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ABSTRACT
Physical-layer identification of wireless devices, commonly
referred to as Radio Frequency (RF) fingerprinting, is the
process of identifying a device based on transmission imper-
fections exhibited by its radio transceiver. It can be used to
improve access control in wireless networks, prevent device
cloning and complement message authentication protocols.
This paper studies the feasibility of performing imperson-
ation attacks on the modulation-based and transient-based
fingerprinting techniques. Both techniques are vulnerable to
impersonation attacks; however, transient-based techniques
are more difficult to reproduce due to the effects of the wire-
less channel and antenna in their recording process. We
assess the feasibility of performing impersonation attacks
by extensive measurements as well as simulations using col-
lected data from wireless devices. We discuss the impli-
cations of our findings and how they affect current device
identification techniques and related applications.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design —Distributed networks, Wireless
communication; C.3 [Computer Systems Organization]:
Special-Purpose And Application-Based Systems—Signal pro-
cessing systems

General Terms
Security, Experimentation, Measurement, Design

Keywords
Wireless Security, Attacks, Physical Layer, Identification

1. INTRODUCTION
Physical-layer identification of wireless devices, also re-

ferred to as radio frequency (RF) fingerprinting, aims to
identify a wireless device based on distinctive physical layer
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characteristics exhibited by the device (or class of devices).
These distinctive characteristics are mainly due to manu-
facturing imperfections in the hardware of a device’s ra-
dio transceiver. In a typical scenario, the fingerprinter ob-
serves traffic to and from a targeted device (fingerprintee)
in order to find characteristics that (uniquely) distinguish
that device. Physical-layer based identification can bene-
fit a number of wireless applications such as access con-
trol [10, 13, 22, 26], device cloning [7] and malfunction de-
tection [28].

Two main approaches were proposed in the open liter-
ature for accurate physical-layer identification of wireless
transceivers, namely transient and modulation-based tech-
niques. Transient-based techniques consist of observing uni-
que features during the transient phase when the radio is
turned on. These features appear at the beginning of each
packet transmission as shown in Figure 3a. It is primarily
used for distinguishing classes (e.g., model or manufacturer)
of wireless devices [13–15] and was recently improved to dis-
tinguish individual devices of the same model and manufac-
turer [8, 22]. Modulation-based techniques rely on imper-
fections in the modulator of the radio transceiver such as
frequency and constellation symbol deviations (Figure 3b).
It has been experimentally demonstrated that modulation-
based features can accurately identify not only classes but
also identical devices [6]. Both techniques achieve high iden-
tification accuracy over 99%.

While the accuracy of the above techniques was validated,
little is known about the degree of security that these tech-
niques provide to the applications using it. It is generally
believed that hardware imperfections and thus the resulting
signals are hard to reproduce.

In this paper, we investigate if and under which condi-
tions this is true: we study the robustness of physical-layer
identification techniques to impersonation attacks. More
precisely, we explore impersonation attacks on modulation
and transient-based identification techniques by feature and
signal replay. In feature replay, we modify radio signals to
match the targeted identification features, while in signal re-
play we capture and replay radio signals in radio frequency
(RF). Our findings show that modulation-based identifica-
tion can be impersonated with an accuracy close to 100%
by simply modifying and replaying the used features. We
further show that transient-based features can also be ac-
curately reproduced using a high-end arbitrary waveform
generator over a wire; however, these features are hard to
record by an external attacker since they can be channel- and
antenna-dependent. We validate the impersonation perfor-
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Figure 1: Physical-layer Identification System: The
system consists of three major processes, namely
signal acquisition, feature extraction/matching and
decision making.

mance using software-defined radios [4,11] and high-end ar-
bitrary waveform generators [2, 25] both in threshold-based
identification and classification scenarios. Finally, we ana-
lyze the security implications of these findings to applica-
tions that make use of device identification.

To the best of our knowledge, this is the first work that
shows the feasibility of impersonation attacks on current
physical-layer identification techniques.

The remainder of this paper is organized as follows. In
Section 2, we provide an overview of physical-layer iden-
tification and present our system and attacker model. In
Section 3 and Section 4 we present the details of the de-
sign and implementation of two impersonation attacks. The
performance of the attacks is analyzed in Section 5. We dis-
cuss the implications in Section 6, provide related work in
Section 7 and conclude the paper in Section 8.

2. SYSTEM AND ATTACKER MODEL
We first present an overview of physical-layer identifica-

tion and then describe our system and attack model.

2.1 Physical-layer Identification
Physical-layer identification of wireless devices consists of

a number of techniques that aim at uniquely identifying a
given device and/or a class of devices. Figure 1 shows the
main components of a typical physical-layer identification
system: signal acquisition, feature extraction/matching, and
decision making processes.

The signal acquisition process consists of high-end hard-
ware components that capture the radio signals of wireless
devices with sufficient precision. This is an important re-
quirement given that devices’ fingerprints at the physical
layer are due to small impairments/variations in the device’s
radio circuitry that could be easily lost if captured with in-
appropriate hardware [8].

The feature extraction process consists of extracting and
selecting features from the radio signal that have sufficient
discriminative capabilities to distinguish a device and/or a
class of devices. The combination of all the extracted fea-
tures forms the device’s fingerprint template, also referred
to as fingerprint. In the feature matching and decision pro-
cesses, an appropriate measure of similarity is applied be-
tween the extracted fingerprints in order to yield a decision
depending on the application requirements.

In this work, we show impersonation attacks on some
physical-layer identification techniques. More precisely, we
consider the two most prominent instances of a modula-
tion and transient-based identification techniques that have
demonstrated the highest identification accuracy in the open

FingerprinterFingerprintees
(target devices)

Attacker

Infrastructure

Figure 2: Our system consists of a wireless network
with a number of wireless devices (fingerprintees)
and a fingerprinting device (fingerprinter). We as-
sume that in the system initialization phase the fin-
gerprints of the devices are registered with the fin-
gerprinter. The fingerprints are extracted from the
packets sent by the devices and verified by the fin-
gerprinter. The goal of the attacker is to imper-
sonate a target device by generating packets that
contain the fingerprints of that device.

literature. The background of the techniques and proposed
attacks are detailed in Section 3.1 and 4.1 respectively.

2.2 System and Attacker Model
We consider the following setting: a wireless network is

deployed in an area A. The network consists of N wireless
devices and a fingerprinting device. A physical-layer identifi-
cation mechanism is used in the network. During the initial-
ization phase, the fingerprinting device (e.g., wireless access
point) extracts a physical-layer fingerprint of each wireless
device in its network and stores it in a back-end database.
At a later stage, during network operation, the fingerprinter
records each packet radio transmission of wireless devices,
extracts their fingerprints (according to the specified finger-
printing methodology) and verifies if the extracted finger-
prints match one of the reference fingerprints in the back-end
database.

The attacker’s goal is to break this physical-layer identi-
fication mechanism. In Section 5 we define more precisely
what constitutes a break in the identification systems that
we consider in this paper. We consider the following two
impersonation methods and related assumptions:

• Impersonation by Feature Replay : In this attack, we
modify the radio signal characteristics of an attacker
device to closely match all or part of the features used
to identify the device targeted for impersonation. We
assume that the attacker knows the features used by
the identification system and the exact feature extrac-
tion, matching and decision making processes as shown
in Figure 1.

• Impersonation by Signal Replay : In this attack, we
record signals from a device targeted for impersonation
and retransmit those signals without modification at
RF with high-end arbitrary waveform generators. We
do not assume any knowledge of the features used for
identification.

For both impersonation methods, the attacker is in pos-
session of all necessary hardware equipment to measure and
reproduce radio communication signals at any location. He
can also build a second fingerprinting device for emulating
the entire identification process. The attacker does not have
access to the true reference fingerprints captured by the fin-
gerprinter F and the only feedback he can get from F is
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Figure 3: (a) Transient-based techniques extract
unique features for device identification from the ra-
dio signal transient shape at the start of each new
packet transmission. (b) Modulation-based tech-
niques extract frequency and constellation symbol
imperfections (i.e., modulation errors).

an Accept/Reject response. However, in some application
scenarios the attacker might have access to the location of
the fingerprinter in order to collect the signals from it.

As an instance of the above system and attacker models,
we considered a network with 3 wireless devices (Univer-
sal Software Radio Peripheral - USRP [11]) and the finger-
printing device is a high-end Agilent Digital Signal Ana-
lyzer (DSA) [2]. The attacker is in possession of two devices
for the proposed impersonation attacks: a 4-th USRP de-
vice and a high-end 20 GS/s arbitrary waveform generator
(Tektronix AWG 7000B [25]). These two types of devices al-
low evaluating an attacker with different strengths: low-cost
USRP versus high-quality, but costly signal generator.

3. IMPERSONATION OF MODULATION-
BASED FEATURES BY FEATURE RE-
PLAY

In this section, we present an impersonation attack on the
modulation-based RF identification proposed in [6]. We first
provide background on the identification technique and then
detail the attack design, implementation and test scenarios.

3.1 Modulation-based Identification
Modulation-based identification was proposed in [6] as an

alternative to transient-based techniques to uniquely iden-
tify same model and manufacturer wireless devices. This
class of techniques focuses on extracting unique features
from the modulated signal. More precisely, the authors
in [6] extracted five distinctive signal properties of IEEE
802.11b modulated signals, namely the Frame frequency off-
set (F1), Frame SYNC correlation (F2), Frame I/Q origin
offset (F3), Frame magnitude error (F4) and Frame phase
error (F5). These five features together formed a fingerprint
of the wireless device, subsequently used for device identi-
fication. They were extracted from each packet frame by
means of a high-end vector signal analyzer at 70 MHz in-
termediate frequency (IF) for high precision. The accuracy
of the fingerprints for device identification was tested with
a k-NN classifier with L1 distance similarity and an SVM
classifier with maximum-margin separation [3]. The experi-
mental results from over 100 IEEE 802.11 Network Interface
Cards (NIC) demonstrated an identification (classification)
accuracy of over 99%.

Frequency offset (F1)

Attacker’s capabilitiesGenuine
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Phase error (F5)

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

Figure 4: Attacks on modulation-based identifica-
tion. We are able to modify the signal frequency
offset (F1) by changing its carrier frequency in the
analog domain, the I/Q origin offset (F3), magni-
tude (F4) and phase (F5) errors by modifying its
original constellation in the digital domain.

3.2 Attack Overview and Design
In this attack, we use the capabilities of a USRP with

the GNU radio software library [4] to modify parameters
in the radio transmission of individual 802.11 packets. In
particular, we find that a combination of digital and analog
techniques can be applied to modify F1, F3, F4 and F5
detailed below. The basic ideas are summarized in Figure 4.

Frame frequency offset (F1) is the most discriminative
feature [6] in the considered modulation-based technique.
It represents the difference (offset) between the carrier fre-
quency of the fingerprintee and the fingerprinter. In order
to pretend being a given device with respect to F1, we need
to adjust the carrier frequency of our attacking device to the
carrier frequency of the targeted for impersonation device.
We achieved this by using the analog circuit of the USRP
which allows arbitrary changes of the carrier frequency with
the precision of 0.01 Hz.

Frame SYNC correlation (F2) is the second most dis-
criminative feature. It measures the modulation quality of
the frame synchronization preamble by normalized cross-
correlation with the ideal synchronization sequence. We
found that this feature is difficult to modify in a determin-
istic way unlike the other features. In Section 5, we demon-
strate that it is not necessary to modify this feature in order
to impersonate a targeted device with high accuracy. We
also show that an attack including impersonation of this
feature improves the impersonation accuracy (Section 4).

Frame I/Q origin offset (F3) is the third most discrim-
inative feature in the modulation-based identification. It
shows the distance of the ideal I/Q plane centered at (0,0)
and the average of all measured I/Q values (symbols in an
I/Q constellation) within a packet frame. The Frame I/Q
origin offset is usually specific to a given transceiver under
the assumption that the analog circuit is provided with the
ideal fixed constellation symbols (e.g., ±0.707 ± 0.707i in
a Gray-coded constellation). The latter are generated dig-
itally in the digital signal processing (DSP) module of the
radio transceiver. In our attack, we digitally shrink or ex-
pand the ideal constellation symbols’ position in order to
change the Frame I/Q origin offset.

Frame Magnitude (F4) and Phase (F5) errors are the least
discriminative features in the modulation-based identifica-
tion. The frame magnitude error is the average difference
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Figure 5: Experimental results on incremental mod-
ification of the frame frequency offset (F1) and frame
I/Q origin offset (F3). The results show that we can
deterministically change feature values of one device
in order to match those of a targeted device.

in the scalar magnitude between all ideal and measured I/Q
symbol values, while the frame phase error is the average
difference in phase (i.e., angle in degrees) between the ideal
and all measured I/Q symbol values in the frame. We modify
these values in the digital domain by shrinking/expanding
the I/Q symbols in order to impersonate these features.

It is important to note that the digital modifications of F3,
F4 and F5 must take into consideration the analog circuit
deviations that occur in processing the signal from the D/A
converter to the antenna and compensate them. In addition,
any modifications must also not go beyond the standard
tolerances of the impersonated technology [17].

In Figure 5 we show some experimental results from de-
terministically decreasing the features F1 and F3 of the
attacker’s device to the values exhibited by the target de-
vice (Device 2). In particular, the frame frequency offset is
closely equalized at f = fC+4.7 kHz where fC is the original
carrier frequency of the attacker’s device. The Frame I/Q
origin offset exhibited by the target device was closely equal-
ized by shrinking the attacker’s QPSK constellation points
by a factor of 0.7%.

3.3 Implementation details and attack
procedure

For the purpose of performing and evaluating the attack,
we used four USRPs (3 genuine devices and 1 attacker de-
vice). For close matching of the signals used in [6], we de-
veloped an 802.11-style QPSK digital baseband modulator.
The frame is constructed according to the IEEE 802.11 spec-
ification [17] with a preamble (used for coarse frequency off-
set estimation), followed by a longer preamble for fine fre-
quency offset and channel estimation and the actual data
payload. The frequency estimation algorithms were imple-
mented according to [23] which are well established algo-
rithms for that purpose. It should be noted that more so-
phisticated algorithms will only improve the computation of
the errors. The data payload was modulated using QPSK
modulation [19]. All packet frames contained the same con-
tent transmitted at a data rate of 1Mb/s.

The design of the fingerprinter is shown in Figure 6. Each
signal was captured with a standard 2 dB dipole antenna
and subsequently amplified by an ultra low-noise and low-
power amplifier (NF=0.15 dB) and filtered by a low insertion
loss bandpass filter to eliminate radio frequencies outside the
industrial, scientific and medical (ISM) band. The received

Gain = 2dB
Type = dipole

IL = 0.25 dB
FC = 2448 MHz
BW = 100MHz
Type = Bandpass

Scope

CH

BW = 8000 MHz
SR = 40GS/s

Gain = 42 dB
NF = 0.15 dB
Type = Amplifier

V = 2 V
I = 60 mA

CH

Figure 6: Radio hardware setup of the fingerprinter.

signal was digitized by an Agilent Digital Signal Analyzer [2]
and processed by our 802.11-style QPSK digital demodula-
tor for feature extraction. Feature matching and classifica-
tion was performed offline with Matlab. The genuine devices
were positioned at fixed locations to the fingerprinter’s an-
tenna. We note that for the modulation-based features the
distance should not have an effect on the classification ac-
curacy as outlined in [6].

We started the impersonation attack by modifying the
carrier frequency in order to reach the one of the targeted
genuine device. We determined the carrier frequency of the
targeted device by analyzing the power spectrum density
of the radio transmission. Subsequently, we adjusted the
frame I/Q origin offset, magnitude and phase of the attack-
ing device by digitally modifying its ideal QPSK constel-
lation symbols (Figure 4) to closely reproduce the feature
values of the targeted device after the entire analog process-
ing at the attacking device. Here, we chose to measure the
targeted device communication, compute the corresponding
features and then adjust them appropriately. There is a
second possible approach that consists of launching a hill-
climbing attack [5] by repeatedly sending signals with mod-
ified features until they are identified as the targeted device.

4. IMPERSONATION OF MODULATION-
AND TRANSIENT-BASED FEATURES
BY SIGNAL REPLAY

In this section, we demonstrate a device impersonation
attack by radio signal replay on modulation and transient-
based identification. As opposed to the previous attack,
we do not modify the signal characteristics, but retrans-
mit the entire radio packet frame in its integrity at the RF
frequency. For the impersonation attacks, we considered
the same modulation-based identification technique (Sec-
tion 3.1) and the transient-based technique described in [8].
We first provide some background on transient-based iden-
tification and then the details of the attack design and im-
plementation.

4.1 Transient-based Identification
Transient-based techniques extract unique features for de-

vice identification from the radio signal transient occurring
at the start of each new packet transmission. The signal
transient is the period during which the radio signal am-
plitude raises to full power. An example transient signal is
shown on Figure 3. Data transmission starts immediately
after it. A number of characteristics in the signal transient
have been explored and shown to be primarily effective in
distinguishing classes of wireless devices (model and/or man-
ufacturer). Prominent examples include [13,15,16,20,24,26].

These techniques are of less interest from an imperson-
ation point of view as the attacker can easily choose a de-



vice from the same model and pretend to be a genuine de-
vice. Recently, it has been shown in [8] that a carefully
designed hardware setup with high-end components comple-
mented with statistical analysis can also accurately distin-
guish between same model and manufacturer devices using
the transient signal. More precisely, the authors proposed
filtered FFT-based spectra extracted by means of Linear
Discriminant Analysis (LDA) to form device fingerprints of
Tmote Sky (CC2420) sensor nodes. The similarity measure
between fingerprints for device identification was based on
Mahalanobis distance [3]. The accuracy of the technique was
estimated by threshold-based operation which is common for
biometric systems [5]. Experimental results on 50 identical
(same model and manufacturer) sensor nodes demonstrated
a very low error rate (EER = 0.24%).

4.2 Attack overview and design
In this attack, we use the capabilities of the 20 GS/s arbi-

trary waveform generator Tektronix AWG 7000 Series [25].
Due to its fast digital to analog converter, this generator can
output any 802.11 signals directly at the required radio fre-
quency of 2.4 GHz. Unlike in the previous attack, where the
attacker tries to match as close as possible the features of
a device targeted for impersonation, in this attack, we cap-
tured the signals of the target device at the RF frequency
and replayed them without any modification. This attack is
more powerful than feature replay attacks since it does not
require knowledge of the features that are extracted by the
fingerprinter. It simply requires that the attacker records
the transmissions of the targeted device.

A more sophisticated attack based on signal replay would
be to produce crafted signals by replaying parts of the mes-
sage. In the case of modulation-based identification, the
attacker can replay the preamble part of the message to re-
produce F1 and F2 and craft its own payload. Furthermore,
the attacker can also craft his own payload and at the same
time reproduce all F3, F4 and F5 features. This is due to
the fact that he has full control over the features in the dig-
ital domain and relies on the arbitrary waveform generator
to directly output the crafted signal in RF thanks to the
20GS/s digital-to-analog (D/A) converter.

In transient-based identification only the transient part
of the signal is used for identification [10]. Therefore, the
attacker can create a message with the transient part in its
integrity concatenated with the actual payload. In this case,
the replay attack becomes an impersonation attack. We
point out however that such an attack can only be mounted
with a high-end arbitrary waveform generator which has the
available bandwidth to output the crafted transient signals
(e.g., the transient signals in [8] require at least 4 GS/s D/A
converter). Such fast conversion is usually way below the
capabilities of off-the-shelf software-defined radios (e.g., for
the GNU USRP, the D/A converter is 128 MS/s).

4.3 Measurement Setup
To evaluate the impersonation attack by signal replay,

we built an experimental setup in a lab environment. The
setup consisted of two tripods: the first was used to hold
the device to be impersonated; the second holds two iden-
tical 2 dB dipole antennas, connected to the fingerprinter
and the attacker respectively. Both antennas were fixed on
the platform separated by a distance of 30 cm in order to
avoid near-field effects, but still get a high signal-to-noise ra-

tio (SNR). The design of the fingerprinter was the same as
shown in Figure 6 with an additional implementation of the
transient-based feature extraction and matching procedures
that were proposed in [8].

We first collected frames from the targeted device. Sub-
sequently, we replayed the recorded frames to the finger-
printer. The evaluation criteria of the attack performance
are described in Section 5.

5. PERFORMANCE EVALUATION
In this section, we present the performance results of the

impersonation attacks. We first review the metrics and pro-
pose definitions for evaluating the performance of such at-
tacks.

5.1 Evaluation criteria
Identification systems are typically evaluated by using a

threshold-based approach [5]. The threshold-based approach
allows dimensioning the system according to the desired
False Accept Rate (FAR) and False Reject Rate (FRR). The
Equal Error Rate(EER), i.e. the error where FAR=FRR, is
the most common evaluation measure for accuracy. The
rate of False Accepts/Rejects is determined by an applica-
tion specific operating threshold T that serves as an Ac-
cept/Reject decision boundary for determining if a given
fingerprint is genuine (belonging to the set of genuine fin-
gerprints) or if it is an imposter. All scores from matching
two fingerprints coming from the same device form the gen-
uine distribution of matching scores. All scores from match-
ing two fingerprints coming from two different devices form
the imposter distribution. We assume that similarity values
close to 0 indicate better matching between 2 fingerprints,
i.e., the genuine distribution is the one closer to the origin.
We used histograms to visualize the two distributions. For
threshold-based identification, we use the following defini-
tion for a successful impersonation attack:

Definition 1. We say that an impersonation attack is
successful if the matching score between fingerprints of a de-
vice targeted for impersonation (D) and that of the attacker
(A) is below the application specific threshold T .

Given that the considered modulation-based approach was
evaluated in related work using a classification procedure,
we also tested our impersonation attack on classification in
Section 5.3.

5.2 Impersonation performance

5.2.1 Impersonation of modulation-based features
by feature replay

In this evaluation, we used the capabilities of a software-
defined radio for feature replay and followed the design de-
scribed in Section 3. For data collection, feature extraction
and matching, we followed the procedures in [6]. We briefly
summarize them: we used 80 valid frames 1 per genuine de-
vice and computed the corresponding F1, F2, F3, F4 and
F5 features. A device reference fingerprint was built from a
total of 20 frames and the remaining 60 frames were used
to build testing fingerprints. All presented results were val-
idated using 4-fold cross validation [3]. The similarity score

1We consider as valid the frames that comply with the stan-
dard [17].
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Figure 7: Modulation-based identification: genuine, imposter and attacker matching score histograms: a)
Impersonation attack by feature replay of F1 and F3. b) Impersonation attack by feature replay of F1,
F3 and F5. The device fingerprints were computed by averaging the features over 5 packet frames. The
application specific operating threshold was fixed to T = 0.05.

between reference and testing device fingerprints was com-
puted with L1 distance as proposed in [6].

For evaluation with respect to Definition 1, we had to
fix the application specific threshold T . We chose to set T
to the threshold of the EER operation point which is the
mostly used threshold for evaluation [1,5]. In our particular
case, EER = 0% and the corresponding TEER = 0.05. It
should be noted that if one would like to have a realistic
estimate of the EER and corresponding T , a much larger
amount of devices must be considered [5]. Therefore, the
above results, should only be used to assess the attacker’s
ability to go below the system’s operating point T .

To visualize the impersonation attack performance, we
computed the genuine, imposter and attacker scores in all
folds and show them in the form of histograms. The gen-
uine matching scores were computed by matching the testing
frames from the devices to their respective reference finger-
prints. The imposter matching scores were computed in the
same way, but using the reference fingerprints of the other
devices. The attacker scores were computed by matching
the impersonating (attacker) frames to the reference finger-
print of the targeted device. We used an average of 5 frames
to compute the overall matching score. This is consistent
with [6] where it was shown that averaging over more than
4 frames is needed to achieve the highest accuracy.

Figure 7 shows the matching scores of the impersonating
(attacker’s) frames against the target device (Device 2). If
we reproduce only F1 and F3 features, the impersonating
frames will be rejected by the system in approx. 60% of
the cases according to Definition 1 with T = TEER. This
is shown in Figure 7a. If we lower the operating point, the
system can reject 80% of the impersonating frames while
only slightly increasing its FRR. On the other hand, if we
reproduce F1, F3 and F5 features, we successfully place 98%
of the impersonating frames below TEER, i.e., the imperson-
ation success rate is 98% (Figure 7b).

It should be noted that if the system can tolerate some
false rejects, it can reduce the attack success rate, however
annihilating the attack without significantly increasing the
FRR cannot be achieved (e.g., at T = 0.025 the system will

reject all impersonating frames, but also 50% of its genuine
frames).

In Figure 7b, we also observe that the attacker match-
ing scores are still shifted towards the imposter histogram
scores. This is due to the fact that our attack did not modify
the F2 and F4 characteristics of the attacking device. We
found that F2 was hard to change digitally and F4 could
not be independently modified without influencing F3 due to
computational dependence. Therefore, we chose to modify
the most discriminative of the two, F3. We now show that
the impersonation attack by signal replay sufficiently pre-
serves all the features and places all impersonating frames
in the genuine matching score space.

5.2.2 Impersonation of modulation-based features
by signal replay

In this evaluation, we used our high-end 20 GS/s arbitrary
waveform generator to retransmit device packet frames in
their integrity at RF. Following the procedures in Section 4,
we collected 20 frames from the target device (Device 2)
at the attacker’s position. Subsequently, we retransmitted
those frames towards the fingerprinter twice, resulting in 40
impersonating frames. It should be noted that the device
signals were captured at RF = 2.4 GHz and sampling rate
of 20 GS/s in order to preserve as much as possible the radio
signal (e.g., no downconversion to intermediate frequency).
The genuine and replayed matching score histograms are
shown in Figure 8.

We observe that all the genuine score bins are filled with
the scores resulted from matching with the impersonating
(replayed) frames. The results demonstrate that signal re-
play at RF is a powerful attack that makes the impersonat-
ing (attacker’s) frames very difficult to distinguish from the
genuine device frames.

In summary, the modulation-based features and L1 dis-
tance similarity measure proposed in [6] are vulnerable to
impersonation attacks by feature and signal replay. Imper-
sonation by signal replay at RF makes the impersonating
(attacker) frames almost indistinguishable from the genuine
frames of the targeted for impersonation device.
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Figure 8: Modulation-based identification: genuine
and replayed (attacker) matching score histograms
obtained by signal replay at RF with a 20 GS/s arbi-
trary waveform generator. The two histograms are
overlapping making it very difficult to distinguish a
genuine device from the attacking device.

5.2.3 Impersonation of transient-based features by
signal replay

As in the previous section, we used the high-end arbitrary
waveform generator to retransmit transient signals. We im-
plemented the transient-based identification technique in [8]
and followed the proposed procedure in Section 4. We col-
lected transient signals from 3 Tmote Sky sensor nodes in
order to fully match the conditions in [8]. We present our
results for replaying these signals both using a cable and air
interface to better assess the limitations of our attack.

Figure 9 shows the genuine and imposter histograms from
matching transient-based features from the original devices
captured with our setup as well as the histograms of match-
ing original and replayed transients by arbitrary waveform
generator over a cable and over the air. The results clearly
show that the replayed signals over the cable closely match
the original signals. This is an important result as it shows
that the arbitrary waveform generator can retransmit tran-
sient signals with high accuracy.

On the other hand, replaying the same signals over the
air altered the signals, so that the replayed signals were rec-
ognized as imposter signals and the impersonation attack
failed. We further investigated the issue and discovered that
in addition to the device fingerprint in the transient-based
features, there is also the presence of the wireless channel
characteristics. In order to confirm the channel effect on
the transient, we simulated a frequency selective channel to
estimate the degree of modification of the original transient
signals under channel changes. The results showed that dif-
ferent channels modify the transient features and the system
rejects all attacker’s replayed transient signals at the thresh-
old T = 3.01 [8].
Impersonation of transient-based spectral features [8] is

inherently more difficult due to channel and antenna effects
on the transient part of the signal as shown in our anal-
ysis. While our high-end signal generator can accurately
reproduce it as well over a cable (i.e., fixed channel), re-
playing over the air from a different location is not likely to
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Figure 9: Transient-based identification: genuine
and imposter matching scores are from the genuine
fingerprinting system; attacker matching scores with
fingerprints of the device targeted for impersonation
over a wire and over the air. The attacker transient
signals over cable are indistinguishable from those
of the genuine device.

be successful to impersonate a device. However, we could
impersonate the targeted device from its location. There
are two possible scenarios that could achieve this depend-
ing on the attacker model. In the first scenario, if we are
allowed to measure the transient signal of the targeted de-
vice before actual transmission through the antenna (e.g.,
capture the device and measure over a cable with an oscil-
loscope), we can then replay it with the arbitrary waveform
generator from the same location. In the second scenario,
a possible compromise of the fingerprinter would reveal the
transient signal received at the fingerprinter. Subsequently,
we need to estimate the wireless channel response between
the targeted device location and the fingerprinter, compen-
sate the transient signal accordingly and replay it with the
arbitrary waveform generator. This second scenario can also
be applied if the attacker is allowed to collect frames at the
location of the fingerprinter.

5.3 Impersonation in classification
Given that the considered modulation-based identification

was evaluated using classification [6], we also evaluated our
modulation-based feature impersonation by feature replay in
terms of classification accuracy. In standard classification,
unlike in threshold-based identification, there is no notion
of rejection based on threshold, i.e., the classifier assigns
an unknown device fingerprint to the device that has the
highest similarity in the entire set of devices. Therefore, we
need to adopt a different definition as follows:

Definition 2. We say that an impersonation attack is
successful with probability p if the classification process as-
signs the fingerprints of attacker (A) to the class of fin-
gerprints of the device targeted for impersonation (D) with
probability p.

We considered the k-Nearest Neighbor (k-NN) and Sup-
port Vector Machine (SVM) classifiers trained and executed
as in the related work [6]. The data collection and feature



Table 1: Classif. success rates on genuine devices
1-NN 3-NN 5-NN SVM
87.65% 97.78% 100% 100%

extraction are the same as in Section 5.2. For complete com-
pliance with [6], in the k-NN 2 classifier half of the training
frames (10) were discarded from the reference device finger-
print by removing the frames whose features deviated the
most from the overall mean. No frames were removed from
the testing set. The similarity measure was L1 distance.

The classification success rates using k-NN and SVM clas-
sifiers for distinguishing the 3 genuine devices are shown in
Table 1. Both k-NN and SVM classifiers successfully classify
the fingerprints of the genuine devices. Inline with [6], the
k-NN classifier requires averaging over a number of frames
(k ≥ 4) to reach its highest accuracy. In our case, a success
rate of 100% was reached for k = 5.

After tuning our attacking software-defined radio device in
order to match the feature F1, F3 and F5 of the target device
(Device 2) as well as possible (see Figure 5), we injected the
attacker’s collected frames in the k-NN and SVM classifiers
by replacing all Device 3 frames and computed again the
classification success rates.

The results in Table 2 show the success rate of classify-
ing genuine frames and impersonating frames with feature
replay of F1 and F3. The impersonation attack success rate
is 62% for the 5-NN classifier, while for the SVM classifier
it tops 100%. On the other hand, if the attacker performs a
feature replay with F1, F3 and F5, it will impersonate both
classifiers in 100% of the cases (Table 3). An impersonation
attack by signal replay also succeeds in 100% inline with the
results in Section 5.2.

It should be noted that the above results on classification
are highly dependent on the number of classes (devices) and
the separability between different device fingerprints. It is
interesting to observe that a system with highly discrim-
inative classifier such as SVM was easier to impersonate
(p = 100% with 2 reproduced features). In our case, this
is due to the fact that SVM builds large decision boundaries
well separating the three devices. Therefore, few modifica-
tions of the features towards the features of one of the 3
devices make the impersonating frames cross the decision
boundary of that device. However, if the number of classes
is larger, this might not be sufficient and more impersonated
features would be required. This finding suggests that if the
attacker can modify only some of the features of an identi-
fication technique, a good strategy would consist of identi-
fying a device in the network that differs the most from all
other devices and try impersonating that device. We also
point out that a general problem of standard classification
is that without a rejection criterion, the attacker would be
always assigned to one of the genuine devices.

6. IMPLICATIONS AND FUTURE WORK
This work demonstrates that impersonation attacks on

modulation and transient-based physical-layer identification
are feasible and realistic. Our findings show that in a num-
ber of application scenarios, where their use has been sug-

2We complied to the definition of parameter k and notation
k-NN in [6]. We note that these definitions are different from
the commonly accepted ones in pattern recognition [3].

Table 2: Genuine and attacker classification success
rate on Device 2 by feature replay of F1 & F3

1-NN 3-NN 5-NN SVM
Input Device 2 Device 2 Device 2 Device 2

Device 2 73.33% 98.33% 100% 100%
Attacker 50% 50% 62.33% 100%

Table 3: Genuine and attacker classification success
rate on Device 2 by feature replay of F1, F3 & F5

1-NN 3-NN 5-NN SVM
Input Device 2 Device 2 Device 2 Device 2

Device 2 73.33% 98.33% 100% 100%
Attacker 63.33% 98.33% 100% 100%

gested, these techniques cannot be safely used. A prominent
example is access control where access is granted based on
the recorded device fingerprint. From the results of this
work it is clear that the use of physical-layer identification
for access control is inherently insecure, unless this identi-
fication is combined with additional measures (e.g., physi-
cal device inspection). Our results also have implications on
other applications of physical-layer identification such as de-
vice tracking and device cloning detection. Assuming that a
device that is tracked can impersonate other devices, as we
have demonstrated to be feasible, it could hide its identity
by pretending to be a known or unknown device (i.e., the
one with a fingerprint that has not appeared before). On
the other hand, if an attacker wants to clone a device (e.g.,
an e-passport), he would need to be able to generate genuine
fingerprints by a device that has similar external appearance
as the one that is being cloned; in the case of an e-passport
cloning the chip within a cloned passport would need to re-
produce a fingerprint of a genuine passport. It is not clear
if this is feasible; our results only show that impersonation
can succeed with specific software-defined radios (SDR) or
arbitrary waveform generators (AWG).

We also note that further research is needed to validate if
the SDRs used in our work are also able to impersonate by
feature replay commercial off-the-shelf IEEE 802.11 NICs.
Given that SDR hardware is rather different (e.g., noise fig-
ures), additional enhancements may be required in order to
perform such an attack.

Our results further motivate the investigation of tech-
niques that would detect impersonation by signal or fea-
ture replay. These techniques would typically have to ei-
ther make sure that the signals or features are not known
to the attacker such that he cannot replay them or would
have to detect from the replayed signals that they have been
replayed (e.g., by looking for features specific to SDRs or
AWGs). Whether such impersonation detection is feasible,
is an open question that motivates future work.

7. RELATED WORK
Parallel to our investigation, the authors in [9] indepen-

dently explored attacks on modulation-based identification.
Our work differs in a number of aspects. First, in our work,
we investigate feature- and signal-replay based imperson-
ation of both modulation and transient fingerprints using
both software-defined radios (SDR) and high-end arbitrary
waveform generators; the work in [9] investigates only im-
personation of modulation-based features using SDRs. Sec-



ond, the work in [9] achieves lower impersonation rates of
55-75%. This is due to significant differences in our feature-
and signal-replay attack semantics and measurement setup
and feature extraction as follows: we used 8 GHz oscilloscope
to measure the signal imperfections with high precision; our
modulation-based feature extraction followed [6], while in [9]
some of the most discriminative features (e.g., F2) were not
computed, and therefore altered the original design; we used
a high-end arbitrary waveform generator for signal replay at
RF as opposed to an SDR in [9]; finally, we evaluated the
effectiveness of the attacks using both threshold-based iden-
tification and two classifiers (k-NN and SVM), whereas the
work in [9] evaluates only using SVM.

Transient techniques for RF identification was initially ex-
plored to detect illegally operating radio transmitters [16,
26,27], device cloning [18] and defective devices [28]. Subse-
quently, various physical characteristics [10] were explored
on Bluetooth and 802.11 devices [13, 15, 20, 22, 24] show-
ing the ability to classify different classes of devices (e.g.,
manufacturer). In particular, Hall et al. [13, 14] explored a
combination of features such as amplitude, phase, in-phase,
quadrature, power and DWT of the transient signal. The
authors tested 30 IEEE 802.11b transceivers from 6 differ-
ent manufacturers and achieved a classification error rate
of 5.5%. Further work on 10 Bluetooth transceivers from 3
manufacturers recorded a classification error rate of 7% [15].
Ureten et al. [20] extracted the envelope of the instanta-
neous amplitude and classified the signals using a Proba-
bilistic Neural Network (PNN). The method was tested on
8 IEEE 802.11 transceivers from 8 different manufacturers
and registered a classification error rate of 2 - 4%.

Recently, a transient-based technique was proposed for
identifying identical IEEE 802.15.4 (CC2420) sensor node
devices [8]. The authors experimentally demonstrated the
ability to identify such devices with an EER of 0.24%. Modu-
lation-based identification was proposed by Brik et al. [6].
The technique accurately captures the variance of frequency
and modulation errors. The authors achieved a classification
error rate of 3% and 0.34% for k-NN and SVM classifiers re-
spectively on IEEE 802.11 NICs. We consider both of the
above techniques in our work.

Physical-layer identification was recently demonstrated for
RFID transponders [7] as well. Physical-layer techniques
based on the wireless channel characteristics were explored
for location distinction [12, 21, 29]. The latter two uses are
out of the scope of this work.

8. CONCLUSION
In this paper, we investigated the feasibility of perform-

ing impersonation attacks on physical-layer identification
techniques. We designed and implemented a number of
impersonation attacks by feature and signal replay on the
two most prominent techniques, namely modulation and
transient-based identification. We analyzed their efficiency
in threshold-based identification and classification. Our re-
sults showed that modulation-based features are vulnerable
to feature and signal replay, whereas transient-based iden-
tification is vulnerable to signal replay attacks. We further
showed that transient-based features can be accurately re-
played over a wire, however due to presence of wireless chan-
nel and antenna characteristics in the recorded transients,
actual replay over the air is likely to succeed only from the
location of the device targeted for impersonation.
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