Attacks on Additive Encryption
of Redundant Plaintext and Implications
on Internet Security

David A. McGrew and Scott R. Fluhrer

Cisco Systems, Inc.
170 West Tasman Drive, San Jose, CA 95134
{mcgrew,sfluhrer}@cisco.com

Abstract. We present and analyze attacks on additive stream ciphers
that rely on linear equations that hold with non-trivial probability in
plaintexts that are encrypted using distinct keys. These attacks extend
Biham’s key collision attack and Hellman’s time memory tradeoff attack,
and can be applied to any additive stream cipher. We define linear re-
dundancy to characterize the vulnerability of a plaintext source to these
attacks.

We show that an additive stream cipher with an n-bit key has an effective
key size of n—min(l,lg M) against the key collision attack, and of 2n/3+
lg(n/3) + max(n — [,0) against the time memory tradeoff attack, when
the the attacker knows [linear equations over the plaintext and has M
ciphertexts encrypted with M distinct unknown secret keys.

Lastly, we analyze the IP, TCP, and UDP protocols and some typical
protocol constructs, and show that they contain significant linear redun-
dancy. We conclude with observations on the use of stream ciphers for
Internet security.

1 Introduction

Biham’s key collision (KC) attack [5] and Hellman’s time-memory tradeoff
(TMTO) attack [11] can be adapted to attack additive encryption in the case
that many ciphertexts encrypted with distinct keys, whose corresponding plain-
texts all obey some known linear relations, are available to the cryptanalyst.
Both of these methods use a precomputation stage in which some knowledge of
the typical plaintext is used to build a database, followed by an attack stage in
which (hopefully many) ciphertexts are analyzed in an attempt to find unknown
keys. The computational cost of the precomputation stage can be amortized over
many runs of the attack stage, significantly reducing the effective key size of the
cipher against these attacks. These attacks rely on the fact that there are linear
equations in the plaintext bits that are known to the cryptanalyst. We define
the linear redundancy of a plaintext source as the to capture this property.

A linearly redundant source may involve linear equations that hold with
probabilities that are not close to unity. We present and analyze an adaptation
of the KC attack that works in such cases by using error correcting codes.

D.R. Stinson and S. Tavares (Eds.): SAC 2000, LNCS 2012, pp. 14-E8] 2001.
(© Springer-Verlag Berlin Heidelberg 2001

Attacks on Additive Encryption of Redundant Plaintext and Implications 15

We analyze the linear redundancy of the Internet Protocol (IP), the Trans-
mission Control Protocol (TCP), and the User Data Protocol (UDP) traffic with
stream ciphers. IP is used by the Internet to transport packets between networks
[1], while TCP and UDP are the most common higher-level protocols transported
by IP. IP, TCP, and UDP packets are known to contain a significant amount
of data that is guessable by an adversary (as was pointed out by Bellovin []).
Our analysis extends these observations by showing that these packets contain
a large amount of linear redundancy that can be used in cryptanalytic attacks.

The Stream Cipher ESP (SC-ESP) is a specification for the use of those
ciphers to provide privacy within the IPSEC framework [13]9]. It describes how
to use additive stream ciphers for the encryption of IP packets (if used in tunnel
mode) as well as TCP, UDP, or other packets (if transport mode)ﬂ. Below, we
derive requirements on SC-ESP that provide protection against the attacks that
we develop in this paper. We do not investigate the linear redundancy of other
important Internet protocols, such as HTTP or RTP, though such protocols are
commonly used with additive encryption in the SSL, TLS, and SSH protocols.
However, the techniques that we develop in this paper do apply to their analysis,
and we expect that these protocols also contain a significant amount of linear
redundancy.

The rest of this paper is organized as follows. Section [[I] introduces our
terminology and assumptions. Section Bl introduces the idea of linear redun-
dancy. Section Blintroduces the key collision attack, shows how it can be applied
to attack additive encryption, and analyzes its computational cost and success
probability, while Section B.1] shows how that attack can be modified to deal
with linear equations that are probabilistic, rather than deterministic. Section
adapts Hellman’s time-memory tradeoff to attack additive encryption, and ana-
lyzes the resulting algorithm. The IP, TCP, and UDP protocols are analyzed in
Section Bl and are shown to contain enough linear redundancy to enable the suc-
cessful prosecution of the attacks that we derive. Our conclusions are presented
in Section [l

1.1 Terminology and Assumptions

An additive stream cipher is a cipher that encrypts a plaintext by bitwise adding
it (modulo two) to a keystream. The keystream is generated pseudorandomly,
given a secret key. Mathematically,

ci = pi @ si(k), (1)

where ¢;, p; and s;(k) are the " bit of the ciphertext, plaintext, and the key-
stream corresponding to the key k. Additive stream ciphers can be defined over
any group, and our results can easily be generalized, but below we consider only
binary addition for clarity of exposition.

Modern stream ciphers include RC4, SEAL, the Output Feedback (OFB)
mode specified by NIST for use with the DES [18] and the counter mode for

! See [89] for a more detailed description of IPSEC and ESP

16 David A. McGrew and Scott R. Fluhrer

block ciphers [16] p.100]. RC4 is widely used to secure HTTP, as it is part of the
Secure Sockets Layer (SSL) and Transport Layer Security (TLS) specifications.
Other stream ciphers in use include the recently broken A5/1 [2] used in GSM
cellular phones, and the cipher E0Q in the Bluetooth specification for Wireless
LAN Security [3].

We make the conventional assumption that the cryptanalyst can check if a
key is correct by trial decryption of a ciphertext followed by a redundancy check
of the decrypted plaintext. We also assume that ciphertexts are distributed uni-
formly at random, which is essentially equivalent to assuming that the cipher is
indistinguishable from a truly random source. We also assume that the cryptan-
alyst has access to many ciphertexts encrypted under many distinct keys, whose
corresponding plaintexts originate from a random but redundant source whose
mathematical characterization is known to the attacker. We make the implicit
assumption that the unknown keys are distinct, which is a good assumption when
the number of unknown keys is less than the square root of the total number of
keys, from the ‘birthday paradox’.

2 Linear Redundancy

We generalize the idea of known or guessable plaintext attacks by considering
attacks on a large number of ciphertexts whose plaintexts were all generated by
the same source. We use the information theoretic idea of a plaintext source as
a generator of binary strings that chooses strings by a random process that can
be characterized by a probability distribution. A source is redundant when its
probability distribution is not uniform.

To attack an additive cipher, we consider linear equations in terms of the
plaintext bits. From Equation[d], it follows that

ci®cj = (pi ®p;) ® (si(k) @ s;(k)). (2)

If p; ® p; is zero (respectively, one), then ¢; & ¢; will equal s;(k) ® s;(k) (re-
spectively, will be its opposite). If the same property holds for a large number
of plaintext bits, those bits can be used to identify a collision between a secret
key set and a known key set. A single linear relation among the plaintext bits of
all plaintexts from a source is equivalent to a single bit of known plaintext, for
our purposes.

If there are [linear relationships between the plaintext bits, this fact can be
represented mathematically as

@Lijpi:ej forall j:1<j<I, (3)

i=1,

where L;; is an invertible m x w boolean matrix, and e is an [x 1 boolean vector.
More generally, Equation [3] can hold with some probability not equal to one.
The vector 6 = Lp @ e, which would be the zero vector if the linear equations

Attacks on Additive Encryption of Redundant Plaintext and Implications 17

held with probability one, has a low hamming weight. We define the set A as
the set of typical (e.g., most probable) values of ¢, such that

> P@)=1-c¢, (4)

J<PAY

where P(9) is the probability that Lp®e will have the value d, and € is a number
less than one. We say that a plaintext source has linear redundancy (A, €) if there
exists an L and e as defined above such that A =1 — 1g(#A4)/1.

In the case that each of the linear equations hold with the same probability
¢, then the expected weight of § = Lp @ e is ¢l. In this case, the size of the set
of typical vectors A is well approximated by Z?io (i) ~ 2!M@) swhere h(¢) =
—dlgdp—(1—¢)lg(1—¢) is the binary entropy functiond. The linear redundancy
then reduces to (1—h(¢), 1/2). In the following, we focus on the practical attacks
rather than the theoretical characterization of linear redundancy.

Our attacks can be viewed as decoding unknown keys, and thus matching
them to some set of known keys. From this viewpoint, there is a noisy com-
munication channel from an unknown key to the attacker, where the ‘noise’ is
a plaintext message. The unknown keys are the source words, the keystream
segments are the code words, ciphertexts are the received words. The attacker
faces the problem of decoding the received words to a known code word. We call
this channel the cryptanalytic channel, and it is analogous to the one defined by
Siegenthaler in the description of correlation attacks on combination generators
[14]. The code used in our attacks is a set of keys that is randomly chosen by
the attacker. Obviously, ciphertexts created with unknown keys that are not in
the code cannot be properly decoded. Our attacks work by decoding correctly
whenever possible, and rely on the ‘birthday paradox’ to ensure that there are
keys common to both the random code and the set of unknown keys.

In some cases, attacks using linear redundancy can be significantly improved
through the use of traffic analysis, that is, the use of external information about
the ciphertexts to establish the value of the vector e. In the case of Internet
security, this information includes the length of the encrypted data, the time
of creation of the encrypted data, and the position of each ciphertext in the
sequence of all ciphertexts.

3 Key Collision Attacks on Additive Encryption

Key collision attacks [5] take advantage of the birthday paradox to reduce the
expected work effort of finding secret keys. These attacks use two distinct sets
of keys: a set of unknown secret keys, and a set of keys generated by the crypt-
analyst. These sets will contain a common element with high probability when
the product of the sizes of the sets is close to the size of the set of all keys.
The known-plaintext key collision attack works as follows: the cryptanalyst
encrypts the same fixed plaintext with N distinct keys, and stores the resulting

2 This approximation uses the tail inequality [6], and is asymptotically exact

18 David A. McGrew and Scott R. Fluhrer

ciphertexts along with the keys that generated them. We call the set of cipher-
texts the known key set. The cryptanalyst then gets a hold of M ciphertexts that
are created by encrypting the same plaintext with distinct unknown keys, and
looks for collisions, that is, elements with the same keys that are in both sets.
When one of the unknown keys is equal to one of the known keys, a collision oc-
curs. With an n-bit key, this will happen with high probability when M N > 27".
In practice, many keys may map the same plaintext to the same ciphertext, so
the cryptanalyst must check each collision with a trial decryption.

In order to attack additive encryption of linearly redundant plaintext, we
define a hallmark of a key. This is a binary vector that captures enough infor-
mation about the key to enable elements of the known key set to be matched to
the unknown key set.

Combining Equations B and [gives

@D Lijsi(k) = ¢; & @ Lije; forall j: 1< j < L. (5)
i=1

i=1,

The known key hallmark v is defined by v;(k) = @;_; Lijsi(k). The un-
known key hallmark w is defined by u; = e; ® @;., Li;jc;. Both v and u are
length [binary vectors. In the event that u = v, it is 7(at least relatively) likely
that the known key and unknown key are equal.

We now show how to prosecute a KC attack on an additive cipher, given L
and e. In the precomputation stage, compute the set V' = {(v(k), k) : k € R}
of known keys and their hallmarks , where R is a set of NV arbitrary distinct
keys, and sort the vectors so that their first components are in non-decreasing
order. In the attack stage, we are given the set C' = {c} of ciphertexts, and we
want to find as many of the unknown keys as possible. We denote the number
of ciphertexts (and thus the number of unknown hallmarks) as M. The attack
algorithm follows:

1. Compute the set of unknown keys and hallmarks U = {(Lc @ e,c) : ¢ € C},
and sort it into non-decreasing order.

2. Find the join J = {(z,k,c) : (z,c) € U, (x, k) € V}, that is, the intersection
of the first components of V and U.

3. For each element (z,k,c) € J, do a trial decryption of the ciphertext ¢ using
the key k.

The intersection of two sets of bit vectors can be found by sorting each
set into non-decreasing order, maintaining a pointer into each set, repeatedly
advancing the pointer that points to the smallest element, and outputting the
elements when they match [10]. If radix sort [I0] is used, then this algorithm is
completely paralellizable.

An important property of this attack is that the vector e need not be known
during the precomputation stage; it is sufficient to know e during the attack
stage. This property lends itself to practical attacks, as there are many cases in
which the plaintext at two locations will be linearly related, though the exact

Attacks on Additive Encryption of Redundant Plaintext and Implications 19

value of the relationship may only be predictable through traffic analysis or
other external means. For example, traffic analysis of the IP protocol can readily
discern many TCP/IP packets (TCP ACK packets have the distinctive length
of 43 bytes), thus revealing the value of the ‘Protocol’ field of the IP packet (See
Table [T).

The basic key collision attack requires storage of order M + N. The precom-
putation stage requires N encryptions and N lg N comparisons and copies (for
sorting).

The attack stage requires M lg M comparisons and copies in the sorting stage.
Finding the set J requires M + N comparisons. The attack performs #.J trial
decryptions, which is equal to the sum of the number of false hits, which is
MN/2!, and the number of true hits, which is M N/2". The total computation
is of of order M1g M + M + N + MN(1/2! +1/27).

The expected number of true hits found, that is, the number of messages
successfully decrypted, is M N/2™. Thus, the order of the expected work w for
each successful decryption is given by

_ MIgM+ M+ N+ MN(1/2"+1/2") (©)
b MN/2n
_2MlgM 2m2m

T L
~ T TNt +

If 2"1g M/N is the leading term in Equation (6), we say that the attack is
sort limited. If 2™ /M is the leading term, we say that the attack is intersection
limited. This can happen when the size of the known key set is large and the
size of the unknown key set is small. If 2" is the leading term, we say that
the attack is information limited. This case happens when there are few linear
equations in the plaintext. The term 1 can never be the leading term, as this
implies that the known and unknown key sets are larger than the set of all keys.
This term can be neglected in practice. The expected number of keys that are
tried for a given unknown key hallmark is N/2!. When the attack is information
limited, this number is large (on average). When then attack is sort limited or
intersection limited, it is small (on average).

To make the advantage over exhaustive search explicit, we introduce the
effective key size, which we define to be the base-two logarithm of the order of
the expected work. The effective key size is denoted as 7, and is given by

1+1gM 1,
e oty
N Twm T @

n=lgw=n+lg
When the attack is information limited, then

nen+lg2l=n—1. (8)

This approximation is valid when | <« lgmin M, N. The linear relationship be-
tween effective key size and [is shown in Figure 1. When the attack is intersection
limited, then

20 David A. McGrew and Scott R. Fluhrer

1.05 T T T T
M = 28(/16) ——
M = 28(n/g) -
b M = 20(/d) - 1
M = 28(n/2)
095 - .
2
D
& 09 i
4
o | T e
2 y
8 osst f
5 I
©
c
2 o08f -
8
w , e
075 - - X
07 .
065 1 1 1 1 1
0 02 04 06 08 1 12

Fractional bits of common plaintext

Fig. 1. The effective key size as a function of the linear redundancy. In this figure, the
fractional key size n/n is plotted versus the fractional number of linear equations I/n.

The plot shows various values of M/2"; in every case, N = on/2
+1 ! + ! lgmin M, N (9)
n~n+lg vIN) = n — lgmin M, N.
When the attack is sort limited, then
lg M
n:n—l—lggT:n—lgN—HglgM. (10)

We define the break even value Np to be the value of N such that the effective
key size is equal to the actual key size; when N is below this value, the attack
is not effective. Solving for this value, we find that Ny = (1 +1g M)/(1 — 27! —
27" —1/M). The effective key size as a function of N can be succinctly expressed
as

n:n—lg{1+(1+lgM)<;f—J\1fb>} (11)

The dependence of 1 on N is demonstrated in Figure 2. The maximum possible
value for N is 2™, which implies that a necessary condition for the above attack
to provide an advantage over exhaustive search is that

1 1+1gM>

>lg(1—— 12
g (1 g7 - 25 (12)

Attacks on Additive Encryption of Redundant Plaintext and Implications 21

1 T T

M =2Nn/4) ——
M =2Nn/2) -
M =2°3n/4) -
M = 27(7n/8)
08 | 4
8 T
‘B \\:;;;::
8 o6l TR,]
Q TTRse
= TR o
ﬁ_ﬂ ““““““]
D
©
&5 04f B
g
L
02 4
0 1 1
0.001 0.01 0.1 1

Fractional size of known key set

Fig. 2. The effective key size as a function of the size of the unknown key set. In this
figure, the fractional key size n/n is plotted versus the fractional size of the known key
set N/2". In these plots, m =n

3.1 Probabilistic Linear Equations

The KC attack on additive encryption in the previous section can work even
when the linear equations (B) do not always hold, but hold with some non-
negligible probability. If the probability that all of the equations hold simulta-
neously is p, then the effective key size is increased by lg1/p. However, better
attacks can be realized by using error-correcting codes. Below we present a sim-
ple adaptation of the KC attack that uses error correction of the hallmarks.

The error-correcting KC attack differs from the KC attack presented above in
the precomputation stage and in Step 1. The known key hallmarks are required
to be codewords of an error-correcting code D which has codewords of length I,
a total of 2F codewords, and which can correct up to e errors. This property can
be realized by using a rejection method during the precomputation stage, which
will increase the amount of computation in that stage by a factor of about 2%,

Step 1 of the attack algorithm is modified by changing the definition of the
set U to U = {(d(Lc @ e),c) : ¢ € C}, where d is a decoding function for the
code D.

The effective key size can be derived as with the information limited case
above, with the differences that in the error correcting case the number of false

22 David A. McGrew and Scott R. Fluhrer

hits is now M N/2* and the number of true hits is pM N /2" Bl The effective key
size npc for the error-correcting KC attack is

1 1

where R = k/l is the rate of the code. There is a tension between R and the
decoding error, in that increasing one tends to decrease the other. It is difficult to
further characterize the effectiveness of this attack in the general case because
of the variety and complexity of error correcting codes [I2]. One example of
a useful code is the n = 128,k = 100,e = 4 code based on BCH codes [15].
Gallager codes [7], which have proved useful in correlation attacks on stream
ciphers, may also prove useful in our attacks. It is also possible to use nonlinear
codes, though such codes could require a significant storage space.

A strict lower bound on the effective key size of the error correcting KC
attack is provided by an information theoretic treatment of the cryptanalytic
channel. The capacity C of that channel, which is determined by the plaintext
source [6], is the upper bound on the rate R of a code that can be used in the
attack, thus limiting that value in Equation (I3).

4 Hellman’s Time-Memory Tradeoff

Hellman’s time-memory tradeoff (TMTO) is a method that can be used to dra-
matically reduce the average amount of computation needed to invert a one-way
function [11]. It works by precomputing a large table, then using the same table
to attack many secret keys. Asymptotically, this attack can be used to break a
block cipher with an n bit key with about 22*/3 operations, using 22/3 storage
[L1]. Below, we review how to invert a function S : F — F}, then show how to
adapt this result to attack additive encryption of linearly redundant plaintext.

To perform the TMTO, given the function S to be inverted, select a reduction
function R : F, — F%, the size of the table NH, and the tradeoff parameter .
The reduction function serves to map the range of S back onto its domain. In
the precomputation stage, define the function f(z) = R(S(z)), and compute the
set T = {(f*(z),x) : * € R}, where R is a random N-element subset of F%, and
sort the elements of T" so that their first components are in increasing order.

In the attack stage, to find z given y such that S(z) = y, compute the set
Y = {(f{(R(y)),i) : i =0,1,... ,t — 1}, and sort its elements so that their first
components are in increasing order. For each component (a,i) € Y such that
(a,x) € T for some z, compute f=¢~!(z) and check if it is the proper inverse.

The precomputation stage requires Nt evaluations of the function f, as well
as N Ig N operations for the sorting and storing N elements. The inversion stage

3 This analysis assumes that the decoding function is equally likely to chose any code-
word if the number of errors in the hallmark is greater than e, a property which
holds for linear codes

4 Hellman refers to this parameter as m in [I1]. We use the notation N to be consistent
with the terminology in the Key Collision section

Attacks on Additive Encryption of Redundant Plaintext and Implications 23

requires ¢ evaluations of f, sorting and storing ¢ elements, and N + ¢ operations
to find the intersection of a t element set and an N element set.

In the TMTO attack against block ciphers, the work effort due to false hits
is negligible. R can be chosen so that it does not collide, so that a collision of
S implies a collision of the the underlying function f. If [< n, then this work
effort is no longer negligible, as the function f will have more collisions than
expected. The expected number of false hits per table look up is bounded by
Nt(t +1)/2H1 ~ N2 /2141,

The success probability of the TMTO attack algorithm is determined by the
number o of elements in the known key set V', where o can be bounded by,

{2"2; itr . (14)

N ot

o< Z

i=1,j=1,
Using the choice of parameters N = t = 2/3 suggested in [11], then o ~ 22n/3,
Below, we assume these values.

To use Hellman’s time-memory tradeoff in an attack against linearly redun-
dant plaintext encrypted with a stream cipher, f is defined as a mapping from
keys to known hallmarks :

f(k) = Ls(k) ®e. (15)

The known key set of hallmarks is the ‘logical table’ comprised of the iterates of
S used in computing 7', and the number of distinct elements that it contains is
o.

If the TMTO is done on a set of M unknown hallmarks simultaneously, a set
Y must be computed for each unknown hallmark, and the union of the unknown
key sets has cardinality ¢M. In addition, if n > [, the time taken to check false
hits must be accounted for. The expected work effort w of the TMTO attack is
thus for n <1,

w=tMIg(tM) +tM + N + t]gf (16)
= O(tMlg(tM) + N).
and for n > [,
w = tMIg(tM) + tM + N + ”;Lna N 2 an

= O(tM1g(tM) + N + MNt*/2").

The expected number of correct keys that this algorithm finds is Mo /2" =~
M?2-"/3. Thus the effective key size nr of the TMTO attack is given by

tM1g(tM) + N + MNt3 /2!
M2-n/3

=2n/3+1g (n/3+1gM +1/M +2"7)

~2n/3 +1gn/3 + max(n —[,0).

nr =lg (18)

24 David A. McGrew and Scott R. Fluhrer

1

213 |- B

Key Collision dominates

(lgM)/n

U3

Time Memory Tradeoff dominates

0 05 1 15 2
I/In

Fig. 3. The ‘phase space’ of attacks on additive encryption, showing which attack dom-
inates as a function of the parameters Ig M and [. Here, the parameters are represented
fractionally in terms of the key size n

4.1 Comparison of the TMTO and Key Collision Algorithms

The TMTO attack is more effective than the basic attack when nr < n. By
comparing the estimates for 1 and np given above, we can see that the KC
attack is preferable when lg(M) > n/3. The complete ‘phase space’ of attacks
on additive encryption is illustrated in Figure 3.

However, the TMTO as described does not work for probabilistic linear equa-
tions. In that case, the KC attack has the advantage.

5 Linear Redundancy in IP Packets

We analyzed the TP, TCP, and UDP protocols, and estimated the linear redun-
dancy in the headers of those protocols. A summary of our results is given in
Table[Il In this section, all numerals indicate binary expressions.

The Version field is (almost without exception) equal to 0100. The Header
Length is nearly always equal to 0101, unless an IP option is used, in which case
it is probably 0110. The Precedence/TOS (Type of Service) field is generally set
to 00000000. The Protocol field is usually 00000110 (for TCP) or 00001011 (for
UDP). The ‘Time to Live’ field is usually 00010000 or less. The ‘Source IP’ and
‘Destination IP’ fields from the IP header are the same in every packet between
to particular hosts. Each pair of packets with the same source and destination
that can be identified by traffic analysis provides 64 linear equations. The ‘Source
Port” and ‘Destination Port’, in the TCP and UDP protocols, provide a total of

Attacks on Additive Encryption of Redundant Plaintext and Implications 25

Table 1. Linear redundancy in the headers of the IP, TCP, and UDP protocols. The
common values are described in Section Bl The ‘Single Packet’ column shows the re-
dundancy that is detectable in a single packet. The ‘T'wo Packet’ column shows the
redundancy that is present in two consecutive packets from the same source

Protocol|Field Size (bits)| Single Packet Two Packet
Redundancy (bits)|Redundancy (bits)
1P Version 4 4 4
Header Length 4 4 4
Precedence/TOS 8 8 8
Packet Length 16 4 4
Packet ID 16 0 0
DF bit 1 1 1
MF bit 1 0 0
Fragment Offset 13 0 0
Time to Live 8 3 3
Protocol 8 7 7
Checksum 16 1 1
Source Address 32 0 32
Destination Address 32 0 32
Total - 32 96
UDP Source Port 16 0 16
Destination Port 16 0 16
Length 16 0 0
Checksum 16 1 1
Total - 1 33
TCP Source Port 16 0 16
Destination Port 16 0 16
Sequence Number 32 0 18
Ack. Number 32 0 14
Data Offset 4 4 4
Checksum 16 1 1
Urgent 8 0 0
Total - 5 69

32 linear equations in the same manner. The TCP ‘Data Offset’ field is usually
set to 0101.

5.1 Checksums and Counters

Many protocols use checksums so that transmission errors are likely to be de-
tectable by the receiver. A checksum is an element of a ring, usually F§ or Z/2¢,
for some value of c. It is computed by decatenating the data into elements of
that ring, then summing them together. Checksums over F§ are conventional
when the protocol is implemented in hardware, while checksums over Z/2¢ are
commonly implemented in software (and are used for IP, TCP, and UDP with
c=16.).

26 David A. McGrew and Scott R. Fluhrer

A checksum over F§ (or CRC) provides ¢ linear equations that always hold.
The Bluetooth specification for wireless networking is one example of a protocol
that includes such a checksum on data that is encrypted by an additive cipher
B]. A checksum over Z/2™ provides one linear equation that always holds, since
the least significant bit of a sum of integers is equal to the exclusive or of the
least significant bits of the integers. Probabilistic linear equations in other bits
of the checksum can be derived, but will be poor approximations if the number
of integers summed together is large.

In many protocols, an integer called a counter is included in each packet, and
is used to indicate the ordering of the packets to the receiver. Counters may be
incremented by one for each new packet, or may be incremented by some other
value (e.g., the number of bytes contained in the data portion of the packet, as
is done in the TCP protocol). If a ¢-bit counter x appears in a packet, and = +y
appears in another packet, where y < 29, for some ¢, then

Titq = (+y)it+q With probability > 1 — 277, (19)

A ¢ bit counter that increments by a value less than 2¢ provides a significant
amount of information.

IP, TCP, and UDP all use checksums over Z/216. The low bit of the checksum
is a linear function of the other packet data, from Section Bl If the layer three
protocol of a packet is known, then the checksums provide two linear equations
that hold with probability one.

TCP packets contain a 32-bit counter that is incremented by the length (in
bytes) of the packet’s data. These lengths will be no more than 1500 (which
is the Ethernet MTU) with high probability. Since 2! > 1500, two adjacent
counters provide 18 linear equations that hold with probability 7/8 or greater.
To use these equations in an attack requires some traffic analysis to discover
two sequential TCP packets. The TCP ‘Acknowledgement Number’ similarly
provides about 14 linear equations.

6 Conclusions

Practical attacks on additive stream ciphers that rely on linear equations over
the plaintext bits are possible, even when those equations hold probabilistically.
The TP, TCP, and UDP protocol headers have a significant amount of linear
redundancy, and are vulnerable to these attacks. In practice, effective key sizes
of Internet encryption are close to n —lg M, when a cryptanalyst has M cipher-
texts encrypted under distinct keys available. We conjecture that only protocols
specifically designed to not be linearly redundant will not be vulnerable to these
attacks. Compression would reduce the linear redundancy of a source; however,
we are pessimistic about the effectiveness of using compression to protect against
our attacks in practice.

While our attacks are powerful, there is an easy defense against them: increase
the key size of the cipher. Cipher keys can be extended in ways that are not
secure against other forms of attack (e.g., ‘whitening’ with a fixed value) and

Attacks on Additive Encryption of Redundant Plaintext and Implications 27

still provide resistance to our attacks. This approach is similar to the idea of
concatenating ‘salt’ (e.g., unique but public data) to a secret password in order
to reduce the effectiveness of attacks that amortize effort across many passwords.
variable size key, although in common usage its key size is 128 bits.

The attacks that we outline are possible against Internet traffic encrypted
with 128-bit RC4 with a complexity of about 238, assuming that an adversary can
intercept ciphertexts from 24° distinct sessions. This number is feasible; a single
Internet site that establishes 232 SSL connections per day has been reported [17].
While this attack is beyond the limit of current cryptanalytic technology, it is
worth noting that it does no harm to increase the key size to compensate for our
attacks: the throughput of the RC4 cipher is independent of its key size.

The attacks that we presented rely on the fact that the secret keys are chosen
uniformly at random. If the keys are chosen from a highly skewed probability
distribution (e.g., a broken random number generator that outputs the same
number every time), the effectiveness of our attacks is significantly reduced. Of
course, the broken random number generator creates other security problems!

Considerable future work remains untouched. While we established the vi-
ability of attacks relying on the redundancy of plaintext encrypted by additive
stream ciphers, we did not investigate efficient decoding methods for use when
the linear equations are probabilistic. Also, it may be possible to extend the
time-memory tradeoff approach so that it can be used in the probabilistic case.

References

1. Postel, J., “The Internet Protocol”, IETF RFC 791, USC/Information Sciences
Institute, September 1981.

2. Briceno, M., Goldberg, I., Wagner, D., “A pedagogical implementation of A5/1”,
http://www.scard.org, May 1999.

3. Bluetooth SIG, “BLUETOOTH Baseband Specification Version 1.0 B, Section
14.37, http://www.bluetooth.com.

4. Bellovin, S., “Probable Plaintext Cryptanalysis of the IP Security Protocols,” Pro-
ceedings of the Symposium on Network and Distributed System Security, pp. 155-
160, 1997.

5. Biham, E., “How to Forge DES-Encrypted Messages in 22® Steps”, Technion Com-
puter Science Department Technical Report CS0884, 1996.

6. Blahut, R., ”Principles and Practice of Information Theory”, Addison-Wesley,
1983.

7. Gallager, R., “Low Density Parity Check Codes”, IEEE Transactions on Informa-
tion Theory, IT-8 pp. 21-28, January, 1962.

8. Kent, S., and R. Atkinson, “Security Architecture for IP”, RFC 2401, November
1998.

9. Kent, S., and R. Atkinson, “IP Encapsulating Security Payload (ESP)”, RFC 2406,
November 1998.

10. Knuth, D.; “The Art of Computer Programming: Volume Three, Sorting and
Searching”, Addison-Wesley, 1998.

11. Hellman, M. E., “A cryptanalytic time-memory trade-off”, IEEE Transactions on
Information Theory, July 1980, pp. 401-406.

28

12.

13.

14.

15.

16.

17.

18.

David A. McGrew and Scott R. Fluhrer

Litsyn, S., Rains, E.M., Sloane, N.J., “Table of Nonlinear Binary Codes”,
http://www.research.att.com/ njas/codes/And.

McGrew, D., Fluhrer, S., “The Stream Cipher Encapsulating Security Payload,”
draft-mcgrew-ipsec-scesp-01.txt, Internet Draft, July, 2000.

Siegenthaler, T., “Correlation-immunity of nonlinear combining functions for cryp-
tographic applications,” IEEE Transactions on Information Theory, Vol. IT-30, pp.
776-780, October, 1984.

Sloane, N. J, Reddy, S., and Chen., C., “New binary codes”. IEEE Transactions
on Information Theory, IT-18, pp. 503-510, 1972.

Schneier, B., “Applied Cryptography”, New York: Wiley, 1996.

van Someren, N., “There will be no cryptographic abundance without crypto-
graphic hardware”, Xerox PARC Symposium on Life in an Era of Cryptographic
Abundance, June, 2000.

U. S. National Institute of Standards and Technology, “DES Modes of Operation”,
Federal Information Processing Standards Publication 81, 1980.

	Attacks on Additive Encryption of Redundant Plaintext and Implications on Internet Security
	Introduction
	Terminology and Assumptions

	Linear Redundancy
	Key Collision Attacks on Additive Encryption
	Probabilistic Linear Equations

	Hellman's Time-Memory Tradeoff
	Comparison of the TMTO and Key Collision Algorithms

	Linear Redundancy in IP Packets
	Checksums and Counters

	Conclusions
	References

