
Attacks on Hash Functions Based on Generalized

Feistel: Application to Reduced-Round
Lesamnta and SHAvite-3 512

�

Charles Bouillaguet1, Orr Dunkelman2,
Gaëan Leurent1, and Pierre-Alain Fouque1

1 École normale supérieure
{charles.bouillaguet,gaetan.leurent,pierre-alain.fouque}@ens.fr

2 Weizmann Institute of Science
orr.dunkelman@weizmann.ac.il

Abstract. In this paper we study the strength of two hash functions
which are based on Generalized Feistels. We describe a new kind of at-
tack based on a cancellation property in the round function. This new
technique allows to efficiently use the degrees of freedom available to at-
tack a hash function. Using the cancellation property, we can avoid the
non-linear parts of the round function, at the expense of some freedom
degrees.

Our attacks are mostly independent of the round function in use, and
can be applied to similar hash functions which share the same structure
but have different round functions. We start with a 22-round generic
attack on the structure of Lesamnta , and adapt it to the actual round
function to attack 24-round Lesamnta (the full function has 32 rounds).
We follow with an attack on 9-round SHAvite-3 512 which also works for
the tweaked version of SHAvite-3 512 .

1 Introduction

Many block ciphers and hash functions are based on generalized Feistel construc-
tions. In this paper we treat such generalized Feistel constructions and especially
concentrate on the case where an n-bit round function is used in a 4n-bit struc-
ture. Two of these constructions, shown at Figure 1,1 used in the Lesamnta and
the SHAvite-3 512 hash functions, are the main focus of this paper.

While in the ideal Luby-Rackoff case, the round functions are independent
random functions, in practice, most round functions F (k, x) are usually defined
as P (k ⊕ x), where P is a fixed permutation (or function). Hence, we introduce
several attacks which are based on cancellation property: if the fixed function
P accepts twice the same input, it produces twice the same output. In a hash

� The full version of this paper appears as IACR ePrint report 2009/634 [3].
1 Note that the direction of the rotation in the Feistel structure is not really important:

changing the rotation is equivalent to considering decryption instead of encryption.

A. Biryukov, G. Gong, and D.R. Stinson (Eds.): SAC 2010, LNCS 6544, pp. 18–35, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Attacks on Hash Functions Based on Generalized Feistel 19

S T U V

S T U V
Ki

F

Lesamnta structure

VUTS

VUTS
Ki

K′
i

F ′ F

SHAvite-3 512 structure

Fig. 1. The Generalized Feistel Constructions Studied in this paper

function setting, as there is no secret key, the adversary may actually make sure
that the inputs are the same.

For Lesamnta we start with generic attacks that work independent of the ac-
tual P in use, but then use the specific properties of Lesamnta’s round functions
to offer better attacks. The attack on SHAvite-3 512 is a more complicated one, fol-
lowing the more complex round functions (and the structure which uses two func-
tions in each round), but at the same time, is of more interest as SHAvite-3 512

is still a SHA3 candidate.

1.1 Overview of the Attacks

Our attacks are based on a partial preimage attack, i.e. we can construct specific
inputs where part of the output H is equal to a target value H . To achieve
such a partial preimage attack, we use truncated differentials built with the
cancellation property, and we express the constraints needed on the state of
the Feistel network in order to have the cancellation with probability one. We
use degrees of freedom in the inputs of the compression function to satisfy those
constraints. Then, we can compute some part of the output as a function of some
of the remaining degrees of freedom, and try to invert the equation. The main
idea is to obtain a simple equation that can be easily inverted using cancellations
to limit the diffusion.

A partial preimage attack on the compression function allows to choose k bits
of the output for a cost of 2t (with t < k), while the remaining n − k bits are
random. We can use such an attack on the compression function to target the
hash function itself, in several scenarios.

Preimage Attacks. By repeating such an attack 2n−k times, we can obtain a
full preimage attack on the compression function, with complexity 2n+t−k. This
preimage attack on the compression function can be used for a second preim-
age attack on the hash function with complexity 2n+(t−k)/2 using a standard
unbalanced meet-in-the middle [8]. Note that 2n+(t−k)/2 < 2n if t < k.

Moreover, we point out that Lesamnta is built following the Matyas-Meyer-
Oseas construction, i.e. the chaining value is used as a key, and the message
enters the Feistel rounds. Since our partial preimage attack does not use degrees

20 C. Bouillaguet et al.

of freedom in the key (we only need the key to be known, not chosen), we can use
a chaining value reached from the IV as the key. We have to repeat the partial
preimage attack with many different keys in order to build a full preimage, but
we can use a first message block to randomize the key. This gives a second
preimage attack on the hash function with complexity 2t+n−k.

Collision Attacks. The partial preimage attack can also be used to find col-
lisions in the compression function. By generating 2(n−k)/2 inputs where k bits
of the output are fixed to a common value, we expect a collision thanks to
the birthday paradox. This collision attack on the compression function costs
2t+(n−k)/2. If t < k/2, this is more efficient than a generic birthday attack on
the compression function.

If the compression function is built with the Matyas-Meyer-Oseas mode, like
Lesamnta, this attack translates to a collision attack on the hash function with
the same complexity. However, if the compression function follows the Davies-
Meyer mode, like SHAvite-3 , this does not translate to an attack on the hash
function.

1.2 Our Results

The first candidate for the technique is the Lesamnta hash function. The best
known generic attack against this structure is a 16-round attack by Mendel
described in the submission document of Lesamnta [6]. Using a cancellation
property, we extend this attack to a generic attacks on 22-round Lesamnta. The
attack allows to fix one of the output words for an amortized cost of 1, which
gives collisions in time 23n/8 and second preimages in time 23n/4 for Lesamnta-n.
Moreover, the preimage attack can be extended to 24 rounds using 2n/4 mem-
ory. We follow with adaptations of the 24-round attacks without memory using
specific properties of Lesamnta’s round function.

The second target for our technique is the hash function SHAvite-3 512. We
show a 9-round attack using a cancellation property on the generalized Feistel
structure of SHAvite-3 512. The attack also works for the tweaked version of
SHAvite-3 512, and allows fixing one out of the four output words. This allows
a second preimage attack on 9-round SHAvite-3 512 that takes about 2448 time.
Note that this attack has recently been improved in a follow-up work [5]. First
a new technique was used to add one extra round at the beginning, leading
to attacks on 10 rounds of the compression function. Second, a pseudo-attack
against the full SHAvite-3 512 is described, using additional degrees of freedom in
the salt input. The follow-up work has been published first because of calendar
issues, but it is heavily based on this work which was available as a preprint to
the authors of [5]. Moreover, in this paper, we describe a more efficient way to
find a suitable key for the attack, which improves the 10-round attack of [5].

In the full version of this paper, we also show some applications to block ci-
phers, with an integral attack on 21 rounds of the inner block cipher of Lesamnta,
and a new truncated differential for SMS4 .

Attacks on Hash Functions Based on Generalized Feistel 21

Table 1. Cancellation property on Lesamnta
On the left side, we have full diffusion after 9 rounds. On the right side, we use the
cancellation property to control the diffusion of the differences.

i Si Ti Ui Vi Si Ti Ui Vi

0 x - - - x - - -
1 - x - - - x - -
2 - - x - - - x -
3 y1 - - x x → y1 y - - x x → y
4 x y1 - - x y - -
5 - x y1 - - x y -
6 z - x y1 y1 → z z - x y y → z
7 y′ z - x x → y2, y′ = y1 ⊕ y2 - z - x x → y
8 x y′ z - x - z -
9 w x y′ z z → w w x - z z → w

The paper is organized as follows. Section 2 explains the basic idea of our
cancellation attacks. Our results on Lesamnta are presented in Section 3, while
application to SHAvite-3 512 is discussed in Section 4. These results are summa-
rized in Tables 9 and 10.

2 The Cancellation Property

In this paper we apply cancellation cryptanalysis to generalized Feistel schemes.
The main idea of this technique is to impose constraints on the values of the state
in order to limit the diffusion in the Feistel structure. When attacking a hash
function, we have many degrees of freedom from the message and the chaining
value, and it is important to find efficient ways to use those degrees of freedom.

Table 1 shows the diffusion of a single difference in Lesamnta. After 9 rounds,
all the state words are active. However, we note that if the transitions x → y1

at rounds 3 and x → y2 at round 7 actually go to the same y, i.e. y1 = y2, this
limits the diffusion. In the ideal case, the round functions are all independent,
and the probability of getting the same output difference is very small. However,
in practice, the round functions are usually all derived from a single fixed per-
mutation (or function). Therefore, if we add some constraints so that the input
values of the fixed permutation at round 3 and 7 are the same, then we have
the same output values, and therefore the same output difference with proba-
bility one. This is the cancellation property. A similar property can be used in
SHAvite-3 512.

Our attacks use an important property of the Feistel schemes of Lesamnta and
SHAvite-3 512: the diffusion is relatively slow. When a difference is introduced in
the state, it takes several rounds to affect the full state and two different round
functions can receive the same input difference x. Note that the slow diffusion
of Lesamnta is the basis of a 16-round attack in [6] (recalled in Section 3.1), and

22 C. Bouillaguet et al.

the slow diffusion of SHAvite-3 512 gives a similar 8-round attack [4]. Our new
attacks can be seen as extensions of those.

We now describe how to enforce conditions of the state so as to have this
cancellation with probability 1. Our attacks are independent of the round func-
tion, as long as all the round functions are derived from a single function as
Fi(Xi) � F (Ki ⊕ Xi).

2.1 Generic Properties of Fi(Xi) = F (Ki ⊕ Xi)

We assume that the round functions Fi are built by applying a fixed permutation
(or function) F to Ki⊕Xi, where Ki is a round key and Xi is the state input. This
practice is common in many primitives like DES, SMS4 , GOST, or Lesamnta.

This implies the followings, for all i, j, k:

(i) ∃ci,j : ∀x, Fi(x ⊕ ci,j) = Fj(x).
(ii) ∀α, #

{
x : Fi(x) ⊕ Fj(x) = α

}
is even.

(iii)
⊕

x Fk

(
Fi(x) ⊕ Fj(x)

)
= 0.

Property (i) is the basis of our cancellation attack. We refer to it as the can-
cellation property. It states that if the inputs of two round functions are related
by a specific fixed difference, then the outputs of both rounds are equal. The
reminder of the paper is exploring this property.

Properties (ii) and (iii) can be used in an integral attack, as shown in the
full version [3]. Note that Property (ii) is a well known fact from differential
cryptanalysis.

Proof. (i) Set cij = Ki ⊕ Kj .
(ii) If Ki = Kj, then ∀x, Fi(x) ⊕ Fj(x) = 0. Otherwise, let x be such that

Fi(x)⊕Fj(x) = α. Then Fi(x⊕Ki⊕Kj)⊕Fj(x⊕Ki⊕Kj) = Fj(x)⊕Fi(x) =
α. Therefore x is in the set if and only if x ⊕ Ki ⊕ Kj is in the set, and all
the elements can be grouped in pairs.

(iii) Each term Fk(α) in the sum appears an even number of times, by (ii). ��

2.2 Using the Cancellation Property

To better explain the cancellation property, we describe how to use it with the
truncated differential of Table 1. In Table 2, we show the values of the registers
during the computation of the truncated differential, starting at round 2 with
(S2, T2, U2, V2) = (a, b, c, d). To use the cancellation property, we want to make
S7 independent of c. Since we have S7 = F6(F3(b) ⊕ c)⊕F2(c)⊕d, we can cancel
the highlighted terms using property (i). The dependency of S7 on c disappears
if F3(b) = K2 ⊕ K6, i.e. if b = F−1

3 (K2 ⊕ K6):

S7 = F6(F3(b) ⊕ c) ⊕ F2(c) ⊕ d = F (K6 ⊕ K2 ⊕ K6 ⊕ c) ⊕ F (K2 ⊕ c) ⊕ d = d.

Therefore, we can put any value c in U2, and it does not affect S7 as long as we
fix the value of T2 to be F−1(K2 ⊕ K6) ⊕ K3. Note that in a hash function, we

Attacks on Hash Functions Based on Generalized Feistel 23

Table 2. Values of the Registers for Five Rounds of Lesamnta

i Si Ti Ui Vi

2 a b c d
3 F2(c) ⊕ d a b c
4 F3(b) ⊕ c F2(c) ⊕ d a b
5 F4(a) ⊕ b F3(b) ⊕ c F2(c) ⊕ d a
6 F5(F2(c) ⊕ d) ⊕ a F4(a) ⊕ b F3(b) ⊕ c F2(c) ⊕ d
7 F6(F3(b) ⊕ c) ⊕ F2(c) ⊕ d F5(F2(c) ⊕ d) ⊕ a F4(a) ⊕ b F3(b) ⊕ c

can compute F−1(K2 ⊕K6)⊕K3 since the keys are known to the adversary (or
controlled by him), and we can choose to have this value in T2.

This shows the three main requirements of our cancellation attacks:

– The generalized Feistel structures we study have a relatively slow diffusion.
Therefore, the same difference can be used as the input difference of two
different round functions.

– The round functions are built from a fixed permutation (or a fixed function),
using a small round key. This differs from the ideal Luby-Rackoff case where
all round functions are chosen independently at random.

– In a hash function setting the key is known to the adversary, and he can
control some of the inner values.

Note that some of these requirements are not strictly necessary. For example, we
show a 21-round integral attack on Lesamnta, without knowing the keys in the
full version. Moreover, in Section 4 we show attacks on 9-round SHAvite-3 512,
where the round functions use more keying material.

3 Application to Lesamnta

Lesamnta is a hash function proposal by Hirose, Kuwakado, and Yoshida as a
candidate in the SHA-3 competition [6]. It is based on a 32-round unbalanced
Feistel scheme with four registers used in MMO mode. The key schedule is also
based on a similar Feistel scheme. The round function can be written as:

Si+1 = Vi ⊕ F (Ui ⊕ Ki) Ti+1 = Si Ui+1 = Ti Vi+1 = Ui

3.1 Previous Results on Lesamnta

The best known attack on Lesamnta is the self-similarity attack of [2]. Following
this attack, the designers have tweaked Lesamnta by changing the round con-
stants [10]. In this paper we consider attacks that work with any round constants,
and thus are applicable to the tweaked version as well.

24 C. Bouillaguet et al.

Several attacks on reduced-round Lesamnta are presented in the submission
document [6]. A series of 16-round attacks for collisions and (second) preimage
attacks are presented, all of which are based on a 16-round truncated differential
with probability 1.

In the next sections we show new attacks using the cancellation property. We
first show some attacks that are generic in F , as long as the round functions
are defined as Fi(Xi) = F (Ki ⊕ Xi), and then improved attacks using specific
properties of the round functions of Lesamnta.

3.2 Generic Attacks

Our attacks are based on the differential of Table 3, which is an extension of the
differential of Table 1. In this differential we use the cancellation property three
times to control the diffusion. Note that we do not have to specify the values of y,
z, w, r and t. This specifies a truncated differential for Lesamnta: starting from a
difference (x,−,−,−), we reach a difference (?, ?, ?, x1) after 22 rounds. In order
to use this truncated differential in our cancellation attack, we use two important
properties: first, by adding constraints on the state, the truncated differential is
followed with probability 1; second, the transition x → x1 is known because the
key and values are known. Therefore, we can actually adjust the value of the
last output word.

Table 3. Cancellation Property on 22 Rounds of Lesamnta

i Si Ti Ui Vi

0 x - - -
1 - x - -
2 - - x -
3 y - - x x → y
4 x y - -
5 - x y -
6 z - x y y → z
7 - z - x x → y
8 x - z -
9 w x - z z → w
10 z w x -
11 x1 z w x x → x1

12 r x1 z w w → x ⊕ r
13 - r x1 z z → w
14 ? - r x1

15 x1 + t ? - r r → t
16 r x1 + t ? -
17 ? r x1 + t ?
18 ? ? r x1 + t
19 x1 ? ? r r → t
20 ? x1 ? ?
21 ? ? x1 ?
22 ? ? ? x1

FF ? ? ? x1

In order to express the constraints that we need for the cancellation properties,
we look at the values of the registers for this truncated differential. In Table 4,
we begin at round 2 with (S2, T2, U2, V2) = (a, b, c, d), and we compute the state
values up to round 19. This is an extension of the values computed in Table 2.

We can see that we have S19 = F (c ⊕ α) ⊕ β, where α = K10 ⊕ F7(F4(a) ⊕
b) ⊕ F3(b) and β = d provided that (a, b, d) is the unique triplet satisfying the
following cancellation conditions:

Attacks on Hash Functions Based on Generalized Feistel 25

Round 7: we have F6(F3(b) ⊕ c) ⊕ F2(c). They cancel if:
F3(b) = c2,6 = K2 ⊕ K6 i.e. b = F−1

3 (K2 ⊕ K6)
Round 13: we have F12(F9(d) ⊕ F5(F2(c) ⊕ d) ⊕ a) ⊕ F8(F5(F2(c) ⊕ d) ⊕ a).

They cancel if:
F9(d) = c8,12 = K8 ⊕ K12 i.e. d = F−1

9 (K8 ⊕ K12)
Round 19: we have F18(F15(F4(a) ⊕ b) ⊕ S12) ⊕ F14(S12). They cancel if:

F15(F4(a) ⊕ b) = c14,18 = K14 ⊕ K18 i.e. a = F−1
4 (F−1

15 (K14 ⊕ K18) ⊕ b)

Note that a, b, d and α, β are uniquely determined from the subkeys. Hence, one
can set S19 to any desired value S∗

19 by setting c = F−1(S∗
19 ⊕ β) ⊕ α.

Table 4. Values of the Register for the 22-round Cancellation Property of Lesamnta .
Steps −5 to −2 will be used for the 24-round attacks.

i Si

−5 d ⊕ F0(c ⊕ F1(b ⊕ F2(a ⊕ F3(d))))
−4 c ⊕ F1(b ⊕ F2(a ⊕ F3(d)))
−3 b ⊕ F2(a ⊕ F3(d))
−2 a ⊕ F3(d)
−1 d
0 c
1 b
2 a
3 F2(c) ⊕ d
4 F3(b) ⊕ c
5 F4(a) ⊕ b
6 F5(F2(c) ⊕ d) ⊕ a
7 F6(F3(b) ⊕ c) ⊕ F2(c) ⊕ d
8 F7(F4(a) ⊕ b) ⊕ F3(b) ⊕ c
9 F8(F5(F2(c) ⊕ d) ⊕ a) ⊕ F4(a) ⊕ b
10 F9(d) ⊕ F5(F2(c) ⊕ d) ⊕ a
11 F10(F7(F4(a) ⊕ b) ⊕ F3(b) ⊕ c) ⊕ d
12 F11(F8(F5(F2(c) ⊕ d) ⊕ a) ⊕ F4(a) ⊕ b) ⊕ F7(F4(a) ⊕ b) ⊕ F3(b) ⊕ c
13 F12(F9(d) ⊕ F5(F2(c) ⊕ d) ⊕ a) ⊕ F8(F5(F2(c) ⊕ d) ⊕ a) ⊕ F4(a) ⊕ b
15 F14(S12) ⊕ F10(F7(F4(a) ⊕ b) ⊕ F3(b) ⊕ c) ⊕ d
16 F15(F4(a) ⊕ b) ⊕ S12

19 F18(F15(F4(a) ⊕ b) ⊕ S12) ⊕ F14(S12) ⊕ F10(F7(F4(a) ⊕ b) ⊕ F3(b) ⊕ c) ⊕ d

22-Round Attacks. The truncated differential of Table 3 can be used to at-
tack 22-round Lesamnta. We start with the state at round 2 (S2, T2, U2, V2) =
(a, b, c, d) satisfying the cancellation properties, and we can compute how the
various states depend on c, as shown in Table 5. A dash (-) is used to denote a
value that is independent of c. We know exactly how c affects the last output
word, and we can select c in order to get a specific value at the output. Suppose
we are given a set of subkeys, and a target value H for the fourth output word.
Then the attack proceeds as follows:

26 C. Bouillaguet et al.

Table 5. Collision and Preimage Characteristic for the 22-Round Attack

i Si Ti Ui Vi

0 c - - η
1 - c - -
2 - - c -

2–19 Repeated Cancellation Property: Table 4

19 F (c ⊕ α) ⊕ β ? ? ?
20 ? F (c ⊕ α) ⊕ β ? ?
21 ? ? F (c ⊕ α) ⊕ β ?
22 ? ? ? F (c ⊕ α) ⊕ β

FF ? ? ? η ⊕ F (c ⊕ α) ⊕ β

η, α and β can be computed from a, b, d and the key:
η = b ⊕ F0(a ⊕ F3(d)), α = K11 ⊕ F8(F5(a) ⊕ b) ⊕ F4(b), β = d.

1. Set a, b, and d to the values that allow the cancellation property.
Then we have V0 ⊕ V22 = η ⊕ F (c ⊕ α) ⊕ β, as shown in Table 5.

2. Compute c as F−1(H ⊕ η ⊕ β) ⊕ α.
3. This sets the state at round 2: (S2, T2, U2, V2) � (a, b, c, d).

With this state, we have V0 ⊕ V22 = H .
4. Compute the round function backwards up to round 0, to get the input.

This costs less than one compression function call, and does not require any
memory.

For a given chaining value (i.e. a set of subkeys), this algorithm can only
output one message. To build a full preimage attack or a collision attack on the
compression function, this has to be repeated with random chaining values. Since
the attack works for any chaining value, we can build attacks on the hash function
using a prefix block to randomize the chaining value. This gives a collision attack
with complexity 296 (2192 for Lesamnta-512), and a second-preimage attack with
complexity 2192 (2384 for Lesamnta-512).

24-Round Attacks. We can add two rounds at the beginning of the truncated
differential at the cost of some memory. The resulting 24-round differential is
given in Table 6. The output word we try to control is equal to F (c⊕γ)⊕F (c⊕α),
for some constants α, and γ that depend on the chaining value (note that β = λ
in Table 6). We define a family of functions hμ(x) = F (x) ⊕ F (x ⊕ μ), and for
a given target value H , we tabulate ϕH(μ) = h−1

μ (H). For each μ, ϕH(μ) is a
possibly empty set, but the average size is one (the non-empty values form a
partition of the input space). In the special case where H = 0, ϕ0(μ) is empty
for all μ �= 0, and ϕ0(0) is the full space.

Attacks on Hash Functions Based on Generalized Feistel 27

Table 6. Collision and Preimage Path for the 24-round Attack

i Si Ti Ui Vi

0 - - c ⊕ γ F (c ⊕ γ) ⊕ λ
1 - - - c ⊕ γ
2 c - - -
3 - c - -
4 - - c -

4–21 Repeated Cancellation Property: Table 4

21 F (c ⊕ α) ⊕ β ? ? ?
22 ? F (c ⊕ α) ⊕ β ? ?
23 ? ? F (c ⊕ α) ⊕ β ?
24 ? ? ? F (c ⊕ α) ⊕ β

α, β, γ and λ can be computed from a, b, d and the key by:
α = K13 ⊕ F10(F7(a) ⊕ b) ⊕ F6(b), β = d and
γ = F1(b ⊕ F2(a ⊕ F3(d))), λ = d

We store ϕH in a table of size 2n/4, and we can compute it in time 2n/4 by
looking for values such that F (x)⊕F (y) = H (this gives ϕH(x⊕ y) = x). Using
this table, we are able to choose one output word just like in the 22-round attack.

We start with a state (S4, T4, U4, V4) = (a, b, c, d) such that a, b, d satisfy the
cancellation conditions, and we compute α, β, γ, λ. If we use c = u ⊕ α, where
u ∈ ϕH(α ⊕ γ) = h−1

α⊕γ(H), we have:

V0 ⊕ V24 = F (c ⊕ γ) ⊕ F (c ⊕ α) = F (u ⊕ α ⊕ γ) ⊕ F (u) = hα⊕γ(u) = H

On average this costs one compression function evaluation to find a n/4-bit
partial preimage. If the target value is 0, this only succeeds if α ⊕ γ = 0, but in
this case it gives 2n/4 solutions. This gives a preimage attack with complexity
23n/4 using 2n/4 memory.

Note that it is possible to make a time-memory trade-off with complexity
2n−k using 2k memory for k < n/4.

3.3 Dedicated 24-Round Attacks on Lesamnta

We now describe how to use specific properties of the round functions of Lesamnta
to remove the memory requirement of our 24-round attacks.

Slow Diffusion in F256. The AES-like round function of Lesamnta-256 achieves
full diffusion of the values after its four rounds, but some linear combinations
of the output are not affected. Starting from a single active diagonal, we have:

SB
SR

MC SB
SR

MC SB
SR

MC SB
SR

MC

All the output bytes are active, but there are some linear relations between them.
More precisely, the inverse MixColumns operation leads to a difference with two
inactive bytes.

28 C. Bouillaguet et al.

This gives two linear subspaces Γ and Λ for which x⊕x′ ∈ Γ ⇒ F (x)⊕F (x′) ∈
Λ. The subspaces Γ and Λ have dimensions of 16 and 48, respectively.

Collision and Second Preimage Attacks on Lesamnta-256. Using this property,
we can choose 16 linear relations of the output of the family of function hμ, or
equivalently, choose 16 linear relations of the output of the compression function.

Let Λ̄ be a supplementary subspace of Λ. Any 64-bit value x can be written
as x = xΛ + xΛ̄, where xΛ ∈ Λ and xΛ̄ ∈ Λ̄. We can find values x such that
hμ(x)Λ̄ = H Λ̄ for an amortized cost of one, without memory:

1. Compute hμ(u) for random u’s until hμ(u)Λ̄ = H Λ̄

2. Far all v in Γ , we have hμ(u + v)Λ̄ = H Λ̄

This gives 216 messages with 16 chosen relations for a cost of 216. It allows a
second-preimage attack on 24-round Lesamnta-256 with complexity 2240, and a
collision attack with complexity 2120, both memoryless.

Symmetries in F256 and F512. The AES round function has strong symmetry
properties, as studied in [9]. The round function F of Lesamnta is heavily inspired
by the AES round, and has similar symmetry properties. More specifically, if
an AES state is such that the left half is equal to the right half, then this
property still holds after any number of SubBytes, ShiftRows, and MixColumns
operations.

When we consider the F functions of Lesamnta, we have that: if x ⊕ Ki is
symmetric, then Fi(x) = F (x ⊕ Ki) is also symmetric.

Collision Attacks on Lesamnta-256 and Lesamnta-512. This property can be
used for an improved collision attack. As seen earlier we have V0 ⊕ V24 = F (c⊕
γ) ⊕ F (c ⊕ α). In order to use the symmetry property, we first select random
chaining values, and we compute the value of α and γ until α ⊕ γ is symmetric.
Then, if we select c such that c ⊕ γ is symmetric, we have that V0 ⊕ V24 is
symmetric.

This leads to a collision attack with complexity 2112 for Lesamnta-256, and
2224 for Lesamnta-512.

4 Application to SHAvite-3 512

SHAvite-3 is a hash function designed by Biham and Dunkelman for the SHA-3
competition [1]. It is based on a generalized Feistel construction with an AES-
based round function, used in Davies-Meyer mode. In this section we study
SHAvite-3 512, the version of SHAvite-3 designed for output size of 257 to 512
bits. The cancellation property can not be used on SHAvite-3 256 because the
Feistel structure is different and has a faster diffusion. We describe an attack on
the SHAvite-3 512 hash function reduced to 9 rounds out of 14. An earlier variant
of our attack was later extended in [5] to a 10-round attack. We note that our
improved 9-round attack can be used to offer an improved 10-round attack.

Attacks on Hash Functions Based on Generalized Feistel 29

4.1 A Short Description of SHAvite-3512

The compression function of SHAvite-3 512 accepts a chaining value of 512 bits,
a message block of 1024 bits, a salt of 512 bits, and a bit counter of 128 bits.
As this is a Davies-Meyer construction, the message block, the salt, and the bit
counter enter the key schedule algorithm of the underlying block cipher. The
key schedule algorithm transforms them into 112 subkeys of 128 bits each. The
chaining value is then divided into four 128-bit words, and at each round two
words enter the nonlinear round functions and affect the other two:

Si+1 = Vi Ti+1 = Si ⊕ F ′
i (Ti) Ui+1 = Ti Vi+1 = Ui ⊕ Fi(Vi)

The nonlinear function F and F ′ are composed of four full rounds of AES, with
4 subkeys from the message expansion:

Fi(x) = P (k3
0,i ⊕ P (k2

0,i ⊕ P (k1
0,i ⊕ P (k0

0,i ⊕ x))))

F ′
i (x) = P (k3

1,i ⊕ P (k2
1,i ⊕ P (k1

1,i ⊕ P (k0
1,i ⊕ x))))

where P is one AES round (without the AddRoundKey operation).
In this section we use an alternative description of SHAvite-3 512 with only

two variables per round. We have

Si = Yi−1 Ti = Xi Ui = Xi−1 Vi = Yi

The message expansion generates an array rk[·] of 448 32-bit words by alternating
linear steps and AES rounds:

Using the counter: the counter is used at 4 specific positions.
In order to simplify the description, we define a new table holding the
preprocessed counter:
ck[32] = cnt[0], ck[33] = cnt[1], ck[34] = cnt[2], ck[35] = cnt[3]
ck[164] = cnt[3], ck[165] = cnt[2], ck[166] = cnt[1], ck[167] = cnt[0]
ck[440] = cnt[1], ck[441] = cnt[0], ck[442] = cnt[3], ck[443] = cnt[2]
ck[316] = cnt[2], ck[317] = cnt[3], ck[318] = cnt[0], ck[319] = cnt[1]
For all the other values, ck[i] = 0.

AES rounds: for i ∈ {0, 64, 128, 192, 256, 320, 384}+ {0, 4, 8, 12, 16, 20, 24, 28}:
tk[(i, i + 1, i + 2, i + 3)] = AESR(rk[(i + 1, i + 2, i + 3, i)] ⊕ salt[(i, i + 1, i +
2, i + 3) mod 16])

Linear Step 1: for i ∈ {32, 96, 160, 224, 288, 352, 416}+ {0, . . . , 31}:
rk[i] = tk[i − 32] ⊕ rk[i − 4] ⊕ ck[i]

Linear Step 2: for i ∈ {64, 128, 192, 256, 320, 384}+ {0, . . . , 31}:
rk[i] = rk[i − 32]⊕ rk[i − 7]

30 C. Bouillaguet et al.

Table 7. Cancellation Property on 9 Rounds of SHAvite-3 512

i Si Ti Ui Vi

0 ? x2 ? x
1 x - x2 x1

2 x1 x - - x1 → x2

3 - - x - x → x1

4 - - - x
5 x - - y x → y
6 y x - z y → z
7 z - x w x → y, z → w
8 w z - ?
9 ? - z ? z → w

FF ? x2 ? ?

Table 8. Values of the Registers for the 9-round Cancellation Property of SHAvite-3 512

i Xi Yi

0 b ⊕ F3(c) ⊕ F ′
1(c ⊕ F2(d ⊕ F ′

3(a))) d ⊕ F ′
3(a) ⊕ F1(a ⊕ F ′

2(b ⊕ F3(c)))
1 a ⊕ F ′

2(b ⊕ F3(c)) c ⊕ F2(d ⊕ F ′
3(a))

2 d ⊕ F ′
3(a) b ⊕ F3(c)

3 c a
4 b d
5 a ⊕ F4(b) c ⊕ F ′

4(d)
6 d ⊕ F5(a ⊕ F4(b)) b ⊕ F ′

5(c ⊕ F ′
4(d))

7 c ⊕ F ′
4(d) ⊕ F6(d ⊕ F5(a ⊕ F4(b))) a ⊕ F4(b) ⊕ F ′

6(b ⊕ F ′
5(c ⊕ F ′

4(d)))
8 b ⊕ F ′

5(c ⊕ F ′
4(d)) ⊕ F7(c) ?

9 a ⊕ F4(b) ⊕ F ′
6(b ⊕ F ′

5(c ⊕ F ′
4(d))) ⊕ F8(b ⊕ F ′

5(c ⊕ F ′
4(d)) ⊕ F7(c))

4.2 Cancellation Attacks on SHAvite-3512

The cancellation path is described in Table 7. We use the cancellation property
twice to control the diffusion. Note that we do not have to specify the values of
y, z, and w. Like in the Lesamnta attack, this path is a truncated differential,
and we use constraints on the state to enforce that it is followed. Moreover, the
transitions x → x1 and x1 → x2 are known because the key is known.

Note that the round functions of SHAvite-3 512 are not defined as F (k, x) =
P (k ⊕ x) for a fixed permutation P . Instead, each function takes 4 keys and it
is defined as:

F (k0
i , k1

i , k2
i , k3

i , x) = P (k3
i ⊕ P (k2

i ⊕ P (k1
i ⊕ P (k0

i ⊕ x))))

where P is one AES round. In order to apply the cancellation property to
SHAvite-3 512, we need that the subkeys k1, k2, k3 of two functions be equal,

Attacks on Hash Functions Based on Generalized Feistel 31

so that Fi(x) collapses to P ′(k0
i ⊕ x) and Fj to P ′(k0

j ⊕ x), where P ′(x) �
P (k3

i ⊕ P (k2
i ⊕ P (k1

i ⊕ P (x)))) = P (k3
j ⊕ P (k2

j ⊕ P (k1
j ⊕ P (x)))).

In order to express the constraints needed for the cancellation properties, we
look at the values of the registers for this truncated differential. In Table 8, we
begin at round 4 with (S4, T4, U4, V4) = (Y3, X4, X3, Y4) = (a, b, c, d), and we
compute up to round 9.

We have a cancellation property on 9 rounds under the following conditions:

Round 7. We have F ′
4(d) ⊕ F6(d ⊕ F5(a ⊕ F4(b))). They cancel if:

F5(a ⊕ F4(b)) = k0
1,4 ⊕ k0

0,6 and (k1
1,4, k

2
1,4, k

3
1,4) = (k1

0,6, k
2
0,6, k

3
0,6).

Round 9. We have F ′
6(b ⊕ F ′

5(c ⊕ F ′
4(d)))⊕F8(b ⊕ F ′

5(c ⊕ F ′
4(d)) ⊕ F7(c)). They

cancel if:
F7(c) = k0

1,6 ⊕ k0
0,8 and (k1

1,6, k
2
1,6, k

3
1,6) = (k1

0,8, k
2
0,8, k

3
0,8).

Therefore, the truncated differential is followed if:

F5(a ⊕ F4(b)) = k0
1,4 ⊕ k0

0,6 F7(c) = k0
1,6 ⊕ k0

0,8 (C0)

(k1
1,4, k

2
1,4, k

3
1,4) = (k1

0,6, k
2
0,6, k

3
0,6) (k1

1,6, k
2
1,6, k

3
1,6) = (k1

0,8, k
2
0,8, k

3
0,8) (C1)

The constraints for the cancellation at round 7 are easy to satisfy and allow a
7-round attack on SHAvite-3 512. However, for a 9-round attack we have more
constraints on the subkeys, and this requires special attention.

4.3 Dealing with the Key Expansion

Let us outline an algorithm to find a suitable message (recall that SHAvite-3 512

is used in a Davies-Meyer mode) for a given salt and counter value. We have to
solve a system involving linear and non-linear equations, and we use the fact that
the system is almost triangular. We note that it might be possible to improve
our results using the technique of Khovratovich, Biryukov and Nikolic [7] to find
a good message efficiently.

For the cancellation attack on 9-round SHAvite-3 512, we need to satisfy a
768-bit condition on the subkeys, i.e.:

(k1
1,4, k

2
1,4, k

3
1,4) = (k1

0,6, k
2
0,6, k

3
0,6) (k1

1,6, k
2
1,6, k

3
1,6) = (k1

0,8, k
2
0,8, k

3
0,8) (C1)

Or in rk[·] terms:

rk[148, . . . , 159] = rk[196, . . . , 207] rk[212, . . . , 223] = rk[260, . . . , 271]

We are actually trying to solve a system of equation with:

– 224 variables: tk[128..159], tk[192..223] and rk[128..287]
– 192 equations from the key schedule (64 non-linear and 128 linear)
– 24 constraints

Therefore we have 8 degrees of freedom. The relations between the variables are
shown in Figure 2, while the full key expansion of SHAvite-3 512 is described in
Appendix.

32 C. Bouillaguet et al.

rk[256 ... 259,260 ... 263,264 ... 267,268 ... 271,272 ... 275,276 ... 279,280 ... 283,284 ... 287]

LFSR2: rk[i]=rk[i−32]⊕rk[i−7]

rk[224 ... 227,228 ... 231,232 ... 235,236 ... 239,240 ... 243,244 ... 247,248 ... 251,252 ... 255]

LFSR1: rk[i]=tk[i−32]⊕rk[i−4]

tk[192 ... 195,196 ... 199,200 ... 203,204 ... 207,208 ... 211,212 ... 215,216 ... 219,220 ... 223]

AES AES AES AES AES AES AES AES

rk[192 ... 195,196 ... 199,200 ... 203,204 ... 207,208 ... 211,212 ... 215,216 ... 219,220 ... 223]

LFSR2: rk[i]=rk[i−32]⊕rk[i−7]

rk[160 ... 163,164 ... 167,168 ... 171,172 ... 175,176 ... 179,180 ... 183,184 ... 187,188 ... 191]

LFSR1: rk[i]=tk[i−32]⊕rk[i−4]

tk[128 ... 131,132 ... 135,136 ... 139,140 ... 143,144 ... 147,148 ... 151,152 ... 155,156 ... 159]

AES AES AES AES AES AES AES AES

rk[128 ... 131,132 ... 135,136 ... 139,140 ... 143,144 ... 147,148 ... 151,152 ... 155,156 ... 159]

c

Fig. 2. Constraints in the Key Expansion of SHAvite-3 512

Initial constraints in pink, constraints from steps 1 to 3 in yellow, constraints from step
4 in green

Propagation of the Constraints. First, we propagate the constraints and de-
duce new equalities between the variables. Figure 2 shows the initial constraints
and the propagated constraints.

1. The non-linear equations of the key-schedule give:

tk[156..159] = AESR
(
(rk[157, 158, 159, 156])⊕ (salt[12..15])

)

tk[204..207] = AESR
(
(rk[205, 206, 207, 204])⊕ (salt[12..15])

)

since rk[156..159] = rk[204..207], we know that tk[156..159] = tk[204..207].
Similarly, we get tk[148..159] = tk[196..207]

2. From the key expansion, we have rk[191] = rk[223]⊕ rk[216], and rk[239] =
rk[271] ⊕ rk[264]. Since we have the constraints rk[223] = rk[271] and
rk[216] = rk[264], we can deduce that rk[191] = rk[239] Similarly, we get
rk[187..191] = rk[235..239].

3. From the linear part of the expansion, we have rk[186] = rk[190] ⊕ tk[158]
and rk[234] = rk[238] ⊕ tk[206]. We have seen that rk[190] = rk[238] at
step 2 and tk[158] = tk[206] at step 1, therefore rk[186] = rk[234] Similarly,
we get rk[176..186] = rk[224..234].

4. Again, from the linear part of the key expansion, we have rk[211] = rk[218]⊕
rk[186] and rk[259] = rk[266]⊕rk[234]. We have seen that rk[186] = rk[234]
at step 3 and we have rk[218] = rk[266] as a constraint, thus rk[211] =
rk[259] Similarly, we obtain rk[201..211] = rk[249..259] Note that we have
rk[201..207] = rk[153..159] as a constraint, so we must have rk[249..255] =
rk[153..159].

Attacks on Hash Functions Based on Generalized Feistel 33

Finding a Solution. To find a solution to the system, we use a guess and
determine technique. We guess 11 state variables, and we show how to compute
the rest of the state and check for consistency. Since we have only 8 degrees of
freedom, we expect the random initial choice to be valid once out of 232×3 = 296

times. This gives a complexity of 296 to find a good message.

– Choose random values for rk[200], rk[204..207], rk[215..216], rk[220..223]
– Compute tk[220..223] from rk[220..223]
– Compute rk[248..251] from tk[220..223] and rk[252..255] (= rk[204..207])
– Deduce rk[201..203] = rk[249..251], so rk[200..207] is known
– Compute tk[152..159] from rk[152..159] (= rk[200..207])
– Compute rk[190..191] from rk[215..216] and rk[222..223]
– Compute rk[186..187] from rk[190..191] and rk[158..159]
– Compute rk[182..183] from rk[186..187] and rk[154..155]
– Compute rk[214] from rk[207] and rk[182]
– Compute rk[189] from rk[214] and rk[219]; then rk[185] and rk[181]
– Compute rk[213] from rk[206] and rk[181]
– Compute rk[188] from rk[213] and rk[220], then rk[184] and rk[180]
– Compute rk[212] from rk[205] and rk[180]
– Compute rk[219] from rk[212] and rk[187]
– Compute rk[208, 209] from rk[215, 216] and rk[183, 184]

– We have tk[216..219] = AESR
(
(rk[216..219])

)
with a known key. Since

rk[216] and rk[219] are known, we know that tk[216..219] is a linear subspace
of dimension 64 over F2.

– Similarly, tk[208..211] is in a linear subspace of dimension 64 (rk[208] and
rk[209] are known).

– Moreover, there are linear relations between tk[216..219] and tk[208..211]: we
can compute rk[240..243] from tk[208..211] and rk[236..239]; rk[244..247] from
rk[240..243] and tk[212..215]; tk[216..219] from rk[244..247] and rk[248..251].

– On average, we expect one solution for tk[216..219] and tk[208..211].
– At this point we have computed the values of rk[200..223]. We can compute

tk[200.223] and rk[228..255].
– Compute rk[176..179] from rk[201..204] and rk[208..211]
– Since rk[224..227] = rk[176..179], we have a full state rk[224..255]. We can

check consistency of the initial guess.

4.4 9-Round Attacks

The cancellation property allows to find a key/message pair with a given value
on the last 128 bits. The attack is the following: first find a message that fulfills
the conditions on the subkeys, and set a, b and c at round 4 satisfying the
cancellation conditions (C0). Then the second output word is:

T9 ⊕ T0 = X9 ⊕ X0 = a ⊕ F4(b) ⊕ b ⊕ F3(c) ⊕ F ′
1

(
c ⊕ F2(d ⊕ F ′

3(a))
)

34 C. Bouillaguet et al.

Table 9. Summary of the Attacks on the Lesamnta Hash Function

Lesamnta-256 Lesamnta-512

Attack Rnds Time Mem. Time Mem.

Generic Collision [6] 16 297 - 2193 -

2nd Preimage [6] 16 2193 - 2385 -

Collision (Sect. 3.2) 22 296 - 2192 -

2nd Preimage (Sect. 3.2) 22 2192 - 2384 -

Collision (Sect. 3.2) 24 296 264 2192 2128

2nd Preimage (Sect. 3.2) 24 2192 264 2384 2128

Specific Collision (Sect. 3.3) 24 2112 - 2224 -

2nd Preimage (Sect. 3.3) 24 2240 - N/A

If we set

d = F−1
2

(
F ′−1

1

(
H ⊕ a ⊕ F4(b) ⊕ b ⊕ F3(c)

) ⊕ c
)
⊕ F ′

3(a)

we have X9 ⊕X0 = H . Each key (message) can be used with 2128 different a,b,c,
and the cost of finding a suitable key is 296. Hence, the amortized cost for finding
a 128-bit partial preimage is one compression function evaluation. The cost of
finding a full preimage for the compression function is 2384.

Second Preimage Attack on the Hash Function. We can use the preimage
attack on the compression function to build a second preimage attack on the hash
function reduced to 9 rounds. Using a generic unbalanced meet-in-the-middle
attack the complexity is about 2448 compression function evaluations and 264

memory. Note that we cannot find preimages for the hash function because we
cannot find correctly padded message blocks.

Table 10. Summary of the Attacks on SHAvite-3 512

Comp. Fun. Hash Fun.

Attack Rnds Time Mem. Time Mem.

2nd Preimage [4] 8 2384 - 2448 264

2nd Preimage (Sect. 4.4) 9 2384 - 2448 264

2nd Preimage (extension of this work) [5] 10 2480 - 2496 216

2nd Preimage (improving [5] w/ Sect. 4.3) 10 2448 - 2480 232

2nd Preimage (improving [5] w/ Sect. 4.3) 10 2416 264 2464 264

2nd Preimage (improving [5] w/ Sect. 4.3) 10 2384 2128 2448 2128

Collision1 (extension of this work) [5] 14 2192 2128 N/A

Preimage1 (extension of this work) [5] 14 2384 2128 N/A

Preimage1 (extension of this work) [5] 14 2448 - N/A

1 Chosen salt attacks

Attacks on Hash Functions Based on Generalized Feistel 35

Acknowledgements

We would like to thank the members of the Graz ECRYPT meeting. Especially,
we would like to express our gratitude to Emilia Käsper, Christian Rechberger,
Søren S. Thomsen, and Ralf-Philipp Weinmann for the inspiring discussions.
We are grateful to the Lesamnta team, and especially to Hirotaka Yoshida, for
helping us with this research. We would also like to thank the anonymous referees
for their comments.

References

1. Biham, E., Dunkelman, O.: The SHAvite-3 Hash Function. Submission to NIST
(2008)

2. Bouillaguet, C., Dunkelman, O., Fouque, P.A., Leurent, G.: Another Look at Com-
plementation Properties. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147,
pp. 347–364. Springer, Heidelberg (2010)

3. Bouillaguet, C., Dunkelman, O., Leurent, G., Fouque, P.A.: Attacks on
Hash Functions based on Generalized Feistel - Application to Reduced-Round
Lesamnta and SHAvite-3512. Cryptology ePrint Archive, Report 2009/634 (2009),
http://eprint.iacr.org/

4. Mendel, F., et al.: A preimage attack on 8-round SHAvite-3-512. Graz ECRYPT
meeting (May 2009)

5. Gauravaram, P., Leurent, G., Mendel, F., Naya-Plasencia, M., Peyrin, T.,
Rechberger, C., Schläffer, M.: Cryptanalysis of the 10-Round Hash and Full
Compression Function of SHAvite-3-512. In: Bernstein, D.J., Lange, T. (eds.)
AFRICACRYPT 2010. LNCS, vol. 6055, pp. 419–436. Springer, Heidelberg (2010)

6. Hirose, S., Kuwakado, H., Yoshida, H.: SHA-3 Proposal: Lesamnta. Submission to
NIST (2008)

7. Khovratovich, D., Biryukov, A., Nikolic, I.: Speeding up Collision Search for Byte-
Oriented Hash Functions. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473,
pp. 164–181. Springer, Heidelberg (2009)

8. Lai, X., Massey, J.L.: Hash Functions Based on Block Ciphers. In: Rueppel, R.A.
(ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 55–70. Springer, Heidelberg (1993)

9. Van Le, T., Sparr, R., Wernsdorf, R., Desmedt, Y.: Complementation-Like and
Cyclic Properties of AES Round Functions. In: Dobbertin, H., Rijmen, V., Sowa,
A. (eds.) AES 2005. LNCS, vol. 3373, pp. 128–141. Springer, Heidelberg (2005)

10. Hirose, S., Kuwakado, H., Yoshida, H.: Security Analysis of the Compression
Function of Lesamnta and its Impact (2009) (available online)

http://eprint.iacr.org/

	Attacks on Hash Functions Based on Generalized Feistel: Application to Reduced-Round Lesamnta and $SHAvite-3_512$
	Introduction
	Overview of the Attacks
	Our Results

	The Cancellation Property
	Generic Properties of Fi(Xi) = F(Ki ⊕ Xi)
	Using the Cancellation Property

	Application to $Lesamnta$
	Previous Results on $Lesamnta$
	Generic Attacks
	Dedicated 24-Round Attacks on $Lesamnta$

	Application to $SHAvite-3_512$
	A Short Description of $SHAvite-3_512$
	Cancellation Attacks on $SHAvite-3_512$
	Dealing with the Key Expansion
	9-Round Attacks

	References

