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Abstract

This paper presents an attack on the strong collision resistance of the Spectral Hash SHA-3 candidate.
Spectral-Hash (shash) is a Merkle-Damg̊ard based hash function, carefully designed to resist all known
cryptographic attacks. To best of our knowledge, our attack is the only known attack against the
shash algorithm. We exploit the fundamental structure of the algorithm, completely bypassing the hash
function’s formidable cryptographic protections. Our attack is presented in three stages. First, we define
the family of functions which have the structure we wish to exploit. We call members of this family
PTX functions. Next, we show that all PTX functions, including functions which use random oracles,
are vulnerable to our collision attack. Finally, we reformulate the shash compression function showing
that it is a PTX function and thus vulnerable. We present results on a practical implementation of our
attack, generating collisions for shash in less than a second on a typical desktop computer.
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1 Introduction

Spectral Hash[1] (shash) is a cryptographic hash function and a former candidate for selection as the NIST
SHA-3 standard. Fundamentally, shash is a Merkle-Damg̊ard construction[2] with two chaining variables.
The authors of shash claim that because of the wide range of modern cryptographic protections, including
affine transforms and discrete Fourier transforms, it is not possible to find a collision under the complexity
bound of O(2(n/2)). Unfortunately, we find that the shash algorithm is vulnerable to collisions in the chaining
variables, allowing an attacker to generate collisions for shash in under a second.

On November 2008, Bjørstad found a collision and a preimage of zero[3] in the reference implementation
of shash. The Spectral Hash team claimed that Bjørstad’s findings were the result of an error in their reference
implementation, rather than a weakness in their algorithm. An updated shash reference implementation was
released which slightly changed the nature of the cycles and thus prevented the particular collision and
preimage discovered by Bjørstad. Our attack shows that the weakness the Bjørstad attack depended on was
not purely an implementation error. Rather, the Bjørstad attack depended on the same weakness we exploit
in this paper (cycles in the internal state), but unfortunately made use of implementation specific details.

The collision attack presented in this paper, though similar in some respects to the Bjørstad attack, is a
new result. Our attack is the only known attack on the corrected shash implementation and the only known
attack on the shash algorithm itself. Furthermore, our attack generalizes across all hash functions that use
a compression function in the PTX family.

In Section 2, we give a brief outline of the shash algorithm, with special attention paid to the crypto-
graphic protections employed by the compression function.

In Section 3, we define a family of compression functions that we term PTX (Permute-Transform-Xor).
We present collision attacks which work for all Merkle-Damg̊ard constructs that use a compression function
in the PTX family. By taking this approach, we show all functions which can be reformulated as PTX
functions, including functions which use random oracles, are vulnerable. Then, we show that the shash
compression function is a member of the PTX family; thus, the shash compression function is vulnerable to
the same collision attacks.

Our attack works as follows: We choose inputs which induce cycles in one of the chaining variables
(Section 3.2.1). Next, we exploit the strong relationship between the chaining variables to induce cycles
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in both chaining variables (Section 3.2.2). Then, we use the cycles in the chaining variables to engineer
collisions in the compression chain, which we exploit to generate collisions in the hash function (Section
3.2.4).

As the efficacy of our collision attacks depend on the order of some permutation π generated from a
message block, in Section 4, we take a moment to explore this issue. Not only do we find that randomly
generating message blocks is sufficient for our attacks, but we also present a method of generating message
blocks to increase the efficacy of our attacks against shash.

In Section 5, we discuss the specific considerations encountered in carrying out our attacks against shash
and results are presented on a practical implementation of our attack from Section 3.2.7. The implementation
of our attack using a typical desktop computer shows that shash is broken both theoretically and practically.

Section 6 presents an additional weakness of shash, unrelated to our collision attack. Shash relies on
two nonlinear functions to provide protection against linear and differential cryptanalysis. One of these
functions, an Affine Transformation in GF (24), has a flaw which prevents the function from increasing
the cryptographic strength of shash. Although no differential or linear attacks against shash have been
published, this weakness shows that shash may not provide the level of protection against differential and
linear cryptanalysis that the authors intended.

1.1 A Word on Notation

A small amount of non-standard notation is used in this paper to express repeated concatenation and will
now be introduced. We use the notation a||b||c to express the concatenation of b onto a and c onto ab.

a||b||c = abc

We extend this notation so that ||a||n represents n concatenations of a.

||a||3 = a||a||a = aaa

A complex example:
a||b||c||3 = a||b||c||c||c = abccc

1||2||3||..||7||8 = 1||2||3||4||5||6||7||8 = 12345678

2 The Spectral Hash Algorithm

In this section we provide a brief description of the shash algorithm. Since our attack exploits the structure
of shash, without regard for the rest of the algorithm, we provide only a brief outline of the hash function.
For example, we will not discuss the details of the finalization function used in shash, as it has no relevance
to our attack. That being said, the description we provide is slightly more detailed than purely necessary
to explain our attack. The reader may wish to skim this section, returning to fill in details as required.
Furthermore we encourage any reader wanting a more complete description of the hash function to read the
Spectral Hash NIST submission[1].

2.1 Overview

As Figure 1 shows, the Spectral Hash algorithm is built around a slightly modified Merkle-Damg̊ard construc-
tion. Length padding[4] is used to strengthen shash against length extension attacks. A finalization function
is used to generate the final hash from the output of the compression chain. Due to space constraints, the
letter C in Figure 1 refers to the compression function ShashCompress.

The shash algorithm differs from a typical Merkle-Damg̊ard construction in three ways. First, shash
employs the large pipe scheme developed by Lucks [5] to increase the chaining state and thus, increase the
difficulty of chaining variable collisions. To achieve the large pipe scheme, shash uses two chaining variables
p and h. Second, the algorithm uses a finalization function to generate the hash from the output of the
compression chain. Using the large pipe scheme makes the finalization function necessary because the chain
state, which consists of p and h, is now larger than the hash output. Third, rather than use the same
compression function on each message block, shash has a special compression function which it calls on the
first message block. This initial compression function is covered in detail in Section 5.1.
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Figure 1: The Spectral Hash Algorithm.

2.2 The Variables m, p and h

The shash algorithm uses three variables m, p and h. The shash NIST submission documentation treats m,
h and p as 4 × 4 × 8 matrices that represent three dimensional prisms. While treating these variables as
three dimensional objects is helpful in visualizing the shash algorithm, we found this notation burdensome
and unnecessary in describing our attack. Instead, we prefer to unwrap these variables into one dimensional
arrays. Thus, for the rest of this paper we treat m, h and p as arrays of 128 elements.

The message block variable m, is a 512 bit chunk of the message being hashed. Internally, shash treats
m as an array of 128 elements, where each element is 4 bits. We prefer to treat m as a 512 bit number.

m ∈ {0, 1}512

The chaining variable p, is a sequence (permutation) of integers 0− 127.

p ∈ (a0, a1, a2.., a127)

The variable p’s initial value pIV , is the sequence generated by sorting the numbers 0 to 127 from smallest
to highest.

pIV = 0, 1, 2, 3, ..127

Permutations are the only operations performed on p, making p a member of the symmetric group.
The chaining variable h, has exactly the same data structure as m. That is, h is a 512 bit number.

Therefore, all possible values of m are possible values of h and all possible values of h are possible values of
m. The initial value of h, hIV , is all zero’s.

h ∈ {0, 1}512

hIV = {0}512

The variables m, p and h describe completely the internal state of shash. At some points in this paper,
we refer to variables pin, pout, hin, and hout. We do this merely as a way of distinguishing the input and
output values of p or h. One could replace every instance of pin and pout with p and hin and hout with h.

2.3 Compression Function

ShashCompress(m, p, h)
1 m← AT (m)
2 p← SwapControl1(m, p)
3 p← SwapControl2(m, p)
4 m← kDFT (m)
5 p← SwapControl3(m, p)
6 m← jDFT (m)
7 p← SwapControl4(m, p)
8 m← iDFT (m)
9 m← NLST (h, m, p)

10 h← m

11 p← PlaneRotate(p)
12 return h, p

The meat of shash is in its compression function, ShashCompress. A number of component functions are
used to compose ShashCompress. We will discuss these component functions in the following paragraphs.
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The affine transform AT is the first function called in ShashCompress. AT transforms the message
block m by applying an affine transform in the field GF (24). It is hoped by the authors that AT will lead
to non-linearity in the compression function. In Section 6, we cover a weakness in AT .

After applying the affine transform, ShashCompress performs a series of transformations and permuta-
tions on m and p. The transformations consist of discrete Fourier transforms [k, j, i]DFT applied to m. The
DFT functions are designed by the authors to increase the hash function’s resistance to Differential crypt-
analysis. The permutations are caused by the functions SwapControl[1, 2, 3, 4]. These functions permute the
elements of p using a permutation generated from m. The authors claim that the permutations increase the
preimage resistance, because an attacker would have to guess the value of p to invert the compression function.

NLST(m, p, h)
1 g ← d(p)
2 return g(m)⊕ h

Next, the function NLST is called. NLST computes the final value of h. The function performs a series
of non-linear equations and an xor. The non-linear equations use p to transform m to m′. We represent the
non-linear equations as the function d(p) that generates a function g, which is then applied to m to produce
m′. The value m′ is then xored against h, generating the final value of h.

g ←d(p)

m′ ←g(m)

h←h⊕m′

The last step of ShashCompress is the function PlaneRotate. PlaneRotate permutes p to generate p’s
final value in the compression function. Unlike the permutation functions SwapControl[1, 2, 3, 4] which
permute p based on the value m, PlaneRotate performs the same permutation on p regardless of the value
of p or m.

Notice that the compression function performs three general actions. It permutes p, it transforms m and
it xors h. The next section introduces a family of functions which have this very same permute, transform
and xor behavior. We will show that ShashCompress is a member of this family.

3 Collisions in PTX Compression Functions and Shash

In this section we introduce our attack against shash using a family of functions called Permute-Transform-
Xor (PTX) functions. We take a guilt by association approach. First, we define a family of functions, which
we call Permute-Transform-Xor (PTX). Second, we detail the mechanics of our collision attacks against all
PTX functions. Finally, we show that shash is a member of the PTX family and thus, is vulnerable to our
attacks against PTX functions.

3.1 The PTX family of Compression Functions

Permute-Transform-Xor (PTX) is a family of functions that we will use as compression functions in a Merkle-
Damg̊ard construction. The PTX family is useful to us because all functions in the PTX family are vulnerable
to our attack. We define the PTX family by using a function, PTXCompress, which is composed of both
defined and undefined functions. Since PTXCompress is composed of undefined functions, PTXCompress
defines a set of functions. Our intention is to describe the set of functions vulnerable to our attack and to
illustrate exactly the structures that the attack exploits, without muddying the waters with a discussion of
the specific details of shash. We explain exactly how to carry out this attack on shash in Section 5.
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A function is a member of PTX family, if and only if it can be formulated as the following function:

PTXCompress(m, pin, hin)
1 π ← f(m)
2 pout ← π(pin)
3 g ← d(pout)
4 hout ← g(m)⊕ hin

5 return hout, pout

Where π, pin, pout
1 are permutations of n unique elements. We constrain the variables hin, hout and m to

be binary strings of the same length.

π, pin, pout ∈ (a1, a2, .., an)

hin, hout, m ∈ {0, 1}k

All PTX functions share the structure of generating a permutation π from the message block m. This
permutation is used to permute pin to pout. Next, pout is used to generate a function g. The generated
function g maps some m to some m′. This m′ is then xored against hin to generate hout.

We treat the functions f , d and g as arbitrary functions. Our attack will work without regard to the
properties, cryptographic or otherwise, of f , d or g. To further illustrate this point, we will assume for the
rest of this section that f , d and g are random oracles.
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Figure 2: PTXHash: A Merkle-Damg̊ard construction which uses a PTX compression function.

Figure 2 introduces PTXHash, which we define to be a Merkle-Damg̊ard based hash function that uses
a function in the PTX family as a compression function. We will be using PTXHash as the target of our
collision attack in Section 3.2. In the context of a Merkle-Damg̊ard construction, the variable m is a message
block and the chaining variables are h and p.

3.2 Attacking Strong Collision Resistance

We can break strong collision resistance in PTXHash. Our approach is to induce cycles in the chaining
variables, then exploit the cycles to generate collisions. In Section 3.2.1, we show that we can induce
cycles in p. In Section 3.2.2, we show that if p cycles, h must cycle as well. Therefore, both chaining
variables cycle, consequently producing collisions in the chaining variables. Figure 3 summarizes the cyclic
relationship between a repeated message block and the chaining variable. In Section 3.2.3 we extend these
chaining variable collisions to produce cyclic message chunks, namely a series of message blocks that cause
both chaining variables to cycle. Cyclic message chunks are then used to compute 2nd preimages of chaining
variables. Sections 3.2.4 - 3.2.8 build on this method of computing 2nd preimages of chaining variables to
develop collision and multicollision attacks.

3.2.1 We can force p to cycle

Consider the case in which we provide a message M to PTXHash, where M consists of a concatenation of
the same message block m1 repeated n times (notation explained in Section 1.1).

M = m1||m1||m1||..||m1 = ||m1||
n
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The permutation π that is applied to p is entirely dependent on the value of m.

π = f(m)

As long as we supply the same message block m, f will produce the same π. The fact that the same π is
generated each time allows us to cycle p. For any permutation π there exists some n such that πn = I,
where n is the order of π[6] and I is the identity permutation. That is, if the message block m1 is repeated
n = order(π1) times, p will cycle back to its initial state.

p3 = π1(π1(π1(pIV ))) = π3
1(pIV )

pn = π1(π1(..π1(pIV )..)) = πn
1 (pIV ) = pIV

To summarize, we can force p to cycle, if we repeat the same message block order(π) times.
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Figure 3: PTXHash supplied with the same message block 2n times, where n = order(π1).

3.2.2 If p cycles, h cycles.

The function g is entirely dependent on p, hence, if p returns to a previous value, so does g. Therefore, we
can see that a cycle in p will cause a cycle in g.

g1 ← d(p1), g2 ← d(p2), g3 ← d(p3), .. pn cycles to p1, g1 ← d(p1), g2 ← d(p2)...

Remember that we are repeating the same message box m1. Thus, if g cycles, the values that g produces
will cycle as well.

g1(m1), g2(m1), g3(m1), .. gn cycles to g1, g1(m1), g2(m1)...

The output of each of these g functions is xored against h. The value of h can always be defined as an initial
value hIV xored against a series of g functions.

h = hIV ⊕ g1(m1)⊕ g2(m1)⊕ g3(m1)...

When g cycles a second time, the values generated on the second cycle will be the same as the values
generated on the first cycle. These repeated values, when xored against h cancel themselves out. Consider
the case in which n repetitions of the message block m1 cause g to cycle. We show below that value of h

after the first cycle of p, is hn. We also show that after the second cycle of p, h has cycled back to its initial
value of hIV .

hn = hIV ⊕ g1(m1)⊕ g2(m1)...⊕ gn(m1)

h2n = hn ⊕ g1(m1)⊕ g2(m1)...⊕ gn(m1)

h2n = hIV ⊕ g1(m1)⊕ g2(m1)...⊕ gn(m1)⊕ g1(m1)⊕ g2(m1)...⊕ gn(m1)

h2n = hIV
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Therefore, if g cycles twice and the message block m is fixed, h cycles once (See Figure 3).

3.2.3 Cyclic Message Chunks, Collisions and 2nd Preimages of Chaining Variables

We refer to a series of message blocks as a message chunk, using the letter C to denote a message chunks.
We use this notation throughout the paper, C always refers to a message chunk.

C = m1||m2||..||mn

We can compute the effect that a message chunk has on the compression chain by iteratively compressing
each of the message chunk’s component message blocks.

h, p = IteratedCompress(C, pIV , hIV ) = Compress(mn, (..Compress(m2,Compress(m1, pIV , hIV ))..))

In Section 3.2.1 we showed that by repeating a message block order(π) times, p cycles. In Section 3.2.2
we showed that for every two cycles of p we have one cycle of h. Thus, when some message block is repeated
2 × order(π)) times, p cycles twice and h cycles once, causing a chaining variable collision in which the
current state of the compression chain collides with an earlier state of the compression chain.

We refer to any message chunk which causes both chaining variables to collide with values held directly
prior to the message chunk as a cyclic message chunk. That is, a cyclic message chunk is a message chunk
which returns the chaining variables passed to it.

πa = f(ma)

Ccyclic = ||ma||
2×order(πa)

hx, px ∈ {0, 1}k

hx, px = IteratedCompress(Ccyclic, hx, px)

Cyclic message chunks can be used to create 2nd preimages of chaining variables and consequently chaining
variable collisions. One is said to find a 2nd preimage of chaining variables when given a message chunk Ca,
one can find another message chunk Cb, such that Ca 6= Cb and both chunks generate the same values for
the chaining variables.

IteratedCompress(Ca, hx, px) = IteratedCompress(Cb, hx, px)

To find a 2nd preimage of chaining variables for some message chunk Ca, append any cyclic message
chunk on the end of Ca creating a message chunk Cb.

Cb = Ca||Ccyclic

The message chunk Cb will always be a preimage of Ca since Ccyclic cycles back to the chaining variables ha

and pa produced by Ca.

ha, pa = IteratedCompress(Ca, hx, px))

ha, pa = IteratedCompress(Ccyclic, ha, pa))

ha, pa = IteratedCompress(Cb, hx, px))

Thus, any cyclic message chunk can be used to generate 2nd preimages and collisions in the chaining variables
of all PTX functions for all possible message chunks.

Our method for using cyclic message chunks to generate 2nd preimages of chaining variables always
generates a preimage which is longer than the original message chunk.

|Ca| < |(Ca||Ccyclic)|

Consequently, we can only generate 2nd preimages of full messages against PTX functions not employing
length padding. Shash employs length padding. In the following sections we will show how cyclic message
chunks can be marshaled to generate collisions in PTX functions protected by length padding.
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3.2.4 Generating Collisions

The intuition here is to leverage the properties of cyclic message chunks to generate collisions while ensuring
that both resultant messages are of equal length and thereby avoid the protection offered by length padding.
Using the cyclic message chunks as introduced in Section 3.2.3 we have developed three attacks which
generate colliding messages: Move (Section 3.2.5), Substitute (Section 3.2.6) and Shuffle (Section 3.2.7).
The attacks presented can be used in combination, or separately.

For each of our attacks there is a linear relationship between the length of the cyclic message chunks
used and the length, |M |, of the colliding messages. We can express this relationship as a linear equation
in which C1, C2, ..Cn represent the cyclic message chunks used and the variables a and b depend on which
attack or combinations of attacks are used.

|M | = a× |(C1||C2||..||Cn)|+ b

For each attack, we show that increasing the number cyclic message chunks enables us to produce many
multicollisions. Furthermore, in Section 3.2.8 we show that by adding arbitrary message blocks we gener-
ate new collisions from the already discovered collisions. Thus, we can create new collisions, and/or new
multicollisions by slightly increasing the colliding message length, |M |.

Our attacks are introduced in order of descending generality. Our first attack, Move, works for any
cyclic message chunk. Our second attack, Substitute, works on any two or more cyclic message chunks of the
same length. Our third and final attack, Shuffle, works on two or more cyclic message chunks of the same
length that produce the same value for π. Accordingly, any cyclic message chunks that work for Shuffle also
work for Substitute and any cyclic message chunks that work for Substitute work for Move.

3.2.5 Move Cyclic Message Chunks to Generate Collisions and Multicollisions

The Move attack is our most basic method for generating collisions. Move can create a collision from any
cyclic message chunk. We merely change the location of a cyclic message chunk in a message to generate a
colliding message. If the cyclic message chunk has more than two locations to occupy, Move can generate
multicollisions. Generate some cyclic message chunk Ca composed of some message block ma.

πa = f(ma)

Ca = ma||ma||..||ma = ||ma||
2×order(πa)

Then, choose an arbitrary message block m1. Our first message, Ma1, is created by appending m1 to Ca.

Ma1 = Ca||m1

Now create a colliding message M1a by moving m1 to the front the message.

M1a = m1||Ca

Cyclic message chunks cycle the value of h and p to the values they held directly prior to the cyclic message
chunk, therefore moving a cyclic message chunk does not effect the final result of the compression chain.

h1, p1 = Compress(m1, hIV , pIV )

h1, p1 = IteratedCompress(m1||Ca, hIV , pIV ) = IteratedCompress(Ca||m1, hIV , pIV )

PTXHash(Ma1) = PTXHash(M1a)

Length padding offers no protection, as we have clearly not changed the length of the message.

|Ma1| = |M1a| = |(Ca||m1)| = |(m1||Ca)|

Since we can move a cyclic message chunk without changing the result of the compression chain, if we
have n cyclic message chunks, C1, C2, ..Cn, all possible positions of these cyclic message chunks produce
colliding messages; consequently we can generate n! multicollisions.

PTXHash(m1||C1||C2||..||Cn) = PTXHash(C1||m1||C2||..||Cn) = PTXHash(C2||m1||C1||..||Cn) = ...

8



3.2.6 Substitute Cyclic Message Chunks of Equal Length to Generate Collisions

Unlike the Move (see Section 3.2.5) attack which works for all cyclic message chunks, the Substitute method
can only be to applied to cyclic message chunks which have the the same length.

Ma = Ca = ma||ma||ma||ma

✲✲
pIV

hIV

❄ma❤❤ ✲✲
p1

h1

❄ma❤❤ ✲✲
pIV

h2

❄ma❤❤ ✲✲
p1

h3

❄ma❤❤ ✲✲
pIV

hIV

Mb = Cb = mb||mb||mb||mb

✲✲
pIV

hIV

❄mb❤❤ ✲✲
p1

h1

❄mb❤❤ ✲✲
pIV

h2

❄mb❤❤ ✲✲
p1

h3

❄mb❤❤ ✲✲
pIV

hIV

Figure 4: Two colliding messages created by two cyclic message chunks of equal size.
.

Two cyclic message chunks that share the same initial chaining variables also will output the same
shared initial chaining variables generating a collision in the chaining variables.

hIV , pIV = IteratedCompress(Ca, hIV , pIV )

hIV , pIV = IteratedCompress(Cb, hIV , pIV )

If these two cyclic message chunks have equal length, then length padding offers no protection.

|Ca| = |Cb|

Therefore as Figure 4 shows, a cyclic message chunk can be substituted for another cyclic message chunk of
the same length to generate colliding messages.

PTXHash(Ca) = PTXHash(Cb)

If we have n cyclic message chunks of the same length, we can generate n colliding messages. So, if
n > 2, we can generate n multicollisions.

3.2.7 Shuffle cyclic message chunks of Equal Permutation to Generate Collisions

Our strategy here is to create two messages such that the chaining variable p continuously collides between
messages, and then to exploit the commutative nature of h’s construction to create a collision. Figure 5
demonstrates our method in the form of an example.

Mab = ma||ma||ma||ma||mb

✲✲
pIV

hIV

❄ma❤❤ ✲✲
p1

h1

❄ma❤❤ ✲✲
p2

h2

❄ma❤❤ ✲✲
p3

h3

❄ma❤❤ ✲✲
pIV

h4

❄mb❤❤ ✲✲
p1

h5

Mba = mb||ma||ma||ma||ma

✲✲
pIV

hIV

❄mb❤❤ ✲✲
p1

h6

❄ma❤❤ ✲✲
p2

h7

❄ma❤❤ ✲✲
p3

h8

❄ma❤❤ ❄ma

✲✲
pIV

h9

❤❤ ✲✲
p1

h5

Figure 5: Two colliding messages created by switching the position of the first and last message block.

The Shuffle method requires two message blocks ma and mb that generate the same permutation π.

ma 6= mb

π = f(ma) = f(mb)

We use one of these message blocks, ma to create a cyclic message chunk Ca.

Ca = ||ma||
2×order(π)

The first of the two colliding messages, Mab consists of the concatenation of the first half of a cyclic message
chunk Ca and the second message block mb.

C1/2
a = ||ma||

2×order(π)
2 = |ma||

order(π)

Mab = C1/2
a ||mb = ma||ma||..||ma||mb
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We build a second message Mba by switching the position of the first and last message block in Mab.

Mba = mb||C
1/2
a = mb||ma||ma||..||ma

By choosing message blocks ma and mb, such that they generate the same π, we ensure that the values
of p will be the same under both Mab and Mba, because the value of p is generated from both the previous
value of p and the value of π.

p1 = π(pIV ), p2 = π(p1), p3 = π(p2), p4 = π(p3)...

Thus, although p is changed after each compression, p can not distinguish between the two messages Mab

and Mba as they consist entirely of message blocks which generate the same value of π.
The value of p is used to create a function g, which transforms m into m′. The value of m′ is xored into

h. As a result, compressing the same message block will not result in the same value being xored into h if
the value of p is different.

g ← d(pout)

hout ← g(m)⊕ hin

Therefore, p prevents us from exploiting the commutative nature of xor by switching the positions of any
two message blocks. However, due to Ca being half a cyclic message chunk, the value of p in Mab cycles
once, causing the first and last message blocks of mab to be compressed using the same value for p (as shown
in Figure 5). Accordingly, if we switch the message blocks ma and mb in the first and last position of Mab

we generate a new message Mba, for which the same values are xored into h, but in a different order.

hfinal = hIV ⊕ g1(ma)⊕ g2(ma)⊕ ..⊕ gorder(π)−1(ma)⊕ g1(mb)

hfinal = hIV ⊕ g1(mb)⊕ g2(ma)⊕ ..⊕ gorder(π)−1(ma)⊕ g1(ma)

As the xor operation is commutative it generates the same final value for h despite the switched message
blocks.

We have caused a collision in the final value of both chaining variables, both messages are of equal
length, hence both messages must result in the same hash value.

PTXHash(Mab) = PTXHash(Mba)

The length of the colliding messages |M |, generated by the Shuffle method is linear to the order of the
permutation π shared by ma and mb. We can express this relationship as

|M | = order(π) + 1

Hence, the Shuffle attack generates smaller colliding messages than either the Move or Substitute attacks.
We can generate multicollisions using Shuffle approach, by creating messages that have more than one

mb message block. The extra mb message blocks allow us more than two ways to shuffle the message blocks,
allowing us to produce more than two colliding messages. For example consider the following three colliding
messages.

PTXHash(ma||ma||ma||..||mb||mb) = PTXHash(mb||ma||ma||..||ma||mb) = PTXHash(mb||mb||ma||..||ma||ma)

Our Shuffle attack requires that we have atleast two message blocks which generate the same π. Finding
such message blocks depends completely on both how f(m) calculates π, and on the range of values π is
capable of representing. The only way to find colliding values of π in a random oracle PTX function is the
birthday attack. Accordingly, this means that finding colliding values of π in a random oracle PTX function
is computationally impractical for all non-trivial sizes of π. Shash is not a random oracle and, as we show
in Section 5.2, given any message block producing some permutation π, we can easily generate enormous
numbers of other message blocks that produce the same π.
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3.2.8 Find One Collision get Additional Collisions Free

Bonus collisions are collisions which can be generated from an already discovered pair of colliding messages
Mc, and Md using only randomness and concatenation.

mrandom ∈ {0, 1}k

Mc 6= Md

Hash(Mc) = Hash(Md)

Hash(mrandom||Mc) = Hash(mrandom||Md)

Bonus collisions are in no way required to be, or not be, multicollisions.
As our collision attacks are completely indifferent to the state of the chaining variables once a collision

has been created in both chaining variables, that collision will be maintained across both messages as long
as neither message diverges.

Consequently, we can take use any pair of colliding messages Mc and Md and generate unlimited pairs
of colliding messages by merely appending or prepending one or more arbitrary message blocks.

Hash(m1||m2||..||mn||Mc||mn+1||mn+2||..||mn+i) = Hash(m1||m2||..||mn||Md||mn+1||mn+2||..||mn+i)

It should be evident that bonus collisions are fundamentally more dangerous then just collisions because
bonus collisions allow an attacker to generate colliding message pairs which contain arbitrary data of the
attackers choosing.

3.3 The compression function of Shash is a PTX function

Now that we have shown that we can carry out collision attacks on PTX functions, we show that we
can carry out such attacks on shash. To demonstrate that shash is vulnerable, we show that the shash
compression function, ShashCompress, is a member of the PTX family by reformulating ShashCompress as
a PTX function. Consider a table that contains all possible input output pairs for ShashCompress. If any of
our changes alter this table then we fail to show that ShashCompress is a PTX function. Thus, we must be
careful to show that our changes do not alter the input output pairs of ShashCompress. Our reformulation
takes three steps. We show each step of the reformulation in Figure 6.

Step 1 splits each of the chaining variables into input and output variables, so that h becomes hin and
hout and p becomes pin and pout. This is done to bring ShashCompress into agreement with the naming
scheme used for chaining variables in the PTX definition. As this change is merely a renaming of internal
variables, it has no effect on the input/output values of ShashCompress.

Step 2 consists of three modifications. First, we restate the message block variable m as a constant by
creating three new variables m1, m2, m3, each standing in for a different transformation of m. This change,
like the change in step 1 is merely a relabeling of values and has no impact on the actual values themselves.
The second change is to replace the call to NLST with the internals of the NLST function(Line 9 and 10).
The third change is to the order in which we call the PlaneRotate function. We need to change the order
because, in a PTX function, the value of pout does not change after d is invoked, but in ShashCompress the
value of pout is altered by PlaneRotate after d is called. To get around this discrepancy, we allow PlaneRotate
to alter the value of pout before we call d, but we invoke InversePlaneRotate inside of d to retrieve the earlier
value of p. The final value of p will be the same and d is able to recover the pre-plane-rotate value of p thus,
the input/output relationship of ShashCompress is preserved despite rearrangement.

In Step 3, we refine the changes made in Step 2, so that ShashCompress is expressed completely in the
form of a PTX function. We create a function f that produces the permutation π based on the message
block m. We no longer permute p directly, but rather we call the newly created function f to generate the
permutation π used to permute p. As far as the output of ShashCompress is concerned, it doesn’t matter if
the permutations are applied to p initially or used to generate a permutation which then permutes p. Our
final change is to move the transformations variables of m into the internals of f and g.
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STEP 1:
ShashCompress(m, pin, hin)

1 m← AT (m)
2 pout ← SwapControl1(m, pin)
3 pout ← SwapControl2(m, pout)
4 m← kDFT (m)
5 pout ← SwapControl3(m, pout)
6 m← jDFT (m)
7 pout ← SwapControl4(m, pout)
8 m← iDFT (m)
9 m← NLST (hin, m, pout)

10 hout ← m

11 pout ← PlaneRotate(pout)
12 return hout, pout

NLST(m, p, h)
1 g ← d(p)
2 return g(m)⊕ h

STEP 2:
ShashCompress(m, pin, hin)

1 m1 ← AT (m)
2 m2 ← kDFT (AT (m))
3 m3 ← jDFT (kDFT (AT (m)))
4 pout ← SwapControl1(m1, pin)
5 pout ← SwapControl2(m1, pout)
6 pout ← SwapControl3(m2, pout)
7 pout ← SwapControl4(m3, pout)
8 pout ← PlaneRotate(pout)
9 g ← d(InverseP laneRotate(pout))

10 hout ← g(iDFT (m3))⊕ hin

11 return hout, pout

STEP 3:
ShashCompress(m, pin, hin)
1 π ← f(m)
2 pout ← π(pin)
3 g ← d(InverseP laneRotate(pout))
4 hout ← g(ijkDFT (AT (m)))⊕ hin

5 return hout, pout

f(m)
1 m1 ← AT (m)
2 m2 ← kDFT (AT (m))
3 m3 ← jDFT (kDFT (AT (m)))
4 π ← SwapControl1(m1)
5 π ← SwapControl2(m1, π))
6 π ← SwapControl3(m2, π)
7 π ← SwapControl4(m3, π)
8 π ← PlaneRotate(π)
9 return π

Figure 6: Reformulating the shash compression function as a PTX function.

None of these change alter the input/output table of ShashCompress. Furthermore these changes allow
ShashCompress to be expressed as a PTX function (Figure 6). Therefore, we have shown that ShashCompress
is a member of the PTX family of functions and vulnerable to the collision attack presented in Section 3.2.

4 The Order of π

Our attacks depend on an assumption that the order of some permutation π, generated by some message
block m, will be of a reasonably small size, enough of the time, to make our attack practical. The function
f is used to compute π from m

π ← f(m).

In this section we show that our assumption is completely sound.
As shown in Section 3.2.4, the length of a colliding message is linear to the length of its component cyclic

message chunks. In our attack Move (see Section 3.2.5), any cyclic message chunk and any other message
block can be easily composed to produce two colliding messages. Thus given some cyclic message chunk Ca,
composed of some repeated message block ma, and a random message block mb, we can find two colliding
messages of length

|M | = |Ca|+ |mb|.

In shash the message block size is 128 Bytes. So the length of such a colliding message, where πa = f(ma) is

|M | = 128× 2× order(πa) + 128.

In writing this section we were unsure where to draw the distinction between reasonable and unreasonable
message length. Cryptographic hash functions are used on data sets well in excess of 100 MB (CDs 700 MB,
DVDs 4.7 GB, etc) and as little as 8 − 16 Bytes for passwords and small files. Unable to decide on a
maximum reasonable message length, we instead choose a maximum low enough to be obviously reasonable,
yet high enough to include a significant percentage of our random message blocks. We choose 256 KB as our
reasonable message length constraint. Accordingly, we assume that all cyclic message chunks with a length
of greater than 256 KB are too long Thus, we want to find all cyclic message chunks which have a length
less than 256 KB, that is all cyclic message chunks for which order(π) ≤ 1000.

We first considered justifying our assumption about order of π using the mathematical upper bound of
a random permutation. Landau’s function is defined as the maximal order element of the symmetric group
Sn[7]. Thus, Landau’s function is the strict upper bound of the order of a randomly sampled permutation of
n items. In shash, where n = 128, the maximal order is 7216569360 or approximately 232.75. While this may
seem discouraging, it has been shown in the literature[8][9] that the maximal order of a symmetric group is
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not at all representative of the other elements in that group. Thus, the maximal order does not provide an
effective estimate of the order of a random permutation π.

π ∈ Sn

Therefore, keeping the upper bound in mind we will instead experimentally sample π to determine the
difficulty of finding low order permutations.

We justify our assumptions about the order of π in both a completely random scenario, as is the case
with a random oracle PTX function (the function f is a random oracle), and a scenario in which we supply
random message blocks to shash which are then used to generate π (the function f as specified in shash).
We will constrain ourselves to PTX functions for which π is a permutation of 128 elements, as this is the
number of elements which shash uses for π.

Finally we present work on choosing shash message blocks such that the number of permutations which
f applies to π reduced. Our hope is that these reduced permutation message blocks have an increased chance
of producing very low order values of π.

4.1 Order of a Random π

Figure 7: Distribution of order(π) ≤ 1000 for a random oracle PTX function (π is randomly chosen).

For a random oracle PTX function, the value of π is chosen completely randomly, thus to determine the
distribution of values we merely find the order of random elements sampled from the Symmetric group S128.

π ∈ S128

In our tests we took 100, 000 samples of random permutations. Of these samples, 19, 235 or roughly
19.2%, had an order of less than 1000. In Figure 7, we present the distribution of the samples that have an
order of 1000 or less.
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4.2 Shash and the Order of π for Random Message Blocks

Figure 8: Distribution of order(π) ≤ 1000 for shash (m is randomly chosen)

Shash does not generate π randomly, but rather performs computations on the message block to produce π.
Thus, to test shash we can not randomly generate π, as in the previous section. Instead we must randomly
generate message blocks, which shash will use to generate a permutation π. To test shash we randomly
generated 100, 000 message blocks and tested the order of the resultant permutation π for each message
block.

m ∈ {0, 1}512

π ← f(m)

For 100, 000 samples, 19, 282 or roughly 19.2% of the message blocks produced π having an order of less than
1000. Figure 9 shows that the distribution of the samples for shash is very similar to the distribution of the
samples generated completely randomly. The lowest order of π that this was able to generate was 32.

4.3 Shash and the Order of π for Reduced Permutation Message Blocks

Here we briefly describe our attack on the function f which shash uses to compute π. The aim of our attack
is to generate values of π of a lower order than produced by random sampling (Section 4.2). We present
a method of generating message blocks for which the value of π will have undergone significantly fewer
permutations. Finally we test this method and present our results.

Our intuition here is that the function f used to compute the permutation π from the message block m

is unlike a random oracle.
π ← f(m)

As implemented in shash, the function f produces only limited diffusion/confusion and can be easily inverted2

for valid values of π.
m← f−1(π)

Using the weakness in the AT function presented in Section 6, we are able to feed the functions Swap-
Control1 and SwapControl2 arbitrary values of our choosing. This allows us to solve for the equation of a
message block such that the functions SwapControl1 and SwapControl23 do not introduce permutations into

2Creating a low order π from scratch and then inverting it to find the generating message block, m, is not a practical attack.
Only a small fraction of potential values of π map to a message block. Although π in shash represents a permutation of 128
elements, shash message blocks are only capable of producing 2296 different values of π (See Section 5.2). Thus, the probability
of choosing a value of π which maps to a message block is

2296

128!
=

1

3.30155566× 10127
.

3A brief discussion of the AT, SwapControl, kDFT and PlaneRotate functions can be found in Section 2.3. For a description
of the relationship that these functions have to π see our PTX reformation of shash in Section 3.3.
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π and that the function SwapControl3 both does not introduce any cycles of size greater than 2 and that
such cycles only occur at locations which PlaneRotate does not permute4. This equation can be found in
Section A.2 of the appendix.

We build on this equation to generate reduced permutation message blocks. As the equation does not
successfully solve for SwapControl4, we randomly choose values for the bits of the message block that Swap-
Control4 uses to permute π, hoping to guess correct values and thus generate a very low order permutation.

We generated 100, 000 reduced permutation message blocks, 14, 385 or roughly 14.3% percent had an
order of less than 1000. As Figure 9 shows the reduced permutation method greatly improved our ability to
generate very low order message blocks. It even found several message blocks of order(π) = 12, which is a
third the size of the lowest order message block, order(π) = 32, found by randomly sampling m.

Even though our method leads to lower order values of π, it produces fewer values of order(π) ≤ 1000
than the random methods. A full discussion of this seeming contradiction being beyond the scope and
ambition of this paper, we will instead provide our best guess based on three observations and an assumption.
The order of a permutation is the greatest common multiple (GCM) of the cycles in that permutation, thus
to maximize the order of permutation, find the smallest cycles that are relatively prime to each other5. Small
numbers are more likely to be relatively prime to each other than large numbers. We assume our method
generates very low order permutations by restricting the size of the cycles. Therefore, we think that our
method is unbalancing the message blocks so that they are more likely to generate either very small order
permutations and very large order permutations.

Figure 9: Distribution of order(π) ≤ 1000 for shash (m chosen to reduce swaps).

4.4 Our Assumptions about the Order of Permutations are Sound

Essentially one in every five random message blocks generates a permutation π of a sufficiently low order.
We showed that by merely picking random message blocks we can easily find message blocks which can be
used to build cyclic message chunks of a small size (≤ 256KB). This confirms our assumptions about the
likely low order of a permutation for both random oracle PTX functions and shash. Moreover, we showed
that by intelligently choosing the values of shash message blocks we can increase our chances of finding low
order values of π and accordingly increase the efficacy of our shash collisions.

5 Practical Considerations

The attacks in Section 3.2 take a simple view of shash. While Section 3.2 is generally correct in its form,
some complicating details are left out. We will address these details here. In Section 5.3 we present an
implementation of this attack on the shash reference implementation.

4The full details of how we arrive at this equation, being particularly messy, long and dull, have been compassionately
omitted to spare the readers patience and printer.

5Consider the gain in order caused by increasing a cycle by n elements, vs producing a second cycle of n elements.
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5.1 Shash Uses Two Compression Functions

Shash has two compression functions. FirstShashCompress, which is invoked on the first message block
and ShashCompress, which is invoked on all subsequent message blocks. FirstShashCompress is identical to
ShashCompress except that FirstShashCompress performs an additional permutation πinit on p. Below, we
represent FirstShashCompress as ShashCompress with an additional step.

FirstShashCompress(m, pin, hin)
1 πinit ← initSwap(m)
2 return ShashCompress(m, πinit(pin), hin)

To avoid complexities introduced by two different compression functions, we don’t begin our attack until
the second message block. Our collision attacks do not have any dependencies on specific prior values of h or
p (see Section 3.2.8), so we just arbitrarily choose a first message block, minit, before beginning our attack.

5.2 Generating Collisions in the Internal Permutation Variable π

Given some message block ma that generates some permutation, πa = f(ma), we easily produce some
different message block mb which generates some permutation πb = f(mb) such that πb = πa. While message
blocks that produce colliding values of π are not necessary for most of the collision attacks introduced in
Section 3.2, they are a necessary condition for the Shuffle attack (Section 3.2.7), a sufficient condition for
the Substitute attack (Section 3.2.6), and further degrade the security properties of shash.

FF,00,FF,00,FF,00,FF,00,FF,FF,FF,FF,FF,00,FF,00,

FF,00,FF,00,FF,00,FF,00,FF,FF,FF,FF,FF,00,FF,00,

FF,00,FF,00,FF,00,FF,00,FF,FF,FF,FF,FF,00,FF,00,

FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,FF

Figure 10: Bitmask of the positions in shash message blocks that effect the value of π.

Only 368 bits of the 512 bits in a message block have any effect on π at all. The bits upon which the
value of π is dependent occupy fixed positions regardless of the value of the message block. In Figure 10, we
mark with F the nibbles (4-bit chunks) that are used to calculate the value of π.

To produce two messages blocks that both generate the same value of π, we just force both message
blocks to have the same values for the nibbles that the value of π depends on. Hence, for a particular message
block, we can generate 2144 − 1 other message blocks that share the same π.

A closer analysis of how π is computed allows us to produce even more π colliding message blocks. The
function SwapControl1 produces half as many permutations of π as the other SwapControl functions. This
is because SwapControl1 marshals all of its input nibbles into pairs, xors these pairs together, and then uses
the results of the xor to permute π. Given some three nibbles, n1, n2, and nr where n1 ⊕ n2 = nr we can
easily find 24−1 pair of nibbles, n3 and n4, that also xor to nr. Incorporating this technique of replacing the
input nibbles that SwapControl1 uses with other input nibbles that cause the same effect we can produce
2216 message blocks that generate the same π.

Producing message blocks that generate the same π creates some interesting implications for the security
of shash beyond the collision attacks presented. For example if we fix p and find a set, S, of 512 message
chunks that generate linearly independent values of h, we can describe all possible values of h as some subset
of the set S xored together.
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5.3 Implementing the Attack

We report on the collisions we generated in the latest shash reference implementation6 using a typical
desktop computer. The computer used for the tests was a Q6600 intel quad core processor with 4 GB of
RAM, running ubuntu linux 8.10. The attack code was written in C, compiled with gcc and python using the
sage library and compiler. Finding a collision using this attack takes roughly 300 milliseconds. We choose
to perform the Shuffle attack from Section 3.2.7, because it both created the shortest colliding messages and
it was the most complex of our attacks.

5.3.1 The Creating the First Message

Our first step is to generate some message block ma. In this attack we can use almost any message block for
ma, but the larger the order of π the larger the colliding messages. The attack, Shuffle (see Section 3.2.7),
that we will be performing produces colliding message of length |M |, where

|M | = 512× (order(π) + 2) bits.

Finding message blocks of low order is the most computationally intensive part in all of our attacks as it
requires randomly generating a message block, and then computing the order(π) of that message block.
That being said the process is nearly instant on a desktop computer. The reduced permutation method
shown in Section 4.3 generates a message block having an order(π) ≤ 1000) every 263 milliseconds. We used
this method to generate the message block ma as shown in Figure 11.

5B,41,7B,11,3B,4D,6B,70,5B,B1,7B,C5,0B,0F,2B,1F,

9B,CB,4B,54,5B,A3,7B,E4,3B,81,6B,35,6B,5C,3B,FC,

8B,09,EB,80,EB,1D,8B,36,5B,B1,7B,C5,EB,83,8B,04,

3B,B8,6B,D3,1B,D5,BB,A7,3B,81,6B,35,8B,66,EB,49

Figure 11: The message block ma.

The second step is to compute some message chunk, Ca, such that the chaining variable p cycles. The
order of the permutation πa produced by ma is 12, so we repeat ma 12 times to produce Ca.

Ca = ma||ma||ma||ma||ma||ma||ma||ma||ma||ma||ma||ma = ||ma||
12

The message chunk Ca is not a cyclic message chunk as only p cycles; both chaining variables must cycle in
a cyclic message chunk.

The third step is to compute a second message block mb which produces a permutation πb such that
πa = πb. We use our method, in Section 5.2, to generate a message block mb (shown in Figure 12) that
produces a colliding value of π

5B,5C,7B,9A,EB,48,8B,7B,5B,B1,7B,C5,0B,08,2B,CA,

5B,2B,7B,60,DB,1B,AB,3A,3B,81,6B,35,BB,8E,1B,09,

AB,36,DB,A4,4B,DF,9B,CE,5B,B1,7B,C5,4B,F6,9B,51,

3B,B8,6B,D3,1B,D5,BB,A7,3B,81,6B,35,8B,66,EB,49

Figure 12: The message block mb.

Finally we append Ca and mb to the end of our arbitrary chosen message block minit (see Section 5.1)
to create our first message Mab.

Mab = minit||Ca||mb

6There is some confusion about which reference implementation is the latest. The Spectral Hash website http://cs.ucsb.

edu/~koc/shash/Jan_2009_SHash.zip provides the updated reference implementation. The NIST site http://csrc.nist.gov/

groups/ST/hash/sha-3/Round1/submissions_rnd1.html also makes available an updated implementation, that differs slightly.
We were not able to determine which implementation is the most correct/update to date so to ensure applicability the attack
was run against both implementations, with identical results.
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5.3.2 The Creating the Second Message

We create the second message Mba from the first message Mab by switching the second message block, ma,
with the last message block, mb.

Mab = minit||ma||ma||ma||ma||ma||ma||ma||ma||ma||ma||ma||ma||mb

M ba = minit||mb||ma||ma||ma||ma||ma||ma||ma||ma||ma||ma||ma||ma

M ba = minit||mb||Ca

5.3.3 The Collision

The Messages Mab and Mba produce the same hash value. We explain why in two stages, first we show that
the chaining variable p is not altered, and second we show that because Ca causes p to collide at the second
and last position, switching the message blocks at the second and last position does not produce a different
final value of h.

Since the message block mb produces the same value of π as ma, the chaining variable p has no way
of distinguishing between the message blocks ma and mb. Therefore ma can be swapped with mb without
altering the value of the p.

Because the value of p cycles back to the value p2, the value p2 is supplied to the compression function
for the message block in the second and the message block in the last position.

pab = pIV , p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p2

pba = pIV , p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p2

The function g is generated from p, so the cycle in p causes a cycle in value of g, thus generating same the
function g2 for both positions (see Section 3.2.2 for more details).

g2 ← d(πa(p2))

As the second and last position use the same function g2, the message block ma will produce the same value
m′

a = g(ma) in both positions. For the same reason, the message block mb will also produce the same
m′

b = g(mb) in both positions. The xor operation is commutative so the chaining variable h has no way of
preserving the order of the values m′ xored into it, thus h encodes the same value for

hab = hIV ⊕m′

init ⊕m′

a ⊕m′

a ⊕m′

a ⊕m′

a ⊕m′

a ⊕m′

a ⊕m′

a ⊕m′

a ⊕m′

a ⊕m′

a ⊕m′

a ⊕m′

a ⊕m′

b

and

hba = hIV ⊕m′

init ⊕m′

b ⊕m′

a ⊕m′

a ⊕m′

a ⊕m′

a ⊕m′

a ⊕m′

a ⊕m′

a ⊕m′

a ⊕m′

a ⊕m′

a ⊕m′

a ⊕m′

a.

That is to say, the final value of the chaining variable h collides for both messages.

hab = hba

Since the chaining variables, h and p, collide for both messages and both messages are the same length,
both messages must produce the same hash value for all hash sizes of the hash function.

shash(Mab) = shash(Mba)

See Appendix Section A.1 for the complete colliding messages and digests.

6 Weakness in the Affine Transform Function

0→ 1, 4→ 5, 8→ 2, 12→ 4,

1→ 13, 5→ 14, 9→ 15, 13→ 6,

2→ 3, 6→ 12, 10→ 8, 14→ 10,

3→ 9, 7→ 0, 11→ 7, 15→ 11,

Figure 13: The inverse s-Box AT−1(m).

18



We present a weakness we discovered in the affine transform function used in shash. This weakness is
not relevant to the collision attack. It is a completely independent result. Shash uses an affine transform
function (AT ) in the field GF (24) to defend against differential and linear cryptanalysis. The affine transform
is implemented as an s-box which is used to transform the message block.

AES uses an s-box in the field GF (28) as a protection against linear and differential attacks. The
authors of shash argue that since the s-box used in shash is similar to the AES s-box it should provide
similar protection. Unfortunately, the shash s-box contains a critical flaw.

We will show that shash gains no additional protection from the s-box. We define shashNoBox as shash
with the affine transform s-box removed. We want to find some input M and M ′ for which

shash(M) = shashNoBox(M ′).

To map from M ′ to M , we merely use the inverse s-box AF−1(M) shown in Figure 13. The s-box AT and
the inverse s-box AT−1 cancel out, allowing us to map inputs and outputs of shashNoBox to the inputs and
outputs of shash.

AT−1(AT (M)) = M

shash(AT−1(M ′)) = shashNoBox(M ′)

Consider the case in which an attacker has found a collision or preimage in the shashNoBox hash function.
To translate the attack to shash, she merely has to run the inverse s-box on the colliding input or preimage.
For instance, two messages Ma and Mb, known to collide in shashNoBox, can be mapped using AT−1 to
generate two messages which must collide in shash.

Ma 6= Mb

shashNoBox(Ma) = shashNoBox(Mb)

shash(AT−1(Ma)) = shash(AT−1(Mb))

That is, shash is only as secure as shashNoBox. Therefore, the AT s-box as used in shash provides no
additional cryptographic strength. AES does not have this weakness, because AES first xors the round key
with the plaintext before applying the s-box[10]. Inverting the AES s-box would involve breaking/guessing
the round key. Thus, the AES s-box is protected by the round key.

In AES, the s-box is applied each round, allowing the AES s-box many opportunities to mix and confuse
the data[11]. Shash only applies the s-box once per message block, which results in much less substitution
and a significantly weaker scheme. Therefore, even if the first issue was resolved by shielding the s-box
behind some transformations or permutations, the second flaw prevents the s-box from offering comparable
protection to the AES s-box.

While no linear or differential attacks have been demonstrated against shash, our results show that the
affine transform function does not offer the protections, against linear and differential attacks, intended by
the authors of shash.

7 Summary

In this paper we describe a theory of attack against the PTX family of compression functions. We show that
shash uses a PTX compression function and is therefore vulnerable to our attacks. We present our research
on exploiting this vulnerability to engineer collisions in the shash algorithm.

The fact that the pipe widening strategy [5] employed by shash provided no protection against chaining
variable collisions, which according to the authors of shash is exactly the type of attack it was employed
to foil, raises questions about the efficacy of pipe widening as a general defense against chaining variable
collisions.

Furthermore, we show that any modifications of shash, even ones which we allow access to random
oracles, are vulnerable as long as the compression function remains a PTX function. Thus, any attempt
to strengthen shash against this attack must show that the improved compression function can not be
reformulated as a PTX function. This generality, also opens the door to finding other hash functions that
may use PTX compression functions.

We demonstrate a working example of our attack against the shash implementation. Our practical
example shows that an attacker, using a typical desktop computer, can completely break strong collision
resistance for all hash sizes in less than a second.
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A Appendix

A.1 Collision

Message Digest (m1, m2):

224 = 80D3207C5F7E07C1299AA8254F74292BE7F86AE19FE0A72255BDB25A

256 = 80D3341789F7D03F02498D6A24B4DBB0926BD3DE2EB7873FE055C84D5DEACCB6

384 = 61032DCEC84FE19BF2F29077C0599C69255984A2E67BDE6C1219D5FADFB785B6ABC0F0FFF8095A7

2093A33AFB4D296AD

512 = D438099A673D9047760F33E6DBC5C41E3700E66369B2D15BCE1958AC73F72F9DE0A44E7A6FF5AFF

63E0BDB5AF80F49EFBF102ABA1E50AA7A8E3A7F64FA49D52D

m1 =

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
5B417B113B4D6B705BB17BC50B0F2B1F9BCB4B545BA37BE43B816B356B5C3BFC8B09EB80EB1D8B365BB17BC5EB838B043BB86BD31BD5BBA73B816B358B66EB49
5B417B113B4D6B705BB17BC50B0F2B1F9BCB4B545BA37BE43B816B356B5C3BFC8B09EB80EB1D8B365BB17BC5EB838B043BB86BD31BD5BBA73B816B358B66EB49
5B417B113B4D6B705BB17BC50B0F2B1F9BCB4B545BA37BE43B816B356B5C3BFC8B09EB80EB1D8B365BB17BC5EB838B043BB86BD31BD5BBA73B816B358B66EB49
5B417B113B4D6B705BB17BC50B0F2B1F9BCB4B545BA37BE43B816B356B5C3BFC8B09EB80EB1D8B365BB17BC5EB838B043BB86BD31BD5BBA73B816B358B66EB49
5B417B113B4D6B705BB17BC50B0F2B1F9BCB4B545BA37BE43B816B356B5C3BFC8B09EB80EB1D8B365BB17BC5EB838B043BB86BD31BD5BBA73B816B358B66EB49
5B417B113B4D6B705BB17BC50B0F2B1F9BCB4B545BA37BE43B816B356B5C3BFC8B09EB80EB1D8B365BB17BC5EB838B043BB86BD31BD5BBA73B816B358B66EB49
5B417B113B4D6B705BB17BC50B0F2B1F9BCB4B545BA37BE43B816B356B5C3BFC8B09EB80EB1D8B365BB17BC5EB838B043BB86BD31BD5BBA73B816B358B66EB49
5B417B113B4D6B705BB17BC50B0F2B1F9BCB4B545BA37BE43B816B356B5C3BFC8B09EB80EB1D8B365BB17BC5EB838B043BB86BD31BD5BBA73B816B358B66EB49
5B417B113B4D6B705BB17BC50B0F2B1F9BCB4B545BA37BE43B816B356B5C3BFC8B09EB80EB1D8B365BB17BC5EB838B043BB86BD31BD5BBA73B816B358B66EB49
5B417B113B4D6B705BB17BC50B0F2B1F9BCB4B545BA37BE43B816B356B5C3BFC8B09EB80EB1D8B365BB17BC5EB838B043BB86BD31BD5BBA73B816B358B66EB49
5B417B113B4D6B705BB17BC50B0F2B1F9BCB4B545BA37BE43B816B356B5C3BFC8B09EB80EB1D8B365BB17BC5EB838B043BB86BD31BD5BBA73B816B358B66EB49
5B417B113B4D6B705BB17BC50B0F2B1F9BCB4B545BA37BE43B816B356B5C3BFC8B09EB80EB1D8B365BB17BC5EB838B043BB86BD31BD5BBA73B816B358B66EB49
5B5C7B9AEB488B7B5BB17BC50B082BCA5B2B7B60DB1BAB3A3B816B35BB8E1B09AB36DBA44BDF9BCE5BB17BC54BF69B513BB86BD31BD5BBA73B816B358B66EB49
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Len = 7168

m2 =

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
5B5C7B9AEB488B7B5BB17BC50B082BCA5B2B7B60DB1BAB3A3B816B35BB8E1B09AB36DBA44BDF9BCE5BB17BC54BF69B513BB86BD31BD5BBA73B816B358B66EB49
5B417B113B4D6B705BB17BC50B0F2B1F9BCB4B545BA37BE43B816B356B5C3BFC8B09EB80EB1D8B365BB17BC5EB838B043BB86BD31BD5BBA73B816B358B66EB49
5B417B113B4D6B705BB17BC50B0F2B1F9BCB4B545BA37BE43B816B356B5C3BFC8B09EB80EB1D8B365BB17BC5EB838B043BB86BD31BD5BBA73B816B358B66EB49
5B417B113B4D6B705BB17BC50B0F2B1F9BCB4B545BA37BE43B816B356B5C3BFC8B09EB80EB1D8B365BB17BC5EB838B043BB86BD31BD5BBA73B816B358B66EB49
5B417B113B4D6B705BB17BC50B0F2B1F9BCB4B545BA37BE43B816B356B5C3BFC8B09EB80EB1D8B365BB17BC5EB838B043BB86BD31BD5BBA73B816B358B66EB49
5B417B113B4D6B705BB17BC50B0F2B1F9BCB4B545BA37BE43B816B356B5C3BFC8B09EB80EB1D8B365BB17BC5EB838B043BB86BD31BD5BBA73B816B358B66EB49
5B417B113B4D6B705BB17BC50B0F2B1F9BCB4B545BA37BE43B816B356B5C3BFC8B09EB80EB1D8B365BB17BC5EB838B043BB86BD31BD5BBA73B816B358B66EB49
5B417B113B4D6B705BB17BC50B0F2B1F9BCB4B545BA37BE43B816B356B5C3BFC8B09EB80EB1D8B365BB17BC5EB838B043BB86BD31BD5BBA73B816B358B66EB49
5B417B113B4D6B705BB17BC50B0F2B1F9BCB4B545BA37BE43B816B356B5C3BFC8B09EB80EB1D8B365BB17BC5EB838B043BB86BD31BD5BBA73B816B358B66EB49
5B417B113B4D6B705BB17BC50B0F2B1F9BCB4B545BA37BE43B816B356B5C3BFC8B09EB80EB1D8B365BB17BC5EB838B043BB86BD31BD5BBA73B816B358B66EB49
5B417B113B4D6B705BB17BC50B0F2B1F9BCB4B545BA37BE43B816B356B5C3BFC8B09EB80EB1D8B365BB17BC5EB838B043BB86BD31BD5BBA73B816B358B66EB49
5B417B113B4D6B705BB17BC50B0F2B1F9BCB4B545BA37BE43B816B356B5C3BFC8B09EB80EB1D8B365BB17BC5EB838B043BB86BD31BD5BBA73B816B358B66EB49
5B417B113B4D6B705BB17BC50B0F2B1F9BCB4B545BA37BE43B816B356B5C3BFC8B09EB80EB1D8B365BB17BC5EB838B043BB86BD31BD5BBA73B816B358B66EB49

Len = 7168

A.2 Equation of Reduced Permutation Message Blocks

AT−1(
n0 ∈ {0, 1}4, n32 ∈ {0, 1}4, n64 ∈ {0, 1}4, n96 ∈ {0, 1}4,
n1 = 15, n33 = 15 n65 = 15, n97 = 15,

n2 ∈ {0, 1}4, n34 ∈ {0, 1}4, n66 ∈ {0, 1}4, n98 ∈ {0, 1}4,
n3 ∈ {0, 1}4, n35 ∈ {0, 1}4, n67 ∈ {0, 1}4, n99 ∈ {0, 1}4,
n4 = n0 ⊕ 15 n36 = n32 ⊕ 15, n68 = n64 ⊕ 15, n100 = n96 ⊕ 15,

n5 = 15, n37 = 15, n69 = 15, n101 = 15,

n6 ∈ {0, 1}4, n38 ∈ {0, 1}4, n70 ∈ {0, 1}4, n102 ∈ {0, 1}4,
n7 ∈ {0, 1}4, n39 ∈ {0, 1}4, n71 ∈ {0, 1}4, n103 ∈ {0, 1}4,
n8 ∈ {0, 1}4, n40 ∈ {0, 1}4, n72 ∈ {0, 1}4, n104 ∈ {0, 1}4,
n9 ∈= 15, n41 = 15, n73 = 15, n105 = 15,

n10 ∈ {0, 1}4, n42 ∈ {0, 1}4, n74 ∈ {0, 1}4, n106 ∈ {0, 1}4,
n11 ∈ {0, 1}4, n43 ∈ {0, 1}4, n75 ∈ {0, 1}4, n107 ∈ {0, 1}4,
n12 = n8 ⊕ 15, n44 = n40 ⊕ 15, n76 = n72 ⊕ 15, n108 = n104 ⊕ 15,

n13 = 15, n45 = 15, n77 = 15, n109 = 15,

n14 ∈ {0, 1}4, n46 ∈ {0, 1}4, n78 ∈ {0, 1}4, n110 ∈ {0, 1}4,
n15 ∈ {0, 1}4, n47 ∈ {0, 1}4, n79 ∈ {0, 1}4, n111 ∈ {0, 1}4,
n16 = 4, n48 = 2, n80 = 4, n112 = 2,

n17 = 15, n49 = 15, n81 = 15, n113 = 15,

n18 = 15 n50 = 10, n82 = 52, n114 = 10,

n19 = 0, n51 = 0, n83 = 0, n115 = 0,

n20 = 11, n52 = 13, n84 = 11, n116 = 13,
n21 = 15, n53 = 15, n85 = 15, n117 = 15,

n22 = 6, n54 = 2, n86 = 6, n118 = 2,

n23 = 4, n55 = 4, n87 = 4, n119 = 4,

n24 ∈ {0, 1}4, n56 ∈ {0, 1}4, n88 ∈ {0, 1}4, n120 ∈ {0, 1}4,
n25 = 15, n57 = 15, n89 = 15, n121 = 15,
n26 ∈ {0, 1}4, n58 ∈ {0, 1}4, n90 ∈ {0, 1}4, n122 ∈ {0, 1}4,
n27 ∈ {0, 1}4, n59 ∈ {0, 1}4, n91 ∈ {0, 1}4, n123 ∈ {0, 1}4,
n28 = n24 ⊕ 15, n60 = n56 ⊕ 15, n92 = n88 ⊕ 15 n124 = n120 ⊕ 15,

n29 = 15, n61 = 15, n93 = 15, n125 = 15,

n30 ∈ {0, 1}4, n62 ∈ {0, 1}4, n94 ∈ {0, 1}4, n126 ∈ {0, 1}4,
n31 ∈ {0, 1}4, n63 ∈ {0, 1}4, n95 ∈ {0, 1}4, n127 ∈ {0, 1}4,
)

The above equation is a solution for the values that a message block must possess to ensure that
SwapControl1 and SwapControl2 perform no permutations, and SwapControl3 performs only limited per-
mutations. We use this equation in Section 4.3. The variables n0 through n127 represent nibbles in a message
block. Note that the all the nibbles are transformed by the inverse affine transform function AT−1(m) from
Section 6.
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