-and-Multiply LSB exponen-
tiation with random 512-bit primes q and r = 16.

Number h of zero top bits 48 40 32 24 16

Minimum ℓ with the general attack 8 9 11 15 22

Minimum ℓ with the linear attack 11 13 16 22 32

Table 3. Theoretical minimum number ℓ of zero higher-order h-bit faulty signatures required to factor a balanced 1024-bit
RSA modulus N using the general Cohn-Heninger attack or the simplified linear one.

Number ℓ of faulty signatures 11 12 13 14 15 16 17 18

Success rate with h = 48 (%) 23 100 100 100 100 100 100 100

Success rate with h = 40 (%) 0 0 2 100 100 100 100 100

Success rate with h = 32 (%) 0 0 0 0 0 0 99 100

Average CPU time (ms) 33 35 38 41 45 49 54 59

Table 4. Experimental success rate of the simplified (linear) Cohn-Heninger attack with ℓ faulty signatures when N is a
balanced 1024-bit RSA modulus. Timings are given for our Sage implementation on a single core of a Core 2 CPU at 3 GHz.

18

	Attacking RSA–CRT Signatures with Faults on Montgomery Multiplication

