
ABSTRACT
It is difficult to exploit the massive, fine-grained parallelism of
configurable hardware with a conventional application program-
ming language such as C, Pascal or Java. The difficulty arises from
the mismatch between the synchronous, concurrent processing
capability of the hardware and the expressiveness of the lan-
guage—the so-called “semantic gap.” We attack this problem by
using a programming model matched to the hardware’s capabilities
that can be implemented in any (unmodified) object-oriented lan-
guage, and building a corresponding compiler. The result is appli-
cation code that can be developed, compiled, debugged and
executed on a personal computer using conventional tools (such as
Visual C++ or Visual Cafe), and then recompiled without modifi-
cation to the configurable hardware target. A straightforward C++
implementation of the Serpent encryption algorithm compiled with
our compiler onto a Virtex XCV1000 FPGA yielded an implemen-
tation that was smaller (3200 vs. 4502 CLBs) and faster (77 MHz
vs. 38 MHz) than an independent VHDL implementation with the
same degree of pipelining. A tuned version of the source yielded
an implementation that ran at 95 MHz.

1. INTRODUCTION
Most application programming languages adhere to a simple,
sequential programming model. Given their heritage, this is not
surprising; since early processors were incapable of much more
than simple, sequential execution, there was little motivation to
include language features (such as concurrency) that could not be
effectively exploited by a sequential processor.

As processor designs have become denser and more complex,
the quest for ever-increasing performance has put pressure on
compilers to take advantage of the parallelism offered by the hard-
ware. RISC processors often expose part of their pipeline, allowing
the compiler to take advantage of overlapped execution of instruc-
tions by filling “delay slots” following branches. VLIW processors
offer multiple, pipelined function units, rotating registers and other
mechanisms that assume compilers capable of extracting fine-

grained, instruction-level parallelism. This has inspired increas-
ingly sophisticated compiler algorithms in dependence analysis,
scheduling, software pipelining, predication, speculative execu-
tion, and so on.

Hardware complexity has progressed to the point where it is
now possible to design processors with thousands of function
units, and advances in molecular computing suggest the possibility
of constructing processors with millions [24]. How can this mas-
sive parallelism be exploited? There are two general approaches:

1. Improve algorithms for extracting parallelism from “dusty
deck” sequential code. Fine-grained (instruction level) parallelism
is insufficient in most applications to keep large numbers of func-
tion units busy. Most medium-grained parallelization research has
focussed on parallelization of regular structures, such as nested
loops. These can exploit the hardware parallelism, but often
impose constraints on the style in which the code is written (e.g.
affine array references) [11]; although such code can often (but not
always) be rewritten to meet the constraints, it is then no longer
dusty deck, but rather uses a new programming model. Less work
appears to have been done in the automatic extraction of irregular,
medium-grained (procedure level) parallelism. The dusty deck
approach has the obvious advantages of maintaining a familiar
programming model and allowing the acceleration of legacy code,
but it is debatable whether it will ever be able to fully exploit the
potential of configurable hardware.

2. Use a parallel programming model. Parallel programming
models have been successfully used in systolic arrays and cellular
automata. Compilers for such architectures are easy to build, but
the programming models are quite restrictive, limiting their
domains of applicability, and the languages often unfamiliar,
which hinders acceptance. Parallel models have also been used for
decades in logic design, which probably explains the current inter-
est in hardware design languages, such as VHDL, for program-
ming configurable systems. Hardware design languages, though,
have the disadvantages of being very low-level, unfamiliar to
application programmers, and difficult to integrate with other
application code. The parallel programming model has the obvious
challenge of user acceptance.

1.1 The problem
We wish to bring the power of configurable hardware to applica-
tion programmers (rather than hardware designers), sparing them
the low-level details of the hardware, and yet providing perfor-
mance comparable to an implementation written in a hardware
design language.
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1.2 Overview of our approach
We are exploring the use of a simple, explicitly parallel program-
ming model combined with a conventional application language to
exploit the parallelism of configurable hardware architectures. We
require the user to specify the medium-grained parallelism explic-
itly, but rely upon the compiler to extract the fine-grained, instruc-
tion-level parallelism.

Our programming model, which we call “Machines,” is really
just an adaptation to conventional application languages of the
concurrent state machine model used by hardware designers for
decades. However, it is somewhat more abstract, in that Machines
may be nested, and micro-architectural issues (micro-pipelining,
micro-sequencing, clocking, and serial vs. parallel arithmetic) are
handled by the compiler. It allows for the creation of large numbers
of synchronous, medium-grained “processes” with relatively
unconstrained communication paths (although the user will pay the
penalty for a lack of discipline here). Pipelines, systolic arrays, cel-
lular automata, “butterfly” computations (e.g. FFT) and many
other structures, including irregular computations, may be easily
expressed in this model. We believe the model exploits the fine-
grained, synchronous, high-bandwidth communication of FPGAs
and other configurable architectures, presents a simple model of
communication and synchronization, and also allows the construc-
tion of efficient compilers without heroic algorithmic efforts. The
downside is that it requires the user to extract the medium-grained
parallelism of the algorithm directly—no dusty decks here.

Our implementation language can be any object-oriented lan-
guage without extensions or modifications (although it is easier to
implement in an object-oriented language with operator overload-
ing and parametric classes, like C++, than a language like Java).
Using, and preserving the semantics of, a conventional language
has several advantages:

• Familiarity—a programmer familiar with the language can
read and understand such programs once the programming
model is understood.

• Development—standard tools and development environments
(such as Visual C++ or Visual Cafe), may be used to design,
debug and execute the parallel application on a conventional
sequential processor before doing a final compile and down-
load of the (debugged) application to hardware.

• Execution speed—since the source language can be compiled
directly to machine code, it can execute more quickly during
development than hardware design languages, such as Verilog
or VHDL, that must be simulated.

We have been unable to implement the model in procedural
languages such as C or Pascal without either perturbing the seman-
tics of the language, introducing awkwardness in the expression of
certain algorithms, or creating potential state inconsistency prob-
lems that would be difficult for the compiler to detect.

2. RELATED WORK
Languages for programming configurable hardware fall into two
broad categories: hardware design languages, and conventional
application languages with modifications and/or extensions.

Hardware design languages offer the advantage of expressive-
ness—they are a close fit to the hardware—but can be complex
and low-level. The older languages (Verilog and VHDL) cannot be
compiled to native machine code and must be simulated for debug-
ging, slowing down the development cycle. Newer hardware lan-
guages which are attempting to resolve these problems include
System C, Spec C and Superlog [22].

Application language solutions fall into several different
camps, depending on the programming model they use and how
they affect the grammar and semantics of the original language.
Systems that extend a conventional language with non-standard
parallel constructs (which means they cannot be compiled by a
standard compiler for the base language) include Handel-C [18],
HardwareC [20], RL [21], Transmogrifier C [13], Spyder C++
[14], Data Parallel C [8], Picasso [19] and SA-C [9]. Unconven-
tional application languages created with an explicit parallel pro-
gramming model include CAM [25], TAO [23] and an unnamed
language by Wirth [7]. Systems mapping unmodified languages
onto hardware include BRASS [2, 12], RAW [1, 3, 5], Ocapi [6],
Forge [15, 16], Nenya [10] and the work by Babb [4]. Systems
which expose the parallelism of the underlying hardware (often
through libraries) within the framework of a conventional lan-
guage include RaPiD [30], PipeRench [31], PAM-Blox [32], JHDL
[33] and the C Level libraries [17].

3. PROGRAMMING MODEL

3.1 Objectives/philosophy
Our goal is to compile applications onto configurable hardware,
not raw silicon. We assume that the target has large numbers of
synchronous function units and that there is high bandwidth com-
munication between function units. These assumptions are, of
course, technology dependent, and would not serve as a useful
model for, say, independent processors communicating over a net-
work. 

In creating the model, we have adopted the tactics of: 

• medium-grained parallelism specified by user; 

• fine-grained parallelism extracted by the complier; 

• user spared from micro-architectural and design issues.

3.2 Example 1: Counter
To introduce the model, here’s a program (written in Java) that
implements a counter:

A Machine is an active entity that is the smallest independent
unit of execution, analogous to a thread in an application language
or a process in VHDL. Since Counter extends the Machine class,
it, too, is a Machine. The count data member here holds the state
of the counter (initialized to 0). The step() method is the core of
the Machine: it gets called automatically once per “cycle” by the
runtime environment to increment and update the stored count.
When instantiated, this Machine will behave as though the follow-

class Counter extends Machine {
int count = 0; // state variable
void step() { count++; }

}
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ing code were executed:

Note that this implicit active behavior differentiates a Machine
from an Object, even though the implementation is in an object-
oriented language.

3.3 Example 2: Filter Pipeline
Machines may have inputs and outputs. The following code imple-
ments an IIR low-pass filter that accepts an input data stream, fil-
ters it, and emits the filtered version:

This illustrates how inputs and outputs are declared and imple-
mented. The protected keyword is overloaded to declare a vari-
able used to buffer inputs to the machine1; the input() method does
nothing more than take one or more data inputs to the Machine and
store them in protected data members for later use by step(). The
step() method uses the current state (value) and input (inputData)
to compute and update the state of the machine. The output()
method allows an output data value to be extracted from the
Machine in a controlled way.

A Machine is also a data type and may be declared as member
data just like a primitive data type. This allows us to create and
connect multiple Machines to form arbitrary topologies of cooper-
ating, concurrent processors. The following code shows how mul-
tiple LowPassFilter Machines may be composed to form a
pipeline of ten low-pass filters:

In this example, the ten low-pass filters are declared as data
members in the enclosing FilterPipeline Machine. The input()
method relays the input to the FilterPipeline to the first stage of
the internal pipeline, and then cascades the output of each stage to
the input of the following stage. The step() method need not do

anything here (and could be omitted), since all of the work is done
by the embedded LowPassFilters (this happens automatically,
since machines are active). Finally, the output() method delivers
the output of the entire pipeline by simply relaying the output of
the final stage. Thus the internal structure of FilterPipeline is
completely hidden from the user, and FilterPipeline may be used
just like any other fundamental Machine.

3.4 Rules of the model
A parallel program in our programming model consists of a single
instance of a class that extends the Machine base class. Since
machines may be nested, the total number of machines can be
quite large. All Machine instances execute concurrently, regardless
of where they are declared in the hierarchy, and behave as though
the following pseudo-code were executed:

The boolean variable runnable allows the machines to step for a
predetermined number of steps, or until some condition has been
met internally within the program.

Machine data members are always private to other Machines: a
Machine may receive data from another Machine only through
invocation of an output method.

Protected data members are writable only by an input()
method, if any. An input() method may write protected data mem-
bers, but may not read unprotected data members or perform any
other computation.

Many issues have not been addressed here, among them:
returning multiple outputs from a machine; implementing the run-
nable predicate; and integration with a host application.

4. COMPILER ISSUES
Our compiler generates configuration bits directly from source
code without using an intermediate representation, such as VHDL,
or other tools, such as a VHDL compiler, floorplanner, router, etc.
Our current implementation targets the Virtex family of FPGA’s
and uses the JBits system from Xilinx to create the actual configu-
ration bitfiles. Although JBits includes a router, we have imple-
mented our own A* (depth-first search) router.

The compiler, written in Java, is conventionally structured into
multiple passes, and separates target-dependent and -independent
code using interfaces and the Factory Method design pattern [26]
(Figure 1).

The remainder of this section focuses on three areas of com-
piler construction where design decisions differ from a compiler
for a sequential machine: (1) internal representation of the compu-
tation; (2) optimization (target-independent and -dependent); and
(3) code generation.

4.1 Internal representation
Since we desire to compile applications to hardware configurations
that rival circuits designed by hand in performance, it is important

1 This is the only instance of deviation from standard OO
semantics in our language, but remains backwards compatible with
the base OO language since we disallow inheritance from classes
other than the Machine class.

Counter counter = new Counter();
while (true)

counter.step();

class LowPassFilter extends Machine {
int value = 0; // state variable
protected int inputData; // “buffered” input.

void input(int in) { inputData = in; }
void step() { value = value / 2 + inputData / 2; }
int output() { return value; }

}

class FilterPipeline extends Machine {
LowPassFilter[] stages = new LowPassFilter[10]; 

void input(int in) {
stages[0].input(in);
for (int i = 1; i < 10; i++) 

stages[i].input(stages[i-1].output());
}
void step() {}
int output() { return stages[9].output(); }

}

Machine rootMachine = new SomeMachine();
while (runnable) {

rootMachine.input(...);
for each machine in hierarchy

machine.step();
}
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to squeeze out as much parallelism as possible, and eliminate
sequential flow control, from the user’s source code. We do this by
converting the source to a directed hypergraph2 internal represen-
tation (IR) that is pure data flow, containing no control flow struc-
tures whatever. This is done with a combination of techniques
which we will describe:

• Static single assignment (SSA) form—a form that makes some
optimizations much easier to implement.

• Predication—a technique for converting control flow to data
flow.

• Loop unrolling—replacing a loop with the loop body repli-
cated.

• Array representation—determining the best way to imple-
ment an array depending upon its access pattern.

Static single assignment (SSA) form. This form of IR requires
that every variable within the computation be assigned to exactly
once. Since application languages rarely require SSA form, the
source must be transformed to SSA form during the construction
of the IR. In spite of the ease with which many optimizations can
be done in this form, it is often avoided in production compilers
because of the increased number of assignments that it creates,
causing problems with program size and register allocation [27]. In
the hardware domain, though, this disadvantage does not exist:
variables for intermediate results correspond to nothing more than

wires that are required anyway to perform the computation. We
should emphasize that the input language does not have to be in
SSA form—our compiler accepts conventional multi-assignment
code.

Conversion to non-minimal SSA form is easy: variable names
in the original source are appended with an index; every time that
variable is assigned to, the index is incremented (Figure 2). Correct
referencing of the indexed variables, accomplished through careful
construction of the symbol table, guarantees that the semantics of
the program are preserved.

Predication. With predication [34], every statement in the origi-
nal computation is tagged with a guard that conceptually controls
whether or not that statement actually gets executed at runtime. In
our IR, the guard is of the form if(p) where p is a predicate (a bool-
ean expression) that is generated as part of the computation. The
if(p) guard allows its statement to execute if its predicate, p, is true;
otherwise it prevents its execution. The value of the predicate often
cannot be deduced at compile time and, when necessary, must be
computed at runtime.

Using predication, control flow statements (if-then-else, loops)
can be completely eliminated from the IR [35]. Converting the IR
to predicated SSA form is straightforward (Figure 3). Note that

2 A directed hypergraph is a directed graph with one differ-
ence: an edge is defined to be a set of two or more vertices, with
one vertex designated as the source.

Figure 1: Compiler organization: The compiler has a multi-
pass structure with separation between target-dependent and
target-independent code to facilitate technology porting.
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Figure 2: Static single assignment (SSA) form. The original
source code, which has multiple assignments to the variable
“a,” is transformed by the compiler to a form where each vari-
able is written only once.

int a = ...;
if (p)

a = 5
else

a = a + 1

int b = a;

int a0 = ...;
if (p)

a1 = 5;
else

a2 = a0 + 1;
a3 = p ? a1 : a2;
int b0 = a3;

Original code SSA

Figure 3: Predicated static single assignment (PSSA): Con-
verting the original code into PSSA form eliminates the con-
trol flow of the if statement and exposes all dependences. In
this case, both arms of the if statement are executed, and the
predicate p is used only by the multiplexer. Since a value can-
not be consumed before it is produced (e.g. b0 = a3 cannot be
executed until a3 has been computed), the PSSA from is actu-
ally an implicit hypergraph, and its sequential representation
above could be arbitrarily reordered without affecting the
semantics.

int a = ...;
if (p)

a = 5
else

a = a + 1

int b = a;

int a0 = ...: if (true)

a1 = 5 : if (p)

a2 = (a0 + 1) : if (!p)
a3 = p ? a1 : a2 : if (true)
b0 = a3 : if (true)

+

0 1

5

1a

p

b

Original code Predicated SSA Generated circuit
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guards on instructions can be ignored during synthesis as long the
guarded instruction does not write a user-visible state variable.
When guards are ignored, all intermediate results (usually the vast
bulk of the computation) will be computed regardless of the predi-
cate state, generally requiring more area but providing a faster
implementation. Guards for instructions which write user-visible
state, though, must be implemented, usually with a multiplexer or
a write-enable on a memory unit, or the semantics of the program
will be destroyed (Figure 4).

Loop unrolling. Replicating each body of a loop by the number
of times that the loop is executed enables extraction of additional
parallelism. Of course, if the loop is executed a large number of
times, the replicated body might require the synthesis of more cir-
cuitry than can fit in the target device, especially if the loop con-
tains recurrences (where the computation of one iteration depends
upon a result computed in a previous iteration). Such loops, in this
programming model, must be implemented using a machine for the
body of the loop. A simple example of this is the low-pass IIR fil-
ter example in section 3.3; such a filter might be implemented in a
sequential model like this:

The loop here clearly cannot be unrolled because of the enormous
code expansion. Transforming this loop into a Machine (as in sec-
tion 3.3) circumvents this problem.

Array representation. Arrays may be implemented in hardware
in many different ways: ROMs, RAMs, multiported register files,
or a set of registers coupled with multiplexers. The appropriate
implementation depends upon whether or not the array is ever
written, how the array is accessed in the step() function, and the
degree of micro-pipelining that has been used in the implementa-
tion of the machine containing it. If no micro-pipelining is used (so
that the step() function can be executed in a single clock cycle),
the array can be implemented in a RAM only if step() performs no

more than a single read or write of that array. Similarly, a constant
array in a non-micro-pipelined realization can be implemented in a
ROM if it is read only once, or in replicated ROMS if read more
than once. Otherwise such arrays must be implemented as a set of
registers, or as a multi-ported register file. Micro-pipelining
relaxes this constraint and allows area/speed trade-offs to be made.

4.2 High-level optimizations
High-level (target-independent) optimization is performed by
repeatedly traversing the IR hypergraph and using pattern match-
ing to detect and apply transformations that reduce the size of the
graph. Many standard compiler transformations are used: dead
code elimination, constant folding (i.e., precomputing at compile
time the results of constant expressions in the user’s source, such
as “5 * 2”), common subexpression elimination, logical/arithmetic
identity reductions (Figure 5), constant propagation and strength
reductions (e.g., replacing a multiplication by a constant with a
small number of adds). Because our IR is free from control flow,
we escape having to do any branch optimizations.

As mentioned before, loops are always completely unrolled
(meaning that the body of the loop is replicated to produce one
copy per iteration) to eliminate sequential control flow. Because of
this, all loop bounds must be known at compile time.

Bit width reductions. Because of type casting, not all bits of the
result of an arithmetic operation may be used. Consider the follow-
ing Java code:

Synthesizing a 32-bit adder to produce c from the 16-bit input val-

Figure 4: PSSA and state variables: In this case, the multi-
plexer required by the predicate can be eliminated if the stor-
age element FF has a write enable w.

class Foo ... {
int state;

:
void step() {

if (state != 0)
state --;

}
}

int state0

p = (state0 != 0) : if (true);
state1 = state0 - 1 : if (p);
state2 = p ? state1 : state0

: if (true);
state = state2 : if (true);

0

1

!=

–

FFw

Original code Predicated SSA Generated circuit

lowPassFilter(int in[1000000], int out[1000000]) {
int state = 0;
for (int i = 0; i < 1000000; i++) {
 state = in[i] / 2 + state / 2;
 out[i] = state;
}

}

Figure 5: Arithmetic and logical identities for reducing the
complexity of the IR. “K” represents a constant value. Com-
mutative laws nearly double the number of identities shown
here. The reductions are performed by traversing the IR,
looking for the patterns on the left hand side of the above
equations and replacing them with the simpler right hand
side.

x + 0 = x
x + (–y) = x – y
–(–x) = x
x % 2i = x & (2i – 1)
1 ? x : y = x
0 ? x : y = y
x * 1 = x
x * 0 = 0
x – 0 = x
0 – x = –x

x – (–y) = x + y
x – K = x + (–K)
x / 1 = x 
x / 2i = x >> i
x << 0 = x 
x << K = extract, zero fill
x >>> K = extract, zero fill
x >> K = extract, sign extend
x >> 0 = x

Arithmetic reductions

x & –1 = x
x & 0 = 0
x & x = x
!x & x = 0
!(!x) & x = x

Logical reductions

x | –1 = –1
x | 0 = x
x | x = x
x | !x = –1
x ^ –1 = !x

x ^ 0 = x
x ^ x = 0
x ^ !x = –1

short a, b;
int c = a + b;
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ues would be wasteful. The compiler can detect this situation and
synthesize the smallest needed adder.

Bit optimizations. A class of optimizations not usually performed
in compilers for sequential machines is bit-by-bit optimization of
operands produced by logical operations. As an example of how
this works and why it’s useful, consider the following fragment of
Java code:

At first glance, this might seem difficult to parallelize because of
the recurrence in the loop (the value of out read in the second iter-
ation is the value of out produced by the first iteration), but this
loop is actually just a C-style idiom for bus concatenation of two 8-
bit values into a single 16-bit value—the recurrence is illusory. The
lack of an operand concatenation operator in the C family of lan-
guages is another example of a semantic gap that must be compen-
sated for in the compiler. After unrolling this loop and doing
strength reduction of the shifts and multiplies, we wind up with a
computation graph that looks like this:

When the optimizer considers the output of this graph, it recog-
nizes that the 16 bits of out are driven by a logical operation,
“OR,” and is thus eligible for bit-by-bit optimization. By chasing
back each output bit as far as it can to its source, and using the log-
ical identity (x | 0 == x), the optimizer can determine that each bit
is just a renaming of a bit in the variables in[0] or in[1], thus reduc-
ing the computation graph to this:

The bus-merger, though, requires no computation in an FPGA,
so the original loop is optimized away to nothing but wires. 

Multiplexer reductions. Nested if statements and switch state-
ments can generate trees of 2:1 multiplexers. These can be reduced
by traversing the IR, doing pattern matching to detect the trees, and
replacing them with higher order multiplexers such as the follow-
ing:

4.3 Mid-level optimizations
The mid-level (target-dependent) optimizations allow the compiler
to make speed/area tradeoffs in the implemented circuit. The
choices made here are target-dependent, but can be directed by a
set of parameters determined by the target architecture. Some of

the optimizations which we will describe in the following subsec-
tions (Figure 6) include: micro-pipelining, digit-serial arithmetic,
and micro-sequencing

Micro-pipelining. In programs containing no feedback, it is pos-
sible to insert additional register stages in the synthesized circuit
which can increase the clock rate (since the paths between register
stages are shorter) as well as the latency (since the number of reg-
ister stages is increased). For programs that execute a large number
of iterations, the latency is usually unimportant, and hence micro-
pipelining can greatly increase the throughput3. Some languages,
such as Handel-C, allow the user to pipeline their design by rewrit-
ing their code to include additional variable declarations for hold-
ing intermediate results (since a named variable gets mapped to a
register). That approach is somewhat problematic in that it requires
the programmer to either make educated guesses about the critical
paths in the synthesized circuit, or to examine the actual generated
circuit to find them. The rewriting also introduces opportunities for
errors, and can could compromise the portability of the application
to a different target platform. We believe that micro-pipelining is
best automated in the compiler.

Digit-serial arithmetic. Because of their bit level granularity,
FPGAs are usually not good candidates for numeric-intensive
applications. However, if a numeric application is pipelineable, it’s
possible that a digit-serial implementation of the arithmetic opera-
tions could lead to an area-efficient implementation. The latency
would be large, but overall throughput could be quite high.

Micro-sequencing. Programs that require more computational
resources than are available in the target platform can sometimes
be transformed so that expensive resources (such as pipelined mul-
tipliers) are time-shared by several independent computations.
This slows down the overall computation, but is compensated by
the corresponding reduction in area. The sharing factor is usually
called the initiation interval, II, and represents the number of dif-
ferent computations that can time-share the resource, or, equiva-
lently, the number of cycles that must separate distinct instances of
the same computation. The mapping of the computation onto the
shared resources addresses essentially the same problems as mod-
ulo scheduling [28] and space-time scheduling [5]. This optimiza-
tion is generally less useful for FPGA’s than for custom silicon if
each function unit is individually multiplexed. The reason: multi-
plexers tend to be expensive in FPGA’s relative to the cost of func-
tion units. However, this approach can pay off if entire machines
are micro-sequenced rather than individual function units.

4.4 Code generation
Since the output of the compiler is a circuit rather a sequence of
instructions, a directed hypergraph is a more appropriate represen-

byte in[2];
short out = 0;
for (int i = 0; i < 2; i++)

 out = out | (((int) in[i]) << i*8);
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3 We call this micro-pipelining to distinguish it from user-level
pipelining, as in the FilterPipeline example.
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tation of the “code” than the usual sequential list of machine
instructions. 

To isolate the main body of the compiler from platform-depen-
dent knowledge, code generation is done through an abstract inter-
face that hides the idioms of the target. For example, the compiler
may request the interface to construct an adder component; the tar-
get-dependent implementation may do this in any way it likes
(e.g., using carry chains, if available, generating carry look-ahead
adders, doing table lookup, etc.), but to the main part of the com-
piler, the result is just an adder. Thus porting code generation to a
different platform only requires implementation of this interface.

4.5 Low-level optimizations
Low-level (target-dependent) optimizations must be custom
crafted for each target platform to fully exploit the hardware. We
have done the following three optimizations for our initial Xilinx
Virtex target: LUT/register merging, register/LUT merging, and
LUT combining.

LUT/register merging. Each lookup table (LUT) in Virtex is
paired with a flip-flop; we call this combination a “FLUT.” When a
LUT within a FLUT containing an unused flip-flop drives the
input of a flip-flop in a different FLUT with an unused LUT, the
used LUT and flip-flop may be merged into a single FLUT (Figure
7a).

Register/LUT merging. Essentially the mirror image of the previ-
ous case: a flip-flop driving a LUT in a different FLUT gets
merged with it into the same FLUT (Figure 7b). This is less effec-
tive than LUT/register merging since it compresses the circuit
without reducing the number of signals that need to be routed. The
compressed circuit usually takes much longer to route and some-
times executes at a lower clock rate (probably because of an infe-
rior routing). 

LUT combining. Connected LUTS that share inputs or that col-
lectively require no more inputs than the amount available on a
single LUT, can often be combined into a single LUT with a new
truth table (Figure 7c).

5. PERFORMANCE
We have chosen the Serpent encryption algorithm as our first per-
formance benchmark for four reasons: (1) it is a large design,
requiring more than half of the resources on our target FPGA (the
Virtex XCV1000); (2) it has a large number of bus rotations, bus
splits and bus merges, which must be expressed in C++ with loops,
shifts and logical ORs—an excellent example of semantic mis-
match to challenge the compiler; (3) it has fair amount of medium-
grained parallelism that is naturally expressed as a pipeline of 32
“rounds”; and (4) Elbirt and Paar have done an independent imple-
mentation in VHDL [29], providing us with a baseline for compar-
ison. We implemented the algorithm as described by Elbirt and
Paar in ECB mode with the same degree of pipelining (one register
stage per round in their implementation, which corresponds to one
Machine per round in our model). We did not do any mid-level
optimizations to keep the number of pipeline stages the same (Ser-
pent in ECB mode can easily be micro-pipelined to increase its
clock rate). We executed the compiled design on an ESL RC1000-
PP card. Since we are using JBits for generating configuration bits,
and since (as of this writing) JBits does not yet support I/O pins,
we were forced to simulate external memory with a small Machine
that generated a word stream to be encrypted. Implementing the
algorithm in C++ required about one day. Source code for a
“round” of the algorithm is shown in Figure 8.

Figure 6: Mid-level Optimizations. To make speed/area
trade-offs, the compiler may transform a simple implementa-
tion of a multiplier (a) into a pipelined version (b) that
increases clock speed but also increases latency; a bit-serial
version (c) that is very area efficient, but with long latency; or
a micro-sequenced multiplier (d) that is shared by multiple
computations, reducing the effective area per computation.

(a) Unpipelined, (b) Micropipelined,

(d) Micro-sequenced,
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Figure 7: Virtex-specific optimizations: (a) merging a LUT
driving a flip-flop into a single FLUT; (b) merging a flip-flop
driving a LUT into a single FLUT; (c) LUT merging.

LUT FF

FLUT

(a)

(b)

(c)

121



Compilation time, from source code to configuration bits, was
about 16 minutes on a 600 MHz Pentium processor, using the
Symantec JIT compiler (Table 1). Based on some simple experi-

ments, we estimate that the compiler (implemented in Java) would
execute 2 to 6 times faster if recoded in C++. The vast bulk of
compile time was consumed by placement and routing. 

Table 2 shows the importance of optimizations when compiling
a sequential language to a highly parallel machine. Without opti-
mizations, a straightforward translation of the source code to hard-
ware required 3 orders of magnitude more area! This comes about
from the difficulty in expressing the inherently parallel algorithm
in a C-family language, as mentioned earlier.

Elbirt and Paar estimated the clock rate of their implementation
using timing analysis tools that we did not have access to. To deter-
mine the performance of our implementation, we downloaded and
executed the implementation on the Virtex XCV1000 FPGA on
our RC1000-PP card, and increased the clock rate until the imple-
mentation stopped working correctly. A straightforward imple-
mentation of the algorithm (Figure 8) ran at 77 MHz (Table 3). By
examining the circuit generated by the compiler, it was possible to
slightly alter the source to achieve 95 MHz operation.4 However,
this type of tuning (which is analogous to examining the assembly
code emitted by a conventional compiler and modifying the source
in response) is not something we envision a typical user doing. 

6. CONCLUSIONS
1. There is a semantic gap between the expressiveness of appli-
cation programming languages and the inherent parallelism of
reconfigurable hardware. The challenge is to squeeze the sequen-
tial specification of the application into a parallel implementation.

class Round : public Machine {
uint128 outBlock; // Data block output of round
uint4 sbox[16]; // Sbox used by this round.

protected:
uint128 inBlock; // Data block input to round.
uint128 key; // Subkey for round.

public:
// Construct a round with the given sbox.
Round(uint4 sboxToUse[16]) {

for (int i = 0; i < 16; i++)
sbox[i] = sboxToUse[i];

}

// Collect and save inputs to the round.
void input(uint128 inputBlock, uint128 subkey) {

inBlock = inputBlock; key = subkey;
}

// Advance the state of the Machine (1 round of encryption).
void step() {

uint128 mixed = inBlock ^ key;

// Sbox mapping.
uint32 x0 = 0, x1 = 0, x2 = 0, x3 = 0;
for (int i = 0;  i < 32;  i++) {

uint4 shiftAmount = (mixed >> (4*i)) & 0xf;
uint4 mappedNibble = sbox[shiftAmount];
// Form words (x0, x1, x2, x3) for linear transformation.
x0 = x0 | ((uint32)((mappedNibble >> 0) & 0x1)) << i;
x1 = x1 | ((uint32)((mappedNibble >> 1) & 0x1)) << i;
x2 = x2 | ((uint32)((mappedNibble >> 2) & 0x1)) << i;
x3 = x3 | ((uint32)((mappedNibble >> 3) & 0x1)) << i;

}
// Linear transformation.
x0 = (x0 << 13) | (x0 >> 19); x2 = (x2 << 3) | (x2 >> 29);
x1 = x1 ^ x0 ^ x2; x3 = x3 ^ x2 ^ (x0 << 3);
x1 = (x1 << 1) | (x1 >> 31); x3 = (x3 << 7) | (x3 >> 25);
x0 = x0 ^ x1 ^ x3; x2 = x2 ^ x3 ^ (x1 << 7);
x0 = (x0 << 5) | (x0 >> 27); x2 = (x2 << 22) | (x2 >> 10);

// Rescramble bits into inter-round format.
uint1 bits[128];
for (i = 0;  i < 32;  i++) {

bits[4*i] = (uint1)(x0 >> i); bits[4*i+1] = (uint1)(x1 >> i);
bits[4*i+2] = (uint1)(x2 >> i); bits[4*i+3] = (uint1)(x3 >> i);

}
uint128 result = 0;
for (i = 0;  i < 128;  i++)

result = result | (((uint128) bits[i]) << i);
outBlock = result;

    }

// Get output of the Machine.
uint128 output() { return outBlock; }

};

Figure 8: Source code for a non-final round of Serpent encryp-
tion. Our C++ library supports arbitrary-width integers (such
as “uint128,” an unsigned, 128 bit integer) implemented with
templates, operator overloading and typedefs; this is not possi-
ble in Java. Loops are completely unrolled —none of the loops
here have true recurrences, so there is no performance penalty.
Note that the last two “for” loops generate only wires when opti-
mized.

4 The optimization involved moving the exclusive-OR with the
Round key (which normally occurs at the beginning of a Round) to
a point in the previous Round following the linear transformation,
and reordering the key bits.

Parsing, translation to IR
High-level optimizations
Circuit synthesis
Low-level optimizations
Placement
Routing
Configuration

Total

6
71

3
6

117
743
23

16m 9s

Compiler Pass Execution time
(sec)

Table 1: Breakdown of compiler execution time for the Ser-
pent encryption algorithm.

No optimizations
High-level only
High-level + low-level

4,040,744
10,494
3,200

Optimization Level
Circuit Size 

Table 2: Effectiveness of optimizations on the synthesized
implementation of the Serpent encryption algorithm.

(CLBs)
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Automated extraction of fine-grained (instruction-level) parallel-
ism is easy to do, but automated extraction of medium-grained par-
allelism is an active research topic that is still limited in
applicability (to affine loop nests, primarily).

2. Hardware design languages, such as Verilog or VHDL, do not
suffer this semantic gap, but tend to be too low-level for applica-
tions—they don’t offer enough abstraction. Application program-
mers do not want to know about, and should not have to know
about, implementation issues that hardware designers must con-
front.

3. Using an unmodified application language (preserving its
semantics) combined with a simple programming model for
expressing medium-grained parallelism: (1) allows the develop-
ment of parallel applications on sequential machines, and (2)
should allow compilation to hardware competitive with a hand-
crafted hardware design. 

4. Optimizations are of course helpful when compiling onto
sequential machines, but are absolutely essential when compiling
onto parallel, fine-grained machines. The optimizer is a critical
component in closing the semantic gap.

5. The following compiler techniques are especially applicable in
this domain: predication, static single assignment (SSA), loop
unrolling, and modulo and space-time scheduling (for II > 1). The
newer techniques (at least in the realm of conventional compilers)
of bit-width analysis, array representation, bit optimization, micro-
pipelining, micro-sequencing and serial arithmetic offer interesting
research opportunities.
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