IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING (TDSC), VOL. XX, NO. YY, MONTH 2012

Attacks and Defenses in the Data Plane of
Networks

Danai Chasaki, Student Member, IEEE, and Tilman Wolf, Senior Member, IEEE

Abstract—Security issues in computer networks have focused on attacks on end-systems and the control plane. An entirely new
class of emerging network attacks aims at the data plane of the network. Data plane forwarding in network routers has traditionally
been implemented with custom-logic hardware, but recent router designs increasingly use software-programmable network processors
for packet forwarding. These general-purpose processing devices exhibit software vulnerabilities and are susceptible to attacks. We
demonstrate — to our knowledge the first — practical attack that exploits a vulnerability in packet processing software to launch a
devastating denial-of-service attack from within the network infrastructure. This attack uses only a single attack packet to consume the
full link bandwidth of the router’s outgoing link. We also present a hardware-based defense mechanism that can detect situations where
malicious packets try to change the operation of the network processor. Using a hardware monitor, our NetFPGA-based prototype
system checks every instruction executed by the network processor and can detect deviations from correct processing within four clock
cycles. A recovery system can restore the network processor to a safe state within six cycles. This high-speed detection and recovery
system can ensure that network processors can be protected effectively and efficiently from this new class of attacks.

Index Terms—network security, network attack, programmable router, network processor, processing monitor, embedded system
security.

+

INTRODUCTION

ETWORK security is an important concern in the In-
Nternet. Most network security efforts have focused
on vulnerable end-systems that are exploited by remote
attacks through the network, on denial-of-service attacks
that use the network to disable end-systems, and on
general information security. Until recently, the network
infrastructure itself has not been a major concern for
network security since it presented no practical attack
target. However, the technology used to implement
network routers has changed in recent years and new
vulnerabilities are emerging. In our work, we focus on
a specific example of a novel type of attack that exploits
these vulnerabilities and thereby attacks the network
infrastructure itself.

In the past, high-performance network routers have
used application-specific integrated circuits (ASICs) to
implement packet forwarding functions. While these
ASICs were costly to develop, they represented the only
technology that was able to achieve the performance
that was necessary for multi-Gigiabit per second traf-
fic forwarding. Over the last few years, however, the
performance of general-purpose multi-core processors
(e.g., network processors or high-end server processors)
has reached a level where high traffic forwarding rates
can be achieved. Since the functionality of an ASIC
cannot be changed once it has been designed, the use of
these new general-purpose network processors provides

D. Chasaki and T. Wolf are with the Department of Electrical and Computer
Engineering, University of Massachusetts, Amherst, MA, 01003 USA e-mail:
{dchasaki, wolf}@ecs.umass.edu

This material is based upon work supported by the National Science Foun-
dation under Grant No. CCF-0952524.

Manuscript received Nov 18, 2011; revised May 2, 2012; accepted June 20,
2012.

router vendors with much more flexibility to adjust
a router’s functionality after production [1]. Therefore,
there is an ongoing shift in the industry toward imple-
menting routers based on programmable packet process-
ing engines rather than based on ASICs.

A side-effect of this shift from ASIC-based routers to
routers with programmable packet processors is that it
gives rise to a new class of vulnerabilities and corre-
sponding attacks. Routers based on ASICs represented
no practical attack target since their functionality could
not be changed except by replacing actual hardware.
In contrast, routers based on general-purpose proces-
sors that run software to implement packet processing
functions exhibit the same kind of vulnerabilities that
have been observed and exploited in conventional end-
systems and embedded systems: attackers can attempt
to crash the system, change its operation, extract infor-
mation, etc.

Vulnerabilities in the network infrastructure itself are
particularly problematic. First, routers are shared in-
frastructure and outages can affect a large number of
users. Second, some routers at the core of the network
are connected to links with extremely high data rates
(e.g., 40 Gigabits per second). If an attacker can modify
the behavior of a router to send out malicious traffic,
devastating denial-of-service attacks can be launched
using only one or a handful of vulnerable systems.
An important open question is if this type of attack
is practically feasible in a network, especially since the
attacker is limited to only sending data packets.

In our work, we show a practical example of such an
attack. Specifically, we demonstrate how benign protocol
processing code (in our case, the insertion of a protocol

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING (TDSC), VOL. XX, NO. YY, MONTH 2012 2

header) that contains an implementation vulnerability
can be exploited by a single data packet and trigger a
denial-of-service that consumes the entire outgoing link
bandwidth of a router. The attack is based on a stack
smashing attack that is triggered by a data packet with
a malform User Datagram Protocol (UDP) header. The
effect of the attack is the execution of arbitrary code (e.g.,
an infinite retransmission loop) or a system crash. We
show a successful attack for two specific systems, a cus-
tom packet processor [2] based on the NetFPGA platform
[3] and the Click modular router [4], as representatives
for the broad class of routers with programmable packet
processors.

The existence of such a data-plane attack leads to
the immediate question of how to defend against it.
On end-system and server processors, malware detec-
tion mechanisms (e.g., virus scanner) have been used
to successfully defend against attacks on the processor
system. On network processors, where processor cores
are much simpler and typically do not support full-
blown operating systems, these solutions cannot be used.
In our work, we present a hardware-based solution
that uses a processor monitor to identify attacks and a
recovery system to restore the processor after an attack.
We show in our prototype implementation that is based
on the NetFPGA platform that detection and recovery
can be performed in about a dozen processor cycles. This
ability to detect and recover from attacks is critical to
ensure that the protection system itself is not susceptible
to denial-of-service attacks.

Overall, our paper presents a comprehensive study of
this new class of data plane attacks and potential defense
mechanisms. Our specific contributions are:

o Discussion of data plane attacks and their emer-
gence due to the use of programmable packet pro-
cessors in network routers.

o Demonstration (and thus proof of existence) of data
plane attacks triggered by a single data packet on
two different prototype systems.

o Design of a defense mechanism based on a hard-
ware monitoring and recovery system and evalua-
tion of its performance on a prototype system.

The remainder of the paper is organized as follows.
Section 2 discusses related work. We describe the prob-
lems arising from programmability in the data plane
of networks in Section 3. A specific attack example
and results from its implementation are presented in
Section 4. Section 5 presents the design and prototype
implementation of a defense mechanism against this
type of attacks. In Section 6, we evaluate the performance
of our prototype system. Finally, Section 7 summarizes
and concludes this paper.

2 RELATED WORK

Programmability in the data plane of routers is widely
used and many modern routers use programmable
packet processors to implement protocol processing.

Routers that use software for packet processing in-
clude workstation-based routers [4], [5], programmable
routers [6], and virtualized router platforms [7]. High-
performance router systems use multi-core packet pro-
cessors (so-called “network processors”) [8], [9]. Com-
mercial examples of network processors are the Intel
IXP2400 [10], the EZchip NP-3 [11], the LSI APP [12],
the Cavium Octeon [13], and the Cisco QuantumFlow
[14]. The number of processor cores in these chips ranges
from as little as eight in the IXP2400 to over a hundred
in the Cisco Silicon Packet Processor (SPP).

Addressing the problem of vulnerabilities in routers
is also important in the context of research on the
design of the future Internet [15], [16], [17]. The use of
programmable packet processors is at the core of many
future Internet designs (e.g., network virtualization [7],
[18]). Thus, developing defense mechanisms to protect
the packet processors in router systems is critical for the
continued success of the Internet.

The vast majority of security issues in networking are
related to end-systems and protocols. One example is
large-scale distributed denial-of-service attacks, which
are generated by botnets [19]. Widely deployed intrusion
prevention systems including firewalls [20] and deep
packet inspection [21], are trying to control end-system
intrusion and thus to limit the access to platforms from
which attacks can be launched. Secure protocols (e.g.,
IPsec [22]) are used to provide basic information security,
including authentication and privacy.

Very little work has addressed security issues in the
network infrastructure itself. A recent study [23] sur-
veyed network devices that are considered vulnerable
due to exposed administrative interfaces, which are part
of the control plane of the network and can be protected
by better management methods. In our work, we con-
sider the data plane of the network, which inherently
needs to be exposed and thus needs novel protection
techniques. One such protection is based on processor
monitoring, originally proposed for embedded systems
in general [24] and recently adapted for network systems
in our prior work [25]. Other defenses may be based on
techniques from embedded system security [26].

Software vulnerabilities have been studied extensively
on a range of different systems. For programmable
routers based on Click, the integer vulnerability ex-
ploited in this paper effectively leads to a buffer overflow
attack on the host operating system. Although there have
been many attempts to tackle this problem statically [27],
[28] and dynamically [29], [30], state-of-the-art attack
prevention mechanisms lack the ability to adjust the
execution flow at runtime and lead to termination of the
packet processing task.

Large scale DoS attacks have been previously studied
in the context of worms [31]. Worms can spread quickly
by infecting a large number of vulnerable end-systems
and can absorb a large amount of network bandwidth.
The key difference of the attack that we describe in this
paper is that it has an even more devastating effect:

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING (TDSC), VOL. XX, NO. YY, MONTH 2012 3

The attack is triggered with a single packet, absorbs all
bandwidth of the outgoing link on the router, and can
propagate to all vulnerable downstream routers. Some
initial ideas of our work were published in our prior
work [25], [32].

3 VULNERABILITIES AND ATTACKS IN NET-
WORK INFRASTRUCTURE

Before discussing the details of a specific attack and
defense mechanisms in the following sections, we pro-
vide a brief overview of the vulnerabilities and potential
attacks in the network infrastructure.

3.1

The main functionality of the Internet (and any other
data communication network) is to allow end-systems
to communicate. As such, the Internet has served as
a vehicle for many attacks where malicious users have
gained unauthorized access to end-systems for the pur-
pose of hacking, espionage, etc. In addition to such
attacks that target access to data on end-systems, there
are also denial-of-service attacks that aim to make end-
systems temporarily inaccessible. While attacks on end-
systems are often highly visible due to news media
attention, there are are also several other types of attacks
on other components of the network. These attack types
are shown in Figure 1 together with a few examples and
common defense mechanisms. This figure by no means
contains a comprehensive list of attacks and defenses,
but merely a selection that helps in illustrating major
differences in attack types. The control plane of the
network, where routing information and other control
information is exchanged, is a target of attacks that aim
to disrupt the correct operation of the network (e.g., by
stealthily redirecting traffic to malicious end-systems).
In the data plane of the network, where the actual
network traffic is transmitted between end-systems and
routers, attackers may aim to eavesdrop on or intercept
communications. It is here where a new type of attack
that can lead to denial-of-service is emerging.

The attack on the data plane of the network that aims
at denial of service is the main focus of this paper.
As explained in the introduction, this attack is rooted
in the way modern routers are implemented. Until a
few years ago, practically all high-performance routers
used ASICs to implement packet forwarding operations.
The function of an ASIC cannot be changed after it has
been created and thus there was no way to change the
forwarding operation of a router for the purpose of a net-
work attack. However, the recent development of high-
performance MPSoCs that are specialized for packet
processing (i.e., network processors) has shifted router
designs from ASIC-based packet forwarding to software-
based forwarding on general-purpose processing sys-
tems [1], [13], [14], [33]. As with any software-based
system, the flexibility provided by programmability also

Attack Classification

presents a security challenge as attackers can change the
operation of the system for malicious purposes.

3.2 Commercial Routers with Programmable Fea-
tures

Since attacks on the data plane of networks hinge on the
presence of programmable packet processing systems
in routers, we provide a brief overview of commercial
router products. We show that programmable packet
processors are indeed widely used in the Internet. Thus,
these routers present the potential for the types of attacks
we discuss in this paper. However, we do not want to
imply that any specific products are vulnerable to any
specific attack. We merely want to show that the technol-
ogy that is the basis for these attacks (i.e., programmable
packet processors) is commonly used.

Modern Internet routers for the network core and the
network edge typically employ programmable packet
processors. This trend can be seen by examining the
router products from two of the leading router equip-
ment manufactures:

o Cisco: The Cisco CRS-1 core router uses a Cisco
Silicon Packet Processor (SPP). The SPP is a 188-
core processor that can be programmed to execute
multiple advanced networking services. Cisco CRS-
3 is based on the 40-core Cisco Quantum Flow pro-
cessor which also supports high levels of parallelism
and flexibility in terms of implementable services.
Edge routers like the Cisco ASR 1000 and 9000
series are built on Quantum Flow as well. They are
commonly used for applications that require parallel
processing, security provisioning, QoS mechanisms
and virtualization. The processors support any com-
bination of layer 2 and layer 3 services and features
(which can be programmed in C, similar to how we
program our prototype system).

o Juniper: Juniper] and SRX series as well as Juniper
MX series are used by both service providers and
enterprise networks. They are based on network
processors (e.g., Intel IXP models, which can ef-
ficiently implement services like load balancing,
SSL offload, web acceleration, application security,
access control etc.).

While there are many more network equipment ven-
dors, it is clear that programmability in the data plane
is commonly used.

3.3 Security Model for Network Infrastructure

In our work, we use a straightforward security model
that reflects the operation of current Internet. Basically,
we assume that the packet processing code on a router is
benign (i.e., not intentionally malicious) and an attacker
aims to exploit vulnerabilities in this code to change the
operation of a router.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING (TDSC), VOL. XX, NO. YY, MONTH 2012 4

Attack target

Goal of attack Attack examples Defenses

End-system

Data access and
modification

Hacking, phishing,
espionage, etc. Virus scanner, firewall,
network intrusion

detection system, etc.

Denial-of-service attack

Denial-of-service via botnets, etc.

Control plane

Malicious route
announcement, DNS
cache poisoning, etc.

Data access and
modificaiton

Secure routing

protocols (with

cryptographic
authentication), secure
DNS (DNSSEC), etc.

DNS recursion attack,

Denial-of-service
etc.

Data plane

Fig. 1. Examples of network attacks and defenses.

3.3.1 Security Requirements

The basic security requirements for a router are twofold:
(1) Normal (i.e., benign) network traffic should be pro-
cessed according to network protocol specifications; (2)
Malicious network traffic should not have a negative ef-
fect on the router (and can be discarded). These require-
ments imply that regular traffic should be processed by
the router even in the presence of attack traffic. That is,
attack traffic should not have a negative impact on the
router system.

Note that the infrastructure attacks we discuss here
(see Figure 1) rely on the ability of an attacker to change
the behavior of the packet processor (i.e., change in
control flow or instruction memory) or its data (ie.,
change in data memory). If it can be ensured that the
operation of the router does not change from what it
originally was programmed to do, then an attack is not
possible.

We show in Section 4 how an attacker can violate
security requirement (1) by changing the operation of
the router. In Section 5, we then show how processing
monitoring can enforce requirement (2) and thus avoid
a change in router operation thereby circumventing the
problems caused by attack traffic.

3.3.2 Attacker Capabilities

In our work, we consider the following attacker capabil-
ities. An attacker can:

 Send packets (control or data) to the packet proces-
sor, possibly triggering abnormal behavior.

o Gain remote access to the system and change the
data memory, the instruction memory of the pro-
cessor, log files, or extract and modify secret keys.

o Launch Denial-of-service attacks by sending mas-
sive traffic or by directly disabling links.

o Use reprogramming interfaces to control the entire
router.

However, an attacker does not have physical access
to the router and cannot access the binary file of the
application currently executed on the packet proces-
sor, because it resides outside the platform. Once it is

Secure network
protocols (IPSec, TLS),
etc.

Processing monitor,
etc.

Data access and
modificaiton

< Denial-of-service

Eavesdropping, man-in-
the-middle attack, etc.

Exploit of vulnerable
packet processing codeR

‘ Focus of this paper ‘

Packet
forwarding
software

In-network

denial of
service
attack

Vulnerable
packet
processor

Malicious
packet \

Unprotected
software-based
router

Fig. 2. Example of in-network attack. Vulnerable packet
processing systems on routers can be used to launch
large-scale denial-of-service attacks with a single packet.

launched on the instruction memory of the hardware
platform though, memory modification is considered a
potential attack scenario.

The attacks mentioned in this section is not a compre-
hensive enumeration of all likely scenarios. We just out-
lined the general context of the possible ways in which a
misbehaving user can attack a packet processing system.
We tried to be as general as possible in our assumptions,
and include most of current and next generation network
vulnerabilities.

Based on this security model, we present a specific
example of an attack.

4 DATA PLANE ATTACK EXAMPLE

The main idea of the attack is illustrated in Figure 2. A
cleverly crafted packet may be able to exploit software
vulnerabilities (e.g., stack smashing attack) and change
the operation of the packet processor. A simple change
in the software could lead to an infinite loop where the
same packet is transmitted repeatedly. Such an approach
is particularly effective and damaging since the attack
originates from within the network, where the compro-
mised system may have access to links with tens of
Gigabits per second bandwidth.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING (TDSC), VOL. XX, NO. YY, MONTH 2012 5

To describe the attack in detail, we briefly discuss the
code vulnerability that we exploit, as specific example
code that exploits this vulnerability in the context of
protocol processing, and an example data packet that
triggers an exploit of the vulnerability.

4.1 Vulnerability

Our attack exploits a vulnerability in the program that
is executed on the packet processor of the routers. There
are known C/C++ code exploits such as pointer sub-
terfuge, use of strcpy and memcpy for buffer overflows,
and integer vulnerabilities. A large number of them is
present in commercial software designs and implemen-
tations. These vulnerabilities, under certain conditions,
can be exploited by attackers, especially if programmers
are not writing security-aware code.

The premise of our attack is that the packet process-
ing code is benign and does not contain intentionally
malicious code. The attacker sends a carefully crafted
packet to one of the router’s network interface cards. The
processing of this packet turns the ‘good” code/protocol
routine that runs on the network processor into ‘bad’
code. There is nothing inherently wrong with the packet
or the application code, but the combination of the two
can lead to the processor’s malfunctioning. In our case,
the incoming packet changes the control flow of the rout-
ing and redirects it to malicious code that resides inside
the payload of the attack packet. For all other packets,
the correct processing is performed by the router.

The specific exploit we use in our attack is an integer
vulnerability. Certain integer arithmetic operations, de-
pending on the conditions, can result to unexpected out-
come. Sign errors, truncation errors, integer overflows or
underflows can occur, which, if not taken into account
before the program execution, can lead to programs with
unexpected behavior and security flaws [34].

Our attack is based on a vulnerability caused by an
integer overflow. As we know, integers can represent
values within a given range. For example, the integer
type ‘unsigned short’ ranges from 0 to 65535. When
a variable declared as short integer exceeds the upper
limit, the assigned value wraps around zero in order
to stay within the allowed limits. If the programmer
does not anticipate this behavior, and the remaining of
the program reuses that value at some point, potentially
harmful things can happen. The following example code
contains an integer overflow vulnerability:

unsigned short sum;
unsigned short one =
unsigned short two
one + two;

65532;
8;

sum =

The value assigned to the variable sum is not 65540,
as one would expect, but 4 due to the limited amount
of memory space that is assigned to it.

Incoming ETH P uDP
packet hdr | hdr hdr payload
CM
header
Outgoing ETH IP CM | UDP
packet hdr | hdr | hdr| hdr payload

bn1<:
=

len2 <

Fig. 3. Protocol Header Insertion.

4.2 Vulnerable Protocol Processing Code

Routers perform a variety of protocol processing op-
erations, ranging from simple IP forwarding to more
advanced functions that include IPsec termination, intru-
sion detection, tunneling, etc. For our attack example, we
assume that the protocol processing operation consists
of adding a header to a packet. We are describing this
operation in the context of the congestion management
protocol described in [35] to be concrete, but it is impor-
tant to note that the vulnerability can apply to a much
broader range of protocol operations that add packet
headers.
The congestion management (CM) protocol uses a
custom protocol header that is inserted between the IP
header and the UDP header. This process is illustrated
in Figure 3. For the discussion of our attack, the detailed
operation of the CM protocol and its header format
is irrelevant. The important aspect is that CM adds a
header in a packet.
The processing steps associated with the header inser-
tion by the CM protocol are:
1) Parse headers to identify header boundary between
IP and UDP.

2) Shift the UDP header (and higher layer headers
and payload) to the right to make room for the
CM header.

3) Insert CM header in packet.

Figure 4 shows pseudocode for the part of the program
that inserts the new CM header in the original packet,
which is the part of the code that contains a vulnerability.
While writing the CM header generation part of the
protocol, a security aware programmer would perform
a check on the packet’s total size before shifting the
UDP datagram and inserting the new header into the
original packet. This check is making sure that the out-
going packet — after the 12-byte CM header is appended
to it — does not exceed the maximum datagram size.
Only if the check (CM_hdr_size + UDP_length) <
MAX_PKT passes, the original UDP datagram gets shifted
by 12 bytes, and the CM header followed by the original
UDP datagram are copied into the new packet buffer.
The following line is the one that performs the shift
and copy operation: memcpy ((new_pkt_buf+lenl),
original_pkt, len2); where lenl is the CM

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING (TDSC), VOL. XX, NO. YY, MONTH 2012 6

#define MAX PKT 1484

int generate CM header (int orig pkt[], unsigned
short lenl, unsigned short len2)

{
int new_pkt_ buf [MAX PKT];

unsigned short sum;

sum= lenl+ len2;

if (sum > MAX PKT) { return -1;}
else {

memcpy ((new_pkt buf+lenl), orig pkt, len2);

return 0;

}

int main(int argc, char **argv)
{
int orig_pkt[];

generate CM header (orig_ pkt,
UDP_length) ;

CM_hdr_ size,

Fig. 4. Example Application Code.

header size (12 bytes) and len2 is the UDP datagram’s
total length. Since the total length field of the UDP
header is a 16-bit field and the CM header is only 12
bytes long, the programmer could choose to assign lenl
and len2 to ‘unsigned short’ integer types, so that the
embedded processor’s limited resources are not wasted.

This code, while correct for CM protocol processing,
contains a vulnerability that is based on an integer
overflow in the length check. A carefully crafted attack
packet can exploit this vulnerability.

4.3 Attack Packet

The vulnerability does not exhibit problematic behavior
for most “normal” packets that are short enough to ac-
commodate the 12-byte CM header within the maximum
IP packet length. An attacker, on the other hand, can
send a long UDP packet that triggers an overflow. If
an attacker chooses to send a regular, oversized packet
(larger than MAX_PXKT), the size check will fail. However,
if an attacker sends a packet with a malformed UDP
length field (for example with the 16-bit value Oxfffc
(65532 in decimal)), then the code performs incorrectly:
1) CM_hdr_size + UDP_length = 12 + 65532
= 8 (incorrect due to integer overflow)
2) CM_hdr_size + UDP_length < MAX_PKT
(even though it is not)
3) 65532 bytes are copied into the new_pkt_buf,
which can only accommodate 1484 bytes
Due to the malformed UDP total length field of the
incoming packet, the processing of the protocol code

Low address

New pkt buffer

Current A
frame ptr_> Local var Current
Previous frame ptr frame
(generate
Return address CM header)
New
stack . Stack
ointer Rof ac
p Original packet hdr growth

Packet payload
(attack code)

High address

Fig. 5. Stack Smashing.

leads to unexpected program behavior. A large amount
of data ends up being copied into a buffer that was not
designed to handle more than the maximum datagram
size. The result is the notorious buffer overflow attack,
which will overwrite the processor’s stack.

Figure 5 shows the stack of the processor when the
function generate_CM_header is running. We can see
the original incoming packet residing in the bottom of
the stack, as part of the main function. The last few bytes
of the original packet correspond to the payload and
contain the attack code, which the attacker has devised.
Once the function generate_CM_header starts pro-
cessing the incoming packet with the malformed UDP
length field, the new packet buffer will overflow and
start rewriting the local variables of the current frame,
continue with the stack pointer and finally overwrite the
return address of the current frame as well. Originally,
the program should have jumped back to the calling
function after finishing with the CM header generation,
but when the return address is overwritten, the program
will jump to whichever address the attacker has chosen!
Of course, the attacker chooses to overwrite the return
address with the stack memory address where the attack
code begins. Thereby, the attacker can make the program
jump to malicious code that is carried inside the packet
payload.

In our attack, we insert a few instructions of assembly
code into the payload, which repeatedly broadcast the
same attack packet in an infinite loop. As we show in
Section 4.4, a single attack packet of this type triggers a
denial-of-service attack that jams the routers outgoing
link at full data rate. While our attack is used for
launching a denial-of-service service attack, it should be
noted that an attacker could choose to run attack code
with other purposes.

With this example, we demonstrate that vulnerabilities
in software-based routers are not only hypothetical, but
can occur in common protocol processing code. We
also show that these vulnerabilities can be exploited to

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING (TDSC), VOL. XX, NO. YY, MONTH 2012 7

header
removal
code

header
insertion
code

video stream
QY —

<;i§§

programmable
router 1

programmable
router 2

Fig. 6. Experimental Setup.

execute arbitrary attack code.

4.4 Results

To demonstrate the feasibility and effects of the attack
described in Section 4, we show a prototype implemen-
tation in a real network. We have implemented the attack
on the Click modular router [4] and on a custom packet
processor [2] based on the NetFPGA platform [3]. The
custom packet processor uses a Plasma soft core [36],
which is a 32-bit MIPS architecture processor.

Our experimental setup is shown in Figure 6. We
send video traffic from one end-system to the other
over a network consisting of two routers. The first
router implements the CM header insertion processing
described above. The second router removes the CM
header. The header insertion routine on the first router is
implemented as discussed in Section 4 and exhibits the
integer overflow vulnerability.

We measured the incoming and outgoing traffic on
the first router for different scenarios. Figure 7 shows
the results for benign traffic and attack traffic. There is a
30-second video transmission as baseline traffic (shown
in green). In the first scenario (Figure 7(a)), only benign
traffic is sent and the router forwards it as expected. In
the second scenario (Figure 7(b)), a single attack packet is
injected into the incoming traffic of our custom network
processor. Since the attack packet triggers an infinite
loop of retransmitting itself, all output traffic consists
of attack traffic (shown in red). There are two important
observations: (1) No benign traffic is forwarded. Thus,
the attack not only absorbs all unused bandwidth, but
all bandwidth. (2) The amount of outgoing attack traffic
is around 850 Mbps, which is close to the total link rate
of the system. The performance of the system is limited
to 850 Mbps due to the maximum clock frequency in
our prototype. In a commercial high-performance router,
attack traffic would be sent at the full link rate.

We also demonstrate a denial-of-service attack with
Click. Due to the integer vulnerability, the memory copy
will exceed the pre-determined buffer boundary and
overwrite adjacent memory content (e.g. variables, func-
tion pointers). In our experimental setup (kernel version
2.6.19.2), Click runs as a user process and cross-boundary
write causes a runtime exception that leads to termina-
tion of the process. (We demonstrate a different attack
scenario from that on the customized packet processor.

The denial-of-service in this case consists of shutting
down all packet forwarding in the router.) Figure 7(c)
shows the attack scenario. An attack packet is sent to
the router and effectively interrupts all packet processing
services provided by Click.

These results very clearly show that the attack we
describe in this paper is indeed possible in practice
and that it has devastating effects on the network by
generating attack traffic at full link rates in the core of
the network.

4.5 Harvard Architecture and Executable Space Pro-
tection

The above attack example is based on a processor with
a von Neumann architecture, where program code and
data can reside in the same memory. This memory
architecture allows program code in the packet data
to be executed. While von Neumann architectures are
commonly used in general purpose processors, many
existing network processors are based on the Harvard
architecture, which uses separate data and instruction
memories. While the above attack cannot immediately
be applied to a Harvard architecture processor, we want
to note that similar attacks are possible in such architec-
tures.

The separation of instruction memory and data mem-
ory can be achieved physically by using separate memo-
ries or logically by reserving some pages of a combined
memory for instruction code (e.g., using a no-execute
(NX) or execute disable (XD) bit or a write-xor-execute
(W@E) approach [37]). In network processors, separate
memories are typically used since the latter approach
requires advanced memory management and operating
system support. Separation of instruction and data mem-
ories, however, does not protect a system from attacks.
Processor stacks are still vulnerable to smashing attacks,
which can be used to redirect control flow into program
code that is already installed in the system (e.g., return-
into-libc attacks [38]). While these attacks are limited to
utilizing code that already exists on the system, they
have been shown to be Turing complete [39]. Clearly,
network processors are simpler than systems with oper-
ating system libraries, but the potential for these types
of attacks still exists.

Thus, network processors with separate instruction
and data memories are not fundamentally less vulnera-
ble than conventional processors. Both types of systems
can be attacked through the data plane and can benefit
from the protection mechanisms developed in our work.

5 DEFENSE MECHANISMS AGAINST DATA
PLANE ATTACKS

As we have shown in the previous section, attack on
packet processing systems through the data plane of
the network are possible. Typical defense mechanisms,
such as separation of instruction and data memory or

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING (TDSC), VOL. XX, NO. YY, MONTH 2012 8

Incoming video stream Outgoing video stream

throughput
(Mbps)

=

o U1 O

throughput
(Mbps)

i

o [} o

7 9 11 13 15 17 19 21 23 25 27 29 31

-
w

5 7 9 11 13 15 17 19 21 23 25 27 29

[
w
o

time (s) time (s)

(a) Benign network traffic

Incoming video stream Outgoing video stream ~850 Mbps

Attack

3_10 5 10 /

) »/“packet)

25 5 o2 5

=} =}

o= o=

== 0 == 0

- 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
time (s) time (s)

(b) Benign traffic and single attack packet on custom network processor

Incoming video stream Outgoing video stream
- Attack -
3. 10 /“ packet 3. 10
c 2 =
o2 5 > 2 5
=] =3
o= o=
= 0 = 0
- 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
time (s) time (s)

(c) Benign traffic and single attack packet on Click modular router

Fig. 7. Traffic Rates at Input Port and Output Port of Vulnerable Router. Benign video traffic is shown in green, attack
traffic is shown in red.

executable space protection can be circumvented. Other
techniques, such as memory layout randomization or

stack cookies, require operating system support. Packet Instruction- Instruction-
processors, which are designed for high throughput and el el
therefore use many relatively simple processor cores, 1 1
typically cannot support operating systems and thus N

PPU 1 PPU3

these techniques cannot be easily employed.

In our work, we design a protection mechanism that
can be implemented in hardware and co-located with a
packet processor [25] and thus is suitable for embedded

A

A A

Output
Arbiter

Flow
Classification

processing systems [26]. Using hardware ensures that) N

the performance impact on packet processing is minimal. PPUO| PPU2

Also, using a hardware defense that is not (or not easily)]]

accessible to an attacker can ensure that the protection Instruction- Instruction-
. . level level

mechanism cannot be not tampered with. Monitor Monitor

5.1 Attack Detection through Monitoring o |

The main idea behind our secure packet processor is pontter

to integrate monitoring functionality into the hardware T l

of the packet processing system. When an attacker at- \ /O System \

tempts to hack into the software-programmable proces- T l

sor cores of the system, they may succeed in changing
the processing behavior of the system. However, the Fig. 8. Security Monitoring on the Packet Processor.
monitoring systems in the packet processor can detect
this change and trigger a response (i.e., packet drop and
system recovery). Since our monitoring components are

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING (TDSC), VOL. XX, NO. YY, MONTH 2012 9

embedded in the system hardware, it is difficult for a
hacker to attack both the processor and the (hard to
access) monitors at the same time. Thus, this approach
by design provides more security than a conventional
general-purpose processing system.

There are several important challenges that need to
be met when using hardware monitors in a processing
system:

o Correct detection: The monitoring system needs to
be able to correctly identify intrusion attacks. Our
system achieves this by checking for any deviation
from the known correct operation of the packet
processor.

o Fast detection: When intrusion occurs, it is im-
portant to detect it quickly to reduce its potential
impact. Our system can detect (and recover from)
deviations in processing operations within only four
processing cycles.

o Low overhead: The resource requirements for a
monitor should be small to limit the impact of
monitoring on system cost. Our monitoring system
only requires single-digit percent additional hard-
ware resources compared to a conventional packet
processor implementation.

Before discussing the detailed operation of the moni-
toring system, we describe the high-level system archi-
tecture.

5.2 System Design

The main design goal of our system is to provide
security techniques to defend against potential attacks
on a software-programmable packet processing system.
Our system builds on the packet processor prototype
described in [2].

Figure 8 presents a system (high) level view of the
software-programmable packet processor that uses se-
curity modules to ensure the correct functionality of
a modern router. As discussed in [2] next generation
routers are expected to have multiple packet processing
units (PPU), in order to achieve fast and balanced pro-
cessing of packets that belong to different flows. A flow
classification unit assigns packets to specific flows, and
an output arbiter module sends the processed packets to
the corresponding outputs.

Each packet processing unit will be possibly executing
a different program in order to process the packets that
are distributed to it. If we assume that an attacker is able
to access and modify the instruction memory of each
individual PPU (processing attack), the whole router will
be compromised. To prevent that from happening, we
can have an instruction-level security monitor attached
to each PPU, which checks in real time each and every in-
struction executed on the processor core and determines
if it is valid or not. We will explain the way this check
is performed in the next section.

Moreover, due to vulnerabilities in the data path, we
would expect the packet processor to be attacked at

software Application
Binary File
analysis Instruction Level
Monitor
v
Basic Block
Data
Structure
el
I
hardware !
¢interrupt
instruction
Packet stream
Processor
A interrupt
| p
1/0 Monitor
(packet count, | Packet
checksum, packet 1/0
tags) stream

Fig. 9. Monitoring System Overview.

the protocol level as well. We can imagine a situation
where valid processing instructions are executed on the
PPUs, but still the overall router behavior is abnormal.
For example, if the IP-forwarding routine is running on
one of the cores, a Denial-of-Service attack could flood
the system by requesting a large amount of duplicate
packets to be forwarded to the output interfaces. To
counter such kinds of attacks, we could use an I/O
monitor attached to the I/O interface of the packet pro-
cessor, which checks certain characteristics of incoming
and outgoing packets: payload checksum, packet count,
tags or time-stamps in the header of the packets etc.

5.2.1 Monitoring

Both monitoring systems function independently from
the packet processor. They use separate hardware re-
sources, which makes sure that an attack targeting the
processor will not affect the security monitor’s operation.
Moreover, they use up as few resources as possible,
while keeping the monitoring speed synchronized with
the packet processor’s speed.

The main idea behind the instruction-level monitor is

illustrated in Figure 9.

o Prior to installing a specific protocol processing
routine on the packet processor, we analyze the
binary file of the application by breaking it down
to basic blocks of instructions and determining all
the possible execution paths.

o The derived information is stored in a “basic block”
data structure on the hardware platform.

o The processor, during runtime, keeps updating the
security monitor with the monitoring stream.

o If the processor’s current execution path deviates
from the correct one (as instructed by the basic

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING (TDSC), VOL. XX, NO. YY, MONTH 2012 10

block data structure), the security monitor detects
an attack.

5.2.2 Recovery

In case an attack is detected by the monitor, the process-
ing of the current packet is terminated. After dropping
the packet, it is necessary to reset the processor to a
state where it can continue processing other packets.
Since attacks are typically based on changes in program
execution, it is necessary to reset the processing stack
and instruction store. The recovery process includes the
following steps:

o The packet buffer where the current packet is stored
is cleared to receive a new packet.

o The processor core that is processing the offending
packet is reset: The processor stack and registers are
reset to recover from any tampering with the stack
pointer.

o The instruction memory is reset, so that potentially
harmful code is overwritten and does not affect
future packets to be processed on this core.

For the last step, the correct protocol processing code
is reloaded from on-chip memory, which contains the
instruction memory initialization values. That storage
place is assumed to be secure and not accessible by the
attacker.

Once the recovery process has been completed, the
processor core continues to process the next packet. One
aspect of this recovery process that is crucial is that it
can be performed quickly. If recovery takes the processor
core offline for a long time, a denial of service attack can
be launched by sending multiple attack packets that keep
the router system unavailable due to continued recovery.
The evaluation results from our prototype system show
that this is not the case (see Section 6.2).

5.3 Prototype Implementation

We have implemented a prototype system to demon-
strate the functionality of our design. The proof-of-
concept implementation of a packet processing system
uses the two security techniques we have described
above. Our prototype is implemented on a NetFPGA [3],
which contains a Virtex2-Pro FPGA device and is used
for experimental purposes. Our design is scalable and
can be ported on other FPGA platforms or ASICs.

5.3.1 Instruction-level Monitor

For this prototype, to be consistent with the NetFPGA
design and the packet processor speed, we used 64-
bit data path and designed all the units to operate at
62.5MHz. The security monitor runs in parallel to the
packet processing unit, and is designed to use four
pipeline stages.

The first task is to decide what the monitoring stream,
which the PPU continuously sends to the security mon-
itor, should be. According to our assumptions, an at-
tacker can abuse the packet processor’s operation, either

by modifying the current protocol routine to execute
malicious code, or by adding some piece of code that
performs malicious operations. We can monitor such
malicious behavior by making the packet processor
stream information regarding the current execution path
in realtime. There is a variety of options to choose from:

e Opcode: By sending to the monitor opcode infor-
mation, we monitor the operations performed on
the processor, which indicate the functionality of the
executed application. For an attack to become possi-
ble, the attacker will have to replace the instruction
set, with another malicious set of instructions that
use the same opcodes in the exact same sequence.

o Instruction address: Since the memory address used
to store the instruction set is unique, the attacker
would have to write malicious code that stores the
new instructions in the same location in the instruc-
tion memory as the original application does. This
would also require the malicious code to branch at
the same exact points with the legitimate code.

o Instruction address+Instruction word: This kind of
streaming pattern combines two pieces of informa-
tion, and makes it harder for an attacker to come up
with attack code that goes undetected. We could also
add the opcode, or control flow information to the
monitoring stream, but this will cause a significance
increase in the system’s resource consumption.

 Hash of any of the above: The processor is streaming
a compact hashed value of any of the above combi-
nations. The more bits we use to compute the hash,
the stronger the monitoring pattern is. However, the
number of used bits will affect the memory utiliza-
tion. After all, it is a trade off between available
memory on the hardware platform and the strength
of security features.

Depending on the information we choose to stream,
the software analysis and the contents of the basic block
data structure shown in Figure 9 have to be adapted
accordingly. For our prototype, the instruction address
information was used. Before we load a specific protocol
processing routine on one of the processor cores, we
analyze the application binary file off-line and break it
down to a number of basic blocks. We place instructions
that are executed the one after the other in the same
basic block, which ends with a conditional or uncondi-
tional jump instruction. We use a block RAM memory
on the FPGA to store information about the program’s
execution path. This memory (data structure) is indexed
by the instruction address sequence of the application
and contains two blocks for each entry. The first one is
the basic block each instruction memory address belongs
to, and the second is the potential next hop address the
instruction could jump to. This BRAM is used as a guide
to the correct processor core operation.

The implementation level details of the instruction
level monitor are shown in Figure 10. Each pipeline stage
takes one clock cycle to complete.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING (TDSC), VOL. XX, NO. YY, MONTH 2012 11

From To
PPU Shared Bus PPI

|

Basic Jump
Block BBlock

Stage 1 Stage 2 Stage 3 Jump

Next-hop,

Stage 4
Next-hop,

|

data_out
(previous
bblock)

data_in
(next
bblock)

BRAM
index
(Instruction
memory
address)

30018
woN
%0018
snonelgd

rslT rd_en | wr_en

rst en

Fig. 10. Instruction Level Monitor Design.

In the first pipeline stage, we extract the address of the
currently executed instruction on the packet processing
unit. We use this address to index the BRAM, which
takes one cycle to output the basic block in which this
instruction resided, and the next hop address (in case of
a jump instruction), if there is one.

In the second stage, we propagate the current basic
block and next hop information we get from the BRAM,
and give those values as input to the third stage. At the
same time, we record the current basic block information
into a FIFO module. This FIFO is used to keep track
of the execution path, by storing the previously and
currently executed basic block numbers. This module has
minimal memory requirements, because it only contains
two values at a time. When we read from it, the head
of the FIFO outputs the previous basic block, and when
we write in it, we record the current basic block, which
we read in the next clock cycle and so on.

The third and fourth stages are the most important,
since they implement our monitoring algorithm:

o Check if the current basic block number matches the
basic block of the previous instruction.

o If it does, it means it is a valid instruction — continue
to the next one.

o If not, check if this instruction is within the next
basic block.

e In case it is, this is a valid basic block jump -
continue with the next instruction.

o If not, go to the fourth stage and use the next hop
address information to index the BRAM. Verify that
the currently executed instruction is a valid jump
instruction.

o If it is, it denotes correct operation — continue.

o Otherwise, signal that the packet should be
dropped.

In the final stage, the monitor sends the packet drop
signal to the packet memory unit, which stops the pro-
cessing of the current packet. The corresponding packet
buffer drops this packet and is ready to receive a new
one. At the same time the instruction memory is reset,
so that the harmful code is overwritten and does not
affect the next packet to be processed by the packet

processor. While resetting the instruction memory, we
can first switch to a backup piece of memory (which
resides safely inside the hardware platform) and then
start reloading the memory initialization file back to the
infected instruction memory of the processor. In this way,
in case another attack happens during the processing of
the next packets, we can immediately switch back to the
corrected instruction memory.

5.3.2 /O Monitor

The I/O monitor in this prototype implementation veri-
fies the correct operation of the packet processor from the
perspective of the entire system. Instead of monitoring
individual processor instructions, it keeps track of the
packets that have entered and left the packet processing
system. At this level of granularity, incorrect system
operation can be detected even if processing operations
may be correct. For example, if there is no multicast
traffic, but more packets leave the system than have
entered it, then there is a problem with the packet
processor. In our system, the I/O monitor maintains
packet counts and triggers if more packets are sent than
are received. More complex metrics can be used (e.g.,
packet processing delay [40]), but these are beyond the
scope of this paper.

6 EVALUATION

We demonstrate a successful data plane attack in Sec-
tion 4.4. In this section, we provide evaluation results
from our prototype system to demonstrate the correct
functionality of the security features that can detect
and recover from this attack. We also discuss resource
utilization and performance results, specifically the delay
in detecting attacks and the system’s throughput.

6.1 Security Monitor Operation

In Figure 12, we show how the whole system (packet
processor and security monitor) operates under the at-
tack scenario. The horizontal axis denotes the clock cycle
at which each operation takes place. In our experiment,
we send 4 small packets (around 60 bytes long) into the
router. The first is an attack packet and the remaining
3 are normal packets. We should note here that under
normal operation the total time the packet processor
takes to forward a small packet is around 600 clock
cycles [2].

The packet processing system functions as follows:
The four packets come back to back into the packet
processor’s packet buffers. At some point, while the
first packet is getting processed, the program jumps
to the memory address 0x0le4, which is unknown to
the monitor and triggers an attack response. The mon-
itor starts performing the operations we described at
Figure 10 in four pipelined stages, and 5 cycles later
packet 1 is dropped. At this point our instruction-level
monitor stalls the processing of the current packet, drops
the packet, and in the same clock cycle the instruction

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING (TDSC), VOL. XX, NO. YY, MONTH 2012 12

i
i/

Fig. 11. Simulation Results.

memory is reset. The recovery phase of the system
takes approximately 6 cycles. After those few cycles, the
processing resumes and the remaining three packets are
forwarded normally. Because of the 6 cycles, in which the
system stays idle (recovery phase), the total processing
time of packets 2, 3 and 4 increases from 600 to 606
cycles.

In Figure 11 we can observe the same sequence
of events in our simulator tool (Modelsim). Sig-
nal in_packet_count counts the incoming packets,
out_packet_count the outgoing, and “drop packet” is
the signal that notifies the processor to drop the cur-
rent packet. Packet 1 gets dropped when the signal
pp_mem_address is equal to 0x0le4, which is the initial
instruction address of the ‘attack” block of instructions.
By setting the signal ppu/ir/rst, we rewrite the instruc-
tion memory of the IP-forwarding application. Due to
space constraints, we only show packet 2 coming out of
the output queue.

Parallel to the instruction level monitor, our I/O mon-
itor counts incoming and outgoing packets. It reports
4 incoming packets and 3 outgoing. Since we experi-
mented on the unicast IP-forwarding routine, our I/O
monitor considers the protocol level behavior legitimate.
As expected, it does not detect the instruction level
attack.

A theoretical scenario where we would have the op-
posite outcome (the I/O monitor detecting an attack
while the instruction level monitor does not detect the
attack) would be if for the same unicast IP-forwarding
protocol, we duplicate some packets and send them to all
ports jamming them. Then the I/O monitor would count
more outgoing packets than incoming, which is not usual
behavior for a unicast protocol. On the other hand, there
is no reason for the instruction level monitor to detect
an attack, since the processing routine (forwarding) is
executed correctly for all packets.

6.2 Performance Results

As mentioned in the previous section, once an attack
is detected, the recovery phase of the instruction level
monitor lasts only a few cycles. This time is necessary
for the instruction set to be correctly reloaded on the
NetFPGA. Compared to the number of cycles it takes for
the processor to forward even a small packet (around 600
cycles), the time our system stays idle before resuming

1 2 3 4
Input
packets l l l l
attack code
I proc. pkt 4
processing I proc. pkt 3
[proc. pkt 2
‘ proc. pkt 1 L
5 cycles to 6 cycles to
detect attack recover
drop pkt 1
2 3 4
Output
packets T I T
I I I T c?/cles
0 100 175 250 400 411 781 856 931
4
(%]
© o
32
o

Fig. 12. Security Monitor Operation.

correct processing functionality is not significant. This
is an important feature because, otherwise, an attacker
could just keep on sending packets that cause the system
to misbehave, so that the processor is locked into a
repeated effort of long recoveries, without doing any
useful processing at the same time. That would become
a vulnerability of our recovery mechanism that leads by
itself to DoS attacks.

Here, we performed an experiment to measure the
throughput of our packet processing system when the
two security monitors are on: We have three work-
ing Ethernet ports on our prototype packet processing
system. We setup a testbed by connecting the one of
the NetFPGA ports to another machine, on which we
measure throughput. First, we experiment by sending
valid packets only, and then by sending a combination of
valid and invalid packets. We did not notice any changes
in the processor’s throughput. We can still achieve high
data rates (maximum of 100 Mbps). In Table 1, we report
the average throughput numbers. The important thing to
note is that the throughput of the single processor with
embedded security monitors is almost the same with
the throughput that the single core achieves by itself.
The data rates are in the order of 100Mbps because the
experiment was performed by forwarding small packets.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING (TDSC), VOL. XX, NO. YY, MONTH 2012 13

TABLE 1
Resource consumption and performance.
Single core | Single core w/ main monitor | Single core w/ 2 monitors
Slice LUTs 15,025 15,112 15,134
BRAM (RAMB16s) 124 130 131
detection time NA 5 cycles mon. window
speed (MHz) 62.5 62.5 62.5
throughput(Mbps) 67.2 64.1 63.9
Incoming video stream Outgoing video stream
3 _ 10 3_ 10
3= 3=
e ez
= £ ST

9 11 13 15 17 19 21 23 25 27 29

time (s)

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

time (s)

(a) Benign network traffic

Incoming video stream

9 11 13 15 17 19 21 23 25 27 29

throughput
(Mbps)
i
o o o
‘)
o
Q
~
@

throughput
(Mbps)

time (s)

QOutgoing video stream

10
i
0 F~—————

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

time (s)

(b) Benign traffic and single attack packet

Fig. 13. Traffic Rates at Input Port and Output Port of Router with Processing Monitor.

In the case of large packets the packet processor can
achieve throughput greater than 2 Gbps [2].

As for the resource consumption of our monitoring
systems, the packet processing system with both security
monitors uses 0.8% more slice LUTs compared to the
single core processor alone. Memory-wise we observe
an increase of 5.6% in the consumption of block RAMs.

6.3 Demonstration of Real Attack Detection

The final result shows how our system responds under a
real attack scenario, like the one described in Section 4.
We have experimented on the same custom processor
used for the setup shown in Figure 6. The prototype
successfully detects the example attack (and any other
attack that changes the control flow), halts the proces-
sor, drops the packet, and restores the system within
6 instruction cycles. This very small time for recovery
allows our secure packet processor to operate at full data
rate even when under attack. The overhead for adding
a monitoring system to the packet processor is very
small (0.8% increase on slice LUTs and 5.6% on memory
elements).

Figure 13 shows the operation of the secure packet
processor under attack. As can be seen, not only does
the processor not fall victim to the attack, but it also
continues to forward regular traffic without interruption.

While the results from our secure packet processor are
encouraging by demonstrating that there are defenses

against the types of attacks that we describe in this
paper, it is important to note that such defenses are
not currently deployed in the Internet. Existing software-
based routers are still vulnerable and more research and
development is necessary to design and deploy defenses
against this novel type of attack.

7 SUMMARY AND CONCLUSION

In this paper, we describe and demonstrate a novel type
of network attack. The attack exploits vulnerabilities in
the packet processing systems of modern routers. We
show how integer vulnerabilities in the implementation
of a common protocol processing operation can be used
to execute arbitrary attack code. Our attack can be used
to launch devastating denial-of-service attacks in the
core of the network. We show that defense mechanisms
do exist, but they are not currently deployed in the
network. In our work, we present the design and proto-
type implementation of a secure packet processor that is
equipped with a monitoring system that can detect such
attacks. The monitoring system compares the operation
of the processor cores to the expected behavior that is
obtained from analyzing the packet processing binary. A
processing monitor continuously checks the validity of
processor operations and triggers a recovery mechanism
when deviations from expected behavior are detected.
The prototype implementation of our system can detect

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING (TDSC), VOL. XX, NO. YY, MONTH 2012 14

intrusion attacks within six processor cycles and recover
the system in that time. The result from the prototype
system indicate that our design is an effective approach
to protecting networking infrastructure in the future
Internet.

REFERENCES

(1]

(2]

(3]

(4]

(5]

6]

(7]

(8]

(9]

[10

[

[11]

[12]
[13]
[14]

[15]

[16]
[17]

(18]

[19]

[20]

[21]

W. Eatherton, “The push of network processing to the top of
the pyramid,” in Keynote Presentation at ACM/IEEE Symposium on
Architectures for Networking and Communication Systems (ANCS),
Princeton, NJ, Oct. 2005.

Q. Wu, D. Chasaki, and T. Wolf, “Implementation of a simplified
network processor,” in Proc. of IEEE International Conference on
High Performance Switching and Routing (HPSR), Richardson, TX,
Jun. 2010, pp. 7-13.

J. W. Lockwood, N. McKeown, G. Watson, G. Gibb, P. Hartke,
J. Naous, R. Raghuraman, and J. Luo, “NetFPGA-an open plat-
form for gigabit-rate network switching and routing,” in MSE "07:
Proceedings of the 2007 IEEE International Conference on Microelec-
tronic Systems Education, San Diego, CA, Jun. 2007, pp. 160-161.
E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
Click modular router,” ACM Transactions on Computer Systems,
vol. 18, no. 3, pp. 263-297, Aug. 2000.

N. C. Hutchinson and L. L. Peterson, “The x-kernel: An architec-
ture for implementing network protocols,” IEEE Transactions on
Software Engineering, vol. 17, no. 1, pp. 64-76, Jan. 1991.

L. Ruf, K. Farkas, H. Hug, and B. Plattner, “Network services on
service extensible routers,” in Proc. of Seventh Annual International
Working Conference on Active Networking (IWAN 2005), Sophia
Antipolis, France, Nov. 2005.

T. Anderson, L. Peterson, S. Shenker, and J. Turner, “Overcoming
the Internet impasse through virtualization,” Computer, vol. 38,
no. 4, pp. 34-41, Apr. 2005.

J. S. Turner, P. Crowley, J. DeHart, A. Freestone, B. Heller,
F. Kuhns, S. Kumar, J. Lockwood, J. Lu, M. Wilson, C. Wise-
man, and D. Zar, “Supercharging PlanetLab: a high performance,
multi-application, overlay network platform,” in SIGCOMM ’07:
Proceedings of the 2007 conference on Applications, technologies, archi-
tectures, and protocols for computer communications, Kyoto, Japan,
Aug. 2007, pp. 85-96.

A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford, “In
VINI veritas: realistic and controlled network experimentation,”
in SIGCOMM '06: Proceedings of the 2006 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communica-
tions, Pisa, Italy, Aug. 2006, pp. 3-14.

Intel Second Generation Network Processor, Intel Corporation, 2005,
http:/ /www.intel.com/design/network/products/npfamily /.
NP-3 — 30-Gigabit Network Processor with Integrated Traffic Man-
agement, EZchip Technologies Ltd., Yokneam, Israel, May 2007,
http:/ /www.ezchip.com/.

APP3300 Family of Advanced Communication Processors, LSI Corpo-
ration, Aug. 2007, http://www.lsi.com/.

OCTEON Plus CN58XX 4 to 16-Core MIPS64-Based SoCs, Cavium
Networks, Mountain View, CA, 2008.

The Cisco QuantumFlow Processor: Cisco’s Next Generation Network
Processor, Cisco Systems, Inc., San Jose, CA, Feb. 2008.

A. Feldmann, “Internet clean-slate design: what and why?” SIG-
COMM Computer Communication Review, vol. 37, no. 3, pp. 59-64,
Jul. 2007.

Future INternet Design, National Science Foundation, http://
www.nets-find.net/.

Global Environment for Network Innovation, National Science Foun-
dation, http://www.geni.net/.

J. S. Turner and D. E. Taylor, “Diversifying the Internet,” in Proc.
of IEEE Global Communications Conference (GLOBECOM), vol. 2,
Saint Louis, MO, Nov. 2005.

D. Geer, “Malicious bots threaten network security,” Computer,
vol. 38, no. 1, pp. 18-20, 2005.

J. C. Mogul, “Simple and flexible datagram access controls for
UNIX-based gateways,” in USENIX Conference Proceedings, Balti-
more, MD, Jun. 1989, pp. 203-221.

The Open Source Network Intrusion Detection System, Snort, 2004,
http:/ /www.snort.org.

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

(38]

[39]

(40]

S. Kent and R. Atkinson, “Security architecture for the Internet
protocol,” Network Working Group, RFC 2401, Nov. 1998.

A. Cui, Y. Song, P. V. Prabhu, and S. J. Stolfo, “Brave new
world: Pervasive insecurity of embedded network devices,” in
Proc. of 12th International Symposium on Recent Advances in Intrusion
Detection (RAID), ser. Lecture Notes in Computer Science, vol.
5758, Saint-Malo, France, Sep. 2009, pp. 378-380.

S. Mao and T. Wolf, “Hardware support for secure processing in
embedded systems,” IEEE Transactions on Computers, vol. 59, no. 6,
pp- 847-854, Jun. 2010.

D. Chasaki and T. Wolf, “Design of a secure packet processor,” in
Proc. of ACM/IEEE Symposium on Architectures for Networking and
Communication Systems (ANCS), San Diego, CA, Oct. 2010.

S. Parameswaran and T. Wolf, “Embedded systems security — an
overview,” Design Automation for Embedded Systems, vol. 12, no. 3,
pp- 173-183, Sep. 2008.

E. Haugh and M. Bishop, “Testing C programs for buffer overflow
vulnerabilities,” in Proc. of the Network and Distributed System
Security Symposium (NDSS), San Diego, CA, Feb. 2003.

T.-C. Chiueh and F-H. Hsu, “Rad: a compile-time solution to
buffer overflow attacks,” in Proc. of 21st International Conference on
Distributed Computing Systems (ICDSC), Apr. 2001, pp. 409-417.
K.-s. Lhee and S. J. Chapin, “Type-assisted dynamic buffer over-
flow detection,” in Proceedings of the 11th USENIX Security Sym-
posium, San Francisco, CA, Aug. 2002, pp. 81-88.

J. Wilander and M. Kamkar, “A comparison of publicly available
tools for dynamic buffer overflow prevention,” in Proc. of the
Network and Distributed System Security Symposium (NDSS), San
Diego, CA, Feb. 2003.

D. Moore, C. Shannon, and]J. Brown, “Code-Red: a case study on
the spread and victims of an Internet worm,” in IMW ’02: Proceed-
ings of the 2nd ACM SIGCOMM Workshop on Internet measurement,
Marseille, France, Nov. 2002, pp. 273-284.

D. Chasaki, Q. Wu, and T. Wolf, “Attacks on network infras-
tructure,” in Proc. of Twentieth IEEE International Conference on
Computer Communications and Networks (ICCCN), Maui, HI, Aug.
2011.

T. Wolf, “Challenges and applications for network-processor-
based programmable routers,” in Proc. of IEEE Sarnoff Symposium,
Princeton, NJ, Mar. 2006.

R. C. Seacord, Secure Coding in C and C++, 1sted. Addison-Wesley
Professional, 2005.

H. Balakrishnan, H. S. Rahul, and S. Seshan, “An integrated
congestion management architecture for internet hosts,” in Pro-
ceedings of the conference on Applications, technologies, architectures,
and protocols for computer communication (SIGCOMM), Cambridge,
MA, Sep. 1999, pp. 175-187.

S. Rhoads, Plasma — most MIPS I(TM) Opcodes, 2001, http:/ /www.
opencores.org/ project,plasma.

The OpenBSD 3.3 Release, OpenBSD, http://www.openbsd.org/
33.html, May 2003.

H. Shacham, “The geometry of innocent flesh on the bone: return-
into-libc without function calls (on the x86),” in Proc. of the 14th
ACM Conference on Computer and Communications Security (CCS),
Alexandria, VA, Oct. 2007, pp. 552-561.

M. Tran, M. Etheridge, T. Bletsch, X. Jiang, V. Freeh, and P. Ning,
“On the expressiveness of return-into-libc attacks,” in Recent
Advances in Intrusion Detection, ser. Lecture Notes in Computer
Science, Sep. 2011, vol. 6961, pp. 121-141.

D. Chasaki, Q. Wu, and T. Wolf, “Inferring packet processing
behavior using input/output monitors,” in Proc. of ACM/IEEE
Symposium on Architectures for Networking and Communication Sys-
tems (ANCS), Brooklyn, NY, Oct. 2011, pp. 91-92.

Danai Chasaki (S'11) is an doctoral student in the Department of
Electrical and Computer Engineering at the University of Massachusetts
Ambherst. Her research interests are in the area of networked embedded
systems.

Tilman Wolf (M'02-SM’'07) is an associate professor in the Depart-
ment of Electrical and Computer Engineering at the University of
Massachusetts Amherst. He received a D.Sc. in computer science in
2002, all from Washington University in St. Louis. His research interests
include network processors, their application in next-generation Internet
architectures, and embedded system security.

