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Abstract. This paper reviews two problems in the security of complex networks: cas-
cades of overload failures on nodes and range-based attacks on links. Cascading failures
have been reported for numerous networks and refer to the subsequent failure of other
parts of the network induced by the failure of or attacks on only a few nodes. We
investigate a mechanism leading to cascades of overload failures in complex networks
by constructing a simple model incorporating the flow of physical quantities in the
network. The second problem is motivated by the fact that most existing works on se-
curity of complex networks consider attacks on nodes rather than on links. We address
attacks on links. Our investigation leads to the finding that many scale-free networks
are more sensitive to attacks on short-range than on long-range links. Besides its im-
portance concerning network security, our result has the unexpected implication that
the small-world phenomenon in these scale-free networks is mainly due to short-range
links.

1 Introduction

Complex networks [1] such as the Internet, the electrical power grid, and the
transportation network, are an essential part of a modern society. The security of
such a network under random or intentional attacks is of great concern. Recently,
an interdisciplinary field among information science and engineering, statistical
and nonlinear physics, applied mathematics, and social science has emerged,
bringing novel concepts and approaches to the study of complex networks [2–
5]. Issues such as the characterization of the network architecture, dynamics on
complex networks, and the effect of attacks on network operation have begun to
be addressed. A central point of this review is that the flow of information and
other physical quantities in the network can be critically important for network
security. This dynamical aspect of the security problem, despite its highly prac-
tical relevance, has been only partially understood in the context of complex
networks. Here we shall review some of our initial results in this direction.

Most large natural and man-made networks are sparse and evolve in time.
Two important properties displayed by many of these networks are the small-
world [6] and scale-free [7] properties. Small-world networks are characterized by
the clustering coefficient C and the average network distance L. The former is
the probability that any two nodes are connected to each other, given that they
are both connected to a common node. The latter measures the average minimal
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number of links connecting any two nodes in the network. Many regular networks
have high clustering coefficients and large network distances. Random networks,
on the other hand, have small network distances and low clustering coefficients
[8]. Small-world networks fall somewhere in between these two extremes as they
have large clustering coefficients and small average network distances [6,9]. A
small-world network is then locally similar to a regular network but globally
similar to a random network. The scale-free property, on the other hand, is
defined by an algebraic behavior in the probability distribution P (k) of the
number k of links at a node. Barabási and Albert [7] have presented a model
which generates a class of scale-free networks. Their model incorporates two basic
features in the evolution of the network: growth and preferential attachment.
The former means that the number of nodes in the network increases with time
and the latter stipulates that the probability for a new node to be connected
to an existing node depends on the number of links that this node already has.
A number of other models of scale-free networks have been proposed (see, for
example, [10]).

Most existing works on the security of scale-free networks consider attacks
on nodes rather than on links ([11,12] are among the few exceptions). We believe
that attacks on links are as important for the network security as those on nodes,
and therefore deserve a careful investigation. As we argue, studying the effect
of attacks on links can provide an understanding to the fundamental question
of why scale-free networks are typically highly efficient. Roughly, the efficiency
of a scale-free network is determined by the average network distance between
nodes. It has been assumed that long-range connections are responsible for the
small average network distance observed in complex networks. In the Watts-
Strogatz model of small-world networks, the small network distances are due to
links connecting nodes that would otherwise be separated by a long distance,
i.e. long-range links [6]. The range of a link lij connecting nodes i and j is
defined to be the shortest distance between i and j when lij is removed [9].
The intuition is then that scale-free networks are much more sensitive to attacks
on long-range than those on short-range links. We show that in fact, for many
scale-free networks, the opposite is true. Thus, the small-world phenomenon in
these scale-free networks is caused by short-range links.

This review is organized as follows. In Sect. 2, we will present an example
of complex network that may be of broad interest: the conceptual network of
English words. The topology of this network was recently studied by us [13]
and we hope this example can serve to illustrate the interdisciplinary nature
of research on complex networks, and how quantitative characterizations can
be useful for a discipline that has traditionally been qualitative. In Sect. 3, we
present a simple model to address the issue of attack-induced cascades in complex
networks [14]. Ranged-based attacks on links and the origin of the small-world
phenomenon in scale-free networks [15] are detailed in Sect. 4. A brief discussion
is presented in Sect. 5.
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2 Conceptual Network of Language

A language can be regarded as a network where words correspond to nodes of
the network. We define two words in a language to be connected if they express
similar concepts. The resulting network of connections among many thousands of
words is potentially relevant not only for the study of the languages themselves,
but also for cognitive science. This issue has recently been studied quantitatively
[13] by mapping out the conceptual network of English language. In particular
it has been shown that this network exhibits the small-world property.

To construct the network [13], we define the connections according to the
entries of a Thesaurus dictionary. Such a dictionary gives for every entry a list
of words that are conceptually similar to the entry word. For instance, for the
word “nature” it lists “character”, “world”, “universe” etc. We define a network
where each entry word is a node, and two nodes are connected if one of the
corresponding words is listed as conceptually similar the other one, as depicted
in Fig. 1. In our study we used online English Thesaurus that is available at [16],
which has over 30,000 entries. The resulting network has an average of about 60
connections per node.

Despite being sparse, the conceptual network is expected to be highly clus-
tered, because there are many sets of related words that are densely intercon-
nected. Indeed, the numerical computation of the clustering coefficient C yields
a number more than 250 times larger than the corresponding value for a random
network with the same parameters (see Table I). On the other hand, because
the network is sparsely connected and only words expressing similar concepts are
linked, one might naively conclude that the average network distance L should
be large. However, our numerical computation yields L = 3.2, which is very close
to the value of about 2.5 of the corresponding random network (see Table I).
This means that two words in the 30,000-words dictionary are connected by only
three degrees of separation, on average. This surprisingly small L is due to words
that correspond to two or more very different concepts and work as shortcuts,
connecting regions of the network that would otherwise be separated by many
links. In fact, less than 1 percent of the words require more than 4 steps to
be reached from other words, on average. Words that require many links to be
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Fig. 1. Small part of the conceptual network of the English language.
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Table 1. Comparison between the conceptual network defined by the Thesaurus dic-
tionary and a random network with the same parameters. N is the total number of
nodes (entry words) in the largest connected component, k̄ is the average number of
links per node, C is the clustering coefficient, and L is the average network distance.

N k̄ C L

Actual configuration 30,244 59.9 0.53 3.16
Random configuration 30,244 59.9 0.002 2.5

reached are usually very specialized, such as “appendectomy” which requires a
path of length eight to be connected with “quadrillion”4.

Therefore, the conceptual network English language is highly clustered and
at the same time has a very small average network distance, i.e., it is a small-
world network. Although we have focused on a particular language (English) we
expect similar results to hold of other languages as well because high clustering
comes from the existence of concepts shared by more than two words and short
average network distance comes from the existence of words that share meanings
with otherwise unrelated words. Both features are seemingly present in many
languages.

This result is potentially relevant for cognitive science. From the standpoint
of retrieval of information in an associative memory, the small-world property
of the network represents a maximization of efficiency. On the one hand, similar
pieces of information are stored together; on the other hand, even very different
pieces of information are never separated by more than a few links. The former
makes searching by association possible, while the latter guarantees a fast search
[17]. It is thus tempting to speculate that associative memory may have arisen
partly because of a maximization of efficiency in the retrieval of information by
natural selection.

For more details we refer to [13]. Different aspects of language networks have
been addressed by other authors [18–22,3,23,24].

3 Attack-Induced Cascades in Complex Networks

A convenient way to address the security of a complex network is to examine how
the size of the largest connected component, which is a measure of the efficiency
of communication (or information flow) within the network, is reduced under
random or intentional attacks. Scale-free networks are known to be sensitive to
the removal of highly connected nodes [25–29]. However, the existence of a giant
connected component in the network does not depend on the presence of highly
connected nodes and can be present even after the removal of a significant num-
ber of nodes [29,30]. Previous studies on network security address mainly static
properties. Our concern is that network architecture represents only one aspect
4 quadrillion → googol → infinity → holiness → purity → sterility → birth control →

vasectomy → appendectomy
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of the security problem. An important question for many real-world situations
is how attacks affect the functions of a network when the flow of information
or other physical quantity in the network are taken into consideration. In par-
ticular, the removal of nodes changes the balance of flows and may trigger a
cascading failure [31–34], as the one that happened on August 10, 1996 in the
western U.S. power grid [35,36]. A simple model has been recently introduced
[14] for cascades of overload failures in complex networks. We show that for
networks where loads can redistribute among the nodes, intentional attacks on
highly loaded nodes can trigger a large-scale cascade of overload failures.

Our model is defined as follows [14]. Suppose that at each time step one unit
of the relevant quantity is exchanged between every pair of nodes in the network
and is transmitted along the shortest paths connecting them. The load at a node
is then simply the betweenness centrality [37–39], i.e. total number of shortest
paths passing through the node. The capacity of a node is the maximum load
that the node can handle. Since capacity is costly, it is natural to assume that
the capacity Ci of node i is proportional to the initial load Li on that node,

Ci = (1 + α)Li, i = 1, 2, ...N, (1)

where α ≥ 0 is the tolerance parameter, and N is the initial number of nodes.
When all the nodes are connected, the entire network operates insofar as α ≥ 0.
But the removal of nodes in general changes the distribution of loads. The load
at a particular node can then change. If it increases and becomes larger than the
capacity, the corresponding node fails. Any failure leads to a new redistribution
of loads and, as a result, subsequent failures can occur. Because of the global
redistribution of load, new failures may be driven by events happening far away.
This cascading process can stop after a few steps but it can also propagate and
shutdown a considerable fraction of the network5. But under what conditions
can such a global cascade happen?

Our result is that global cascades occur if the network exhibits a highly
heterogeneous distribution of loads and the removed nodes are among those with
higher load. Otherwise, cascades are not expected. In order to understand this
result, consider the removal of a single node. If the node has small load, its
removal will not cause major changes in the balance of loads. However, when
the load at the node is large, its removal is likely to affect significantly the loads at
other nodes and possibly starts a sequence of overload failures. In networks with
some degree of randomness, the distribution of loads is highly correlated with the
distribution of links. In particular, networks with heterogeneous distribution of
links, such as scale-free networks, are expected to be heterogeneous with respect
to load as well, so that nodes with larger number of links will have higher load
[38,40], on average. This results reveals another aspect of the robust-yet-fragile
property of heterogeneous networks, which was first observed for the attack on
several nodes [25]. In the case of cascades, a large damage can be caused by the
attack on one or very few nodes.
5 A different model and mechanism for overload breakdown due to networks growth

has been considered in [39].
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Fig. 2. Cascading failure in scale-free networks with scaling exponent γ = 3, as trig-
gered by the removal of one node chosen at random (squares), or among those with
largest connectivities (stars) or highest loads (circles). Each curve corresponds to the
average over 5 triggers and 10 realizations of the network. The error bars represent the
standard deviation. The number of nodes in the largest component is 5000 ≤ N ≤ 5100.

We simulate cascades triggered by random failures and by intentional at-
tacks. In the case of failures, we choose a trigger at random among all the nodes
of the network. In the case of attacks, the targeted node is selected from those
with highest loads or largest connectivities. We consider heterogeneous networks
with scale-free distribution of links and compare them with an equivalent homo-
geneous configuration. To generate the networks, we start with a list of integers
representing the connectivities of the nodes, i.e. the number of end-links of each
node [41,15]. Next, we pick up pairs of end-links at random and connect them
to form a link and repeat this process until the last pair is connected, prohibit-
ing self- and repeated links. Let N denote the number of nodes in the largest
connected component of the resulting network. The damage caused by a cascade
is quantified in terms of the relative size G of the largest connected component
G = N ′/N , where N ′ are the number of nodes in the largest component after
the cascade.

Figure 2 shows results for scale-free networks with scaling exponent γ = 3.
On average, G remains close to unity in the case of random breakdowns but is
significantly reduced under intentional attacks, even for α unrealistically large.
This result is in agreement with intuition, because in the case of random break-
down the trigger is probably one of the many nodes with small load, while in
the case of intentional attack it is a node with very large load. The damage is
larger for smaller values of α, and the attack of nodes with highest loads is more
destructive than the attack of nodes with largest connectivities. Figure 3 shows
the corresponding results for a homogeneous network with the same number of
nodes and exactly 3 links per node. In the inset we display results for scale-free
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Fig. 3. Cascading failures in homogeneous networks with degree k = 3 and N = 5000.
Inset: the same for scale-free networks with γ = 3, N = 5000, and k ≥ 2 (different
from the networks in Fig. 1, here each node has 2 or more links). The resulting average
connectivity is 〈k〉 ≈ 3.1. The legends and other parameters are the same as in Fig. 1.

networks with about the same average number of links per node. The homo-
geneous network does not experience cascading failures due either to random
breakdown or to intentional attacks for α as small as 0.05. For the scale-free
(heterogeneous) network, cascades triggered by the attack on a key node can
drastically reduce the size of the the largest connected component, as shown in
the inset. Therefore, networks with homogeneous distribution of load appear to
be more robust against attacks than the heterogeneous ones. This conclusion
does not rely on the particular properties of these models, as the same was also
observed for other classes of networks.

These findings are expected to be important for real-world networks. Indeed,
many infrastructure networks have heterogeneous distribution of load and as
such are expected to undergo large-scale cascades if some vital nodes are at-
tacked, but rarely in the case of random breakdown. For details see [14].

4 Range-Based Attacks on Links in Complex Networks

The Watts and Strogatz [6] model of small-world networks identifies the small
shortest paths observed in locally structured, sparse networks as being due to
long-range connections, while short-range links are responsible for high cluster-
ing. This observation matches with the known results for the Erdös-Rényi model
of random networks [42], where almost all links are long-range connections and
the average network distance increases only logarithmically with the number N
of nodes [8]. In most regular networks, on the other hand, all the links have
small range and the average shortest path increases with a power of N . All these
models display a relatively homogeneous distribution of connectivities. Many
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real networks having very small average network distance have been identified
as scale-free [7,3]. Scale-free networks are heterogeneous as their connectivity
can vary significantly from node to node and a considerable number of links can
be associated with a few highly connected nodes.

A recent paper [15], which we shall review here, has studied the contribution
of short-range links to the shortness of the node-to-node distances in scale-free
networks, by analyzing the impact of attacks on short-range links versus those on
long-range links. Our results contrast with the tacit assumption that long-range
connections are responsible for the small average network distance exhibited
by these networks. Our findings are based on the observation that the average
network distance is a global quantity which is mainly determined by links with
large load.

Our attack strategy is as follows [15]. We measure the efficiency of the net-
work as links are successively removed according to their ranges: (i) for short-
range attacks, links with shorter ranges are removed first; (ii) for long-range
attacks, links with longer ranges are removed first. The efficiency is measured by
the shortest paths between pairs of nodes. A convenient quantity to characterize
the efficiency is [43]

E =
2

N(N − 1)

∑ 1
dij
, (2)

where dij is the length of the shortest path between nodes i and j and the sum
is over all N(N − 1)/2 pairs of nodes. The network is more efficient when it has
small shortest paths, which according to our definition corresponds to large E.

To be specific we consider the network model described in the previous sec-
tion, where the nodes are connected randomly for a given scale-free distribution
with scaling exponent γ, and self- and repeated links are prohibited. In order
to have nontrivial networks in the limits of small and large γ, we bound the
connectivity so that kmin ≤ ki ≤ kmax for i = 1, 2, . . . , N , where kmin and kmax
are constant integers. For γ →∞, the network is homogeneous as all the nodes
have the same connectivity kmin. The distribution of connectivities becomes
increasingly more heterogeneous as γ is decreased.

In randomly generated networks, nodes with larger connectivity are expected
to be on average closer to each other than those with smaller connectivity [15].
More specifically, the distance dij between nodes i and j is expected to be highly
correlated with the product of the connectivities ki and kj . This suggests that the
range is also correlated with the product of the connectivities so that short-range
links tend to link together highly connected nodes, while long-range links tend
to connect nodes with very few links. Moreover, links between nodes with large
connectivities are expected to be passed through by a large number of shortest
paths (see [12]). That is, on average these links should possess a higher load [12]
than those connected to nodes with few links, where the load of a link is defined
as the number of shortest paths passing through the link [37,38]. These have
been confirmed numerically, as shown in Fig. 4 for γ = 3. As a result, high load
should be associated mainly with short-range links. Since links with higher load
are expected to contribute more to the shortness of the paths between nodes,
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Fig. 5. Efficiency for short- and long-range attacks (normalized by the initial value)
as a function of the fraction of removed links. All the parameters other than γ are the
same as in Fig. 5.

such a correlation between load and range implies that attacks on short-range
links are more destructive than those on long-range links.

In Fig. 5 we show the efficiency for both short- and long-range attacks, for
different values of γ. Short-range attacks are clearly more destructive than long-
range ones for intermediate values of γ, as shown in Figs. 5(a) and 5(b) for γ = 3
and γ = 5, respectively. The corresponding relation between the average load and
range, plotted in Fig. 6 for γ = 3, confirms that higher load on links with shorter
range is the mechanism underlying this phenomenon. Long-range attacks become



308 Y.-C. Lai, A. E. Motter, and T. Nishikawa

2 9 16
0

1

2
x 10

4

A
ve

ra
ge

d 
Lo

ad

Range

γ=3
γ=∞

Fig. 6. Averaged load as a function of the range for γ = 3 and γ = ∞. All the
parameters other than γ are the same as in Fig. 4.

more destructive only for networks with sufficiently small or large values of γ. In
Figs. 5(c) and 5(d) we show the results for γ = 2.5 and γ = ∞, respectively. The
exchange of the roles of attacks on short- and long-range links for networks with
small values of γ is a model dependent effect due to the appearance of a densely
connected subnetwork of nodes with large connectivity. For networks with large
values of γ, switching of the roles of short- and long-range attacks is caused by
the homogenization of the network and similar behavior has been observed in
growing models of scale-free networks as well [15]. In a homogeneous network
all the nodes have approximately the same connectivity. Therefore, links with
higher load are precisely those between distant nodes, i.e., those with larger
range, as shown in Fig. 6 for γ = ∞. Incidentally, the long-range attack is
also more destructive in other homogeneous models, such as the Watts-Strogatz
model and the Erdös-Rényi random model [15].

We have also considered growing models of scale-free networks [7,44]. In all
the cases, short-range attack has been observed to be the most effective for
scale-free networks with scaling exponent around γ = 3 [15].

5 Discussion

In this paper, we have reviewed two problems concerning attacks on and security
of complex networks. The study of attacks on complex networks is important in
order to identify the vulnerabilities of real-world networks, which can be used
either for protection (e.g., of infrastructures) or for destruction (e.g., in the
control of epidemic diseases). Additionally, it can provide guidance in designing
more robust artificial networks (e.g., communication networks).

Our result on cascades in complex networks indicates that while the scale-
free property makes many natural and man-made networks quite robust against
to random failure of nodes, the presence of a few nodes with very large load
may make the network vulnerable to a cascade of overload failures capable of
disrupting the network into small fragments. Such a global cascade represents a
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serious threat because it may be triggered by relatively small events and prevents
an efficient communication between most nodes in the network.

We have also shown that for a wide interval of the scaling exponent around
γ = 3, fairly random scale-free networks are more vulnerable to short-range at-
tacks than long-range ones. This property results from a higher concentration
of load on short-range links. Our findings have the important implication that
short-range links are more important than long-range links for an efficient com-
munication between nodes, which is the opposite to what one might expect from
other classes of small-world networks. This result is potentially relevant for the
spread of sexual diseases, which has been argued to take place in a scale-free
network [45]. Although we have focused on scale-free networks, similar results
are expected to hold for other classes of heterogeneous networks.

More details about the content of this review can be found in [13–15].
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