
Attacks on Steganographic Systems

Breaking the Steganographic Utilities EzStego, Jsteg,
Steganos, and S-Tools—and Some Lessons Learned

Andreas Westfeld and Andreas Pfitzmann

Dresden University of Technology
Department of Computer Science

D-01062 Dresden, Germany
{westfeld, pfitza}@inf.tu-dresden.de

Abstract. The majority of steganographic utilities for the camouflage
of confidential communication suffers from fundamental weaknesses. On
the way to more secure steganographic algorithms, the development of
attacks is essential to assess security. We present both visual attacks,
making use of the ability of humans to clearly discern between noise
and visual patterns, and statistical attacks which are much easier to
automate.
The visual attacks presented here exemplify that at least EzStego v2.0b3,
Jsteg v4, Steganos v1.5, and S-Tools v4.0 suffer from the misassumption
that least significant bits of image data are uncorrelated noise. Beyond
that, this paper introduces more objective methods to detect stegano-
graphy by statistical means.

1 Introduction

Steganography is no routine means to protect confidentiality. Normally, cryp-
tography is used to communicate confidentially. Cryptographic algorithms—the
security of which can be proven or traced back to known hard mathematical
problems—are widely available. However, in contrast to steganography, crypto-
graphic algorithms generate messages which are recognisable as encrypted mes-
sages, although their content remains confidential.

Steganography1 embeds a confidential message into another, more extensive
message which serves as a carrier. The goal is to modify the carrier in an im-
perceptible way only, so that it reveals nothing—neither the embedding of a
message nor the embedded message itself.

The functioning of a steganographic system is shown in Fig. 1: The sender
creates a steganogram using the embedding function which function has two
parameters:

1. a carrier medium containing randomness (e. g., noise), and
2. the message to be embedded.
1 στεγανός + γράφειν, covered writing

2 Andreas Westfeld and Andreas Pfitzmann

1010010101111
1010001100110
1111010111011
1001100100100
0100111100000
1011011011...

1010010101111
1010001100110
1111010111011
1001100100100
0100111100000
1011011011...

to embed

steganogram

message

carrier medium

embedding
function

message extracted

function
extracting

Fig. 1. Steganographic system

Multimedia data, such as audio and video, are excellent carriers. After digiti-
sation, they contain so-called quantisation noise which provides space to embed
data. Lossy compression may introduce another kind of noise. Using the extract-
ing function, the recipient must be able to reproduce the embedded message from
the steganogram.

A steganogram should have the same statistical characteristics as the carrier
media so that the use of a steganographic algorithm can not be detected. Conse-
quently, a (potential) message can be read from both the steganogram and the
carrier medium. A message read from a steganogram must not be statistically
different from a potential message read from a carrier medium—otherwise, the
steganographic system would be insecure.

Some steganographic utilities use secret keys. We can distinguish two kinds
of keys: steganographic keys and cryptographic keys [4]. A steganographic key
controls the embedding and extracting process. For example, it can scatter the
message to be embedded over a subset of all suitable places in the carrier medium.
Without the key, this subset is unknown, and each sample used to detect em-
bedding by a statistical attack is a mixture of used and unused places (i. e., of
all potential places) which spoils the result. A cryptographic key, however, is
used to encrypt the message before it is embedded. For both applications the
“secret”, which conceals the message, is detached from the actual algorithm in
the form of a parameter—the key. If the key is confidential, the steganographic
algorithm can be public (Kerckhoffs’ Principle). It is possible to decide whether
the bits read are in fact an encoded message of a potential steganogram only if
one has the appropriate decryption key. Encryption is also advisable in addition
to steganographic utilities which do not implicitly encrypt.

To decouple the security of steganographic algorithms from the appearance of
the hidden message, we use pseudo random bit-strings to generate these messages
in our experiments. Such bit-strings have all statistical properties of encrypted
messages. In this paper, we will concentrate on images, the most widespread
carrier medium.

Attacks on Steganographic Systems 3

Related to this work is the Final Year Project of Tinsley [5] on Steganography
and JPEG Compression. He describes statistical attacks applied to Jsteg [14]
using a different statistical model. Fravia’s pages explain brute force attacks to
steganography [11]. Finally, there was an introduction to “Steganalysis” given
by Johnson at the previous Workshop on Information Hiding in 1998 [2].

In the following sections, we present our attacks on EzStego v2.0b3, Jsteg v4,
Steganos v1.5, and S-Tools v4.0, going into details of each utility attacked where
needed. To have a fundamental example, we first describe EzStego in Sect. 2.
In Sect. 3, we describe our visual attacks. Thereafter, we describe our statistical
attacks in Sect. 4. Finally, we present our conclusions and outlook in Sect. 5.

2 EzStego

The utility EzStego (by Romana Machado) embeds messages in GIF files. GIF
files [12] contain a colour palette with up to 256 different colours out of 224

possible, and the Lempel-Ziv-Welch (LZW) compressed [3, 6, 8] matrix of palette
indices. EzStego embeds messages into the pixels without any length information.
It leaves the colour palette unmodified.

The steganographic algorithm creates a sorted copy of the palette. It sorts
in a way that we can hardly tell the difference between two adjacent colours in
the sorted palette. Sorting by luminance is not optimal in any case because two
colours with the same luminance could be radical different. We can interpret
each colour as a point in a three-dimensional space, the RGB (red, green, blue)
colour cube.

green

0 10 20 30 40 50 60 70 80 90 100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

re
d

0
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

blu
e0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

2
1
0

2
2
0

2
3
0

2
4
0

2
5
0

green

0 10 20 30 40 50 60 70 80 90 100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

re
d

0
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

blu
e0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

2
1
0

2
2
0

2
3
0

2
4
0

2
5
0

Fig. 2. Colour order in the palette (l.) and sorted as used by EzStego (r.)

4 Andreas Westfeld and Andreas Pfitzmann

Fig. 2 shows the order of colours in the RGB cube. On the left the colours
look more sorted than on the right. This is the order of the colours in the palette,
in most cases a numerical order. On the right the colours are sorted by EzStego
to follow a shortest path through the RGB cube.

The embedding function of EzStego works line by line on the unbroken se-
quence of pixels from top left to bottom right. After embedding, each pixel holds
one steganographic value (i. e., one bit of the embedded message). The stegano-
graphic value of a pixel is the least significant bit its index would have in the
sorted palette. The embedding function matches the steganographic value with
the bit to be embedded (i. e. if the bit to be embedded is not already there), and
replaces the colour by its neighbour in the sorted palette if necessary.

original
palette

sorted
palette

0 7654321

2 5 4 1 7 3 6 0

0 1 10 0 1 10 0 1 10 0 1 10

5 4 1 7 3 6 0

steganographic value: least significant bit of sorted index
0 1 0 1 0 1 0 1

sorted
index

bits to
embed

2
111110101100011010001000

Fig. 3. Embedding function of EzStego

Fig. 3 shows the embedding function of EzStego with a reduced palette. For
example, we find index 7 for a given pixel in the carrier image. If we want to
embed a ‘1’, we replace the index by 3, and if we want to embed a ‘0’ we change
nothing. Because the colour of index 7 in the original palette is at index 100
(=4) in the sorted palette, and the colour of index 3 is at index 101 (=5) in the
sorted palette, both colours are neighbours in the sorted palette, i. e. hardly to
distinguish. A change from index 7 to index 3 (and vice versa) is imperceptible
for our eyes unless we compare it directly with the original image.

Everybody can extract the (imaginary) message bits easily. If there is one
embedded bit per pixel we can draw them as an image—e. g. white for the
steganographic value ‘1’, and black for the value ‘0’.

3 Visual Attacks

Independently from each other, several authors assumed that least significant
bits of luminance values in digital images are completely random and could

Attacks on Steganographic Systems 5

therefore be replaced (references: Contraband [9], EzStego [10], Hide & Seek
[13], PGMStealth [15], Piilo [16], Scytale [17], Snow [18], Steganos [19], Stego
[20], Stegodos [21], S-Tools [22], White Noise Storm [23]). By the visual attacks
described in this section, we will reveal that this assumption is wrong. The ma-
jority of steganographic algorithms embeds messages replacing carefully selected
bits by message bits. Actually, it is difficult to distinguish randomness and image
contents by machine, and it is even more difficult to distinguish least significant
bits and random bits. It is extremely difficult to specify permissible image con-
tent in a formal way. A substitute is having people realise what image content is.
However, the border becomes blurred and depends on our imagination—who did
not already detect shapes in a cloud formation? The human sight is trained to
recognise known things. This human ability is used for the visual attacks. Fig. 5
represents the least significant bits of Fig. 4, which is actually not an attack on
steganography. We still can see the windmill in the least significant bits in both
images, and we are not able to identify the steganogram with our eyes, although
the upper half of the image on the right contains a steganographic message.

Fig. 4. Windmill as carrier medium (l.), and steganogram (r.)

Fig. 5. Least significant bits of the images in Fig. 4, black for LSB=0, white for LSB=1

6 Andreas Westfeld and Andreas Pfitzmann

3.1 The Idea of Visual Attacks

The idea of visual attacks is to remove all parts of the image covering the mes-
sage. The human eye can now distinguish whether there is a potential message
or still image content. The filtering process depends on the presumed stegano-
graphic utility, and it has the following structure:

attacked
carrier medium/
steganogram

extraction of
the potential
message bits

visual illustration of
the bits on the position
of their source pixels

3.2 An Embedding Filter for Visual Attacks

An embedding filter for visual attacks graphically presents the values pixels
yield when the extraction function is applied to them. EzStego uses the colours
of pixels, defined by the palette, to determine the embedded bits. The embedding
filter for visual attacks on EzStego replaces the original palette by a black and
white palette. This is depicted in Fig. 6.

2 5 4 1 7 3 6 0

0 7654321

5 1 3 02 4 7 6

0 1 3 52 4 76

original palette

sorted palette

sort

replacement palette

sort back

colour according to
steganographic value

Fig. 6. Assignment function of replacement colours; colours that have an even index
in the sorted palette become black, the rest becomes white.

3.3 Experiments

The following examples of visual attacks clearly show the assumption to be a
myth that least significant bits are completely random and therefore might be
replaced. To produce these examples, we developed small Java applications [24].

Attacks on Steganographic Systems 7

Fig. 7. EzStego; filtered images of Fig. 4: nothing embedded (l.), 50 % capacity of the
carrier used for embedding (r.)

Fig. 8. GIF image of a flooring tile as carrier medium, and its filtered image

EzStego—continuous embedding. Messages, that do not use the maximum
length possible, leave the rest of the carrier medium unchanged. EzStego does
not encrypt the message contents. It is easy to recognise where the message is
in Fig. 7, but it depends on the image content, as Fig. 8 shows. There is no
embedded message in the flooring tile image.

S-Tools—spread embedding. The S-Tools spread a message over the whole
carrier medium. In contrast to EzStego, there is no clear dividing line between
the unchanged rest, left over with shorter messages, and the steganographically
changed pixels. Both of them are mixed. In the right images of Fig. 9, Fig. 10,
and Fig. 11 there are eight colors, one bit in each of the three colour components,
because S-Tools embeds up to three bits per pixel (see [24] for the coloured
version).

Steganos—continuous embedding with fill up. Steganos uses the carrier
medium completely in every case. It will fill up shorter messages, as shown
in Fig. 13. Filtered steganograms never contain content of the initial image
(Fig. 12).

8 Andreas Westfeld and Andreas Pfitzmann

Fig. 9. True Colour BMP image as carrier medium, and its filtered image

Fig. 10. S-Tools; steganogram with maximum size of embedded text, and its filtered
image

Jsteg—embedding in a transformed domain. Jsteg [14] embeds in JPEG
images. In JPEG images, the image content is transformed into frequency coef-
ficients to achieve storage as compact as possible. There is no visual attack in
the sense presented here, because one steganographic bit influences up to 256
pixels.

4 Statistical Attacks

4.1 Idea of the Chi-square Attack

The embedding function of EzStego overwrites least significant bits of the sorted
indices. Overwriting least significant bits transforms values into each other which
only differ in the least significant bit. These pairs of values are called PoVs in the
sequel. If the bits used for overwriting the least significant bits are equally dis-
tributed, the frequencies of both values of each PoV become equal. Fig. 14 uses
the example of Fig. 3 to show how the frequencies of the colours of a picture
are changed, when EzStego is used to embed an equally distributed message.
The idea of the statistical attack is to compare the theoretically expected fre-
quency distribution in steganograms with some sample distribution observed in
the possibly changed carrier medium.

Attacks on Steganographic Systems 9

Fig. 11. S-Tools; steganogram with 50 % capacity of the carrier medium used, and its
filtered image

Fig. 12. True Colour BMP image as carrier medium, and its filtered image

A critical point is how to obtain the theoretically expected frequency distri-
bution (i. e., the frequency of occurrence we would expect after applying stegano-
graphic changes). This frequency must not be derived from our random sample,
because this random sample could have been changed by steganographic op-
erations. But in most cases we don’t have the original to compare with or to
derive the expected frequency from. In the original, the theoretically expected
frequency is the arithmetic mean of the two frequencies in a PoV. The dashed
line in Fig. 14 connects these arithmetic mean values. Because the embedding
function overwrites the least significant bits, it does not change the sum of these
two frequencies. The count taken from the odd value frequency is transferred
to the corresponding even value frequency in each PoV, and vice versa. As the
sum stays constant, the arithmetic mean is the same for a PoV in both, the
original carrier medium and each corresponding steganogram. This fact allows
us to obtain the theoretically expected frequency distribution from the random
sample. So we don’t need the original carrier medium for the attack.

The degree of similarity of the observed sample distribution and the theo-
retically expected frequency distribution is a measure of the probability that
some embedding has taken place. The degree of similarity is determined using
the Chi-square test (e.g., [1]). This test operates on a mapping of observations
into categories. It performs the following steps:

10 Andreas Westfeld and Andreas Pfitzmann

Fig. 13. Steganos; steganogram with only one byte of embedded text, and its filtered
image

000

2
100

7
111

0
001

5
010

4
011

1
101

3
110

6
000

2
001

5
010

4
011

1
100

7
101

3
110

6
111

0

L

L

L

L

R

R

R

R

L

L

L

L

R

R

R

R

Fig. 14. Histogram of colours before and after embedding a message with EzStego

1. We shall suppose that there are k categories and that we have a random
sample of observations. Each observation must fall in one and only one cat-
egory. The categories are all palette indices, the colour of which is placed at
an even index within the sorted palette. Without restricting generality, we
concentrate on the odd values of the PoVs of the attacked carrier medium.
Their minimum theoretically expected frequency must be greater than 4, we
may unify categories to hold this condition.

2. The theoretically expected frequency in category i after embedding an equally
distributed message is

n∗
i =

|{colour|sortedIndexOf(colour) ∈ {2i, 2i + 1}}|
2

3. The measured frequency of occurrence in our random sample is

ni = |{colour|sortedIndexOf(colour) = 2i}|

4. The χ2 statistic is given as χ2
k−1 =

∑k
i=1

(ni−n∗
i)2

n∗
i

with k − 1 degrees of
freedom.

Attacks on Steganographic Systems 11

5. p is the probability of our statistic under the condition that the distributions
of ni and n∗

i are equal. It is calculated by integration of the density function:

p = 1− 1

2
k−1
2 Γ (k−1

2)

∫ χ2
k−1

0

e−
x
2 x

k−1
2 −1dx (1)

Fig. 15. Flooring tile as steganogram of EzStego, and filtered; this visual attack cannot
distinguish between the upper, steganographic half and the lower, original half.

0 10 20 30 40 50 60 70 80 90 100
0

size of
sample (%)

Probability
of embedding

100 %

80 %

60 %

40 %

20 %

Fig. 16. Probability of embedding with EzStego in the flooring tile image (Fig. 15)

4.2 Experiments

EzStego—continuous embedding. Fig. 15 depicts a steganogram, in which a
secret message of 3 600 bytes has been embedded, the same message as in Fig. 4.
Fig. 15 looks pretty much like Fig. 8, due to the contents of the picture. The
visual attack reaches its limit. The diagram in Fig. 16 presents the p-value of the
Chi-square test as a function of an increasing sample. This p-value is roughly
the probability of embedding. Initially, the sample comprises 1 % of the pixels,

12 Andreas Westfeld and Andreas Pfitzmann

starting from the upper border. For this sample, Equ. (1) yields a probability
of embedding of p = 0.8826. The next sample comprises an additional 1 % of
the pixels, i. e. 2 % of the whole picture. The p-value increases to 0.9808. As
long as the sample comprises pixels of the upper half only, in which has been
embedded, the p-value does not drop below 0.77. The pixels of the lower half of
the picture are unchanged, because the message to be embedded was not such
long. A sample of 52 % of the pixels comprises enough unchanged pixels to let
the p-value drop to essentially 0. (Here, “essentially” means that the probability
is smaller than the numeric precision of the 80-bit floating point arithmetic used
for the implementation.)

S-Tools—spread embedding. The S-Tools spread the embedded bits over the
whole carrier medium. Therefore, diagrams of the type of Fig. 16 are not useful
for S-Tools. Instead, Table 1 characterises the effectiveness of our statistical test
by applying it to some files with nothing embedded, 50 % embedded, or 99.5 %
embedded, respectively. Actually this simple test is too weak to detect spreaded
changes (see example jungle50.bmp in Table 1). More sensitive tests take appro-
priate combinations of the k categories or different categories. Some experiments
showed useful results with only 33 % of embedded text in colour images, but
tests for less embedded text causes ε (which stands for the probability of error
in Table 1) to reach 0.5 rapidely.

Steganos—continuous embedding with fill up. Table 2 gives the result of
the same experiment on Steganos. If we embed only one byte with Steganos (the
shortest message which is possible), we get the same small probability of error
as if we use 100 % capacity of the carrier medium. This is due to the fact that
the stream cipher used to encrypt the secret message fills up the message with
padding bytes until the capacity of the carrier medium is exhausted.

Jsteg—embedding in a transformed domain. As already noted in Sect. 3,
visual attacks do not work concerning Jsteg. Since Jsteg (as EzStego) embeds
bits continuously, we use the former presentation of Fig. 16 in Fig. 17, Fig. 18,
and Fig. 19. They show that our statistical test is quite effective concerning Jsteg
as well.

5 Conclusions and Outlook

The embedding strategy of most stego-systems which overwrite least significant
bits of the carrier medium, withstands at most the casual unsophisticated ob-
server:

– The visual attacks described show that in pictures, least significant bits are
not completely random, but bare a correlation with each other clearly dis-
cernible by the human sight if the pictures are presented using an embedding
filter for visual attacks described above.

Attacks on Steganographic Systems 13

0 10 20 30 40 50 60 70 80 90 100
0

size of
sample (%)

Probability
of embedding

max. 0.407 %

100 %

80 %

60 %

40 %

20 %

Fig. 17. JPEG image as carrier medium; nothing is embedded, and the statistical test
yields a very low probability of embedding

0 10 20 30 40 50 60 70 80 90 100
0

size of
sample (%)

Probability
of embedding

min. 20.69 %

100 %

80 %

60 %

40 %

20 %

Fig. 18. Jsteg; steganogram with 50 % embedded

– Overwriting least significant bits equals frequencies of occurrence which
would be unequal otherwise with very high probability. Using statistical
tests, this equalisation can clearly be detected—as we have shown.

Where available, statistical tests are superior to visual attacks: They are
less dependent on the cover used and they can be fully automated and thereby
applied on a large scale.

By not overwriting all least significant bits, but only a fraction of them
and by choosing these bits (pseudo)randomly, the error rate both of the visual
and statistical attacks increases. But by that measure, the throughput of the
steganographic system decreases. In the limiting case, we have a steganographic
system which is nearly undetectable, but which transmits nearly nothing.

The following alternatives are promising, but need validation by a hopefully
“hostile” stego-community as well:

– We should concentrate the embedding process exclusively on the random-
ness in the carrier medium. Of course, it is all but trivial to find out what
is completely random within a carrier. [7] is an example how to design a
steganographic system that way.

14 Andreas Westfeld and Andreas Pfitzmann

0 10 20 30 40 50 60 70 80 90 100
0

size of
sample (%)

Probability
of embedding

min. 34.58 %

100 %

80 %

60 %

40 %

20 %

Fig. 19. Jsteg; steganogram with maximum size of embedded text

Table 1. Probability of embedding for S-Tools

file size of embedded text p-value

jungle.bmp 0 0 + ε
bavarian.bmp 0 0 + ε
soccer.bmp 0 0 + ε
groenemeyer.bmp 0 0 + ε
pudding.bmp 0 0 + ε

jungle50.bmp 18 090 bytes/50 % 0 + ε
jungle100.bmp 36 000 bytes/99.5 % 1 − ε
bavarian100.bmp 36 000 bytes/99.5 % 1 − ε
soccer100.bmp 36 000 bytes/99.5 % 1 − ε
groenemeyer100.bmp 36 000 bytes/99.5 % 1 − ε

ε < 10−16

– We should replace the operation overwrite by other operations (e. g., by
increment). Then the frequencies are not balanced, but circulate in the range
of values.

Cryptography gained the security of today’s state-of-the-art systems by an
iterative process of designing and publishing cryptosystems, analysing and break-
ing them, and then re-designing hopefully more secure ones—and exposing them
once more to attacks. This iterative process has to take place concerning ste-
ganography as well. Since steganography has at least one more parameter than
cryptography, the choosing of cover within a carrier, validation is more complex
and may take longer and proofs of security (if any) are even more limited than
concerning cryptography. Within the validation circle of steganographic systems,
this paper is—hopefully—a step forward.

Attacks on Steganographic Systems 15

Table 2. Probability of embedding for Steganos

file size of embedded text p-value

army.bmp 0 0.0095887
bavarian.bmp 0 0 + ε
soccer.bmp 0 0 + ε
groenemeyer.bmp 0 0 + ε
pudding.bmp 0 0 + ε

army100.bmp 12 000 bytes/99.5 % 1 − ε
bavarian1.bmp 1 byte/0.008 % 1 − ε
soccer1.bmp 1 byte/0.008 % 1 − ε
groenemeyer1.bmp 1 byte/0.008 % 1 − ε
pudding1.bmp 1 byte/0.008 % 1 − ε

ε < 10−16

References

1. Wilfrid J. Dixon, Frank J. Massey: Introduction to Statistical Analysis. McGraw-
Hill Book Company, Inc., New York 1957.

2. Neil F. Johnson, Sushil Jajodia: Steganalysis of Images Created Using Current Ste-
ganography Software, in David Aucsmith (Ed.): Information Hiding, LNCS 1525,
Springer-Verlag Berlin Heidelberg 1998. pp. 32–47

3. M. R. Nelson: LZW Data Compression. Dr. Dobb’s Journal, October 1989.
4. Birgit Pfitzmann, Information Hiding Terminology, in Ross Anderson (Ed.): Infor-

mation Hiding. First International Workshop, LNCS 1174, Springer-Verlag Berlin
Heidelberg 1996. pp. 347–350

5. Robert Tinsley, Steganography and JPEG Compression, Final Year Project Re-
port, University of Warwick, 1996

6. Terry Welch: A Technique for High-Performance Data Compression. IEEE Com-
puter, June 1984.

7. Andreas Westfeld, Gritta Wolf: Steganography in a Video Conferencing System,
in David Aucsmith (Ed.): Information Hiding, LNCS 1525, Springer-Verlag Berlin
Heidelberg 1998. pp. 32–47

8. Jacob Ziv, Abraham Lempel: A Universal Algorithm for Sequential Data Com-
pression. IEEE Transactions on Information Theory, May 1977.

Internet Sources
9. Contraband, http://www.galaxycorp.com/009

10. EzStego, http://www.fqa.com/romana/
11. Fravia’s Steganography, http://www.fravia.org/stego.htm
12. GIF, http://members.aol.com/royalef/gif89a.txt
13. Hide and Seek, http://www.rugeley.demon.co.uk/security/hdsk50.zip
14. Jsteg, ftp://ftp.funet.fi/pub/crypt/steganography/
15. PGMStealth, http://www.sevenlocks.com/security/SWSteganography.htm
16. Piilo, ftp://ftp.funet.fi/pub/crypt/steganography/
17. Scytale, http://www.geocities.com/SiliconValley/Heights/5428/
18. Snow, http://www.cs.mu.oz.au/~mkwan/snow/

16 Andreas Westfeld and Andreas Pfitzmann

19. Steganos, http://www.demcom.com/deutsch/index.htm
20. Stego, http://www.best.com/~fqa/romana/romanasoft/stego.html
21. Stegodos, http://www.netlink.co.uk/users/hassop/pgp/stegodos.zip
22. S-Tools, ftp://idea.sec.dsi.unimi.it/pub/security/crypt/code/

s-tools4.zip

23. White Noise Storm, ftp://ftp.funet.fi/pub/crypt/mirrors/
idea.sec.dsi.unimi.it/cypherpunks/steganography/wns210.zip

24. http://wwwrn.inf.tu-dresden.de/~westfeld/attacks.html

