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Abstract: We derive a bound on the precision of state estimation for finite dimensional
quantum systems and prove its attainability in the generic case where the spectrum is
non-degenerate. Our results hold under an assumption called local asymptotic covari-
ance, which is weaker than unbiasedness or local unbiasedness. The derivation is based
on an analysis of the limiting distribution of the estimator’s deviation from the true value
of the parameter, and takes advantage of quantum local asymptotic normality, a useful
asymptotic characterization of identically prepared states in terms of Gaussian states.
We first prove our results for the mean square error of a special class of models, called
D-invariant, and then extend the results to arbitrary models, generic cost functions, and
global state estimation, where the unknown parameter is not restricted to a local neigh-
bourhood of the true value. The extension includes a treatment of nuisance parameters,
i.e. parameters that are not of interest to the experimenter but nevertheless affect the
precision of the estimation. As an illustration of the general approach, we provide the
optimal estimation strategies for the joint measurement of two qubit observables, for
the estimation of qubit states in the presence of amplitude damping noise, and for noisy
multiphase estimation.

1. Introduction

Quantum estimation theory is one of the pillars of quantum information science, with a
wide range of applications from evaluating the performance of quantum devices [1,2] to
exploring the foundation of physics [3,4]. In the typical scenario, the problem is specified
by a parametric family of quantum states, called the model, and the objective is to design
measurement strategies that estimate the parameters of interest with the highest possible
precision. The precision measure is often chosen to be the mean square error (MSE),
and is lower bounded through generalizations of the Cramér–Rao bound of classical
statistics [5,6]. Given n copies of a quantum state, such generalizations imply that the
product MSE · n converges to a positive constant in the large n limit.
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Despite many efforts made over the years (see, e.g., [5–12] and [13] for a review),
the attainability of the precision bounds of quantum state estimation has only been
proven in a few special cases. Consider, as an example, the most widely used bound,
namely the symmetric logarithmic derivative Fisher information bound (SLD bound,
for short). The SLD bound is tight in the one-parameter case [5,6], but is generally
non-tight in multiparameter estimation. Intuitively, measuring one parameter may affect
the precision in the measurement of another parameter, and thus it is extremely tricky
to construct the optimal measurement. Another bound for multiparameter estimation is
the right logarithmic derivative Fisher information bound (RLD bound, in short) [5]. Its
achievability was shown in the Gaussian states case [5], the qubits case [14,15], and
the qudits case [16,17]. In this sense, the RLD bound is superior to the SLD bound.
However, the RLD bound holds only when the family of states to be estimated satisfies
an ad hoc mathematical condition. The most general quantum extension of the classical
Cramér–Rao bound till now is the Holevo bound [5], which gives the maximum among
all existing lower bounds for the error of unbiased measurements for the estimation of
any family of states. The attainability of the Holevo bound was studied in the pure states
case [10] and the qubit case [14,15], and was conjectured to be generic by one of us [18].
Yamagata et al. [19] addressed the attainability question in a local scenario, showing
that the Holevo bound can be attained under certain regularity conditions. However,
the attaining estimator constructed therein depends on the true parameter, and therefore
has limited practical interest. Meanwhile, the need of a general, attainable bound on
multiparameter quantum estimation is increasing, as more and more applications are
being investigated [20–24].

In this work we explore a new route to the study of precision limits in quantum
estimation. This new route allows us to prove the asymptotic attainability of the Holevo
bound in generic scenarios, to extend its validity to a broader class of estimators, and
to derive a new set of attainable precision bounds. We adopt the condition of local

asymptotic covariance [18] which is less restrictive than the unbiasedness condition
[5] assumed in the derivation of the Holevo bound. Under local asymptotic covariance,
we characterize the MSE of the limiting distribution, namely the distribution of the
estimator’s rescaled deviation from the true value of the parameter in the asymptotic
limit of n → ∞.

Our contribution can be divided into two parts, the attainability of the Holevo bound
and the proof that the Holevo bound still holds under the weaker condition of local asymp-
totic covariance. To show the achievability part, we employ quantum local asymptotic

normality (Q-LAN), a useful characterization of n-copy d-dimensional (qudit) states
in terms of multimode Gaussian states. The qubit case was derived in [14,15] and the
case of full parametric models was derived by Kahn and Guta when the state has non-
degenerate spectrum [16,17]. Here we extend this characterization to a larger class of
models, called D-invariant models, using a technique of symplectic diagonalization.
For models that are not D-invariant, we derive an achievable bound, expressed in terms
of a quantum Fisher information-like quantity that can be straightforwardly evaluated.
Whenever the model consists of qudit states with non-degenerate spectrum, this quantity
turns out to be equal to the quantity in the Holevo bound [5]. Our evaluation has compact
uniformity and order estimation of the convergence, which will allow us to prove the
achievability of the bound even in the global setting.

We stress that, until now, the most general proof of the Holevo bound required the
condition of local unbiasedness. In particular, no previous study showed the validity
of the Holevo bound under the weaker condition of local asymptotic covariance in the
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multiparameter scenario. To avoid employing the (local) unbiasedness condition, we
focus on the discretized version of the RLD Fisher information matrix, introduced by
Tsuda and Matsumoto [25]. Using this version of the RLD Fisher information matrix,
we manage to handle the local asymptotic covariance condition and to show the validity
of the Holevo bound in this broader scenario. Remarkably, the validity of the bound does
not require finite-dimensionality of the system or non-degeneracy of the states in the
model. Our result also provides a simpler way of evaluating the Holevo bound, whose
original expression involved a difficult optimization over a set of operators.

The advantage of local asymptotic covariance over local unbiasedness is the follow-
ing. For practical applications, the estimator needs to attain the lower bound globally, i.e.,
at all points in the parameter set. However, it is quite difficult to meet this desideratum
under the condition of local unbiasedness, even if we employ a two-step method based
on a first rough estimate of the state, followed by the measurement that is optimal in
the neighbourhood of the estimate. In this paper, we construct a locally asymptotic co-
variant estimator that achieves the Holevo bound at every point, for any qudit submodel
except those with degenerate states. Our construction proceeds in two steps. In the first
step, we perform a full tomography of the state, using the protocol proposed in [26]. In
the second step, we implement a locally optimal estimator based on Q-LAN [16,17].
The two-step estimator works even when the estimated parameter is not assumed to be
in a local neighbourhood of the true value. The key tool to prove this property is our
precise evaluation of the optimal local estimator with compact uniformity and order
estimation of the convergence. Our method can be extended from the MSE to arbitrary
cost functions. A comparison between the approach adopted in this work (in green) and
conventional approaches to quantum state estimation (in blue) can be found in Fig. 1.

Besides the attainability of the Holevo bound, the method can be used to derive a
broad class of bounds for quantum state estimation. Under suitable assumptions, we
characterize the tail of the limiting distribution, providing a bound on the probability
that the estimate falls out of a confidence region. The limiting distribution is a good
approximation of the (actual) probability distribution of the estimator, up to a term van-
ishing in n. Then, we derive a bound for quantum estimation with nuisance parameters,
i.e. parameters that are not of interest to the experimenter but may affect the estimation
of the other parameters. For instance, the strength of noise in a phase estimation scenario
can be regarded as a nuisance parameter. Our bound applies also to arbitrary estimation
models, thus extending nuisance parameter bounds derived for specific cases (see, e.g.,
[27–29]). In the final part of the paper, the above bounds are illustrated in concrete exam-
ples, including the joint measurement of two qubit observables, the estimation of qubit
states in the presence of amplitude damping noise, and noisy multiphase estimation.

The remainder of the paper is structured as follows. In Sect. 2 we introduce the
main ideas in the one-parameter case. Our discussion of the one-parameter case requires
no regularity condition for the parametric model. Then we devote several sections to
introducing and deriving tools for the multiparameter estimation. In Sect. 3, we briefly
review the Holevo bound and Gaussian states, and derive some relations that will be
useful in the rest of the paper. In Sect. 4, we introduce Q-LAN. In Sect. 5 we introduce
the ǫ-difference RLD Fisher information matrix, which will be a key tool for deriving
our bounds in the multiparameter case. In Sect. 6, we derive the general bound on
the precision of multiparameter estimation. In Sect. 7, we address state estimation in
the presence of nuisance parameters and derive a precision bound for this scenario.
Section 8 provides bounds on the tail probability. In Sect. 9, we extend our results
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Fig. 1. Comparison between the approach of this work (in green) and the traditional approach of quantum
state estimation (in blue). In the traditional approach, one derives precision bounds based on the probability
distribution function (PDF) for measurements on the original set of quantum states. The bounds are evaluated
in the large n limit and the task is to find a sequence of measurements that achieves the limit bound. In this work,
we first characterize the limiting distribution and then work out a bound in terms of the limiting distribution.
This construction also provides the optimal measurement in the limiting scenario, which can be used to prove
the asymptotic attainability of the bound. The analysis of the limiting distribution also provides tail bounds,
which approximate the tail bounds for finite n up to a small correction, under the assumption that the cost
function and the model satisfy a certain relation (see Theorem 9)

Table 1. Table of terms and notations

Term Notation Definition
Limiting distribution ℘t0,t|m Eqs. (21) and (101)
SLD quantum Fisher information at t0 Jt0 Eq. (35)
RLD quantum Fisher information at t0 J̃t0 Eq. (42) (for D-invariant models)
D-matrix at t0 Dt0 Eq. (41)
Gaussian state G[α, γ ] Eq. (55)
(Multi-mode) displaced thermal state Φ[(αR ,α I ), β] Eq. (54)
Gaussian shift operator Tα Eq. (59)
2m-dimensional symplectic form Ωm Eq. (57)
A 2m-dimensional diagonal matrix Em (x) Eq. (56)
Covariance matrix of a probability distribution ℘ V [℘] Eq. (108)

to global estimation and to generic cost functions. In Sect. 10, the general method is
illustrated through examples. The conclusions are drawn in Sect. 11.
Remark on the notation In this paper, we use z∗ for the complex conjugate of z ∈ C and
A† for the Hermitian conjugate of an operator A. For convenience of the reader, we list
other frequently appearing notations and their definitions in Table 1.
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2. Precision Bound Under Local Asymptotic Covariance: One-Parameter Case

In this section, we discuss estimation of a single parameter under the local asymptotic
covariance condition, without any assumption on the parametric model.

2.1. Cramér–Rao inequality without regularity assumptions. Consider a one-parameter
model M, of the form

M = {ρt }t∈� (1)

where � is a subset of R. In the literature it is typically assumed that the parametrization is
differentiable. When this is the case, one can define the symmetric logarithmic derivative
operator (SLD in short) at t0 via the equation

dρt0

dt0
= 1

2

(
ρt0 L t0 + L t0ρt0

)
. (2)

Then, the SLD Fisher information is defined as

Jt0 := Tr
[
ρt0 L2

t0

]
. (3)

The SLD L t0 is not unique in general, but the SLD Fisher information Jt0 is uniquely
defined because it does not depend on the choice of the SLD L t0 among the operators
satisfying (2). When the parametrization is C1-continuous and ǫ > 0 is a small number,
one has

F
(
ρt0 ||ρt0+ǫ

)
= 1 − Jt0

8
ǫ2 + o(ǫ2) , (4)

where

F(ρ‖ρ′) := Tr |√ρ
√

ρ′| (5)

is the fidelity between two density matricesρ andρ′. It is called Bhattacharya or Hellinger
coefficient in the classical case [30,31].

Here we do not assume that the parametrization (1) is differentiable. Hence, the SLD
Fisher information cannot be defined by (3). Instead, following the intuition of (4), we
define the SLD Fisher information Jt0 as the limit

Jt0 := lim inf
ǫ→0

8
[

1 − F
(
ρt0 ||ρt0+ǫ

) ]

ǫ2
. (6)

In the n-copy case, we have the following lemma:

Lemma 1.

lim inf
n→∞

8

(
1 − F

(
ρ⊗n

t0
||ρ⊗n

t0+ ǫ√
n

))

ǫ2
=

8

(
1 − e− Jt0 ǫ2

8

)

ǫ2
. (7)
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Proof. Using the definition (6), we have

lim inf
n→∞

8

(
1 − F

(
ρ⊗n

t0
||ρ⊗n

t0+ ǫ√
n

))

ǫ2

= lim inf
n→∞

8

(
1 −

(
1 − Jt0 ǫ2

8n
+ o( ǫ2

n
)

)n)

ǫ2
=

8

(
1 − e− Jt0 ǫ2

8

)

ǫ2
. (8)

In other words, the SLD Fisher information is constant over n if we replace ǫ by ǫ/
√

n.
To estimate the parameter t ∈ �, we perform on the input state a quantum mea-

surement, which is mathematically described by a positive operator valued measure

(POVM) with outcomes in X ⊂ R. An outcome x is then mapped to an estimate of t by
an estimator t̂(x). It is often assumed that the measurement is unbiased, in the following
sense: a POVM M on a single input copy is called unbiased when

∫

X

t̂(x) Tr [ρt M(dx)] = t, ∀t ∈ �. (9)

For a POVM M , we define the mean square error (MSE) Vt (M) as

Vt (M) :=
∫

X

(
t̂(x) − t

)2
Tr [ ρt M(dx) ] . (10)

Then, we have the fidelity version of the Cramér–Rao inequality:

Theorem 1. For an unbiased measurement M satisfying
∫

X

t̂(x)Pt (dx) = t (11)

for any t, we have

1

2

[
Vt0(M) + Vt0+ǫ(M) + ǫ2 ] ≥ ǫ2

8
[

1 − F(ρt0 ||ρt0+ǫ)
] . (12)

When limǫ→0 Vt0+ǫ(M) = Vt0(M), taking the limit ǫ → 0, we have

Vt0(M) ≥ J−1
t0

. (13)

The proof uses the notion of fidelity between two classical probability distributions:
for two given distributions P and Q on a probability space X , we define the fidelity
F(P‖Q) as follows. Let fP and fQ be the Radon–Nikodým derivatives of P and Q

with respect to P + Q, respectively. Then, the fidelity F(P‖Q) can be defined as

F(P‖Q) :=
∫

X

√
fP (x)

√
fQ(x)(P + Q)(dx) . (14)

With the above definition, the fidelity satisfies an information processing inequality:
for every classical channel G, one has F(G(P)‖G(Q)) ≥ F(P‖Q). For a family of
probability distributions {Pθ }θ∈�, we define the Fisher information as

Jt0 := lim inf
ǫ→0

8
[

1 − F
(
Pt0 ||Pt0+ǫ

) ]

ǫ2
. (15)

When the probability distributions are over a discrete set, their Fisher information coin-
cides with the quantum SLD of the corresponding diagonal matrices.
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Proof of Theorem 1. Without loss of generality, we assume t0 = 0. We define the prob-
ability distribution Pt by Pt (B) := Tr [ ρt M(B) ]. Then, the information processing
inequality of the fidelity [32] yields the bound F(ρt0 ||ρt0+ǫ) ≤ F(P0‖Pǫ). Hence, it is
sufficient to show (12) for the probability distribution family {Pt }.

Let f0 and fǫ be the Radon–Nikodým derivatives of P0 and Pǫ with respect to P0 + Pǫ .
Denoting the estimate by t̂ , we have

Vǫ(t̂) =
∫

X

(t̂(x) − ǫ)2 Pǫ(dx) =
∫

X

t̂(x)2 Pǫ(dx) − 2ǫ

∫

X

t̂(x)Pǫ(dx) + ǫ2

=
∫

X

t̂(x)2 Pǫ(dx) − 2ǫ2 + ǫ2 =
∫

X

t̂(x)2 Pǫ(dx) − ǫ2,

and therefore

2V0(t̂) + 2Vǫ(t̂) + 2ǫ2 =
∫

X

2t̂(x)2(P0(dx) + Pǫ(dx))

=
∫

X

2t̂(x)2( f0(x) + fǫ(x))(P0 + Pǫ)(dx)

≥
∫

X

t̂(x)2(
√

f0(x) +
√

fǫ(x))2(P0 + Pǫ)(dx). (16)

Also, (14) implies the relation
∫

X

(
√

f0(x) −
√

fǫ(x))2(P0 + Pǫ)(dx) = 2 − 2F(P0‖Pǫ). (17)

Hence, Schwartz inequality implies
∫

X

t̂(x)2(
√

f0(x) +
√

fǫ(x))2(P0 + Pǫ)(dx) ·
∫

X

(
√

f0(x) −
√

fǫ(x))2(P0 + Pǫ)(dx)

≥
( ∫

X

t̂(x)(
√

f0(x) +
√

fǫ(x))(
√

f0(x) −
√

fǫ(x))(P0 + Pǫ)(dx)
)2

=
( ∫

X

t̂(x)( f0(x) − fǫ(x))(P0 + Pǫ)(dx)
)2

=
( ∫

X

t̂(x)(P0 − Pǫ)(dx)
)2

= ǫ2. (18)

Combining (16), (17), and (18) we have (12). ⊓⊔

2.2. Local asymptotic covariance. When many copies of the state ρt are available, the
estimation of t can be reduced to a local neighbourhood of a fixed point t0 ∈ �. Motivated
by Lemma 1, we adopt the following parametrization of the n-copy state

ρn
t0,t := ρ⊗n

t0+ t√
n

, t ∈ 	n :=
√

n (� − t0) , (19)

having used the notation a �+b := {ax +b |x ∈ �}, for two arbitrary constants a, b ∈ R.
With this parametrization, the local n-copy model is

{
ρn

t0,t

}
t∈	n

. Note that, for every

t ∈ R, there exists a sufficiently large n such that 	n contains t . As a consequence, one
has
⋃

n∈N
	n = R.
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Assuming t0 to be known, the task is to estimate the local parameter t ∈ R, by
performing a measurement on the n-copy state ρn

t0,t and then mapping the obtained data

to an estimate t̂n . The whole estimation strategy can be described by a sequence of
POVMs m := {Mn}. For every Borel set B ⊂ R, we adopt the standard notation

Mn(B) :=
∫

t̂n∈B

Mn(dt̂n) .

In the existing works on quantum state estimation, the error criterion is defined in

terms of the difference between the global estimate t0 + t̂n√
n

and the global true value

t0 + t√
n

. Instead, here we focus on the difference between the local estimate t̂n and the

true value of the local parameter t . With this aim in mind, we consider the probability
distribution

℘n
t0,t |Mn

(B) := Tr

[
ρn

t0,t
Mn

(
B√
n

+ t0

)]
. (20)

We focus on the behavior of ℘n
t0,t |Mn

in the large n limit, assuming the following
condition:

Condition 1 (Local asymptotic covariance for a single-parameter). A sequence of mea-

surements m = {Mn} satisfies local asymptotic covariance1 when

1. The distribution ℘n
t0,t |Mn

(20) converges to a distribution ℘t0,t |m, called the limiting

distribution, namely

℘t0,t |m (B) := lim
n→∞

℘n
t0,t |Mn

(B) (21)

for any Borel set B.

2. the limiting distribution satisfies the relation

℘t0,t |m(B + t) = ℘t0,0|m(B) (22)

for any t ∈ R, which is equivalent to the condition

lim
n→∞

Tr

[
ρn

t0,t Mn

(
B√
n

+ t0 +
t√
n

)]
= lim

n→∞
Tr

[
ρn

t0,0 Mn

(
B√
n

+ t0

)]
. (23)

Using the limiting distribution, we can faithfully approximate the tail probability as

Prob
{∣∣t̂n − t

∣∣ > ǫ
}

= ℘t0,t |m((−∞,−ǫ) ∪ (ǫ,∞)) + ǫn (24)

where the ǫn term vanishes with n for every fixed ǫ.
For convenience, one may be tempted to require the existence of a probability density

function (PDF) of the limiting distribution ℘t0,t |m. However, the existence of a PDF is
already guaranteed by the following lemma.

Lemma 2. When a sequence m := {Mn} of POVMs satisfies local asymptotic covari-

ance, the limiting distribution ℘t0,t |m admits a PDF, denoted by ℘t0,0|m,d .

The proof is provided in “Appendix A”.

1 The counterpart of this condition in classical statistics is known as asymptotic equivalent-in-law or regular.
See, for instance, page 115 of [33].
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2.3. MSE bound for the limiting distribution. As a figure of merit, we focus on the mean
square error (MSE) V [℘t0,t |m] of the limiting distribution ℘t0,t |m, namely

V [℘t0,t |m] :=
∫ ∞

−∞
(t̂ − t)2 ℘t0,t |m

(
dt̂
)

.

Note that local asymptotic covariance implies that the MSE is independent of t .
The main result of the section is the following theorem:

Theorem 2 (MSE bound for single-parameter estimation). When a sequence m := {Mn}
of POVMs satisfies local asymptotic covariance, the MSE of its limiting distribution is

lower bounded as

V [℘t0,t |m] ≥ J−1
t0

, (25)

where Jt0 is the SLD Fisher information of the model {ρt }t∈�. The PDF of ℘t0,t |m is

upper bounded by
√

Jt0 . When the PDF of ℘t0,t |m is differentiable with respect to t ,

equality in (25) holds if and only if ℘t0,t |m is the normal distribution with average zero

and variance J−1
t0

.

Proof of Theorem 2. When the integral
∫

R
t̂℘t0,0|m(dt̂) does not converge, V [℘t0,t |m]

is infinite and satisfies (25). Hence, we can assume that the above integral converges. Fur-
ther, we can assume that the outcome t̂ satisfies the unbiasedness condition

∫
R

t̂℘t0,t |m(dt̂) =
t . Otherwise, we can replace t̂ by t̂0 := t̂ −

∫
R

t̂ ′℘t0,0|m(dt̂ ′) because the estimator t̂0

has a smaller MSE than t̂ and satisfies the unbiasedness condition due to the covariance
condition. Hence, Theorem 1 guarantees

V [℘t0,t |m] = V [℘t0,0|m] ≥
(

lim inf
ǫ→0

8
(
1 − F(℘t0,0|m||℘t0,ǫ|m)

)

ǫ2

)−1
. (26)

Applying Lemma 20 to {℘t0,t |m}, we have

lim inf
ǫ→0

8
(
1 − F(℘t0,0|m||℘t0,ǫ|m)

)

ǫ2

(a)
≤ lim inf

ǫ→0
lim inf
n→∞

8
(

1 − F
(
℘n

t0,0|Mn
||℘n

t0,ǫ|Mn

))

ǫ2

(b)
≤ lim inf

ǫ→0
lim inf
n→∞

8

(
1 − F

(
ρ⊗n

t0
||ρ⊗n

t0+ ǫ√
n

))

ǫ2

(c)= lim inf
ǫ→0

8

(
1 − e− Jt0 ǫ2

8

)

ǫ2
= Jt0 . (27)

The inequality (a) holds by Lemma 20 from “Appendix B”, and the inequality (b)

comes from the data-processing inequality of the fidelity. The equation (c) follows from
Lemma 1. Finally, substituting Eq. (27) into Eq. (26), we have the desired bound (25).

Now, we denote the PDF of ℘t0,0|m by ℘t0,0|m,d . In “Appendix A” the proof of
Lemma 2 shows that we can apply Lemma 19 to {℘t0,t |m}t . Since the Fisher information
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of {℘t0,t |m}t is upper bounded by Jt0 , this application guarantees that ℘t0,t |m,d(x) ≤
√

Jt0

for x ∈ R.
When the PDF ℘t0,t |m,d is differentiable, to derive the equality condition in Eq. (25),

we show (26) in a different way. Let lt0,t (x) be the logarithmic derivative of ℘t0,t |m,d(x),

defined as lt0,t (x) · ℘t0,t |m,d(x) := ∂ log ℘t0,t |m,d (x)

∂t
= ∂ log ℘t0,0|m,d (x−t)

∂t
. By Schwartz

inequality, we have

V [℘t0,0|m] ≥
∣∣∫∞

−∞ x̂ lt0,0(x̂) ℘t0,0|m(x̂)dx̂
∣∣2

∫∞
−∞ l2

t0,0
(x̂)℘t0,0|m(x̂)dx̂

. (28)

The numerator on the right hand side of Eq. (28) can be evaluated by noticing that
∫ ∞

−∞
x̂ lt0,0(x̂) ℘t0,0|m(x̂)dx̂ = ∂

∂x

∫ ∞

−∞
x̂ ℘t0,x |m(x̂)dx̂

∣∣∣∣
x=0

.

By local asymptotic covariance, this quantity can be evaluated as
∫ ∞

−∞
x̂ lt0,0(x̂) ℘t0,0|m(x̂)dx̂ = ∂

∂x

[∫ ∞

−∞
(x̂ + x) ℘t0,0|m(x̂)dx̂

]∣∣∣∣
x=0

= 1. (29)

Hence, (28) coincides with (26). The denominator on the right hand side of (28) equals the
right hand side of (26). The equality in Eq. (28) holds if and only if

∫∞
−∞ x̂2℘t0,0|m,d(x̂)dx̂

= J−1
t0

and d
dx

log ℘t0,0|m,d(x̂) is proportional to x̂ , which implies that ℘t0,0|m is the

normal distribution with average zero and variance J−1
t0

. ⊓⊔
The RHS of (25) can be regarded as the limiting distribution version of the SLD

quantum Cramér–Rao bound. Note that, when the limiting PDF is differentiable and the
bound is attained, the probability distribution ℘n

t0,t |Mn
is approximated (in the pointwise

sense) by a normal distribution with average zero and variance 1
n Jt0

. Using this fact, we

will show that there exists a sequence of POVMs that attains the equality (25) at all
points uniformly. The optimal sequence of POVMs is constructed explicitly in Sect. 6.

2.4. Comparison between local asymptotic covariance and other conditions. We con-
clude the section by discussing the relation between asymptotic covariance and other
conditions that are often imposed on measurements. This subsection is not necessary
for understanding the technical results in the next sections and can be skipped at a first
reading.

Let us start with the unbiasedness condition. Assuming unbiasedness, one can derive
the quantum Cramér–Rao bound on the MSE [5]. Holevo showed the attainability of the
quantum Cramér–Rao bound when estimating displacements in Gaussian systems [5].

The disadvantage of unbiasedness is that it is too restrictive, as it is satisfied only
by a small class of measurements. Indeed, the unbiasedness condition for the estimator

M requires the condition Tr
[

E
d i ρt

dt i

]
|t=t0 = 0 for i ≥ 2 with E :=

∫
t̂ M(dt̂) as well

as the condition Tr
[

E
dρt

dt

]
|t=t0 = 1. In certain situations, the above conditions might

be incompatible. For example, consider a family of qubit states ρt := 1
2 (I + nt · σ ).

When the Bloch vector nt has a non-linear dependence on t and the set of higher order

derivatives d i ρt

dt i |t=t0 with i ≥ 2 spans the space of traceless Hermittian matrices, no
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unbiased estimator can exist. In contrast, local asymptotic covariance is only related to
the first derivative dρt

dt
|t=t0 because the contribution of higher order derivatives to the

variable t̂n has order o
(

1√
n

)
and vanishes under the condition of the local asymptotic

covariance.
One can see that the unbiasedness condition implies local asymptotic covariance with

the parameterization ρt0+ t√
n

in the following sense. When we have n (more than one)

input copies, we can construct unbiased estimator by applying a single-copy unbiased
estimator M satisfying Eq. (9) to all copies as follows. For the i-th outcome xi , we take
the rescaled average

∑n
i=1

xi

n
, which satisfies the unbiasedness (9) for the parameter t

as well. When the single-copy estimator M has variance v at t0, which is lower bounded
by the Cramér–Rao inequality, this estimator has variance v/n at t0. In addition, the
average (30) of the obtained data satisfies the local asymptotic covariance because the
rescaled estimator

√
n((
∑n

i=1
xi

n
) − t0) follows the Gaussian distribution with variance

v in the large n limit by the central limit theorem; the center of the Gaussian distribution
is pinned at the true value of the parameter by unbiasedness; the shape of the Gaussian
is independent of the value t and depends only on t0; thus locally asymptotic covariance
holds.

The above discussion can be extended to the multiple-copy case as follows. Suppose
that Mℓ is an unbiased measurement for the ℓ-copy state ρ⊗ℓ

t0+ t√
n

with respect to the

parameter t0 + t√
n

, where ℓ is an arbitrary finite integer. From the measurement Mℓ we

can construct a measurement for the n-copy state with n = kℓ + i and i < ℓ by applying
the measurement Mℓ k times and discarding the remaining i copies. In the following,
we consider the limit where the total number n tends to infinity, while ℓ is kept fixed.
When the variance of Mℓ at t0 is v/ℓ, the average

k∑

i=1

xi

k
(30)

of the k obtained data x1, . . . , xk satisfies local asymptotic covariance, i.e., the rescaled
estimator

√
n((
∑k

i=1
xi

k
) − t0) follows the Gaussian distribution with variance v in the

large n limit. Therefore, for any unbiased estimator, there exists an estimator satisfying
locally asymptotic covariance that has the same variance.

Another common condition, less restrictive than unbiasedness, is local unbiased-

ness. This condition depends on the true parameter t0 and consists of the following two
requirements

∫
t̂ Tr

[
ρ⊗ℓ

t Mℓ(dt̂)
] ∣∣∣

t=t0
= t0 (31)

d

dt

∫
t̂ Tr

[
ρ⊗ℓ

t Mℓ(dt̂)
] ∣∣∣

t=t0
= 1 , (32)

where ℓ is a fixed, but otherwise arbitrary, integer. The derivation of the quantum Cramér–
Rao bound still holds, because it uses only the condition (32). When the parametrization

ρt is C1 continuous, the first derivative d
dt

∫
t̂ Tr

[
ρ⊗ℓ

t Mℓ(dt̂)
]

is continuous at t = t0,

and the locally unbiased condition at t0 yields the local asymptotic covariance at t0 in
the way as Eq. (30).
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Table 2. Alternative conditions for deriving MSE bounds

Condition Definition Limitation

Unbiasedness
∫

t̂ Tr
[
ρ⊗ℓ

t M(dt̂)
]

= t ∀t ∈ � Too restrictive (unbiased es-
timator may not exist)

Local unbiasedness

∫
t̂ Tr

[
ρ⊗ℓ

t0
Mℓ(dt̂)

]
= t0 Estimator depends on the

true parameter t0
d

dt

∫
t̂ Tr

[
ρ⊗ℓ

t Mℓ(dt̂)
]
|t=t0 = 1

Asymptotic unbiased-
ness

lim
n→∞

∫
t̂ Tr

[
ρ⊗n

t Mn(dt̂)
]

= t ∀t ∈ � Attainability unknown for
finite-dimensional systems

lim
n→∞

d

dt

∫
t̂ Tr

[
ρ⊗n

t Mn(dt̂)
]

= 1 ∀t ∈ �

Weak asymptotic un-
biasedness

lim
n→∞

∫
t̂ Tr

[
ρ⊗n

t Mn(dt̂)
]

= t ∀t ∈ � No lower bound to the MSE
is known to hold at every
point

Another relaxation of the unbiasedness condition is asymptotic unbiasedness [11]

lim
n→∞

∫
t̂ Tr

[
ρ⊗n

t Mn(dt̂)
]

= t ∀t ∈ � (33)

lim
n→∞

d

dt

∫
t̂ Tr

[
ρ⊗n

t Mn(dt̂)
]

= 1 ∀t ∈ � . (34)

The condition of asymptotic unbiasedness leads to a precision bound on MSE [34, Chap-
ter 6]. The bound is given by the SLD Fisher information, and therefore it is attainable
for Gaussian states. However, no attainable bound for qudit systems has been derived
so far under the condition of asymptotic unbiasedness. Interestingly, one cannot directly
use the attainability for Gaussian systems to derive an attainability result for qudit sys-
tems, despite the asymptotic equivalence between Gaussian systems and qudit systems
stated by quantum local asymptotic normality (Q-LAN) (see [16,17] and Sect. 4.1). The
problem is that the error of Q-LAN goes to 0 for large n, but the error in the derivative
may not go to zero, and therefore the condition (34) is not guaranteed to hold.

In order to guarantee attainability of the quantum Cramér–Rao bound, one could
think of further loosening the condition of the asymptotic unbiasedness. An attempt to
avoid the problem of the Q-LAN error could be to remove condition (34) and keep only
condition (33). This leads to an enlarged class of estimators, called weakly asymptotically

unbiased. The problem with these estimators is that no general MSE bound is known to
hold at every point x . For example, one can find superefficient estimators [35,36], which
violate the Cramér–Rao bound on a set of points. Such a set must be of zero measure
in the limit n → ∞, but the violation of the bound may occur in a considerably large
set when n is finite. In contrast, local asymptotic covariance guarantees the MSE bound
(25) at every point t where the local asymptotic convariance condition is satisfied. All
these alternative conditions for deriving MSE bounds, discussed here in this subsection,
are summarized in Table 2.

3. Holevo Bound and Gaussian States Families

3.1. Holevo bound. When studying multiparameter estimation in quantum systems, we
need to address the tradeoff between the precision of estimation of different parameters.
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This is done using two types of quantum extensions of Fisher information matrix: the
SLD and the right logarithmic derivative (RLD).

Consider a multiparameter family of density operators {ρt }t∈�, where � is an open
set in R

k , k being the number of parameters. Throughout this section, we assume that
ρt0 is invertible and that the parametrization is C1 in all parameters. Then, the SLD L j

and the RLD L̃ j for the parameter t j are defined through the following equations

∂ρt

∂t j

= 1

2

(
ρt L j + L jρt

)
,

∂ρt

∂t j

= ρt L̃ j ,

see e.g. [5,6] and [15, Sect. II]. It can be seen from the definitions that the SLD L j can

always be chosen to be Hermitian, while the RLD L̃ j is in general not Hermitian.
The SLD quantum Fisher information matrix Jt and the RLD quantum Fisher infor-

mation matrix J̃t are the k × k matrices defined as

(Jt)i j := Tr

[
ρt(L i L j + L j L i )

2

]
,
(

J̃t

)
i j

:= Tr
[

L̃
†
jρt L̃ i

]
. (35)

Notice that the SLD quantum Fisher information matrix Jt is a real symmetric matrix,
but the RLD quantum Fisher information matrix J̃t is not a real matrix in general.

A POVM M is called an unbiased estimator for the family S = {ρt } when the relation

t = E t(M) :=
∫

x Tr
[
ρt M(dx)

]

holds for any parameter t . For a POVM M , we define the mean square error (MSE)
matrix Vt(M) as

(
Vt(M)

)
i, j

:=
∫

(xi − ti )(x j − t j ) Tr
[
ρt M(dx)

]
. (36)

It is known that an unbiased estimator M satisfies the SLD type and RLD type of
Cramer–Rao inequalities

Vt(M) ≥ J−1
t , and Vt(M) ≥ J̃−1

t , (37)

respectively [5]. Since it is not always possible to minimize the MSE matrix under
the unbiasedness condition, we minimize the weighted MSE tr

[
W Vt(M)

]
for a given

weight matrix W ≥ 0, where tr denotes the trace of k × k matrices. When a POVM M

is unbiased, one has the RLD bound [5]

tr
[
W Vt(M)

]
≥ CR,M(W, t) (38)

with

CR,M(W, t) := min
{

tr[V W ]
∣∣∣ V ≥ J̃−1

t

}

= tr
[

WRe( J̃t)
−1
]

+ tr
∣∣∣
√

W Im( J̃t)
−1

√
W

∣∣∣ . (39)

In particular, when W > 0, the lower bound (39) is attained by the matrix V =
Re( J̃t)

−1 +
√

W
−1|

√
W Im( J̃t)

−1
√

W |
√

W
−1

.
The RLD bound has a particularly tractable form when the model is D-invariant:
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Definition 1. The model {ρt}t∈� is D-invariant at t when the space spanned by the SLD
operators is invariant under the linear map Dt . For any operator X , Dt(X) is defined via
the following equation

ρtDt(X) + Dt(X)ρt

2
= i[X, ρt ] (40)

where [A, B] = AB − B A denotes the commutator. When the model is D-invariant at
any point, it is simply called D-invariant.

For a D-invariant model, the RLD quantum Fisher information can be computed in
terms of the D-matrix, namely the skew-symmetric matrix defined as

(Dt) j,k := i Tr
[
ρt [L j , Lk]

]
. (41)

Precisely, the RLD quantum Fisher information has the expression [5]

(
J̃t

)−1 = (Jt)
−1 +

i

2
(Jt)

−1 Dt (Jt)
−1 . (42)

Hence, (39) becomes

CR,M(W, t) = tr
[

W (Jt)
−1
]

+
1

2
tr
∣∣∣
√

W (Jt)
−1 Dt (Jt)

−1
√

W

∣∣∣ . (43)

For D-invariant models, the RLD bound is larger and thus it is a better bound than the
bound derived by using the SLD Fisher information matrix (the SLD bound). However,
in the one-parameter case, when the model is not D-invariant, the RLD bound is not
tight, and it is common to use the SLD bound in the one-parameter case. Hence, both
quantum extensions of the Cramér–Rao bound have advantages and disadvantages.

To unify both extensions, Holevo [5] derived the following bound, which improves
the RLD bound when the model is not D-invariant. For a k-component vector X of
operators, define the k × k matrix Z t(X) as

(
Z t(X)

)
i j

:= Tr
[
ρt X i X j

]
. (44)

Then, Holevo’s bound is as follows: for any weight matrix W , one has

inf
M∈UBM

tr
[
W Vt (M)

]
≥ CH,M(W, t)

:= min
X

min
V

{
tr
[
W V

] ∣∣∣ V ≥ Z t(X)
}

(45)

= min
X

tr
[
WRe(Z t(X))

]
+ tr
∣∣∣
√

W Im(Z t(X))
√

W

∣∣∣, (46)

where UBM denotes the set of all unbiased measurements under the model M, V is a
real symmetric matrix, and X = (X i ) is a k-component vector of Hermitian operators
satisfying

Tr

[
X i

∂ρt

∂t j

]∣∣∣∣
t=t0

= δi j , ∀i, j ≤ k. (47)
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CH,M(W, t) is called the Holevo bound. When W > 0, there exists a vector X achieving
the minimum in (45). Hence, similar to the RLD case, the equality in (45) holds for
W > 0 only when

Vt(M) = Re (Z t(X)) +
√

W
−1|

√
W Im (Z t(X))

√
W |

√
W

−1
. (48)

Moreover, we have the following proposition.

Proposition 1 ([15, Theorem 4]). Let S = {ρt}t∈� be a generic k-parameter qudit

model and let S ′ = {ρt, p}t, p be a k′-parameter model containing S as ρt = ρ(t,0).

When S ′ is D-invariant and the inverse J̃−1
t ′ of the RLD Fisher information matrix of

the model S ′ exists, we have

CH,M(W, t) = min
X :M′

min
V

{
tr
[
W V

] ∣∣∣ V ≥ Z t(X)
}

(49)

= min
P

{
tr
[

PT W P(J−1
t ′ )
]

+
1

2
tr
∣∣∣
√

PT W P J−1
t ′ Dt ′ J

−1
t ′

√
PT W P

∣∣∣
}

.

(50)

In (49), minX :M′ denotes the minimum for vector X whose components X i are linear

combinations of the SLDs operators in the model M′. In (50), the minimization is taken

over all k × k′ matrices satisfying the constraint (P)i j := δi j for i, j ≤ k, Jt ′ and Dt ′

are the SLD Fisher information matrix and the D-matrix [cf. Eqs. (35) and (41)] for the

extended model S ′ at t ′ := (t, 0).

The Holevo bound is always tighter than the RLD bound:

CR,M(W, t) ≤ CH,M(W, t) . (51)

The equality holds if and only if the model M is D-invariant [37].
In the above proposition, it is not immediately clear whether the Holevo bound

depends on the choice of the extended model S ′. In the following, we show that there
is a minimum D-invariant extension of S, and thus the Holevo bound is independent
of the choice of S ′. The minimum D-invariant subspace in the space of Hermitian
matrices is given as follows. Let V be the subspace spanned SLDs {L i } of the original

model M at ρt . Let V ′ be the subspace spanned by ∪∞
j=0D

j
t (V). Then, the subspace

V ′ is D-invariant and contains V . What remains is to show that V ′ is the minimum D-
invariance subspace. Let V ′′ be the orthogonal space with respect to V ′ for the inner
product defined by Tr ρX†Y . We denote by P ′ and P ′′ the projections into V ′ and
V ′′ respectively. Each component X i of a vector of operators X can be expressed as
X i = P ′ X i + P ′′ X i . Then, the two vectors X ′ := (P ′ X i ) and X ′′ := (P ′′ X i ) satisfy
the inequality Z t(X) = Z t(X ′) + Z t(X ′′) ≥ Z t(X ′). Substituting Eq. (35) into Eq. (47)
and noticing that P ′′ X i has no support in V , we get that only the part P ′ X i contributes
the condition (47) and the minimum in (46) is attained when X ′′ = 0. Hence, the
minimum is achieved when each component of the vector X is included in the minimum
D-invariant subspace V ′. Therefore, since the minimum D-invariant subspace can be
uniquely defined, the Holevo bound does not depend on the choice of the D-invariant
model S ′ that extends S.
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3.2. Classical and quantum Gaussian states. For a classical system of dimension dC,
a Gaussian state is a dC-dimensional normal distribution N [αC, Γ C] with mean αC

and covariance matrix Γ . The corresponding random variable will be denoted as Z =
(Z1, . . . , ZdC) and will take values z = (z1, . . . , zdC) ∈ R

dC
.

For quantum systems we will restrict our attention to a subfamily of Gaussian states,
known as displaced thermal states. For a quantum system made of a single mode, the
displaced thermal states are defined as

ρα,β := T Q
α ρthm

β (T Q
α )†, T Q

α = exp(αâ† − ᾱâ) , (52)

where α ∈ C is the displacement, T
Q
α is the displacement operator, â is the annihilation

operator satisfying the relation [â, â†] = 1, and ρthm
β is a thermal state, defined as

ρthm
β := (1 − e−β)

∞∑

j=0

e− jβ | j〉〈 j | , (53)

where the basis {| j〉} j∈N consists of the eigenvectors of â†â and β ∈ (0,∞) is a real
parameter, hereafter called the thermal parameter.

For a quantum system of dQ modes, the products of single-mode displaced thermal
states will be denoted as

Φ[αQ,βQ] :=
d Q⊗

j=1

ρα j ,β j
(54)

where αQ = (α j )
dQ

j=1 is the vector of displacements and βQ = (β j )
dQ

j=1 is the vector

of thermal parameters. In the following we will regard α as a vector in R
2dQ

, using the
notation α = (αR

1 , αI
1, . . . , α

R
dQ , αI

dQ), αR
j := Re(α j ), αI

j := Im(α j ).

For a hybrid system of dC classical variables and dQ quantum modes, we define the
canonical classical–quantum (c–q) Gaussian states G[α, Γ ] as

G[α, Γ ] := N [αC, Γ C] ⊗ Φ[αQ,βQ] , (55)

with α = αC ⊕ αQ ∈ R
dC+2dQ

, αC ∈ R
dC

, αQ ∈ R
2dQ

, and Γ = Γ C ⊕ Γ Q, where

Γ Q := EdQ (N) +
i

2
ΩdQ ,

EdQ(N) :=

⎛
⎜⎜⎜⎜⎝

N1 0
0 N1

. . .

NdQ 0
0 NdQ

⎞
⎟⎟⎟⎟⎠

N j := e−β j

1 − e−β j
(56)

ΩdQ :=

⎛
⎜⎜⎜⎜⎝

0 1
−1 0

. . .

0 1
−1 0

⎞
⎟⎟⎟⎟⎠

. (57)
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Equivalently, the canonical Gaussian states can be expressed as

G[α, Γ ] = Tα G[0, Γ ] T †
α , (58)

where Tα is the Gaussian shift operator

Tα :=

⎛
⎝

dC⊗

k=1

T C
αC

k

⎞
⎠⊗

⎛
⎝

dQ⊗

j=1

T
Q

α
Q
j

⎞
⎠ , (59)

T
Q

α
Q
k

is given by Eq. (52), and T C
αC

j

is the map z j → z j + αC
j . For the classical part, we

have adopt the notation

Tr

⎡
⎣N [αC, Γ C] exp

⎛
⎝

dC∑

j=1

iξ j Z j

⎞
⎠
⎤
⎦ :=

∫
dz1 . . . dzdC N [αC, Γ C](z) exp

⎛
⎝

dC∑

j=1

iξ j z j

⎞
⎠ .

With this notation, the canonical Gaussian state G[α, Γ ] is uniquely identified by the
characteristic equation [5]

Tr

⎡
⎣G[α, Γ ] exp

⎛
⎝

d∑

j=1

iξ j R j

⎞
⎠
⎤
⎦ = exp

⎡
⎣i
∑

j

ξ jα j − 1

2

∑

j,k

ξ jξk Re[Γ j,k]

⎤
⎦ , (60)

with

d := dC + 2dQ

R j := Z j , ∀ j ∈ {1, . . . , dC}

R2 j−1 := Q j :=
a j + a

†
j√

2
, R2 j := Pj :=

a j − a
†
j√

2i
, ∀ j ∈

{
dC + 1, . . . , d

}
.

(61)

The formulation in terms of the characteristic equation (60) can be used to generalize
the notion of canonical Gaussian state [38]. Given a d-dimensional Hermitian matrix
(correlation matrix) Γ = Re(Γ ) + i Im(Γ ) whose real part Re(Γ ) is positive semi-
definite, we define the operators R := (R1, . . . , Rd) via the commutation relation

[Rk, R j ] = i Im(Γk, j ). (62)

We define the general Gaussian state G[α, Γ ] on the operators R as the linear functional
on the operator algebra generated by R1, . . . , Rd satisfying the characteristic equation
(60) [38]. Note that, although Γ is not necessarily positive semi-definite, its real part
Re(Γ ) is positive semi-definite. Hence, the right-hand-side of Eq. (60) is contains a
negative semi-definite quadratic form, in the same way as for the standard Gaussian
states.

For general Gaussian states, we have the following lemma.

Lemma 3. Given a Hermitian matrix Γ , there exists an invertible real matrix T such

that the Hermitian matrix T Γ T T is the correlation matrix of a canonical Gaussian state.

In particular, when Im(Γ ) is invertible, T Γ T T = Ed Q (N) + i
2Ωd Q and the vector β

is unique up to the permutation. Further, when two matrices T and T̃ satisfy the above

condition, the canonical Gaussian states G[T −1α, T Γ T T ] and G[T̃ −1α, T̃ Γ T̃ T ] are

unitarily equivalent.
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The proof is provided in “Appendix C”.
In the above lemma, we can transform Γ into the block form Γ C ⊕Γ Q where Γ C is

real by applying orthogonal transformation. The unitary operation on the classical part
is given as a scale conversion. Hence, an invertible real matrix T can be realized by the
combination of a scale conversion and a linear conversion, which can be implemented
as a unitary on the Hilbert space. Hence, a general Gaussian state can be given as the
resultant linear functional on the operator algebra after the application of the linear con-
version to a canonical Gaussian state. This kind of construction is unique up to unitarily
equivalence. Indeed, Petz [38] showed a similar statement by using Gelfand–Naimark–
Segal (GNS) construction. Our derivation directly shows the uniqueness without using
the GNS construction.

Lemma 4. The Gaussian states family {G[α, Γ ]}α is D-invariant. The SLDs are calcu-

lated as Lα, j =
∑d

k=1((Re(Γ ))−1) j,k Rk . The D-operator at any point α is given as

D(R j ) =
∑

k 2Im(Γ ) j,k Rk . The inverse of the RLD Fisher information matrix J̃α is

calculated as

( J̃α)−1 = Γ. (63)

This lemma shows the inverse of the RLD Fisher information matrix is given by the
correlation matrix.

Proof. Due to the coordinate conversion give in Lemma 3, it is sufficient to show the
relation (63) for the canonical Gaussian states family. In that case, the desired statement
has already been shown by Holevo in [5]. ⊓⊔

Therefore, as shown in “Appendix D”, a D-invariant Gaussian model can be charac-
terized as follows:

Lemma 5. Given an d ×d strictly positive-definite Hermitian matrix Γ = A + i B (A, B

are real matrices) and a d × k real matrix T with k ≤ d, the following conditions are

equivalent.

(1) The linear submodel M := {G[T t, Γ ]}t∈Rk (with displacement T t) is D-invariant.

(2) The image of the linear map A−1T is invariant for the application of B.

(3) There exist a unitary operator U and a Hermitian matrix Γ0 such that

U G[T t, Γ ]U † = G[t, ΓT ] ⊗ G[0, Γ0], (64)

where ΓT := (T T A−1T )−1 + i(T T A−1T )−1(T T BT )(T T A−1T )−1.

3.3. Measurements on Gaussian states family. We discuss the stochastic behavior of
the outcome of the measurement on the c–q system generated by R = (R j )

d
j=1 when

the state is given as a general Gaussian state G[α, Γ ]. To this purpose, we introduce the

notation ℘α|M (B) := Tr
[
G[α, Γ ]M(B)

]
for a POVM M . Then, we have the following

lemma.

Lemma 6. Let X = (X i )
k
i=1 be the vector defined by X i :=

∑d
j=1 Pi, j R j , where P is

a real k × d matrix. For a weighted matrix W > 0, there exists a POVM MΓ
P|W with
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outcomes in R
k such that

∫
xi MΓ

P|W (dx) = X i and ℘α|MΓ
P|W

is the normal distribution

with average (
∑d

j=1 Pi, jα j )
k
i=1 and covariance matrix

Re(Zα(X)) +
√

W
−1|

√
W Im(Zα(X))

√
W |

√
W

−1
.

In this case, the weighted covariance matrix is

tr
[
WRe(Zα(X))

]
+ tr
∣∣∣
√

W Im(Zα(X))
√

W

∣∣∣.

The proof is provided in “Appendix E”.
In the above lemma, when X = R, we simplify MΓ

P|W to MΓ
W . This lemma is useful

for estimation in the Gaussian states family M′ := {G[t, Γ ]}t∈Rd . In this family, we
consider the covariant condition.

Definition 2. A POVM M is a covariant estimator for the family {G[t, Γ ]}t∈Rk when the
distribution ℘t|M (B) := Tr G[t, Γ ]M(B) satisfies the condition ℘0|M (B) = ℘t|M (B+ t)
for any t . This condition is equivalent to

M(B + t) = Tt M(B)T
†
t ∀t ∈ R

k .

Then, we have the following lemma for this Gaussian states family.

Corollary 1 ([5]). For any weight matrix W ≥ 0 and the above Gaussian states family

M′, we have

inf
M∈UBM′

tr
[
W Vt(M)

]
= inf

M∈CUBM′
tr
[
W Vt(M)

]

= CR,S ′(W, t) = tr
[
Re(Γ )W

]
+ tr
∣∣∣
√

W Im(Γ )
√

W

∣∣∣, (65)

where CUBM′ are the sets of covariant unbiased estimators for the model M′, respec-

tively. Further, when W > 0, the above infimum is attained by the covariant unbiased

estimators MΓ
W whose output distribution is the normal distribution with average t and

covariance matrix Re((Γ ) +
√

W
−1|

√
W Im(Γ )

√
W |

√
W

−1
.

This corollary can be shown as follows. Due to Lemma 4, the lower bound (43)
of the weighted MSE tr W Vt(M) of unbiased estimator M is calculated as the RHS
of (65). Lemma 6 guarantees the required performance of MΓ

W . To discuss the case
when W is not strictly positive definite, we consider Wǫ := W + ǫ I . Using the above
method, we can construct an unbiased and covariant estimator whose output distri-
bution is the 2d Q-dimensional distribution of average t and covariance Re((Γ ) +√

Wǫ
−1|

√
Wǫ Im(Γ )

√
Wǫ |

√
Wǫ

−1
. The weighted MSE matrix is tr

[
WRe(Γ )

]
+ tr

[√
Wǫ

−1
W

√
Wǫ

−1|
√

Wǫ Im(Γ )
√

Wǫ |
]
, which converges to the bound (65).

By combining Proposition 1, this corollary can be extended to a linear subfamily of
k′-dimensional Gaussian family {G[t ′, Γ ]}t ′∈Rk′ . Consider a linear map T from R

k to

R
k′

. We have the following corollary for the subfamily M := {G[T (t), Γ ]}t∈Rk .
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Corollary 2. For any weight matrix W ≥ 0, we have

inf
M∈UBM

tr
[
W Vt(M)

]
= inf

M∈CUBM

tr
[
W Vt(M)

]
= CH,M(W, t). (66)

Further, when W > 0, we choose a vector X to realize the minimum in (49). The above

infimum is attained by the covariant unbiased estimators MW whose output distribu-

tion is the normal distribution with average t and covariance matrix Re((Z t(X)) +√
W

−1|
√

W Im(Z t(X))
√

W |
√

W
−1

.

Proposition 1 guarantees that CH,M(W, t) with (49) can be given when the com-
ponents X are given a linear combination of R1, . . . , Rk′ . Hence, the latter part of the
corollary with W > 0 follows from (45) and Lemma 6, implies this corollary for W > 0.
The case with non strictly positive W can be shown by considering Wǫ in the same way
as Corollary 1.

4. Local Asymptotic Normality

The extension from one-parameter estimation to multiparameter estimation is quite non-
trivial. Hence we first develop the concept of local asymptotic normality which is the
key tool to constructing the optimal measurement in multiparameter estimation. Since
we could derive the tight bound of MSE for the Gaussian states family, it is a natural
idea to approximate the general case by Gaussian states family, and local asymptotic
normality will serve as the bridge between these general qudit families and Gaussian
state families.

4.1. Quantum local asymptotic normality with specific parametrization. For a quantum
system of dimension d < ∞, also known as qudit, we consider generic states, described
by density matrices with full rank and non-degenerate spectrum. To discuss quantum
local asymptotic normality, we need to define a specific coordinate system. For this aim,
we consider the neighborhood of a fixed density matrix ρθ0 , assumed to be diagonal in
the canonical basis of C

d , and parametrized as

ρθ0 =
d∑

j=1

θ0, j | j〉〈 j |

with spectrum ordered as θ0,1 > · · · > θ0,d−1 > θ0,d > 0. In the neighborhood of ρθ0 ,
we parametrize the states of the system as

ρθ0+ θ√
n

= Uθ R ,θ I ρ0(θ
C ) U

†

θ R ,θ I (67)

for θ := (θC , θ R, θ I ) with (θ R, θ I ) ∈ R
d(d−1) and θC ∈ R

d−1, where ρ0(θ
C ) is the

diagonal density matrix

ρ0(θ
C ) =

d∑

j=1

(
θ0, j +

θC
j√
n

)
| j〉〈 j |, θC

d := −
d−1∑

k=1

θC
k , (68)
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and Uθ R ,θ I is the unitary matrix defined by

Uθ R ,θ I = exp

⎡
⎣ ∑

1≤ j<k≤d

i
(
θ I

j,k F I
j,k + θR

j,k FR
k, j

)

√
n(θ0, j − θ0,k)

⎤
⎦ . (69)

Here θ R and θ I are vectors of real parameters (θ R
j,k)1≤ j<k≤d and (θ I

j,k)1≤ j<k≤d , and F I

(FR) is the matrix defined by (F I) j,k := iδ j,k − iδk, j ((FR)k, j := δ j,k + δk, j ), where
δ j,k is the delta function. We note that by this definition the components of θ R and θ I

are in one-to-one correspondence. The parameter θ = (θC , θ R, θ I ) will be referred to
as the Q-LAN coordinate, and the state with this parametrization, which was used by
Khan and Guta in [16,17,39], will be denoted by ρKG

θ
.

Q-LAN establishes an asymptotic correspondence between multicopy qudit states
and Gaussian shift models. Using the parameterization θ = (θC , θ R, θ I ), we have the
multicopy qudit models and Gaussian shift models are equivalent in terms of the RLD
quantum Fisher information matrix:

Lemma 7. The RLD quantum Fisher information matrices of the qudit model and the

corresponding Gaussian model in Eq. (75) are both equal to

(
J̃

Q

θ

)−1
= Ed(d−1)/2

(
β ′) +

i

2
Ωd(d−1)/2 e−β ′

i = 1

4
coth

βi

2
. (70)

The calculations can be found in “Appendix F”. The quantum version of local asymptotic
normality has been derived in several different forms [16,17,39] with applications in
quantum statistics [12,40], benchmarks [41] and data compression [42]. Here we use
the version of [17], which states that n identical copies of a qudit state can be locally
approximated by a c–q Gaussian state in the large n limit. The approximation is in the
following sense:

Definition 3 (Compact uniformly asymptotic equivalence of models). For every n ∈ N
∗,

let {ρt,n}t∈�n and {ρ̃t,n}t∈�n be two models of density matrices acting on Hilbert spaces
H and K respectively where the set of parameters �n may depend on n. We say that
the two families are asymptotically equivalent for t ∈ �n , denoted as ρt,n

∼= ρ̃t,n (t ∈
�n), if there exists a quantum channel Tn (i.e. a completely positive trace preserving
map) mapping trace-class operators on H to trace-class operators on K and a quantum
channel Sn mapping trace-class operators on K to trace-class operators on H, which are
independent of t and satisfy the conditions

sup
t∈�n

∥∥Tn

(
ρt,n

)
− ρ̃t,n

∥∥
1

n→∞−−−→ 0 (71)

sup
t∈�n

∥∥ρt,n − Sn

(
ρ̃t,n

)∥∥
1

n→∞−−−→ 0 . (72)

Next, we extend asymptotic equivalence to compact uniformly asymptotic equiva-
lence. In this extension, we also describe the order of the convergence.

Given a sequence {an} converging to zero, for every t ′ in a compact set K consider two
models {ρt,t ′,n}t∈�n , and {ρ̃t,t ′,n}t∈�n . We say that they are asymptotically equivalent

for t ∈ �n compact uniformly with respect to t ′ with order an , denoted as ρt,t ′,n

t ′∼=
ρ̃t,t ′,n (t ∈ �n, an), if for every t ′ ∈ K there exists a quantum channel Tn,t ′ mapping



244 Y. Yang, G. Chiribella, M. Hayashi

trace-class operators on H to trace-class operators on K and a quantum channel Sn,t ′

mapping trace-class operators on K to trace-class operators on H such that

sup
t ′∈K

sup
t∈�n

‖Tn,t ′(ρt,t ′,n) − ρ̃t,t ′,n‖1 = O(an) (73)

sup
t ′∈K

sup
t∈�n

‖ρt,t ′,n − Sn,t ′(ρ̃t,t ′,n)‖1 = O(an). (74)

Notice that the channels Tn,t ′ and Sn,t ′ depend on t ′ and are independent of t .

In the above terminology, Q-LAN establishes an asymptotic equivalence between
families of n copy qudit states and Gaussian shift models. Precisely, one has the follow-
ing.

Proposition 2 (Q-LAN for a fixed parameterization; Kahn and Guta [16,17]). For any

x < 1/9, we define the set �n,x of θ as

�n,x :=
{
θ | ‖θ‖ ≤ nx

}

(‖·‖denotes the vector norm). Then, we have the following compact uniformly asymptotic

equivalence;

(ρKG
θ0+θ/

√
n
)⊗n

θ0∼= G[θ , Γθ0 ] := N [θC , Γ C
θ0

] ⊗ Φ[(θ R, θ I ),βθ0
] (θ ∈ �n,x , n−κ ),

(75)

where κ is a parameter to satisfy κ ≥ 0.027, and N [θC , Γθ0 ] is the multivariate nor-

mal distribution with mean θC and covariance matrix Γθ0,k,l := (J−1
θ0

)k,l for k, l =
1, . . . , d − 1, and (β)θ0, j,k := (ρθ0 )k,k

(ρθ0 ) j, j
.

The conditions (73) and (74) are not enough to translate precision limits for one
family into precision limits for the other. This is because such limits are often expressed
in terms of the derivatives of the density matrix, whose asymptotic behaviour is not fixed
by (73) and (74). In the following we will establish an asymptotic equivalence in terms
of the RLD quantum Fisher information.

4.2. Quantum local asymptotic normality with generic parametrization. In the follow-
ing, we explore to which extent can we extend Q-LAN in Proposition 2. Precisely, we
derive a Q-LAN equivalence as in Eq. (75) which is not restricted to the parametrization
of Eqs. (68) and (69).

In the previous subsection, we have discussed the specific parametrization given
in (67). In the following, we discuss a generic parametrization. Given an arbitrary D-
invariant model ρ⊗n

t0+ t√
n

with vector parameter t , we have the following theorem.

Theorem 3 (Q-LAN for an arbitrary parameterization). Let {ρt}t∈� be a k-parameter

D-invariant qudit model. Assume that ρt0 is a non-degenerate state, the parametrization

is C2 continuous, and J̃−1
t0

exists. Then, there exist a constant c(t0) such that the set

�n,x,c(t0) :=
{

t | ‖t‖ ≤ c(t0)n
x
}

(76)
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with x < 1/9 satisfies

ρ⊗n

t0+ t√
n

t0∼= G[t, J̃−1
t0

] (t ∈ �n,x,c(t0) ∩ R
k, n−κ ), (77)

where J̃−1
t0

is the RLD Fisher information at t0 and κ is a parameter to satisfy κ ≥ 0.027.

Proof. We choose the basis {|i〉}d
i=1 to diagonalize the state ρt0 . We denote the Q-LAN

parametrization based on this basis by ρ
KG|t0
θ

, where this parametrization depends on t0.
It is enough to consider the neighborhood U (t0) of t0. There exists a map f t0 on U (t0)

such that ρt0+t = ρ
KG|t0
θ0(t0)+ f t0 (t)

, where θ0(t0) is the parameter to describe the diagonal

elements of ρt0 . Since the parametrization ρt is C2-continuous, the function f is also
C2-continuous. Proposition 2 guarantees that

ρ⊗n

t0+t/
√

n
=
(
ρ

KG|t0

θ0(t0)+ f t0 (t/
√

n)

)⊗n

θ0∼= G[
√

n f t0(t/
√

n), Γθ0(t0)] (t ∈ �n,x,c(t0) ∩ R
k, n−κ ) (78)

with suitable choice of the constant c(t0). Denoting by f ′
t0

the Jacobian matrix of f t0 ,

since f is C2-continuous and f t0(0) = 0, the norm ‖√n f t0(t/
√

n)− f ′
t0

(0)t‖1 is evalu-

ated as O(
‖t‖2
√

n
). Hence, the trace norm‖G[√n f t0(t/

√
n), Γθ0(t0)]−G[ f ′

t0
(0)t, Γθ0(t0)]‖1

is also O(
‖t‖2
√

n
), which is at most O(n−5/18) because t ∈ �n,x,c(t0). Since O(n−5/18) is

smaller than n−κ , the combination of this evaluation and (78) yields

ρ⊗n

t0+t/
√

n

θ0∼= G[ f ′
t0

(0)t, Γθ0(t0)] (t ∈ �n,x,c(t0) ∩ R
k, n−κ ). (79)

The combination of Lemma 5 and (79) implies (77).

5. The ǫ-Difference RLD Fisher Information Matrix

In Sect. 2.1 we evaluated the limiting distribution in the one-parameter case, using the
fidelity as a discretized version of the SLD Fisher information. In order to tackle the
multiparameter case, we need to develop a similar discretization for the RLD Fisher
information matrix, which is the relevant quantity for the multiparameter setting (cf.
Sect. 3). In this section we define a discretized version of the RLD Fisher information
matrix, extending to the multiparameter case the single-parameter definition introduced
by Tsuda and Matsumoto [25], who in turn extended the corresponding classical notion
[43,44].

5.1. Definition. Let M = {ρt}t∈� be a k-parameter model, with the property that
ρt0 is invertible. If the parametrization ρt is differentiable, the RLD quantum Fisher
information matrix J̃t can be rewritten as the following k × k matrix

(
J̃t0

)
i j

= Tr
[

L̃
†
jρt0 L̃ i

]
= Tr

[
∂ρt

∂t j

∣∣∣∣
t=t0

ρ−1
t0

∂ρt

∂ti

∣∣∣∣
t=t0

]
. (80)
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The ǫ-difference RLD quantum Fisher information matrix J̃t0,ǫ is defined by replac-
ing the partial derivatives with finite increments:

(
J̃t0,ǫ

)
i, j

:= Tr

[(
ρt0+ǫei

− ρt0

ǫ

)
ρ−1

t0

(
ρt0+ǫe j

− ρt0

ǫ

)]

=
Tr
[
ρt0+ǫei

ρ−1
t0

ρt0+ǫe j

]
− 1

ǫ2
, (81)

where e j is the unit vector with 1 in the j-th entry and zero in the other entries. Notice
that one has

(
J̃t0,ǫ

)
i,i

=
exp
[
D2(ρt0+ǫei

||ρt0)
]

− 1

ǫ2
, (82)

where D2(ρ||σ) := log Tr
[
ρ2σ−1

]
is the (Petz’s) α-Renyi entropy for α = 2.

When the parametrization ρt is differentiable, one has

lim
ǫ→0

J̃t0,ǫ = J̃t0 , (83)

where J̃t0 is the RLD quantum Fisher information matrix (80).
When the parametrization is not differentiable, we define the RLD Fisher information

matrix J̃t0 to be the limit (83), provided that the limit exists. All throughout this section,
we impose no condition on the parametrization ρt , except for the requirement that ρt0

be invertible.

5.2. The ǫ-difference RLD Cramér–Rao inequality. A discrete version of the RLD
quantum Cramér–Rao inequality can be derived under the assumption of ǫ-locally un-

biasedness, defined as follows:

Definition 4. A POVM M with outcomes in R
k is ǫ-locally unbiased at t0 if the expec-

tation value E t0(M) satisfies the conditions

E t0(M) = t0, and E t0+ǫe j
(M) = t0 + ǫe j ∀ j ∈ {1, . . . , k} .

Under the ǫ-locally unbiasedness condition, Tsuda et al. [25] derived a lower bound
on the MSE for the one-parameter case. In the following theorem, we extend the bound
to the multiparameter case.

Theorem 4 (ǫ-difference RLD Cramér–Rao inequality). The MSE matrix for an ǫ-

locally unbiased POVM M at t0 satisfies the bound

Vt0(M) ≥ ( J̃t0,ǫ)
−1. (84)

Proof. For simplicity, we assume that t0 = 0. For two vectors a ∈ C
k and b ∈ C

k ,

we define the two observables X :=
∫ ∑

i ai xi M(dx) and Y :=
∑

j b j

ρt0+ǫe j
−ρt0

ǫ
ρ−1

t0
.
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Then, the Cauchy-Schwartz inequality implies

Tr
[

X† X ρt0

]
Tr
[
Y †Y ρt0

]
≥
∣∣∣Tr
[

X†Yρt0

]∣∣∣
2

=

∣∣∣∣∣∣

∑

i, j

ai b j

∫
xi Tr

[
M(dx)

ρt0+ǫe j
− ρt0

ǫ

]∣∣∣∣∣∣

2

= |〈a|b〉|2 , (85)

the second equality following from ǫ-locally unbiasedness at t0. Note that one has
Tr[Y †Yρt0 ] = 〈b| J̃t0,ǫ |b〉 and

〈a|Vt0(M)|a〉 − Tr
[

X† Xρt0

]
=
∫

Tr

⎡
⎣
(∑

i

ai xi − X
)†(∑

j

a j x j − X
)

M(dx)ρt0

⎤
⎦

≥ 0 . (86)

Choosing b := ( J̃t0,ǫ)
−1a, we have

〈a|Vt0(M)|a〉 〈a| J̃−1
t0,ǫ

|a〉 ≥ Tr
[

X† X ρt0

]
Tr
[
Y †Y ρt0

]

≥
∣∣∣Tr
[

X†Yρt0

]∣∣∣
2

=
∣∣∣〈a|( J̃t0,ǫ)

−1|a〉
∣∣∣
2

, (87)

which implies 〈a|Vt0(M)|a〉 ≥ 〈a|( J̃t0,ǫ)
−1|a〉. Since a is arbitrary, the last inequality

implies (84).

We will call (84) the ǫ-difference RLD Cramér–Rao inequality.
The ǫ-difference RLD Cramér–Rao inequality can be used to derive an information

processing inequality, which states that the ǫ-difference RLD Fisher information matrix
is non-increasing under the application of measurements. For a family of probability
distributions {Pt}t∈�, we assume that Pt+ǫe j

is absolutely continuous with respect to Pt

for every j . Then, the ǫ-difference RLD Fisher information is defined as

(
Jt,ǫ

)
i j

:=
∫ (

pt+ǫe j
(x) − 1

ǫ

) (
pt+ǫe j

(x) − 1

ǫ

)
Pt(dx) (88)

where pt+ǫe j
and pt+ǫei

are the Radon–Nikodým derivatives of Pt+ǫe j
and Pt+ǫei

with
respect to Pt , respectively. We note that the papers [43,44] defined its one-parameter
version when the distributions are absolutely continuous with respect to the Lebesgue
measure. Hence, when an estimator t̂ for the distribution family {Pt}t∈� is ǫ-locally
unbiased at t0, in the same way as (84), we can show the ǫ-difference Cramér–Rao
inequality;

Vt0 [t̂] ≥ (Jt0,ǫ)
−1. (89)

For a family of quantum states {ρt}t∈� and a POVM M , we denote by J M
t,ǫ the

ǫ-difference Fisher information matrix of the probability distribution family {P M
t }t∈�

defined by P M
t := Tr

[
Mρt

]
. With this notation, we have the following lemma:
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Lemma 8. For every family of quantum states {ρt }t∈� and every POVM M, one has the

information processing inequality

J̃t0,ǫ ≥ J M
t0,ǫ , (90)

where J̃t0,ǫ is the ǫ-difference RLD Fisher information of the model {ρt}t∈�.

Proof. Consider the estimation of t from the probability distribution family {P M
t }t∈�.

Following the same arguments used for the achievability of the Cramér–Rao bound with
locally unbiased estimators (see, for instance, Chapter 2 of Ref. [34]), it is possible to
show that there exists an ǫ-locally unbiased estimator t̂ at t0 such that

Vt0

(
t̂
)

= (J M
t0,ǫ)

−1 . (91)

Combining the POVM M with the ǫ-locally unbiased estimator t̂ we obtain a new POVM
M ′, which is ǫ-locally unbiased. Applying Theorem 4 to the POVM M ′ we obtain

( J̃t0,ǫ)
−1 ≤ Vt0

(
M ′) = Vt0

(
t̂
)

= (J M
t0,ǫ

)−1 , (92)

which implies (90). ⊓⊔

We stress that (90) is a matrix inequality for Hermitian matrices: in general, J̃t0,ǫ

has complex entries. Also note that any classical process can be regarded as a POVM.
Hence, in the same way as (90), using the ǫ-difference Cramér–Rao inequality (89), we
can show the inequality

Jǫ ≥ J ′
ǫ (93)

for an classical process E when Jǫ is the ǫ-difference Fisher information matrix on the
distribution family {Pt }t∈� and J ′

ǫ is the ǫ-difference Fisher information matrix on the
distribution family {E(Pt)}t∈�.

5.3. Extended models. The lemmas in the previous subsection can be generalized to the
case where an extended model M′ := {ρt ′}t ′=(t, p) contains the original model M as
ρt = ρ(t,0). Choosing t ′0 = (t0, 0), we denote the ǫ-difference RLD Fisher information

matrix at t ′0 for the family M′ by J̃t ′0,ǫ
.

Lemma 9. For an ǫ-locally unbiased estimator M at t ′0, there exists a k × k′ matrix P

such that Pi j = δi j for i, j ≤ k and

Vt0(M) ≥ P J̃−1
t ′0,ǫ

PT .

Proof of Lemma 9. For an ǫ-locally unbiased estimator M at t0, there exists a k × k′

matrix P such that

Pi j = δi j for i, j ≤ k (94)

ǫPi j =
∫

xi Tr M(dx)(ρt ′0+ǫe j
− ρt ′0

) for i ≤ k, k + 1 ≤ j ≤ k′. (95)
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Now, we introduce a new parametrization ρ̃η := ρt ′0+
∑

i, j ηi P−1
j,i e j

. Since
∂θ j

∂ηi
= P−1

j,i , the

ǫ-difference RLD quantum Fisher information under the parameterη is (P−1)T J̃t ′0,ǫ P−1.
Applying Theorem 4 to the parameter η, we obtain

Vt0(M) ≥ P J̃−1
t ′0,ǫ

PT . (96)

Combining (94) and (96), we obtain the desired statement.

In the same way as Lemmas 8, 9 yields the following lemma.

Lemma 10. For any POVM M, there exists a k × k′ matrix P such that Pi j = δi j for

i, j ≤ k and

(J M
t0,ǫ

)−1 ≥ P J̃−1
t ′0,ǫ

PT . (97)

5.4. Asymptotic case. We denote by J̃ n
t0,ǫ

the ǫ-difference RLD Fisher information ma-

trix of the n-copy states {ρ⊗n
t }t∈�.

In the following we provide the analogue of Lemma 1 for the RLD Fisher information
matrix.

Lemma 11. When the parametrization is C1 continuous, the following relations hold

lim
n→∞

1

n
J̃ n

t0, ǫ√
n

= J̃
[ǫ]
t0

(98)

lim
ǫ→0

J̃
[ǫ]
t0

= J̃t0 , (99)

where J
[ǫ]
t0

is the matrix defined by
(

J̃
[ǫ]
t0

)
i, j

:= 1
ǫ2

[
e
ǫ2
(

J̃t0

)
i, j − 1

]
.

Proof of Lemma 11. Eq. (99) holds trivially. Using (83), we have

lim
n→∞

1

n

(
J̃ n

t0, ǫ√
n

)

i, j

= lim
n→∞

1

ǫ2

(
Tr

[
ρ⊗n

t0+ ǫ√
n

e j
(ρ⊗n

t0
)−1ρ⊗n

t0+ ǫ√
n

ei

]
− 1

)

= lim
n→∞

1

ǫ2

[(
1 +

ǫ2

n

(
J̃t0

)
i, j

+ O

(
1

n2

))n

− 1

]

= lim
n→∞

1

ǫ2

[(
1 +

ǫ2

n

(
J̃t0

)
i, j

+ O

(
1

n2

))n

− 1

]

= 1

ǫ2

[
e
ǫ2
(

J̃t0

)
i, j − 1

]
,

which implies (98). ⊓⊔
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6. Precision Bounds for Multiparameter Estimation

6.1. Covariance conditions. First, we introduce the condition for our estimators. The
correspondence between qudit states and Gaussian states also extends to the estimator
level. We consider a generic state family M = {ρt }t∈�, with the parameter space �

being an open subset of R
k . Similar to the single-parameter case, given a point t0 ∈ �,

we consider a local model ρn
t0,t

:= ρ⊗n

t0+t/
√

n
. Throughout this section, we assume that

ρt0 is invertible. For a sequence of POVM m := {Mn}, we introduce the condition of
local asymptotic covariance as follows:

Condition 2 (Local asymptotic covariance). We say that a sequence of measurements

m := {Mn} satisfies local asymptotic covariance at t0 ∈ � under the state family M, if

the probability distribution

℘n
t0,t|Mn

(B) := Tr ρ⊗n

t0+ t√
n

Mn

(
B√
n

+ t0

)
(100)

converges to a limiting distribution

℘t0,t|m(B) := lim
n→∞

℘n
t0,t|Mn

(B), (101)

the relation

℘t0,t|m(B + t) = ℘t0,0|m(B) (102)

holds for any t ∈ R
k .2 When we need to express the outcome of ℘n

t0,t|Mn
or ℘t0,t|m, we

denote it by t̂ .
Further, we say that a sequence of measurementsm := {Mn} satisfies local asymptotic

covariance under the state family M when it satisfies local asymptotic covariance at

any element t0 ∈ � under the state family M.

Under these preparations, we obtain the following theorem by using Theorem 3.

Theorem 5. Let {ρ⊗n
t }t∈� be a k-parameter D-invariant qudit model with C2 continuous

parametrization. Assume that J̃−1
t0

exists, ρt0 is a non-degenerate state, and a sequence

of measurements m := {Mn} satisfies local asymptotic covariance at t0 ∈ �. Then there

exists a covariant POVM M̃G such that

Tr M̃G(B)G[t, J̃−1
t0

] = ℘t0,t|m(B) (103)

for any vector t and any measurable subset B. Here J̃t0 is the RLD Fisher information

of the qudit model at t0.

To show Theorem 5, we will use the following lemma.

Lemma 12. For a function f , an operator F, and a c–q Gaussian state in the canonical

form G[α, Γ ], the relation

Tr FG[α, Γ ] = f (α) (104)

2 The range of t is determined via the constraint t0 + t/
√

n ∈ �. Just as in the one-parameter case, t can
take any value in R

k when n is large enough. The range of the local parameter is then t ∈ R
k .
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holds for any vector α if and only if

F =
∫

d y F−1
ξ→ y

⎛
⎝
√

πke
1
4

∑
j

ξ2
j

1−γ j Fα→ξ ( f (α))

⎞
⎠ | y〉〈 y|. (105)

Here ξ and y are k-dimensional vectors, | y〉 is a (multimode) coherent state, γ j are

thermal parameters of the Gaussian, and F−1
ξ→ y

(g) denotes the inverse of the Fourier

transform Fξ→ y(g) :=
∫

dξ eiξ · yg. Therefore, for a given function f (α), there uniquely

exists an operator F to satisfy (104).

The proof can be found in “Appendix G”. Now, we are ready to prove Theorem 5.

Proof of Theorem 5. We consider without loss of generality G[t, J̃−1
t0

] to be in the
canonical form, noticing that any Gaussian state is unitarily equivalent to a Gaussian
state in the canonical form as shown by Lemma 3. For any measurable set B, we define
the operator M̃G(B) as

M̃G(B) :=
∫

d y F−1
ξ→ y

⎛
⎝
√

πke
1
4

∑
j

ξ2
j

1−γ j Ft→ξ

(
℘t0,t|m(B)

)
⎞
⎠ | y〉〈 y|. (106)

From the above definition, it can be verified that M̃G(B) satisfies the definition of a POVM:

first, it is immediate to see that the term F−1
ξ→ y

⎛
⎝√

πke
1
4

∑
j

ξ2
j

1−γ j Ft→ξ

(
℘t0,t|m(B)

)
⎞
⎠

equals the convolution of ℘t0,t|m(B) and a Gaussian function by employing the con-
volution theorem. Since both functions are non-negative, the outcome of convolution
is still non-negative, which implies that M̃G(B) ≥ 0. Second, by linearity we have
M̃G(B1 ∪ B2) = M̃G(B1) + M̃G(B2) for any disjoint sets B1 and B2. Finally, the
equality M̃G(B) can be shown by combining the linearity with the fact that ℘t0,t|m is a
probability distribution function.

Moreover, Lemma 12 guarantees that

Tr M̃G(B)G[t, J̃−1
t0

] = ℘t0,t|m(B). (107)

What remains to be shown is that the POVM {M̃G(B)} satisfies the covariance con-
dition. Eq. (107) guarantees that

Tr Tt ′ M̃
G(B)T

†
t ′ G[t, J̃−1

t0
] = Tr M̃G(B)G[t − t ′, J̃−1

t0
] = ℘t0,t−t ′|m(B),

and

Tr M̃G(B + t ′)G[t, J̃−1
t0

] = ℘t0,t|m(B + t ′) = ℘t0,t−t ′|m(B).

The uniqueness of the operator to satisfy the condition (104) implies the covariance
condition

M̃G(B + t ′) = Tt ′ M̃
G(B)T

†
t ′ .

⊓⊔
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6.2. MSE bound for the D-invariant case. Next, we derive the lower bound of MSE of
the limiting distribution for any D-invariant model. As an extension of the mean square
error, we introduce the mean square error matrix (MSE matrix), defined as

Vi, j [℘] :=
∫

xi x j℘(dx) (108)

for a generic probability distribution ℘. Since the set of symmetric matrices is not totally
ordered, we will consider the minimization of the expectation value tr W V [℘t0,t|m] for
a certain weight matrix W ≥ 0. For short, we will refer to the quantity tr W V [℘t0,t|m]
as the weighted MSE.

Under local asymptotic covariance, one can derive lower bounds on the covariance
matrix of the limiting distribution and construct optimal measurements to achieve them.
In general, the attainability of the conventional quantum Cramér–Rao bounds is a chal-
lenging issue. For instance, a well-known bound is the symmetric logarithmic derivative
(SLD) Fisher information bound

tr W V [℘t0,t|m] ≥ tr W J−1
t0

, (109)

where Jt0 is the SLD Fisher information. The SLD bound is attainable in the single-
parameter case, i.e. when k = 1, yet it is in general not attainable for multiparameter
estimation (see, for instance, later in Sect. 10.1 for a concrete example).

In the following, we derive an attainable lower bound on the weighted MSE. To
this purpose, we define the set LAC(t0) of local asymptotic covariant sequences of
measurements at the point t0 ∈ �. For a model M, we focus on the minimum value

CS(W, t0) := min
m

′∈LAC(t0)
tr W V [℘t0,t|m′ ]. (110)

When k ≥ 2, a better choice is the RLD quantum Fisher information bound. The main
result of this section is an attainable bound on the weighted MSE, relying on the RLD
quantum Fisher information.

Theorem 6 (Weighted MSE bound for D-invariant models). Assume that J̃−1
t0

exists.

Consider any sequence of locally asymptotically covariant measurements m := {Mn}.
The limiting distribution is evaluated as

V [℘t0,t|m] ≥ ( J̃t0)
−1, (111)

where J̃t0 is the RLD quantum Fisher information. When the model is C1 continuous

and D-invariant, we have the bound for the weighted MSE with weight matrix W ≥ 0
of the limiting distribution as

tr W V [℘t0,t|m] ≥ tr W J−1
t0

+
1

2
tr
∣∣∣
√

W J−1
t0

Dt0 J−1
t0

√
W

∣∣∣ , (112)

where Jt0 is the SLD quantum Fisher information (35) and Dt0 is the D-matrix (41).
When S is a D-invariant qudit model and the state ρt0 is not degenerate, we have

CS(W, t0) = tr W J−1
t0

+
1

2
tr
∣∣∣
√

W J−1
t0

Dt0 J−1
t0

√
W

∣∣∣ . (113)
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Moreover, if W > 0 and ℘t0,0|m has a differentiable PDF, the equality in (112) holds if

and only if ℘t0,t|m is the normal distribution with average zero and covariance

Vt0|W := J−1
t0

+
1

2

√
W

−1
∣∣∣
√

W J−1
t0

Dt0 J−1
t0

√
W

∣∣∣
√

W
−1

. (114)

Further, when {ρt }t∈� is a qudit-model with C2 continuous parametrization, the equality

in (112) holds, i.e., there exist a sequence of POVMs M
t0,n
W , a compact set K , and constant

c(t0) such that

lim sup
n→∞

sup
t0∈K

sup
t∈�n,x,c(t0)

nκ‖℘n

t0,t|M
t0,n

W

− N [t, Vt0|W ]‖1 < ∞, (115)

where κ is a parameter to satisfy κ ≥ 0.027.

In the following, we prove Theorem 6 following three steps. The first step is to derive
the bound (112). The second step is to show that, to achieve the equality, the limiting
distribution needs to be a Gaussian with certain covariance. The last step is to find a
measurement attaining the equality. In this way, when the state is not degenerate, we can
construct the measurement using Q-LAN.3

Proof of Theorem 6. Impossibility part4 (Proofs of (111) and (112)):
To give a proof, we focus on the ǫ-difference RLD Fisher information matrix J̃t0,ǫ at

t0 for a quantum states family {ρt}t∈�. We denote the ǫ-difference Fisher information
matrices for the distribution family {℘n

t0,t|Mn
}t and {℘t0,t|m}t by J n

t,ǫ and Jm

t,ǫ , respec-
tively. Also, we employ the notations given Sect. 5.4.

Applying (90) to the POVM Mn , we have

1

n
J̃ n

t0,ǫ/
√

n
≥ J n

0,ǫ, (116)

where J̃ n
t0,ǫ/

√
n

denotes the (ǫ/
√

n)-difference RLD Fisher information matrix of the n-

copy states {ρ⊗n
t }t∈�. Combining the above with (98) of Lemma 11, we find that J n

0,ǫ <

( J̃
[ǫ]
t0

+ I ) for sufficiently large n. Hence, we can apply Lemma 21 (see “Appendix B”)
to the distribution family {℘n

t0,t|Mn
}t . Then, for any complex vector a, we have

lim inf
n→∞

〈a|J n
0,ǫ − Jm

0,ǫ |a〉 ≥ 0. (117)

By taking the limit n → ∞, the combination of (116), (98) of Lemma 11, and (117)
implies

J̃
[ǫ]
t0

≥ Jm

0,ǫ . (118)

Here, in the same way as the proof of Theorem 2, we can assume that the outcome
t̂ satisfies the unbiasedness condition. Hence, the ǫ-difference Carmér–Rao inequality
(89) implies that

V [℘t0,t|m] ≥
(
Jm

0,ǫ

)−1 ≥
(

J̃
[ǫ]
t0

)−1
. (119)

3 We note that state estimation involving degenerate states was only solved in a few special cases (see, e.g.,
[45] for the case of maximally mixed qubits).

4 Note that when the state is not degenerate the proof of the impossibility part of Theorem 6 can be simplified
using the correspondence between n-copy qudit states and Gaussian states as established by the Q-LAN.
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By taking the limit ǫ → 0, (99) of Lemma 11 implies

V [℘t0,t|m] ≥
(

J̃t0

)−1
. (120)

When the model is C1 continuous and D-invariant, adding the conventional discussion
for MSE bounds (see, e.g., Chapter 6 of [5]) to (119), we obtain (112).
Achievability part (Proof of (113)):

Next, we discuss the attainability of the bound when W > 0 and ℘t0,0|m has a
differentiable PDF. In this case, we have the Fisher information matrix Jm

0 of the location
shift family {℘t0,t|m}t . Taking limit ǫ → 0 in (119), we have

V [℘t0,t|m] ≥
(
Jm

0

)−1 ≥
(

J̃t0

)−1
. (121)

The equality of (112) holds if and only if V [℘t0,t|m] = Vt0|W and the equality in the
first inequality of (121) holds. Due to the same discussion as the proof of Theorem 2,
the equality in the first inequality of (121) holds only when all the components of the
logarithmic derivative of the distribution family {℘t0,t|m}t equal the linear combinations
of the estimate of ti . This condition is equivalent to the condition that the distribution
family {℘t0,t|m}t is a distribution family of shifted normal distributions. Therefore, when
W > 0, the equality condition of Eq. (112) is that ℘t0,t|m is the normal distribution with
average zero and covariance matrix Vt0|W .

Now, we assume that the state ρt0 is not degenerate. Then, we use Q-LAN to show
that there always exists a sequence of POVM m = {Mn} satisfying the above property.
We rewrite Eq. (77) of Theorem 3 as follows.

lim sup
n→∞

sup
t0∈K

sup
t∈�n,x,c(t0)

nκ
∥∥∥T QLAN

n

(
ρ⊗n

t0+t/
√

n

)
− G[t, J̃−1

t0
]
∥∥∥

1
< ∞, (122)

where the notation is the same as Theorem 3. Then, we choose the covariant POVM M
J̃−1

t0
W

on the Gaussian system given in Lemma 6. When the POVM M
J̃−1

t0
W applied to the system

with the state G[θ , Γ ], the outcome obeys the distribution N [t, Vt0|W ]. Therefore, due to

(122), when we choose m to be the sequence of POVMs Mn(B) := (T
QLAN

n )†(M
J̃−1

t0
W (B))

satisfies the condition (115).

Notice that when W has null eigenvalues,
√

W
−1

is not properly defined. In this
case, we consider Wǫ := W + ǫ · P⊥

W for ǫ > 0, where P⊥
W is the projection on the

kernel of W , i.e. P⊥
W x = x if and only if W x = 0. Denoting by J−1

ǫ := J−1
t0

+
1
2

√
Wǫ

−1
∣∣∣
√

Wǫ J−1
t0

Dt0 J−1
t0

√
Wǫ

∣∣∣
√

Wǫ
−1

the

tr W J−1
ǫ ≤ tr Wǫ J−1

ǫ − ǫ tr J−1
ǫ .

Meanwhile, since Wǫ > 0 we can repeat the above argument to find a qudit measurement
that attains tr Wǫ J−1

ǫ . Taking the limit ǫ → 0 the quantity tr W J−1
ǫ converges to the

equality of Eq. (113). Therefore, we can still find a sequence of measurements with
Fisher information {Jǫ} that approaches the bound. ⊓⊔
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6.3. Precision bound for the estimation of generic models. In the previous subsection,
we established the precision bound for D-invariant models, where the bound is attainable
and has a closed form. Here we extend the bound to any n-copy qudit models. The main
idea is to extend the model to a larger D-invariant model by introducing additional
parameters.

When estimating parameters in a generic model S (consisting of states generated by
noisy evolutions, for instance), the bound (112) may not hold. It is then convenient to
extend the model to a D-invariant model S ′ which contains S. Since the bound (112)
holds for the new model S ′, a corresponding bound can be derived for the original
model S. The new model S ′ has some additional parameters other than those of S,
which are fixed in the original model S. Therefore, a generic quantum state estimation
problem can be regarded as an estimation problem in a D-invariant model with fixed

parameters. The task is to estimate parameters in a model S ′ (globally) parameterized
as t ′0 = (t0, p0) ∈ �′, where p0 is a fixed vector and �′ is an open subset of R

k′
that

equals � when restricted to R
k . In the neighborhood of t ′0, since the vector p0 is fixed,

we have t ′ = (t, 0) with 0 being the null vector of R
k′−k and t ∈ R

k being a vector of
free parameters. For this scenario, only the parameters in t need to be estimated and we
know the parameters p0. Hence, the MSE of t ′ is of the form

V [℘t ′0,t
′|m] =

(
V [℘t0,t|m] 0

0 0

)

for any local asymptotic covariant measurement sequence m. Due to the block diagonal
form of the MSE matrix, to discuss the weight matrix W in the original model S, we
consider the weight matrix W ′ = PT W P in the D-invariant model S ′, where P is any
k × k′ matrix satisfying the constraint (P)i j := δi j for i, j ≤ k in the following way.

Theorem 7 (MSE bound for generic models). The models S and S ′ are C1 continu-

ous and are given in the same way as Proposition 1, and the notations are the same

as Proposition 1. Also, we assume that J̃−1
t0

exists. Consider any sequence of locally

asymptotically covariant measurements m := {Mn}. Then, the MSE matrx of the limit-

ing distribution is evaluated as ℘t0,t|m. There exists a k × k′ matrix P such that

Pi j = δi j for i, j ≤ k (123)

V [℘t0,t|m] ≥ P( J̃t ′0
)−1 PT , (124)

where J̃t ′0
is the RLD quantum Fisher information of S′. When the model M′ is a D-

invariant model, we have the bound for the weighted MSE with weight matrix W ≥ 0 of

the limiting distribution as

tr W V [℘t0,t|m] ≥ CH,M(W, t0) (125)

with CH,M(W, t0) defined in Eq. (46). When the model M′ is a D-invariant qudit model

and the state ρt0 is not degenerate, we have

CM(W, t0) = CH,M(W, t0). (126)

Moreover, if W > 0 and ℘t0,0|m has a differentiable PDF, the equality in (125) holds if

and only if ℘t0,t|m is the normal distribution with average zero and covariance matrix

Vt0|W := Re(Z t0(X)) +
√

W
−1|

√
W Im(Z t0(X))

√
W |

√
W

−1
, where X is the vector to
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realize the minimum (49). Further, when the models S and S ′ are qudit-models with C2

continuous parametrization, the equality in (125) holds, i.e., there exist a sequence of

POVMs M
t0,n
W , a compact set K , and constant c(t0) such that

lim sup
n→∞

sup
t0∈K

sup
t∈�n,x,c(t0)

nκ

∥∥∥∥℘
n

t0,t|M
t0,n

W

− N [t, Vt0|W ]
∥∥∥∥

1
< ∞. (127)

Theorem 7 determines the ultimate precision limit for generic qudit models. Now, we
compare it with the most general existing bound on quantum state estimation, namely
Holevo’s bound [5]. Let us define the ultimate precision of unbiased measurements as

CUBM
(W, t0) := lim

n→∞
min

Mn∈UBM

tr W V
[
℘n

t0,t|Mn

]
.

Since the Holevo bound still holds with the n-copy case, (see [15, Lemma 4]) we have

CUBM
(W, t0) ≥ CH,M(W, t0). (128)

There are a couple of differences between our results and existing results: The Holevo
bound is derived under unbiasedness assumption, which, as mentioned earlier, is more
restrictive than local asymptotic covariance. Our bound (125) thus applies to a wider
class of measurements than the Holevo bound.

Furthermore, Yamagata et al. [19] showed a similar statement as (127) of Theorem 7 in
a local model scenario. They did not show the compact uniformity of the convergence and
had no order estimation of the convergence. However, our evaluation (127) guarantees
the compact uniformity with the order estimation. Then, they did not discuss an estimator
to attain the bound globally. Later, we will construct an estimator to attain our bound
globally based on the estimator given in Theorem 7. Our detailed evaluation with the
compact uniformity and the order estimation enables us to evaluate the performance of
such an estimator globally.

Proof of Theorem 7. Impossibility part (Proofs of (124) and (125)):
We denote the ǫ-difference Fisher information matrices for the distribution family

{℘n
t0,t|Mn

}t and {℘t0,t|m}t by J n
t,ǫ and Jm

t,ǫ , respectively. Also, we denote the ǫ-difference

type RLD Fisher information matrix at t ′0 = (t0, 0) of the family {ρ⊗n
t ′ }t ′ by J̃ n

t ′0,ǫ
. Then,

we have (117) in the same way.
Applying (97) of Lemma 10 with ǫ → ǫ/

√
n, there exist k × k′ matrices Pn such

that

(Pn)i j = δi j for i, j ≤ k (129)

1

n

(
Pn( J̃ n

t ′0,ǫ/
√

n
)−1 PT

n

)−1
≥ J n

t0,ǫ . (130)

Hence, the combination of (98) of Lemma 11, (130), and (117) implies that there exists
a k × k′ matrices P such that

Pi j = δi j for i, j ≤ k (131)
(

P( J̃
[ǫ]
t ′0

)−1 PT
)−1

≥ Jm

t0,ǫ
. (132)
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Due to the same reason as (119), we have

V [℘t0,t|m] ≥ (Jm

t0,ǫ
)−1 ≥ P( J̃

[ǫ]
t ′0

)−1 PT . (133)

By taking the limit ǫ → 0, the combination of (99) of Lemma 11 and (133) implies
(124).

When the model M′ is D-invariant, since

tr W V [℘t0,t|m] ≥ tr PT W P J̃−1
t ′0

,

we obtain (125) by using the expression (50) in the same way as (112):
Achievability part (Proof of (126)):

Since ρt ′0
is not degenerate, we can show the achievability in the same way as The-

orem 6 because we can apply Q-LAN (Theorem 3) for the model M′. The difference
is the following. Choosing the matrix P to achieve the minimum (50), we employ the

covariant POVM M
J̃−1

t′0
P|W instead of the covariant POVM M

J̃−1
t0

W . Then, we obtain the
desired statement. ⊓⊔

7. Nuisance Parameters

For state estimation in a noisy environment, the strength of noise is not a parameter of
interest, yet it affects the precision of estimating other parameters. In this scenario, the
strength of noise is a nuisance parameter [46,47]. To illustrate the difference between
nuisance parameters and fixed parameters that are discussed in the previous section, let us
consider the case of a qubit clock state under going a noisy time evolution. To estimate
the duration of the evolution, we introduce the strength of the noise as an additional
parameter and consider the estimation problem in the extended model parameterized
by the duration and the noise strength. The strength of the noise is usually unknown.
Although it is not a parameter of interest, its value will affect the precision of our
estimation, and thus it should be treated as a nuisance parameter.

7.1. Precision bound for estimation with nuisance parameters. In this subsection, we
consider state estimation of an arbitrary (k + s)-parameter model {ρt, p}(t, p)∈�̃, where
t and p are k-dimensional and s-dimensional parameters, respectively. Our task is to
estimate only the parameters t and it is not required to estimate the other parameters
p, which is called nuisance parameters. Hence, our estimate is k-dimensional. We say
that a parametric family of a structure of nuisance parameters is a nuisance parameter
model, and denote it by S̃ = {ρt, p}(t, p)∈�̃. We simplify (t, p) by t̃ .

The concept of local asymptotic covariance can be extended to a model with nuisance
parameters by considering a local model ρn

t̃0, t̃
:= ρ⊗n

t̃0+ t̃/
√

n
. Throughout this section, we

assume that ρ t̃0
is invertible and all the parametrizations are at least C1 continuous.

Condition 3 (Local asymptotic covariance with nuisance parameters). We say that a se-

quence of measurements m := {Mn} to estimate the k-dimensional parameter t satisfies

local asymptotic covariance at t̃0 = (t0, p0) ∈ �̃ under the nuisance parameter model

M̃ when the probability distribution

℘n

t̃0, t̃|Mn
(B) := Tr ρ⊗n

t̃0+ t̃√
n

Mn

(
B√
n

+ t0

)
(134)
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converges to a limiting distribution

℘ t̃0, t̃|m(B) := lim
n→∞

℘n

t̃0, t̃|Mn
(B), (135)

the relation

℘ t̃0, t̃|m(B + t) = ℘ t̃0,(0,0)|m(B) (136)

holds for any t̃ = (t, p) ∈ R
k+s .

Further, we say that a sequence of measurementsm := {Mn} satisfies local asymptotic

covariance under the nuisance parameter model M̃ when it satisfies local asymptotic

covariance at any element t̃0 ∈ �̃ under the nuisance parameter model M̃.

The quantity we want to bound is tr V [℘t0,t|m]W , where ℘t0,t|m is the limiting
distribution of a sequence m of locally asymptotically covariant measurements and W

is a weight matrix. Since nuisance parameters are not of interest, the weight matrix of
the model S̃ is a (k + s) × (k + s) matrix of the form

W̃ =
(

W 0
0 0

)
. (137)

Lemma 13. Let S̃ = {ρ t̃} t̃∈�̃ be a (k + s)-parameter nuisance parameter model and

let S ′ = {ρt ′}t ′=( t̃,q) be a k′-parameter model containing S̃ as ρ t̃ = ρ( t̃,0). When S ′ is

D-invariant and the inverse J̃−1
t̃0

exists, we have

CNH,M(W, t̃0) := min
X

min
V

{tr W V |V ≥ Z t̃0
(X)} (138)

= min
P

{
tr PT W P(J−1

t ′0
) +

1

2
tr
∣∣∣
√

PT W P J−1
t ′0

Dt ′0
J−1

t ′0

√
PT W P

∣∣∣
}

.

(139)

In (138), V is a real symmetric matrix and X = (X i ) is a k-component vector of

operators to satisfy

Tr X i

∂ρ t̃

∂ t̃ j

∣∣∣
t̃= t̃0

= δi j , ∀ i ≤ k, ∀ j ≤ k + s. (140)

In (139), the minimization is taken over all k × (k + s) matrices satisfying the constraint

(P)i j := δi j for i ≤ k, j ≤ k+s, and, Jt ′0
and Dt ′0

are the SLD Fisher information matrix

and the D-matrix [cf. Eqs. (35) and (41)] for the extended model S ′ at t ′0 := ( t̃0, 0).

This lemma is a different statement from [15, Theorem 4]. However, using the method
of [15, Theorem 4], we can show this lemma.

In the following, we derive an attainable lower bound on the weighted MSE. To
this purpose, we define the set LAC( t̃0) of local asymptotic covariant sequences of
measurements at the point t̃0 ∈ �̃ for the nuisance parameter model M̃, and focus on
the minimum value

CN,M̃
(W, t̃0) := min

m∈LAC( t̃0)

tr W V [℘ t̃0, t̃|m]. (141)
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Theorem 8 (Weighted MSE bound with nuisance parameters). The models S̃ and S ′ are

given in the same way as Lemma 13, and the notations is the same as Lemma 13. Also, we

assume that ( J̃t ′0
)−1 exists. Consider any sequence of locally asymptotically covariant

measurements m := {Mn} for the nuisance parameter model S̃ . Then, the MSE matrx

of the limiting distribution is evaluated as follows. There exists a k × k′ matrix P such

that

Pi j = δi j for 1 ≤ i ≤ k, 1 ≤ j ≤ k′ (142)

V [℘ t̃0, t̃|m] ≥ P( J̃t ′0
)−1 PT . (143)

When the model S ′ is D-invariant, we have the bound for the weighted MSE with weight

matrix W ≥ 0 of the limiting distribution as

tr W V [℘ t̃0, t̃|m] ≥ CNH,M(W, t̃0). (144)

When the model S ′ is a D-invariant qudit model and the state ρt0 is not degenerate, we

have

CN,M̃
(W, t̃0) = CNH,M̃

(W, t̃0). (145)

Moreover, if W > 0 and ℘ t̃0, t̃|m has a differentiable PDF, the equality in (144) holds if

and only if ℘t0,t|m is the normal distribution with average zero and covariance

Vt0|W := Re(Z t0(X)) +
√

W
−1|

√
W Im(Z t0(X))

√
W |

√
W

−1
, (146)

where X is the vector to realize the minimum (138). Further, when the models S̃ and S ′

are qudit-models with C2 continuous parametrization, the equality in (144) holds, i.e.,

there exist a sequence of POVMs M
t0,n
W , a compact set K , and constant c(t0) such that

lim sup
n→∞

sup
t0∈K

sup
t∈�n,x,c(t0)

nκ‖℘n

t0,t|M
t0,n

W

− N [t, Vt0|W ]‖1 < ∞. (147)

Here κ is a parameter to satisfy κ ≥ 0.027.

Before proving Theorem 8, we discuss a linear subfamily of k′-dimensional Gaus-
sian family {G[t ′, γ ]}t ′∈Rk′ . Consider a linear map T from R

(k+s) to R
k′

. We have the

subfamily M̃ := {G[T (t, p), γ ]}(t, p)∈Rk+s as a nuisance parameter model. Then, the
covariance condition is extended as follows.

Definition 5. A POVM M is unbiased for the nuisance parameter model {ρ(t, p)} when

t = E t, p(M) :=
∫

x Tr ρ(t, p)M(dx)

holds for any parameter (t, p). A POVM M is a covariant estimator for the nuisance
parameter model {G[T (t, p), γ ]} when the distribution ℘(t, p)|M satisfies the condition
℘0,0|M (B) = ℘t, p|M (B + t).

Then, we have the following corollary of Lemma 6.
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Corollary 3. For any weight matrix W ≥ 0, the nuisance parameter model M̃ =
{G[T (t, p), γ ]} with C1 continuous parametrization satisfies

inf
M∈UB

M̃

tr W Vt (M) = inf
M∈CUB

M̃

tr W Vt(M) = CNH,M̃
(W, t), (148)

where UB
M̃

and CUB
M̃

are the sets of unbiased estimators and covariant unbiased

estimators of the nuisance parameter model M̃, respectively. Further, when W > 0, we

choose a vector X to realize the minimum in (49). The above infimum is attained by the

covariant unbiased estimators MW whose output distribution is the normal distribution

with average t and covariance matrix Re((Z t(X))+
√

W
−1|

√
W Im(Z t(X))

√
W |

√
W

−1
.

This corollary can be shown as follows. The inequality inf M∈UB
M̃

tr W Vt(M) ≥
CNH,M̃

(W, t) follows from the condition (140). Similar to Corollary 2, Proposition 1
guarantees that the latter part of the corollary with W > 0 follows from (138) and
Lemma 6. Hence, we obtain this corollary for W > 0. The case with non strictly
positive W can be shown by considering Wǫ in the same way as Corollary 1.

Proof of Theorem 8. Impossibility part (Proofs of (143) and (144)):
We denote the ǫ-difference Fisher information matrix of {℘ t̃0, t̃|m} t̃ by Jm

t̃0,ǫ
. Due to

(132), there exists a (k + s) × k′ matrix P̃ satisfying the following conditions.

P̃i j = δi j for 1 ≤ i, j ≤ k + s,
(

P( J̃
[ǫ]
t ′0

)−1 PT
)−1

≥ Jm

t0,ǫ
. (149)

We define the k × (k + s) matrix P̄ by

P̄i j = δi j for 1 ≤ i ≤ k, 1 ≤ j ≤ k + s.

Now, we extend Theorem 4. Let E(0,0)[ t̂] be the expectation of t̂ under the distribution
℘t0,(0,0)|m. We denote the Radon–Nikodým derivative of ℘ t̃0,ǫei |m with respect to ℘ t̃0,0|m
by pi . Then, for two vectors a ∈ R

k and b ∈ R
k+s , we apply Schwartz inequality to

the two variables X :=
∑

j b j ( t̂ − E(0,0)[ t̂]) j and Y :=
∑

i
ai

ǫ
(p j (x) − 1). Using

X̃ :=
∑

j b j t j , we obtain

〈b|V [℘ t̃0,(0,0)|m]|b〉〈a|Jm

t̃0,ǫ
|a〉 =

∫
X̃(x)2℘ t̃0,(0,0)|m(dx)

∫
Y (x)2℘ t̃0,(0,0)|m(dx)

≥
∫

X (x)2℘ t̃0,(0,0)|m(dx)

∫
Y (x)2℘ t̃0,(0,0)|m(dx)

≥
∣∣∣
∫

X (x)Y (x)℘ t̃0,(0,0)|m(dx)

∣∣∣
2

=
∣∣∣〈b|P̄|a〉

∣∣∣
2
, (150)

where the final equation follows from the fact that the expectation of the variable t̂ −
E(0,0)[ t̂] equals t = P̄ t̃ under the distribution ℘ t̃0, t̃|m, which can be shown by the
covariance condition for the distribution family {℘ t̃0, t̃|m} t̃ .

Choosing a := (Jm

t̃0,ǫ
)−1 P̄T b, we have

〈b|V [℘ t̃0,(0,0)|m]|b〉 ≥ 〈b|P̄(Jm

t̃0,ǫ
)−1 P̄T |b〉, (151)



Attaining the Ultimate Precision Limit in Quantum State Estimation 261

which implies

V [℘ t̃0, t̃|m] = V [℘ t̃0,(0,0)|m] ≥ P̄(Jm

t̃0,ǫ
)−1 P̄T . (152)

Combining the above with Eq. (149), since P := P̄ P̃ satisfies the condition (142), we
obtain (143).

When the model M′ is D-invariant, since

tr W V [℘ t̃0, t̃|m] ≥ tr PT W P J̃−1
t ′0

,

we obtain (144) by using the expression (139) in the same way as (125):
Achievability part (Proof of (145));

Since ρt0 is not degenerate, we can show the achievability part in the same way as
Theorem 6 because we can apply Q-LAN (Theorem 3) for the model M′. The difference
is the following. Instead of Corollary 1, we employ Corollary 3 to choose the covariant

POVM M
J̃−1

t′0
P|W . Then, we obtain the desired statement. ⊓⊔

7.2. Nuisance parameter with D-invariant model. Next, we discuss the nuisance pa-
rameters when the model is D-invariant.

Lemma 14. When S̃ = {ρ(t, p)}(t, p)∈�̃ is a D-invariant k + s-parameter nuisance pa-

rameter model and J−1
t0

exists, we have

CNH,M̃
(W, t̃0) = tr W̃ (J−1

t̃0
) +

1

2
tr
∣∣∣
√

W̃ J−1
t̃0

D t̃0
J−1

t̃0

√
W̃

∣∣∣ . (153)

A few comments are in order. First, the nuisance parameter bound (144) reduces
to the bound (112), when the parameters to estimate are orthogonal to the nuisance
parameters in the sense that the RLD Fisher information matrix J̃t̃0

is block-diagonal.
This orthogonality is equivalent to the condition that the SLD Fisher information matrix
Jt̃0

and the D-matrix take the block diagonal forms

Jt̃0
=
(

Jt0 0
0 JN

)
D t̃0

=
(

Dt0 0
0 DN

)
. (154)

This is the case, for instance, of simultaneous estimation of the spectrum and the
Hamiltonian-generated phase of a two-level system. Under such circumstances, the in-
verse of the Fisher information matrix can be done by inverting Jt0 and JN independently.
The same precision bound is thus obtained with or without introducing nuisance param-
eters, and we have the following lemma.

Lemma 15. When all nuisance parameters are orthogonal to the parameters of interest,

the bound with nuisance parameters (144) coincides with the D-invariant MSE bound

(112).

In the case of orthogonal nuisance parameters, the estimation of nuisance parameters
does not affect the precision of estimating the parameters of interest, which does not
hold for the generic case of non-orthogonal nuisance parameters. Thanks to this fact,
one can achieve the bound (144) by first measuring the nuisance parameters and then
constructing the optimal measurement based on the estimated value of the nuisance
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parameters. On the other hand, an RLD bound [cf. Eq. (39)] can be attained if and only
if its model is D-invariant. Combining these arguments with Lemma 15, we obtain a
characterization of the attainability of RLD bounds as follows.

Corollary 4. An RLD bound can be achieved if and only if it has an orthogonal nuisance

extension, i.e. Eq. (154) holds for some choice of nuisance parameters.

The above corollary offers a simple criterion for the important problem of the attainability
of RLD bounds. In Sect. 10.3, we will illustrate the application of this criterion with a
concrete example.

The bound (144) can be straightforwardly computed even for complex models; for D-
invariant models, the SLD operators have an uniform entry-wise expression and one only
needs to shot it into a program to yield the bound (144). Moreover, the bound does not
rely on the explicit choice of nuisance parameters. To see this, one can consider another
parameterization x′ of the D-invariant model. The bound (144) comes from the RLD
bound for the D-invariant model, and the RLD quantum Fisher information matrices J̃t ′0
and J̃x′

0
for two parameterizations are connected by the equation J̃t ′0

= AJ̃x′
0

AT , where

A is the Jacobian
(
∂x′/∂ t ′

)
at t ′0. Since both parameterizations are extensions of the

same model S satisfying P0 t ′0 = P ′
0x′

0 = t0, the Jacobian takes the form

A =
(

Ik A′

0 A′′

)
.

Then we have J̃−1
x′

0
= AT J̃−1

t ′0
A, which implies that the upper-left k × k blocks of J̃x′

0

and J̃t ′0
are equal. The bound (144) thus remains unchanged.

7.3. Precision bound for joint measurements. A useful implication of Theorem 8 is
a bound on MSEs of several jointly measured observables. Consider a set {Oi } of k

bounded observables. The goal is to jointly measure their expectations

oi := Tr ρOi i = 1, . . . , k. (155)

The main result of this subsection is the following corollary:

Corollary 5. Define the SLD gap of oi as

Δoi
:= MSEoi

−
(

J−1
)

i i
, (156)

where MSEoi
denotes the MSE of oi under joint measurement and J is the SLD quantum

Fisher information. The sum of the SLD gaps for all observables satisfies the attainable

bound:

d∑

i=1

Δoi
≥ 1

2
tr

∣∣∣∣
(

J−1 D J−1
)

k×k

∣∣∣∣ , (157)

where D is the D-matrix.

The right hand side of Eq. (157) is exactly the gap between the SLD bound and the ulti-
mate precision limit. It shows a typical example where the SLD bound is not attainable.
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Proof. Substituting W ′ in Eq. (144) by the projection into the subspace R
k , we obtain a

bound for the MSE {MSEoi
} of the limiting distributions:

d∑

i=1

MSEoi
≥

d∑

i=1

(
J−1
)

i i
+

1

2
tr

∣∣∣∣
(

J−1 D J−1
)

k×k

∣∣∣∣ . (158)

Here J and D are the SLD Fisher information and D-matrix for the extended model,
and (A)k×k denotes the upper-left k × k block of a matrix A. Substituting the above
definition into Eq. (158), we obtain Corollary 5. ⊓⊔

Specifically, for the case of two parameters, the bound (157) reduces to

Δo1 + Δo2 ≥
∣∣∣Tr ρθ [L̂1, L̂2]

∣∣∣ , (159)

where L̂ j :=
∑k′

j=1

(
Jθ ′
)−1

j i
L i are the SLD operators in the dual space. Next, taking

partial derivative with respect to o j on both sides of Eq. (155) and substituting in the
definition of RLD operators, the observables satisfy the orthogonality relation with the
SLD operators as

1

2
Tr
(
ρL j + L jρ

)
Oi = δi j .

By uniqueness of the dual space, we have

L̂ i = Oi − oi I i = 1, . . . , k′

and the bound becomes

Δo1 + Δo2 ≥ |〈[O1, O2]|〉|. (160)

Another bound expressing the tradeoff between Δo1 and Δo2 was obtained by Watanabe
et al. [48] as

Δo1Δo2 ≥ |〈[O1, O2]〉|2/4. (161)

Now, substituting O2 by αO2 for a variable α ∈ R in Eq. (160), we have

Δo1 + Δαo2 = Δo1 + α2Δo2 ≥ α|〈[O1, O2]|〉|.

For the above quadratic inequality to hold for any α ∈ R, its discriminant must be
non-positive, which immediately implies the bound (161). Notice that the bound (161)
was derived under asymptotic unbiasedness [48], and thus it was not guaranteed to be
attainable. Here, instead, since our bound (160) is always attainable, the bound (161)
can also be achieved in any qudit model under the asymptotically covariant condition.
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7.4. Nuisance parameters versus fixed parameters. It is intuitive to ask what is the
relationship between the nuisance parameter bound (144) and the general bound (125).
To see it, let S = {ρt}t∈� be a generic k-parameter qudit model and let S̃ be a (k + s)-
parameter D-invariant model containing S. When ρt0 is non-degenerate, we notice that
the QCR bound with nuisance parameters (144) can be rewritten as

CM(W, t0) = tr PT
0 W P0(J−1

t̃0
) +

1

2
tr

∣∣∣∣
√

PT
0 W P0 J−1

t̃0
D t̃0

J−1
t̃0

√
PT

0 W P0

∣∣∣∣ , (162)

where P0 is a k×(k +s) matrix satisfying the constraint (P0)i j := δi j for any i, j ≤ k +s.
By definition, P0 is a special case of P , and it follows straightforwardly from comparing
Eq. (162) with Eq. (125) that the general MSE bound is upper bounded by the MSE bound
for the nuisance parameter case. This observation agrees with the obvious intuition that
having additional information on the system is helpful for (or at least, not detrimental
to) estimation. At last, since Jt̃0

and D t̃0
are block-diagonal in the case of orthogonal

nuisance parameters, we have

P(Jt̃0
)−1 PT = J−1

t0
P D t̃0

PT = Dt0

for any k × (k + s) matrix satisfying the constraint (P)i j := δi j for i, j ≤ k. This implies
that the general bound (125) coincides with the nuisance parameter bound (144) when
the nuisance parameters are orthogonal.

8. Tail Property of the Limiting Distribution

In previous discussions, we focused on the MSE of the limiting distribution. Here,
instead, we consider the behavior of the limiting distribution itself. The characteristic
property is the tail property: Given a weight matrix W ≥ 0 and a constant c, we define
the tail region TW,c(t) as

TW,c(t) :=
{

x | (xT − tT )W (x − t) ≥ c
}

.

For a measurement m = {Mn( t̂n)}, the probability that the estimate t̂n is in the tail
region can be approximated by the tail probability of the limiting distribution, i.e.

Prob
(
t̂n ∈ TW,c(t)

)
= ℘t0,t|m

(
TW,c(t)

)
+ ǫn,

up to ǫn being a term vanishing in n. The tail property is usually harder to characterize
than the MSE. Nevertheless, here we show that, under certain conditions, there exists a
good bound on the tail property of the limiting distribution.

8.1. Tail property of Gaussian shift models. Just like in the previous sections, the tail
property of n-copy qudit models can be analyzed by studying the tail property of Gaussian
shift models. In this subsection, we first derive a bound on the tail probability of Gaussian
shift models. The result has an interest in its own and can be used for further analysis of
qudit models using Q-LAN.
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Consider a Gaussian shift model {G[α, γ ]} with G[α, γ ] = N [αC , Γ ] ⊗ Φ

[αQ,β] and a measurement MG(α̂). Then, define the probability ℘α|MG

(
TW,c(α)

)
,

where TW,c(α) is the tail region around α defined as

TW,c(α) :=
{

x | (xT − αT )W (x − α) ≥ c
}

.

Then, for covariant POVMs, the tail probability is independent of α and is given by:

℘α|MG

(
TW,c(α)

)
= Tr N [0, Γ ] ⊗ Φ[0,β]M

(
TW,c(0)

)
.

When the measurement is covariant, we have the following bound on the tail probability,
which can be attained by a certain covariant POVM:

Lemma 16. Consider a Gaussian model G[α, γ ] = N [αC , Γ ]⊗Φ[αQ,β] with s′ clas-

sical parameters and s pairs of quantum parameters. Assume that a POVM

{MG(B)}
B⊂Rs′×R2s is covariant and the weight matrix W has the following form;

W =

⎛
⎜⎜⎜⎝

W C

ws′+1 I2
. . .

ws′+s I2

⎞
⎟⎟⎟⎠ (163)

with W C ≥ 0. Then, the tail probability of the limiting distribution is bounded as

℘α|MG

(
TW,c(α)

)
≥ N

[
0, Γ ⊗ Es

(
e−β + e/2

)] (
TW,c(0)

)
, (164)

where e is the 2s-dimensional vector with all entries equal to 1. For the definition of

Es

(
e−β + e/2

)
, see (56). When the POVM MG is given as MG(B) =

∫
B

|α1, . . . , αs〉
〈α1, . . . , αs |dα, the equality in (164) holds.

The proof can be found in “Appendix H”. When the model has a group covariance,
similar evaluation might be possible. For example, similar evaluation was done in the
n-copy of full pure states family [49] and in the n-copy of squeezed states family [50,
Sect. 4.1.3].

8.2. Tail property of D-invariant qudit models. For a k-parameter D-invariant model
{ρt }, using Lemma 16 and Q-LAN, we have the following theorem.

Theorem 9. Let {ρt}t∈� be a k-parameter D-invariant model. Assume that ( J̃t ′0
)−1

exists, ρt0 is a non-degenerate state, and a sequence of measurements m := {Mn}
satisfies local asymptotic covariance at t0 ∈ �. When J

−1/2
t0

W J
−1/2
t0

commutes with

J
−1/2
t0

Dt0 J
−1/2
t0

, we have

℘t0,t|m
(
TW,c(t)

)
≥ N

[
0, W 1/2 J−1

t0
W 1/2 +

1

2

∣∣∣W 1/2 J−1
t0

Dt0 J−1
t0

W 1/2
∣∣∣
]
(Tc) (165)

for Tc := {x ∈ R
k | ‖x‖ ≥ c}. The equality holds if and only if ℘t0,t|m is the normal

distribution with average zero and covariance Vt0|W as defined in Eq. (114).
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We note that bounds on the probability distributions are usually more difficult to obtain
and more informative than the MSE bounds, as the MSE can be determined by the
probability distribution. Theorem 9 provides an attainable bound of the tail probability,
which can be used to determine the maximal probability that the estimate falls into a
confidence region TW,c as well as the optimal measurement.

Our proof of Theorem 9 needs some preparations. First, we introduce the concept of
simultaneous diagonalization in the sense of symmetric transformation. Two 2k × 2k

real symmetric matrices A1 and A2 are called simultaneously symplectic diagonalizable

when there exist a symplectic matrix S and two real vectors β1 and β2 such that such
that

ST A1S = Ek(e
−β1), ST A2S = Ek(e

−β2) (166)

with Ek defined in Eq. (56). Regarding the simultaneous diagonalization, we have the
following property, whose proof can be found in “Appendix I”:

Lemma 17. The following conditions are equivalent for two 2k × 2k real symmetric

matrices A1 and A2.

(i) A1 and A−1
2 are simultaneously symplectic diagonalizable.

(ii) Ωk A2 A1 = A1 A2Ωk , where Ωk is defined in Eq. (57).

Using Lemma 17, we obtain the following lemma.

Lemma 18. Let A1 be

∣∣∣J−1
t0

Dt0 J−1
t0

∣∣∣
1/2

. Assume that A−1
1 J−1

t0
Dt0 J−1

t0
A−1

1 = Ωk . When

J
−1/2
t0

W J
−1/2
t0

commutes with J
−1/2
t0

Dt0 J
−1/2
t0

, (A1W A1)
−1 and A−1

1 J−1
t0

A−1
1 are si-

multaneously symplectic diagonalizable.

Proof. From [J
−1/2
t0

W J
−1/2
t0

, J
−1/2
t0

Dt0 J
−1/2
t0

] = 0, we get [J−1
t0

W, (J−1
t0

Dt0 J−1
t0

)] =
0. Next, noticing that (J−1

t0
Dt0 J−1

t0
) = A1Ωk A1, we have

J−1
t0

W A1Ωk A1 = J−1
t0

W (J−1
t0

Dt0 J−1
t0

) = (J−1
t0

Dt0 J−1
t0

)W J−1
t0

= A1Ωk A1W J−1
t0

.

The above equalities show that J−1
t0

W commutes with A1Ωk A1, which further implies
that

A−1
1 J−1

t0
A−1

1 A1W A1Ωk = Ωk A1W A1 A−1
1 J−1

t0
A−1

1 .

Using Lemma 17, we get (A1W A1)
−1 and A−1

1 J−1
t0

A−1
1 are simultaneously symplectic

diagonalizable. ⊓⊔

Proof of Theorem 9. Define A1 :=
∣∣∣J−1

t0
Dt0 J−1

t0

∣∣∣
1/2

and A2 := A−1
1 J−1

t0
Dt0 J−1

t0
A−1

1 .

Applying a suitable orthogonal matrix, we assume that A2 = Ωk without loss of gener-
ality.
Step 1 For simplicity, we assume that there is no classical part. First, we choose an
orthogonal matrix S′ such that S′T A2S′ = D. Using Lemma 18 guarantees that the con-

dition [J
−1/2
t0

W J
−1/2
t0

, J
−1/2
t0

Dt0 J
−1/2
t0

] = 0 allows us to simultaneously diagonalize W

and Dt0 . That is, we can choose symplectic matrix S such that ST S′T (A1W A1)
−1S′S

and ST S′T A−1
1 J−1

t0
A−1

1 S′S are diagonal matrixces Ek(w)−1 and Ek(β) for k ∈ N
∗. We

introduce the local parameter t ′ := ST S′T A−1
1 t . Then, t · W t = t ′ · Ek(w)t ′.



Attaining the Ultimate Precision Limit in Quantum State Estimation 267

For a sequence of measurement m := {Mn} to satisfy local asymptotic covariance at
t0 ∈ �, according to Theorem 5, we choose a covariant POVM M̃G to satisfy (103).
Applying Lemma 16 to the POVM M̃G , we obtain the desired statement.

Step 2 We consider the general case. Now, we choose the local parameter t ′ := J
−1/2
t0

t . In

this coordinate, The inverse of the RLD quantum Fisher information is I +J
−1/2
t0

Dt0 J
−1/2
t0

.

Since J
−1/2
t0

Dt0 J
−1/2
t0

commutes with J
−1/2
t0

W J
−1/2
t0

, the weight matrix has no cross
term between the classical and quantum parts. Using the above discussion and Lemma 16,
we obtain the desired statement. ⊓⊔

9. Extension to Global Estimation and Generic Cost Functions

In the previous sections, we focused on local models and cost functions of the form
tr W V [℘t0,t|m]. In this section, our treatment will be extended to global models {ρt}t∈�.
(where the parameter to be estimated is not restricted to a local neighborhood) and to
generic cost functions.

9.1. Optimal global estimation via local estimation. Our optimal global estimation is
given by combining the two-step method and local optimal estimation. That is, the first
step is the application of full tomography proposed in [26] on n1−x/2 copies with the
outcome t̂0 for a constant x ∈ (0, 2/9), and the second step is the local optimal estimation
at t̂0, given in Sect. 6.3, on

an,x := n − n1−x/2

copies. Before its full description, we define the neighborhood �n,x (t) of t ∈ � as

�n,x (t) :=
{

y | ‖ y − t‖ ≤ n− 1−x
2

}
. (167)

Given a generic model M = {ρt}t∈� that does not contain any degenerate state and
a weight matrix W > 0, we describe the full protocol as follows.

(A1) Localization: Perform full tomography proposed in [26] on n1−x/2 copies, which
is described by a POVM {M tomo

n1−x/2}, for a constant x ∈ (0, 2/9). The tomography

outputs the first estimate t̂0 so that

Tr ρ⊗n1−x/2

t M tomo
n1−x/2

(
�n,x (tg)

)
= 1 − O

(
e−nx/2

)
(168)

for any true parameter t .
(A2) Local estimation: Based on the first estimate t̂0, apply the optimal local measure-

ment M
t̂0,an,x

W given in Theorem 7 with the weight matrix W . If the measurement

outcome t̂1 of M
t̂0,an,x

W is in �n,x ( t̂0), output the outcome t̂1 as the final estimate;

otherwise output t̂0 as the final estimate.

Denoting the POVM of the whole process by mW = {Mn
W }, we obtain the following

theorem.
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Theorem 10. Assume that a qudit-model M = {ρt}t∈� does not contain any degenerate

state, the parametrization is C2 continuous, � is an open set, and J−1
t0

exists. (i) The

sequence mW satisfies local asymptotic covariance at any point t0 in the parameter

space. (ii) The equation

tr W V [℘t0,t|mW
] = C(W, t0) (169)

holds for any point t0 ∈ � and any t ∈ �n,x,c(t0) corresponding to a non-degenerate

state, where CS(W, t0) is the minimum weighted MSE as defined in Eq. (110). More

precisely, we have

lim sup
n→∞

sup
t0∈K

sup
t∈�n,x,c(t0)

nκ
∥∥∥℘n

t0,t|Mn
W

− N [t, Vt0|W ]
∥∥∥

1
< ∞ (170)

for a compact set K ⊂ �, where Vt0|W is defined in Eq. (146) and �n,x,c(t0) is defined

in Eq. (76). Further, when the parameter set � is bounded and x < κ , we have the

following relation.

lim
n→∞

sup
t0∈K

sup
t∈�n,x,c(t0)

∥∥∥V [℘n
t0,t|Mn

W
] − Vt0|W

∥∥∥
1

= 0. (171)

Here, we should remark the key point of the derivation. The existing papers [8,11]
addressed the achievability of minM tr W J−1

t|M with the two-step method, where Jt|M
is the Fisher information matrix of the distribution family {℘t|M }t , which expresses
the bounds among separable measurement [34, Exercise 6.42]. Hence it can be called
the separable bound. In the one-parameter case, the separable bound equals the Holevo
bound. To achieve the separable bound, we do not consider the sequence of measurement.
Hence, we do not handle a complicated convergence. The global achievability of the
separable bound can be easily shown by the two-step method [8,11]. However, in our
setting, we need to handle the sequence of measurement to achieve the local optimality.
Hence, we need to carefully consider the compact uniformity and the order estimate of
the convergence in Theorem 7. In the following proof, we employ our evaluation with
such detailed analysis as in Eq. (127).

Proof. Step 1 Define by tg := t0 + t√
n

the true value of the parameters. By definition,

we have ‖tg − t̂0‖ ≤ n− 1−x
2 with probability 1− O(e−nx/2

) and ‖tg − t0‖ ≤ c(t0)n
− 1

2 +x

by definition. Since the error probability vanishes exponentially, it would not affect the
scaling of MSE. In this step, we will show

∥∥∥∥℘
n

t0,t|M
t̂0,an,x
W

− N [t, Vt0|W ]
∥∥∥∥

1

= O(n−κ). (172)

Since‖tg− t̂0‖ ≤ n− 1−x
2 and‖tg−t0‖ ≤ c(t0)n

− 1
2 +x imply‖t0− t̂0‖ ≤ 2c(t0)n

− 1
2 +x ,

we have

‖N [0, Vt0|W ] − N [0, Vt̂0|W ]‖1 = O(n− 1
2 +x ). (173)

Eq. (127) of Theorem 7 implies
∥∥∥℘an,x

t0,t|M
t̂0,an,x
W

− N [0, Vt̂0|W ]
∥∥∥

1
= O(n−κ). (174)
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Since ℘n

t0,t|M
t̂0,an,x
W

(B) = ℘
an,x

t0,t|M
t̂0,an,x
W

(√
an,x B√

n

)
,

∥∥∥℘n

t0,t|M
t̂0,an,x
W

− N [t, n

an,x

Vt0|W ]
∥∥∥

1
=
∥∥∥℘an,x

t0,t|M t̂0,an,x
W

− N [t, Vt0|W ]
∥∥∥

1

≤
∥∥∥℘an,x

t0,t|M t̂0,an,x
W

− N [0, Vt̂0|W ]
∥∥∥

1
+ ‖N [t, Vt0|W ] − N [t, Vt̂0|W ]‖1

= O(n−κ) + O(n− 1
2 +x ) = O(n−κ ). (175)

As we have

‖N [0, Vt0|W ] − N [0,
n

an,x

Vt0|W ]‖1 = O(
n

an,x

− 1)

= O((1 − nx/2)−1 − 1) = O(nx/2), (176)

we obtain

‖℘n

t0,t|M
t̂0,an,x
W

− N [t, Vt0|W ]‖1

≤ ‖N [t, Vt0|W ] − N [t, n

an,x

Vt0|W ]‖1 + ‖℘n

t0,t|M
t̂0,an,x
W

− N [t, n

an,x

Vt0|W ]‖1

= O(nx/2) + O(n−κ). (177)

Step 2 We will show (170). First, we discuss two exceptional cases ‖tg − t̂0‖ > n− 1−x
2

and ‖ t̂1 − t̂0‖ > n− 1−x
2 . Eq. (168) guarantees that

Tr ρ⊗n1−x/2

tg
M tomo

n1−x/2

({
t̂0

∣∣∣‖tg − t̂0‖ > n− 1−x
2

})
= O

(
e−nx/2

)
. (178)

Eq. (175) and the property of normal distribution implies

Tr ρ
⊗an,x

tg
M

t̂0,an,x

W

({
t̂0

∣∣∣‖ t̂1 − t̂0‖ > n− 1−x
2

})

= O(n−κ) + N [t, n

an,x

Vt0,|W ]({t| ‖t‖ > nx/2})

= O(n−κ) + O(e−O(nx/2)) = O(n−κ). (179)

When ‖tg − t̂0‖ ≤ n− 1−x
2 and ‖ t̂1 − t̂0‖ ≤ n− 1−x

2 , Eq. (172) holds under the condition

‖tg − t0‖ ≤ c(t0)n
− 1

2 +x , which implies that

sup
t∈�n,x,c(t0)

‖℘n
t0,t|Mn

W
− N [t, Vt0|W ]‖1 = O(n−κ). (180)

Since the above evaluation is compactly uniform with respect to t0, we have (170).
Step 3 We will show

lim
n→∞

sup
t0∈K

sup
t∈�n,x,c(t0)

∥∥∥V [℘n
t0,t|Mn

W
] − n

an,x

Vt0|W
∥∥∥

1
= 0 (181)
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because Eq. (181) implies (171) due to the convergence n
an,x

→ 1. There are three cases.

(1) ‖tg − t̂0‖ > n− 1−x
2 , (2) ‖ t̂1 − t̂0‖ > n− 1−x

2 and ‖tg − t̂0‖ ≤ n− 1−x
2 , and (3) the

remaining case.
The compactness of � guarantees that the error n( t̂ − tg)( t̂ − tg)

T is bounded by
nC with a constant C . Due to (178), the contribution of the first case is bounded by

nC · O(e−nx/2
), which goes to zero.

In the second case, since t̂0 = t̂ , the error n( t̂ − tg)( t̂ − tg)
T is bounded by

n(n− 1−x
2 )2 = nx . Due to (179), the contribution of the second case is bounded by

nx · O(n−κ) = O(nx−κ), which goes to zero.

In the third case, since ‖tg − t̂1‖ ≤ ‖tg − t̂0‖ + ‖ t̂0 − t̂1‖ ≤ 2n− 1−x
2 , the error

n( t̂ − tg)( t̂ − tg)
T is bounded by 2n(n− 1−x

2 )2 = 2nx . Due to (175), the contribution of
the second case is bounded by 2nx · O(n−κ) = O(nx−κ), which goes to zero. Therefore,
we obtain (181). ⊓⊔

9.2. Generic cost functions. Finally, we show that results in this work hold also for any
cost function c( t̂, t), which is bounded and has a symmetric expansion, in the sense of
satisfying the following two conditions:

(B1) c( t̂, t) has a continuous third derivative, so that it can be expanded as c( t̂, t) =
( t̂

T − tT )Wt( t̂ − t) + O(‖ t̂ − t‖3) as t̂ is close to t , where the matrix Wt ≥ 0 is a
continuous function of t .

(B2) c( t̂, t) ≤ C for a constant C > 0 and for any t̂, t ∈ R
k .

To adopt this situation, we replace the step (A2) by the following step (A2)’:

(A2)’ Based on the first estimate t̂0, apply the optimal local measurement M
t̂0,an,x

W t̂0

given in Theorem 7 with the weight matrix W t̂0
. If the measurement outcome t̂1

of M
t̂0,an,x

W t̂0
is in �n,x ( t̂0), output the outcome t̂1 as the final estimate; otherwise

output t̂0 as the final estimate t̂ .

Denoting the POVM of the whole process by mc = {Mn
c }, we have the following

result:

Theorem 11. Assume the same assumption for the model M as Theorem 10. (i) When

a sequence of measurements m := {Mn(d t̂)} satisfies local asymptotic covariance at

t0 ∈ � and a cost function c satisfies condition (B1), the inequality

lim
n→∞

n · ct0+ t√
n
(m) ≥ C(Wt0 , t0) (182)

holds, where CS(Wt0 , t0) is defined in Eq. (110) and

ct0+ t√
n
(m) :=

∫
c

(
t̂n, t0 +

t√
n

)
Tr ρ⊗n

t0+ t√
n

Mn

(
d t̂n

)
.

(ii) In addition, if c also satisfies Condition (B2), mc = {Mn
c } is locally asymptotically

covariant and attains the equality in (182) at any point t0 ∈ � corresponding to a

non-degenerate state.
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Theorem 11 is reduced to a bound for the (actual) MSE when c( t̂, t) = ( t̂
T − tT )W ( t̂− t)

for W ≥ 0. Therefore, bounds in this work, Eqs. (125) and (144) for instance, are also
attainable bounds for the MSE of any locally asymptotically unbiased measurement.

Proof. Step 1 We prove (1). Consider any sequence of asymptotically covariant mea-
surements mt0 := {Mn,t0} at t0. Denote by tg := t0+ t√

n
the true value of the parameters.

For a cost function c satisfying (ii), we have

lim
n→∞

n · ct0+ t√
n
(m)

= lim
n→∞

n ·
∫

c( t̂n, tg) Tr ρ⊗n
tg

Mn,t0

(
d t̂n

)

= lim
n→∞

∫ (
t ′T Wtg t′ +

1√
n

O(‖t′‖3)

)
℘n

t0,t|Mn,t0

(
d t ′
) (

t ′ :=
√

n( t̂n − tg)
)

=
∫

t ′T Wt0 t′ ℘t0,t|mt0
(d t ′) ≥ C(Wt0 , t0).

Step 2 We prove (2). We replace W by Wt in the proof of Theorem 10. In this replacement,
(173) is replaced by

‖N [0, Vt0|Wt0
] − N [0, Vt̂0|W t̂0

]‖1 = O(n− 1
2 +x ) (183)

where x ∈ (0, 2/9). Hence, the contributions of the first and second cases of Step 3 of
the proof of Theorem 10 go to zero.

In the third case of Step 3 of the proof, we have ‖tg − t̂1‖ ≤ 2n− 1−x
2 , Hence,

nc( t̂1, tg) − n( t̂
T

1 − tT
g )Wtg( t̂1 − tg) = nO(‖ t̂1 − tg‖3) = O(n− 1−3x

2 ) → 0. (184)

Hence, in the contribution of the third case, we can replace the expectation of nc( t̂1, tg)

by the weighted MSE with weight Wtg . Hence, we obtain the part (2). ⊓⊔

10. Applications

In this section, we show how to evaluate the MSE bounds in several concrete examples.

10.1. Joint measurement of observables. Here we consider the fundamental problem of
the joint measurement of two observables. For simplicity we choose to analyze qubit
systems, although the approach can be readily generalized to arbitrary dimension. The
task is to simultaneously estimate the expectation of two observables A and B in a
qubit system. The observables can be expressed as A = a · σ and B = b · σ with
σ = (σx , σy, σz) being the vector of Pauli matrices. We assume without loss of generality
that |a| = |b| = 1 and a · b ∈ [0, 1). The state of an arbitrary qubit system can be
expressed as

ρ := 1

2
(I + n · σ ) ,

where n is the Bloch vector.



272 Y. Yang, G. Chiribella, M. Hayashi

With this notation, the task is reduced to estimate the parameters

x := a · n, y := b · n.

It is also convenient to introduce a third unit vector c orthogonal to a and b so that
{a, b, c} form a (non-orthogonal) normalized basis of R

3. In terms of this vector, we can
define the parameter z := c · n. In this way, we extend the problem to the full model
containing all qubit states, where x , y are the parameters of interest and z is a nuisance
parameter. Under this parameterization, we can evaluate the SLD operators for x, y, and
z, as well as the SLD Fisher information matrix and the D matrix (see “Appendix J” for
details), substituting which into the bound (144) yields:

tr V W ≥ tr W

⎛
⎜⎝

1−|n|2+y′2(1−s2)+z2

1−|n|2+x ′2+2x ′ y′s+y′2+z2 − x ′ y′(1−s2)+(1−|n|2+z2)s

1−|n|2+x ′2+2x ′ y′s+y′2+z2

− x ′ y′(1−s2)+(1−|n|2+z2)s

1−|n|2+x ′2+2x ′ y′s+y′2+z2
1−|n|2+x ′2(1−s2)+z2

1−|n|2+x ′2+2x ′ y′s+y′2+z2

⎞
⎟⎠

+
1

2
tr

∣∣∣∣
√

W

(
0 −2z

√
1 − s2

2z
√

1 − s2 0

)√
W

∣∣∣∣ , (185)

where s := a · b, x ′ = x−ys

1−s2 , and y′ = y−xs

1−s2 .
The tradeoff between the measurement precisions for the two observables is of funda-

mental interest. Substituting the expressions of D-matrix and the SLD Fisher information
matrix (see “Appendix J”) into Eq. (159), we obtain

ΔA + ΔB ≥ 2|z|
√

1 − s2,

which characterizes the precision tradeoff in joint measurements of qubit observables.

10.2. Direction estimation in the presence of noise. Consider the task of estimating a
pure qubit state |ψ〉 = cos θ

2 |0〉+eiϕ sin θ
2 |1〉, which can also be regarded as determining

a direction in space, as qubits are often realized in spin-1/2 systems. In a practical
setup, it is necessary to take into account the effect of noise, under which the qubit
becomes mixed. For noises with strong symmetry, like depolarization, the usual MSE
bound produces a good estimate of the error. For other kind of noises, it is essential to
introduce nuisance parameters, and to use the techniques introduced in this paper.

As an illustration, we consider the amplitude damping noise as an example, which
can be formulated as the channel

Aη(ρ) := A0ρ A
†
0 + A1ρ A

†
1

where A0 = |0〉〈0| +
√

η|1〉〈1| and A1 =
√

1 − η|0〉〈1| are the Kraus operators. After
the noisy evolution, the qubit state can be expressed as

ρ := 1

2
(I + n · σ )

with n := (
√

η sin θ sin ϕ,
√

η sin θ cos ϕ, 1 − η + η cos θ). Now we can regard η as a
nuisance parameter, while θ and ϕ are the parameters of interest.
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0 π 2π
θ

10

20

Fig. 2. Amplitude damping model. Plot of MSEθ + MSEϕ as a function of θ (the value is the same for all ϕ)
for η = 0.9 (red), η = 0.5 (green), and η = 0.1 (blue). Here MSEx denotes the (x, x)-th element of the MSE
matrix

Defining the derivative vector through the equation px ·σ = ∂ρ/∂x , we can calculate
the vectors

pθ = (
√

η cos θ sin ϕ,
√

η cos θ cos ϕ,−η sin θ)

pϕ = (
√

η sin θ cos ϕ,−√
η sin θ sin ϕ, 0)

pη = (sin θ sin ϕ/(2
√

η), sin θ cos ϕ/(2
√

η),−1 + cos θ)

In terms of the derivative vector, the SLD for the parameter x ∈ {θ, ϕ, η} takes the form

Lx = − 2 px · n

1 − |n|2 I +

(
2 px +

2 px · n

1 − |n|2 n

)
· σ .

After some straightforward calculations, we get

J =

⎛
⎜⎜⎜⎜⎝

4η 0 2 sin θ

0 4η sin2 θ 0

2 sin θ 0 (1−η)[sin2 θ+4η(1−cos θ)2]+(2η−1)2

η(1−η)

⎞
⎟⎟⎟⎟⎠

and

Dθ,ϕ = −Dϕ,θ = 8η sin θ(η − η cos θ + cos θ)

Dη,ϕ = −Dϕ,η = 4 sin2 θ (1 + η − η cos θ)

Dθ,η = −Dη,θ = 0.

Then we have the MSE bound with nuisance parameter η. An illustration can be
found in Fig. 2 with W = I in Eq. (144). The minimum of the sum of the (x, x)-th
matrix element of the MSE matrix for x = θ, ϕ is independent of ϕ, which is a result of
the symmetry of the problem: the D-matrix does not depend on ϕ, and thus an estimation
of ϕ can be obtained without affecting the precisions of other parameters. Notice that
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0
π

2

θ

10

20

Fig. 3. The nuisance parameter bound versus the fixed parameter bound. MSEθ + MSEϕ as a function of θ

(the value is the same for all ϕ) for η = 0.5 (green) and η = 0.1 (blue) are plotted. The solid curves correspond
to the case when η is a nuisance parameter, while the dashed curves correspond to the case when η is a fixed
parameter. Here MSEx denotes the (x, x)-th element of the MSE matrix

when the state is close to |0〉 or |1〉, it is insensitive to the change of θ , resulting in the
cup-shape curves in Fig. 2.

Next, we evaluate the sum of MSEs of ϕ and θ when η is a (known) fixed parameter
using Eq. (125) and compare it to the nuisance parameter case. The result of the numerical
evaluation is plotted in Fig. 3. It is clear from the plot that the variance sum is strictly
lower when η is treated as a fixed parameter, compared to the nuisance parameter case.
This is a good example of how knowledge on a parameter (η) can assist the estimation
of other parameters (ϕ and θ ). It is also observed that, when the noise is larger (i.e. when
η is smaller), the gain of precision by knowing η is also bigger.

10.3. Multiphase estimation with noise. Here we consider a noisy version of the mul-
tiphase estimation setting [20,51]. This problem was first studied by [20], where the
authors derived a lower bound for the quantum Fisher information and conjectured that
it was tight. Under local asymptotic covariance, we can now derive an attainable bound
and show its equivalence to the SLD bound using the orthogonality of nuisance param-
eters, which proves the conjecture.

Our techniques also allow to resolve an open issue about the result of Ref. [20], where
it was unclear whether or not the best precision depended on the knowledge of the noise.
Using Corollary 4, we will also see that knowing a priori the strength of the noise does
not help to decrease the estimation error.

The setting is illustrated in Fig. 4. Due to photon loss, the phase-shift operation is no
longer unitary. Instead, it corresponds to a noisy channel with the following Kraus form:

Π̂l,t =

√
(1 − η)l

l! ei n̂ tη
n̂
2 âl

Nt(ρ) :=
∑

l

Π̂l,tρΠ̂
†
l,t

, Π̂l,t := Π̂l j ,0 ⊗

⎛
⎝

d⊗

j=1

Π̂l j ,t j

⎞
⎠ .
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Fig. 4. Setup of noisy multiphase estimation. A input state |Ψ 〉 passes through a noisy channel Nt consisting
of d + 1 modes and carrying d parameters. The resultant state is then measured to obtain an estimate of t

Note that η = 0 corresponds to the noiseless scenario. We consider a pure input state
with N photons and in the “generalized NOON form” as

|Ψ 〉 := a|N 〉0 +
b√
d

d∑

j=1

|N 〉 j |N 〉 j := |0〉⊗ j ⊗ |N 〉 ⊗ |0〉⊗(d− j).

The output state from the noisy multiphase evolution would be

I ⊗ Nt(|Ψ 〉〈Ψ |) = pη

∣∣ψη,t 〉〈ψη,t

∣∣ + (1 − pη)ρη

where

∣∣ψη,t

〉
= cos αη|N 〉0 + sin αη

∑

j

ei N t |N 〉 j√
d

, cos αη = a/

√
1 − b2(1 − ηN ),

pη = 1−b2(1−ηN ), and ρη is independent of t . Notice that the output state is supported
by the finite set of orthonormal states {|n〉 j : j = 0, . . . , d, n = 0, . . . , N }, and thus it
is in the scope of this work.

In this case, {t j } are the parameters of interest, while αη and pη can be regarded as
nuisance parameters. The SLD operators for these parameters can be calculated as

L t j
= 2i

[
N |N 〉 j 〈N | j , |ψη,t 〉〈ψη,t |

]

Lαη = 2
(
|ψη,t 〉〈ψ⊥

η,t | + |ψ⊥
η,t 〉〈ψη,t |

)

L pη = 1

pη

|ψη,t 〉〈ψη,t | − 1

1 − pη

℘H⊥ ,

where ℘H⊥ refers to the projection into the space orthogonal to |ψη,t 〉. Notice that pη

and αη are orthogonal to other parameters, in the sense that

Tr ρL t j
L pη = Tr ρLαη L pη = 0

and

Tr ρL t j
Lαη = 2i pη sin 2αη

d



276 Y. Yang, G. Chiribella, M. Hayashi

Table 3. Comparison between our results and existing results

Topic Our result Existing results
Class of estimators Local asymptotic covariance Unbiased, [6]

Locally unbiased [5], etc.
Local optimal estimator Achieving Holevo bound Achieving Holevo bound [19]

Order estimate
Uniform convergence

Global estimator Achieving Holevo bound Achieving separable bound [8,11]
General cost function

Nuisance parameter Achieving Holevo bound Special cases, e.g. qubit models [27,29]
Order estimate
Uniform convergence

Tail probability of limiting dist. Gaussian states Special pure states model [49,50]
General D-inv. model

is purely imaginary. We also have

Tr ρL t j
L tk

= 4pη N 2|〈ψ |N 〉 j |2
(
δ jk − |〈ψ |N 〉k |2

)

= 4pη N 2 sin2 αη

d

(
δ jk − sin2 αη

d

)
.

Therefore, the SLD Fisher information matrix and the D matrix are of the forms

J =

⎛
⎜⎜⎜⎝

Jt 0 0

0 Jαη 0

0 0 Jpη

⎞
⎟⎟⎟⎠ D =

⎛
⎜⎜⎜⎜⎝

0 Dt,αη 0

DT
t,αη

0 0

0 0 0

⎞
⎟⎟⎟⎟⎠

.

Substituting the above into the bound (144), we immediately get an attainable bound

tr W V
[
℘t0,t|m

]
≥ tr W J−1

t , (Jt)i j = 4pη N 2 sin2 αη

d

(
δi j − sin2 αη

d

)
(186)

for any locally asymptotically covariant measurement m. Taking W to be the identity,
one will see that for small η the sum of the variances scales as N 2/d2, while for η → 1
it scales as N 2/d, losing the boost in scaling compared to separate measurement of
the phases. The bound (186) coincides with the SLD bound and the RLD bound. By
Corollary 4, we conclude that the SLD (RLD) bound can be attained in the case of joint
estimation of multiple phases. In addition, we stress that the ultimate precision does not
depend on whether or not the noisy parameter η is known aprior: If η is unknown, one
can obtain the same precision as when η is known by estimating η without disturbing
the parameters of interest.

11. Conclusion

In this work, we completely solved the attainability problem of precision bounds for
quantum state estimation under the local asymptotic covariance condition. We provided
an explicit construction for the optimal measurement which attains the bounds globally.
The key building block of the optimal measurement is the quantum local asymptotic
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normality, derived in [16,17] for a particular type of parametrization and generalized
here to arbitrary parameterizations. Besides the bound of MSE, we also derived a bound
for the tail probability of estimation. Our work provides a general tool of constructing
benchmarks and optimal measurements in multiparameter state estimation. In Table 3,
we compare our result with existing results.

Here, we should remark the relation with the results by Yamagata et al. [19], which
showed a similar statement for this kind of achievability in a local model scenario by a
kind of local quantum asymptotic normality. In Theorem 7, we have shown the compact
uniformity with the order estimation in our convergence, but they did not such properties.
In the evaluation of global estimator, these properties for the convergence is essential.
The difference between our evaluation and their evaluation comes from the key tools.
The key tool of our derivation is Q-LAN (Proposition 2) by [16,17], which gives the state
conversion, i.e., the TP-CP maps converting the states family with precise evaluation of
the trace norm. However, their method is based on the algebraic central limit theorem
[38,52], which gives only the behavior of the expectation of the function of operators
Ri . This idea of applying this method to the achievability of the Holevo bound was first
mentioned in [18]. Yamagata et al. [19] derived the detailed discussion in this direction.

Indeed, the algebraic version of Q-LAN by [38,52] can be directly applied to the
vector X of Hermitian matrices to achieve the Holevo bound while use of the state
conversion of Q-LAN requires some complicated procedure to handle the the vector
X of Hermitian matrices, which is the disadvantage of our approach. However, since
the algebraic version of Q-LAN does not give a state conversion directly, it is quite
difficult to give the compact uniformity and the order estimate of the convergence. In this
paper, to overcome the disadvantage of our approach, we have derived several advanced
properties for Gaussian states in Sects. 3.2 and 3.3 by using symplectic structure. Using
these properties, we could smoothly handle complicated procedure to fill the gap between
the full quit model and arbitrary submodel.
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A. Proof of Lemma 2

In this appendix, we show Lemma 2. For this aim, we discuss the existence of PDF.
First, we show the following lemma.

http://creativecommons.org/licenses/by/4.0/
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Lemma 19. Let P be a probability measure on R. Define the location shift family {Pt }
as Pt (B) := P(B + t). For an arbitrary disjoint decomposition A := {Ai } of R, we

assume that the probability distribution family {PA,t } has finite Fisher information JA,t ,

where PA,t (i) := Pt (Ai ). We also assume that Jt := supA JA,t < ∞. Also, we define

x+ := inf{x ′|P(x ′,∞) = 0} and x− := sup{x ′|P((−∞, x ′]) = 0}.
Then, for x = x−, x+, the derivative p(x) := d

dx
P((−∞, x]) is zero. For x ∈

(x−, x+), the derivative p(x) := d
dx

P((−∞, x]) exists. For x ∈ [x−, x+], p(x) is

Hölder continuous with order 1/2, i.e.,

lim sup
ǫ→0

∣∣∣ p(x + ǫ) − p(x)

ǫ1/2

∣∣∣ < J
3/2
0 . (187)

Also, p(x) is bounded, i.e., supx p(x) <
√

J0.

Proof. Assume that x+ < ∞. We choose A1 := (−∞, x+], A2 := (x+,∞), and A =
{A1, A2}. The fidelity between PA,0 and PA,t is

√
P((−∞, x+])

√
P((−∞, x+ − t]) = P((−∞, x+])

√
1 − P((x+ − t, x+])

P((−∞, x+])

∼= P((−∞, x+])
(

1 − 1

2

P((x+ − t, x+])
P((−∞, x+]) − 1

8

(
P((x+ − t, x+])
P((−∞, x+])

)2)

= 1 − 1

2
P((x+ − t, x+]) − 1

8
P((x+ − t, x+])2 (188)

Hence, we have

lim
t→0

8

2t2
P((x+ − t, x+]) = J{(−∞,x+],(x+,∞)},0, (189)

which implies the existence of p(x+) and p(x+) = 0.
Similarly, we can show that there exists p(x−) and p(x−) = 0 when x− > −∞.
Next, we choose x ∈ (x−, x+). We choose A1 := (−∞, x], A2 := (x,∞), and

A := {A1, A2}. The fidelity between PA,0 and PA,t is
√

P((−∞, x])
√

P((−∞, x + t]) +
√

P((x,∞))
√

P((x + t,∞))

= P((−∞, x])
√

1 +
P((x, x + t])
P((−∞, x]) + P((x,∞))

√
1 − P((x, x + t])

P((x,∞))

∼= P((−∞, x])
(

1 +
1

2

P((x, x + t])
P((−∞, x]) − 1

8

(
P((x, x + t])
P((−∞, x])

)2)

+ P((x,∞))

(
1 − 1

2

P((x, x + t])
P((x,∞))

− 1

8

(
P((x, x + t])
P((x,∞))

)2)

= P((−∞, x]) +
1

2
P((x, x + t]) − 1

8

P((x, x + t])2

P((−∞, x])

+ P((x,∞)) − 1

2
P((x, x + t]) − 1

8

P((x, x + t])2

P((x,∞))

= 1 − 1

8

P((x, x + t])2

P((−∞, x]) − 1

8

P((x, x + t])2

P((x,∞))
. (190)
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Hence, we have

lim
t→0

P((x, x + t])2

t2 P((−∞, x]) +
P((x, x + t])2

t2 P((x,∞))
= J{(−∞,x],(x,∞)},0, (191)

which implies the existence of p(x). Thus,

|p(x)| =
√

J{(−∞,x],(x,∞)},0
1

P((−∞,x]) + 1
P((x,∞))

≤
√

J0
1

P((−∞,x]) + 1
P((x,∞))

≤
√

J0

min
(

1
P((−∞,x]) ,

1
P((x,∞))

) =
√

J0 max(P((−∞, x]), P((x,∞))) ≤
√

J0.

(192)

Hence, p(x) is bounded.
For x ∈ [x−, x+], we consider the sets Ax,d := {(x, x + d], (x, x + d]c}. Then, we

have

JAx,d ,0 =
( d

dt
P((x + t, x + d + t]))2

P((x, x + d]) +
( d

dt
P((x + t, x + d + t]c))2

P((x, x + d]c)

= p((x, x + d])2

P((x, x + d]) +
p((x, x + d]c)2

P((x, x + d]c)
. (193)

Hence, we have

(p(x + d) − p(x))2

P((x, x + d]) < J0. (194)

Hence, when d → 0

(p(x + d) − p(x))2

p(x)d
< J0, (195)

i.e.,

(p(x + d) − p(x))2

d
< p(x)J0 ≤ J

3/2
0 , (196)

which implies that p(x) is Hölder continuous with order 1/2.

Using the previous Lemma, we are in position to prove Lemma 2.

Proof of Lemma 2. Let A := {Ai } be an arbitrary disjoint finite decomposition of R. Let
GA be the coarse-graining map from a distribution on R to a distribution on the meshes
Ai . Then, the Fisher information JA,n,t of {GA(℘n

t0,t |Mn
)}t is not greater than the Fisher

information Jt of
{
ρn

t0,t

}
t∈	n

. Hence, the Fisher information JA,t of {GA(℘t0,t |m)}t

satisfies

JA,t = lim
n→∞

JA,n,t ≤ Jt0 . (197)

Therefore, we can apply Lemma 19 to ℘t0,t |m. Lemma 19 guarantees the existence of
the PDF of the limiting distribution ℘t0,t |m, ⊓⊔
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B. Lemmas Used for Asymptotic Evaluations

In this appendix, we prepare two lemmas for asymptotic evaluations of information
quantity of probability distributions.

Lemma 20. Assume that two sequences of probability distributions {(Pn, Qn)} on R

converges to a pair of probability distributions (P, Q) on R, respectively. Then, the

inequality

F(P||Q) ≥ lim sup
n→∞

F(Pn||Qn) (198)

holds.

Proof. Let p and q be the Radon–Nikodým derivative of P and Q with respect to P + Q.
Given N > 0, let GN be the coarse-grained map from a distribution on R to a distribution
on the Borel subsets B ⊂ (−N , N ] and the subset (−N , N ]c. Given N > 0 and N ′ > 0,
let GN ′,N be the coarse-grained map from a distribution on R to a distribution on meshes
(i/N ′, (i + 1)/N ′] with −N N ′ ≤ i ≤ N N ′ − 1 and its complement (−N , N ]c.

We define ḠN ′,N (P)(x) := GN ′,N (P)(i)

(P+Q)((i/N ′,(i+1)/N ′]) for x ∈ (i/N ′, (i + 1)/N ′] ⊂
(−N , N ]. Then, we have ḠN ′,N (P)(x) ≤ GN ′,N (P)(i)

P((i/N ′,(i+1)/N ′]) = 1/2 and ḠN ′,N (Q)(x) ≤

1/2. Since
√

ḠN ′,N (P)(x)

√
ḠN ′,N (Q)(x) ≤ √

1/2
√

1/2 = 1/2 for x ∈ (−N , N ],
Lebesgue convergence theorem guarantees that

lim
N ′→∞

∫ N

−N

√
ḠN ′,N (P)(x)

√
ḠN ′,N (Q)(x)(P + Q)(dx)

=
∫ N

−N

√
p(x)

√
q(x)(P + Q)(dx). (199)

Since

F
(
GN ′,N (P)||GN ′,N (Q)

)

=
∫ N

−N

√
ḠN ′,N (P)(x)

√
ḠN ′,N (Q)(x)(P + Q)(dx)

+
√

P((−N , N ]c)
√

Q((−N , N ]c), (200)

Eq. (199) implies that

lim
N ′→∞

F
(
GN ′,N (P)||GN ′,N (Q)

)
= F (GN (P)||GN (Q)) . (201)

Also, we have

lim
N→∞

F (GN (P)||GN (Q)) = F (P||Q) . (202)

Then, information processing inequality for the fidelity yields that

F (Pn||Qn) ≤ F
(
GN ′,N (Pn)||GN ′,N (Qn)

)
.

Since the number of meshes is finite, we have

lim sup
n→∞

F
(
GN ′,N (Pn)||GN ′,N (Qn)

)
= F

(
GN ′,N (P)||GN ′,N (Q)

)
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for every N ′, N > 0. Hence, we have

lim sup
n→∞

F (Pn||Qn) ≤ F(GN ′,N (P)||GN ′,N (Q)). (203)

Hence, using (201), (202) and (203), we have

lim sup
n→∞

F(Pn||Qn) ≤ F(P||Q).

Lemma 21. Let � be an open subset of R
k′

. Assume that a sequence of probability

distributions {Pt,n}t∈� on R
k converges to a family of probability distributions {Pt }t∈�

on R
k . We denote their ǫ-difference Fisher information matrices by J n

t,ǫ and Jt,ǫ , re-

spectively. For an vector t and ǫ > 0, we also assume that there exists a Hermitian

matrix Jǫ such that J n
t,ǫ ≤ Jǫ . Then, Pt+ǫe j

is absolutely continuous with respect to Pt

for j = 1, . . . , k′, and the inequality

lim inf
n→∞

〈a|J n
t,ǫ − Jt,ǫ |a〉 ≥ 0 (204)

holds for any complex vector a ∈ C
k′

.

Proof of Lemma 21. Since J n
t,ǫ and Jt,ǫ are real matrices, it is sufficient to show (204)

for a real vector a. In this proof, we fix the vector t .
Step (1): We show that Pt+ǫe j

is absolutely continuous with respect to Pt for j =
1, . . . , k′ by contradiction. Assume that there exists an integer j such that Pt+ǫe j

is not

absolutely continuous with respect to Pt . There exists a Borel set B ⊂ R
k such that

Pt+ǫe j
(B) > 0 and Pt(B) = 0. Let G be the coarse-grained map from a distribution

P on R
k to a binary distribution (P(B), P(Bc)) on two events {B, Bc}. Let Jt,B,ǫ

and J n
t,B,ǫ be the ǫ-difference Fisher information matrices of {G(Pt)} and {G(Pt,n)},

respectively. Information processing inequality implies that J n
t,B,ǫ ≤ J n

t,ǫ ≤ Jǫ . Also,
J n

t,B,ǫ → Jt,B,ǫ as n → ∞. Hence, Jt,B,ǫ ≤ Jǫ . However, the j-th diagonal element of
Jt,B,ǫ is infinity. It contradicts the assumption of contradiction.
Step (2): Let pt+ǫe j

be the Radon–Nikodým derivative of Pt+ǫe j
with respect to Pt . We

show that

lim
R→∞

Pt({x|pt+ǫe j
(x) > R}) = 0 (205)

for N , ǫ > 0, and any integer j = 1, . . . , k′ by contradiction. We denote the LHS of
(205) by C j and assume there exists an integer j such that C j > 0.

We set R =
√

Jǫ; j, j/C j + 2. Setting B to be {x|pt+ǫe j
(x) > R}, we repeat the same

discussion as Step (1). Then, we obtain the contradiction as follows.

Jǫ; j, j ≥ Jt,B,ǫ; j, j ≥
∫

B j

(pt+ǫe j
(x) − 1)2 Pt(dx) ≥

∫

B j

(R − 1)2 Pt(dx)

= (R − 1)2/C j =
(√

Jǫ; j, j/C j + 1
)2

/C j > Jǫ; j, j . (206)

Step (3): We show (204) for a real vector a. We define the subsets

CR := {x|∃ j, pt+ǫe j
(x) > R} (207)

CN ,R := ((−N , N ]k)c ∪ CR . (208)
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Given R > 0, let GR be the coarse-grained map from a distribution on R
k to a distribution

on the family of measurable sets {B ⊂ R
k \ CR} ∪ {CR}, where B is any Borel set in

R
k \CR . Given N > 0 and R > 0, let GN ,R be the coarse-grained map from a distribution

on R
k to a distribution on the family of measurable sets {B ⊂ R

k \ CN ,R} ∪ {CN ,R},
where B is any Borel subset in R

k \ CN ,R . Given N > 0, R > 0, and N ′ > 0, let
GN ′,N ,R be the coarse-grained map from a distribution on R

k to a distribution on meshes

(
∏k

j=1(i j/N ′, (i j + 1)/N ′]) \ CN ,R with −N N ′ ≤ i j ≤ N N ′ − 1 and the complement
CN ,R .

We define

ḠN ′,N ,R(p)(x) := GN ′,N ,R(p)(i1, . . . , ik)

Pt((
∏k

j=1(i j/N ′, (i j + 1)/N ′]) \ CN ,R)

for x ∈ (
∏k

j=1(i j/N ′, (i j + 1)/N ′]) \ CN ,R . Let Jt,ǫ,N ′,N ,R be the ǫ-difference Fisher
information matrix for the distribution family {GN ′,N ,R(pt)}t . Let Jt,ǫ,N ,R be the ǫ-
difference Fisher information matrix for the distribution family {GN ,R(pt)}t . Let Jt,ǫ,N

be the ǫ-difference Fisher information matrix for the distribution family {GR(pt)}t .
Since ḠN ′,N ,R(pǫe j

)(x)ḠN ′,N ,R(pǫe j ′ )(x) ≤ R2 for x ∈ Cc
N ,R and

lim
N ′→∞

ḠN ′,N ,R(pt+ǫe j
)(x)ḠN ′,N ,R(pt+ǫe j ′ )(x)

= GN ,R(pt+ǫe j
)(x)GN ,R(pt+ǫe j ′ )(x), (209)

Lebesgue convergence theorem guarantees that

lim
N ′→∞

(Jt,ǫ,N ′,N ,R) j, j ′ = (Jt,ǫ,N ,R) j, j ′ (210)

in the same way as (201). Since pt(((−N , N ]k)c) → 0 as N → ∞, we have

lim
N→∞

Jt,ǫ,N ,R = Jt,ǫ,R . (211)

Using (205), we have

lim
R→∞

Jt,ǫ,R = Jt,ǫ . (212)

Let J n
t,ǫ,N ′,R,N

be the ǫ-difference Fisher information matrix for the distribution fam-
ily {GN ′,R,N (pt,n)}t . Then, information processing inequality (93) for the ǫ-difference
Fisher information matrix yields that

〈a|J n
t,ǫ − J n

t,ǫ,N ′,R,N |a〉 ≥ 0. (213)

Since the number of meshes is finite, we have

lim
n→∞

J n
t,ǫ,N ′,R,N = Jt,ǫ,N ′,R,N . (214)

The combination of (210), (211), (212) (213), and (214) implies

lim inf
n→∞

〈a|J n
t,ǫ − Jt,ǫ,N ′,R,N |a〉 ≥ 0. (215)

Hence, using (210), (211), (212), and (215), we have lim infn→∞〈a|J n
t,ǫ − Jt,ǫ |a〉 ≥ 0.
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C. Proof of Lemma 3

Before starting our proof of Lemma 3, we prepare the following lemmas.

Lemma 22. Consider a canonical quantum Gaussian states family {Φ[θ,β]}. When a

symplectic matrix S satisfies

SEq

(
e−β

)
ST = Eq

(
e−β

)
, (216)

where Eq is the matrix defined in Eq. (56), there exists a unitary operator US such that

Φ[θ,β] = USΦ[Sθ ,β]U †
S .

Proof. Consider any coordinate θ ′ = (θ ′C , θ ′Q), where θ ′Q obtained by a reversible
linear transformation S on the Q-LAN coordinate θ Q , i.e. θ ′Q = Sθ Q .

Define q̂ j = 1√
2
(â j + â

†
j ), p̂ j = 1

i
√

2
(â j − â

†
j ), and x = (q̂1, p̂1, . . . , q̂q , p̂q)T . We

have

Φ[θ Q
V ,β] = Φ[S−1θ ′Q,βV ]

= Zβ exp[i xT S−1θ ′Q] exp

[
− xT Eq(βV )x

2

]
exp Φ[−i xT S−1θ ′Q]

= Zβ exp[i yT θ ′Q] exp

[
− yT SEq(βV )ST y

2

]
exp Φ[−i yT θ ′Q] (217)

where y := (S−1)T x and Zβ > 0 is a normalizing constant. Now, by the definition of

Eq(x) in Eq. (56) and SEq(e−βV )′ST = Eq

(
e−(βV )′

)
, S must be of the block diagonal

form S =
⊕

i Osi
. Here {si } is a partition of {1, . . . , 2q} and j, k ∈ si if and only

if β ′
j = β ′

k , and Osi
is an orthogonal matrix acting on any component j ∈ si . Since

β ′
V , βV and ln βV are in one-to-one correspondence, we SEq(e−βV )ST = Eq(e−βV ).

Substituting it into Eq. (217), we have

Φ[θ Q
V ,βV ] = Zβ exp[i yT θ ′Q] exp

[
− yT Eq(βV ) y

2

]
exp Φ[−i yT θ ′Q,βV ].

That is, (S−1)T can be regarded as a transformation of x. Finally, S is symplectic since
SDST = D, and there exists a unitary US such that [50]

Φ[θ Q
V ,βV ] = USΦ[θ ′Q,βV ]U †

S . (218)

Therefore we have Φ[θ Q
V ,βV ] ∼= Φ[θ ′Q,βV ] as desired. ⊓⊔

Proof of Lemma 3. Using the imaginary part Im(Γ ), we distinguish the classical and
the quantum parts. Specifically, the kernel and support of Im(Γ ) are

Ker Im(Γ ) :=
{

x ∈ R
k : Im(Γ )x = 0

}
(219)
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and

Supp Im(Γ ) := (Ker Im(Γ ))⊥ , (220)

respectively. We introduce the classical parameters θC and the quantum parameters θ Q

in Ker Im(Γ ) and Supp Im(Γ ), respectively. That is, the classical parameter θC and the
quantum parameter θ Q are given by an invertible linear transformation T ′ such that
θ ′ := (θC , θ Q) = T ′ t satisfies

Ker Im(Γ ) = {T ′−1(θC , 0)|θC ∈ R
dC } (221)

Supp Im(Γ ) = {T ′−1(0, θ Q)|θC ∈ R
2d Q }. (222)

Since the above separation is unique up to the linear conversion and any classical Gaus-
sian states can be converted to each other via scale conversion, the remaining problem
is to show the desired statement for the quantum part.

Next, we focus on the quantum part ((T ′−1
)T Γ T ′−1)Q of the Hermitian matrix

(T ′−1
)T

Γ T ′−1 It is now convenient to define the matrix

A := |Im(((T ′−1
)T Γ T ′−1)Q)|1/2. (223)

The role of A is to normalize the D-matrix. Indeed, since Im(((T ′−1
)T Γ T ′−1)Q) is

skew symmetric, A−1Im(((T ′−1
)T Γ T ′−1)Q)A−1 is similar to Ωd Q , namely that there

exists an orthogonal matrix S0 so that S0 A−1Im(((T ′−1
)T Γ T ′−1)Q)A−1ST

0 = Ωd Q .

Moreover, since S0 A−1Re(((T ′−1
)T Γ T ′−1)Q)A−1ST

0 is a real symmetric matrix, there
exists a symplectic matrix S and a vector β such that [53]

ST S0 A−1
Im(((T ′−1

)T Γ T ′−1)Q)A−1ST
0 S = Ed Q (e−β). (224)

Meanwhile, we have SS0 A−1Im(((T ′−1
)T Γ T ′−1)Q)A−1S0ST = Ωd Q since S is sym-

plectic. Overall, when T is given as (I ⊕ (SS0 A−1))T ′, the desired requirement is
satisfied.

The uniqueness of β is guaranteed by the uniqueness of symplectic eigenvalues.
Hence, when two linear conversions T and T̃ satisfies the condition of the statement,
T Γ T T = T̃ Γ T̃ T . Thus, Lemma 22 guarantees that the canonical Gaussian states
G(T −1α, T Γ T T ) and G(T̃ −1α, T̃ Γ T̃ T ) are unitarily equivalent. ⊓⊔

D. Proof of Lemma 5

(3) ⇒ (1): When a Gaussian states family is given in the RHS of (64), it is clearly
D-invariant.

(1) ⇔ (2): Assume that the Gaussian states G[α, Γ ] is generated by the operators
R = (R1, . . . , Rd). Due to Lemma 4, the SLDs of {G[T (t), Γ ]} are L j :=

∑
k,k′ Tk, j

(A−1)k,k′ Rk′ . Lemma 4 guarantees that

D(L j ) =
∑

k,k′
Tk, j (A−1)k,k′D(Rk′) =

∑

k,k′
Tk, j (A−1)k,k′

∑

j ′
2Bk′, j ′ R j ′

= −2
∑

k

Rk(B A−1T )k, j .
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Hence, the D-invariance is equivalent to the condition (2).
(2) ⇒ (3): First, we separate the system into the classical and the quantum parts.

In the Gaussian states family {G[α, Γ ]} this separation can be done by considering the
Kernel of I m(Γ ) as in the proof of Lemma 3. In the Gaussian states family G[T (t), Γ ]
this separation can be done by considering the Kernel of the D-matrix D0 in the same
way. Since the relation (64) for the classical part is easily done, we show the relation
(64) when only the quantum part exists.

Under the above assumption, we define the k × (d − k) matrix T ′ such that F :=
(T ⊕T ′) is invertible and T ′T A−1T = 0. Then, Lemma 3 guarantees that G[F(t, t ′), Γ ]
is unitarily equivalent to G[(t, t ′), F−1Γ (FT )−1]. Since T ′T A−1T = 0, we have

F−1Γ (FT )−1 = F−1 A(FT )−1 FT A−1Γ A−1 F F−1 A(FT )−1

= (FT T ′T F)−1 FT A−1Γ A−1 F(FT T ′T F)−1 = ΓT ⊕ Γ0, (225)

where

Γ0 := ((T ′T A−1T ′)−1 + i(T ′T A−1T ′)−1(T ′T BT ′)(T ′T A−1T ′)−1).

Hence, G[(t, t ′), F−1Γ (FT )−1] = G[t, ΓT ] ⊗ G[t ′, Γ0]. Putting t ′ = 0, we obtain the
condition (3).

E. Proof of Lemma 6

Since Lemma 3 shows that general Gaussian states can be reduced to the canonical
Gaussian states, we discuss only the canonical Gaussian states.
Step 1 We show the statement when we have only the quantum part and X = R. For a
given state ρ, we define the POVM Mρ by

Mρ(B) :=
∫

B

TαρT †
α dα. (226)

When ρ is a squeezed state with Tr ρQ j = Tr ρ j P = 0, the output distribution ℘α|M[ρ]
of M[ρ] is the 2d Q-dimensional normal distribution of average α and the following
covariance matrix [5];

Ed Q (β) + Vρ, with Vρ :=
(

(Tr Qi Q jρ)i, j (Tr Qi Pjρ)i, j

(Tr Pi Q jρ)i, j (Tr Pi Pjρ)i, j

)
. (227)

In the single-mode case, without loss of generality, we can assume that W is a diagonal

matrix

(
w1 0
0 w2

)
because this diagonalization can be done by applying the orthogonal

transformation between Q and P . Then,

1

2

√
W

−1|
√

WΩd Q

√
W |

√
W

−1 =

⎛
⎝

√
w1

2
√

w1
0

0
√

w1

2
√

w2

⎞
⎠ . (228)

We define the squeezed state ρ[w] by Vρ =
( √

w

2 0
0 1

2
√

w

)
. Then the squeezed state ρ[w2

w1
]

satisfies the condition Vρ[ w2
w1

] = 1
2

√
W

−1|
√

WΩd Q

√
W |

√
W

−1
. Hence, the POVM

M[ρ[w2
w1

]] satisfies the requirement.
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In the multiple-mode case, we choose a symplectic matrix S such that SW ST is a
diagonal matrix with diagonal element w1, w2, . . . , w2d Q . The matrix

1

2
S
√

W
−1|

√
WΩd Q

√
W |

√
W

−1
ST

is the diagonal matrix with diagonal element
√

w1

2
√

w2
,

√
w1

2
√

w2
, . . . ,

√
w2d Q

2√
w2d Q−1

,
√

w2d Q−1
2√

w2d Q
. Em-

ploying symplectic representation U (S) given in [50, Sect. 7.8], we apply the uni-
tary operator U (S). Then, the state ρ[w2

w1
] ⊗ · · · ⊗ ρ[ w2d Q

w2d Q−1
] satisfies the condition

V
U (S)ρ[ w2

w1
]⊗···⊗ρ[

w
2d Q

w
2d Q−1

]U (S)† = 1
2

√
W

−1|
√

WΩd Q

√
W |

√
W

−1
. Therefore, Hence, the

POVM M[U (S)ρ[w2
w1

] ⊗ · · · ⊗ ρ[ w2d Q

w2d Q−1
]U (S)†] satisfies the requirement.

Step 2 As the next step, we show the statement when we have only quantum part and
the vector X is given in the following way with an integer k̃;

X1 = Q1, X2 = P1, . . . , X2k̃−1 = Q
k̃
, X2k̃

= P
k̃

(229)

X2k̃+1 = Q
k̃+1, X2k̃+2 = Q

k̃+2, . . . , Xk = Q
k−k̃

. (230)

For the latter k − 2k̃ parameters, we just apply the measurements for the observables
Q

k̃+1, . . . , Q
k−k̃

. We denote the part of the initial 2k̃ parameters for W by WQ . We
substituting WQ into W in the construction of the POVM M[U (S)ρ[w2

w1
] ⊗ · · · ⊗

ρ[ w2d Q

w2d Q−1
]U (S)†]. Then, as the output distribution, it realizes the normal distribution with

average t and covariance matrix Re((Z t(X)) +
√

W
−1|

√
W Im(Z t(X))

√
W |

√
W

−1
.

Step 3 Next, we consider the case when we have only quantum part and X does not have
the form (229), (230). Let 2k̃ be the rank of Im(Z t(X)). We choose an invertible matrix
T ′ such that non-zero entries of the matrix T ′Im(Z t(X))T ′T are limited in the first 2k̃

components and are given as Ω
k̃
. When we apply the matrix T ′ to the outcome of M , we

obtain another POVM, which is denoted by M ′. M ′ can be considered as a measurement
for X ′ := T ′(X) instead of X . Hence, we have the relation Vα(M ′) = T ′Vα(M)T ′T .
Thus, it is sufficient to discuss the case with X ′ and the weight matrix T ′T W T ′.

Then, we define Y j := (T ′X) j for j = 1, . . . , 2k̃ and Y2k̃+2 j ′−1 := (T ′X)2k̃+ j ′ for

j ′ = 1, . . . , k − 2k̃. Next, we choose k′ − k operators Y2k̃+2 j
for j = 1, . . . , k − 2k̃ and

Y2k−2k̃+ j ′ for j ′ = 1, . . . , k′ as linear combinations of Q j and Pj with j = 1, . . . , k′/2
such that Im(Z t(Y)) = Ωk′/2. Hence, there exists a symplectic matrix S such that
Y = S Q, where the vector Q is defined as ( Q)2 j−1 = Q j and ( Q)2 j = Pj . Employing
symplectic representation U (S) given in [50, Sect. 7.8], we apply the unitary operator
U (S) to the Hilbert space so that U (S)(T ′X) j satisfies the conditions(229) and (230).
Hence, our problem is reduced to Step 2.
Step 4 We consider the case when our system is composed of the classical and the
quantum parts. X i is given as a linear combination of the operators Q j and Pj , and
the classical random variables Z j ′ . Then, we divide X = (X i ) to the sum of the quan-

tum part X Q = (X
Q
i ) and the classical part XC = (XC

i ). Then, we have Zα(X) =
Z t(X Q) + Zα(XC ), which implies that tr WRe(Zα(X)) + tr |

√
W Im(Zα(X))

√
W | =

tr WRe(Zα(X Q))+ tr |
√

W Im(Zα(X Q))
√

W | tr |
√

W Im(Zα(XC ))
√

W |. Hence, when
the outcome is given by the sum of XC and the outcome of Step 3 with X Q , the desired
properties are satisfied.
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F. Proof of Eq. (70)

By additivity of quantum Fisher information, the quantum Fisher information of {ρθ ,n} is
equal to the quantum Fisher information of {ρθ0+θ }. For the latter, solving the equations

∂ρθ0+θ

∂θ
R/I
j,k

= 1

2

(
L

θ
R/I
j,k

ρθ0+θ + ρθ0+θ L
θ

R/I
j,k

)
, (231)

we get

LθR
j,k

=
2
√

θ0, j − θ0,k

(θ0, j + θ0,k)
· T I

j,k Lθ I
j,k

= −
2
√

θ0, j − θ0,k

(θ0, j + θ0,k)
· T R

j,k . (232)

Using Eq. (232), we can evaluate the SLD quantum Fisher information

(Jθ0)
R
j,k = (Jθ0)

I
j,k = 4(1 − β j,k)

1 + β j,k

(Jθ0)
(R,I)
j,k = (Jθ0)

(I,R)
j,k = 0 (233)

and the D-matrix

(Dθ0)
R
j,k = (Dθ0)

I
j,k = 0 (Dθ0)

(R,I)
j,k = −(Dθ0)

(I,R)
j,k = −8(1 − β j,k)

2

(1 + β j,k)2
, (234)

having used the definitionβ j,k := θ0,k/θ0, j . It can be immediately verified that
(

J̃θ0

)−1 =
(Jθ0)

−1 + i
2 (Jθ0)

−1 Dθ0(Jθ0)
−1 matches Eq. (70).

The case with the displaced thermal state ρθR
j,k +iθ I

j,k ,β j,k
follows from Lemma 4.

G. Proof of Lemma 12

Denote by Q( y) := 1
πk/2 〈 y|F | y〉 the Q-function of F [54]. Expanding displaced thermal

states into a convex combination of coherent states, Eq. (104) can be rewritten as

f (α) =
∫

d y

⎛
⎝∏

j

√
1 − γ j

γ j

e−(1−γ j )(y j −α j )
2/γ j

⎞
⎠ Q( y). (235)

Taking the Fourier transform F y→ξ (g) :=
∫

d y ei y·ξ g on both sides, we get

Fα→ξ ( f (α))

=
∫ ∫

dαd y

⎛
⎝∏

j

√
1 − γ j

γ j

eiξ j α j −(1−γ j )(y j −α j )
2/γ j

⎞
⎠ Q( y)

=

⎛
⎝∏

j

∫
dα j

√
1 − γ j

γ j

e
− 1−γ j

γ j

(
α j −y j −

iξ j γ j
2(1−γ j )

)2⎞
⎠
∫

d y e
iξ j y j −

∑
j

γ j ξ
2
j

4(1−γ j ) Q( y)

=
√

πke
− 1

4

∑
j

γ j ξ
2
j

1−γ j F y→ξ (Q( y)) . (236)
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In addition, we know that the P-function P( y) [55] of F can be evaluated via the Q-
function as (see, for instance, [56])

P( y) = F−1
ξ→ y

(
e

1
4

∑
j ξ2

j Fα→ξ (Q(α))

)
. (237)

The combination of (236) and (237) yields

P( y) = F−1
ξ→ y

⎛
⎝
√

πke
1
4

∑
j

ξ2
j

1−γ j Fα→ξ ( f (α))

⎞
⎠ .

By definition of the P-function P( y), F satisfies

F =
∫

d yP( y)| y〉〈 y| =
∫

d y F−1
ξ→ y

⎛
⎝
√

πke
1
4

∑
j

ξ2
j

1−γ j Fα→ξ ( f (α))

⎞
⎠ | y〉〈 y|.

(238)

Conversely, we assume that F is given by (105). Then, we choose the function Q(α)

to satisfy

Fα→ξ ( f (α)) =
√

πke
− 1

4

∑
j

γ j ξ
2
j

1−γ j F y→ξ (Q( y)) . (239)

Since F =
∫

d yF−1
ξ→ y

(
e

1
4

∑
j ξ2

j Fα→ξ (Q(α))

)
| y〉〈 y|, we have Q( y) = 1

πk/2 〈 y|F | y〉.
Expanding displaced thermal states into a convex combination of coherent states, we

have

Tr FG[α, γ ] =
∫

d y

⎛
⎝∏

j

√
1 − γ j

γ j

e−(1−γ j )(y j −α j )
2/γ j

⎞
⎠ Q( y). (240)

Applying the inverse of Fα→ξ to (239), we obtain (235). The combination of (235)
and (240) implies (104).

H. Proof of Lemma 16

First we focus on the quantum part and we show that, when a POVM {MG
0 }B⊂R2s is

covariant,

℘αQ |MG
0

(
TW Q ,c(α

Q
0 )
)

≥ N
[
0, Es

(
e−β + e/2

)] (
TW Q ,c(0)

)
(241)

where αQ = (αR,α I ) and W Q is a diagonal matrix with eigenvalues w j > 0.

Since M Q is covariant, we have ℘αQ |MG
0

(
TW Q ,c(α

Q
0 )
)

= ℘0|MG
0

(
TW Q ,c(0)

)
. There

exists a state τ such that

M Q(B) = 1

π s

∫

B

dαQ T
Q
αQ τ(T

Q
αQ )†,



Attaining the Ultimate Precision Limit in Quantum State Estimation 289

where T
Q
αQ is defined as in Eq. (52). Let N̂ j be the number operator on the j-th system.

Since N̂ jΦ[0,β] = Φ[0,β]N̂ j , for the set TW Q ,c(0), we have

Tr Φ[0,β]M(TW Q ,c(0))

= Tr Φ[0,β]ei t N̂ j M(TW Q ,c(0))e−i t N̂ j

= Tr Φ[0,β]ei t N̂ j
1

π s

∫

T
W Q ,c

(0)

DαQ τ D
†
αQ dαQe−i t N̂ j

= Tr Φ[0,β] 1

π s

∫

T
W Q ,c

(0)

DαQ ei t N̂ j τe−i t N̂ j D
†
αQ dαQ .

Since this relation holds with any N̂ j . Hence, τ can be replaced by

1

(2π)s

∫

[0,2π ]s

e
i
∑s

j=1 t j N̂ j τe
−i
∑s

j=1 t j N̂ j dt1 . . . dts ,

For a quantum which commutes with N̂ j with any j .
Now, we consider the case with τ = |k1, . . . , ks〉〈k1, . . . , ks |. Then,

Tr Φ[0,β]M(TW Q ,c(0))

= 1

π s

∫

T
W Q ,c

(0)

〈k1, . . . , ks |D†
αQ Φ[0,β]DαQ |k1, . . . , ks〉dαQ

= 1

π s

∫

T
W Q ,c

(0)

〈k1, . . . , ks |Φ[αQ,β]|k1, . . . , ks〉dαQ

= 1

π s

∫

T
W Q ,c

(0)

∫
|〈k1, . . . , ks |α′

1, . . . , α
′
s〉|2

1

π s N1 . . . Ns

e
−
∑s

j=1 |α′
j
−α j |2

N j dα′dαQ

= 1

π s

∫

T
W Q ,c

(0)

∫
e
−
∑s

j=1 |α′
j |2 |α′

1|2k1 · · · |α′
s |2ks

k1! · · · ks !
1

π s N1 . . . Ns

e
−
∑s

j=1 |α′
j
−α j |2

N j dα′dαQ

= 1

π s

∫
e
−
∑s

j=1 |α′
j |2 |α′

1|2k1 · · · |α′
s |2ks

k1! · · · ks !
f (|α′

1|2, . . . , |α′
s |2)dα′

= 1

π s

∫

[0,∞)s

e
−
∑s

j=1 r j
r

k1
1 · · · r

ks
s

k1! · · · ks !
f (r1, . . . , rs)d1 . . . drs

=
∫

[0,∞)s

f (r1, . . . , rs)pk1(r1) · · · pks (rs)dr1 . . . drs, (242)

where α j := αR
j + iα I

j , f (r1, . . . , rs) :=
∫

T
W Q ,c

(0)
1

π s N1...Ns
e
−
∑s

j=1 |α′
j
−α j |2

N̂ j dαQ with

r j = |α′
j |2 and pk(r) is the PDF defined as e−r rk

πk! . We find that f (r1, . . . , rs) is

monotone increasing for r1, . . . , rs . Also, pk(r) ≥ p0(r) for r ≥ (k!)1/k , and pk(r) <
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p0(r) for r < (k!)1/k . These facts show that
∫

[0,∞)s

f (r1, . . . , rs)p0(r1) · · · p0(rs)dr1 . . . drs

≤
∫

[0,∞)s

f (r1, . . . , rs)pk1(r1) · · · pks (rs)dr1 . . . drs . (243)

When τ is the vacuum state, the equality in (241) hold. So, combining (242) and (243),
we obtain (241).

In the classical case, the covariant measurement is unique. So, we have the extension
as in Lemma 16.

I. Proof of Lemma 17

(i)⇒ (ii): Since S−1 A2(ST )−1 = (ST A−1
2 S)−1, ST A1S, and D commute with each

other, we have

DS−1 A2 A1S = DS−1 A2(ST )−1ST A1S

= ST A1SS−1 A2(ST )−1 D = ST A1 A2(ST )−1 D. (244)

Since ST DS = D, we have ST D = DS−1 and DS = (ST )−1 D. Thus,

ST D A2 A1S = ST A1 A2 DS, (245)

which implies (ii).
(ii)⇒ (i): Let S be a symplectic matrix to symplectically diagonalize A1. Combining

(244) and (245), we have

DS−1 A2(ST )−1ST A1S = ST A1SS−1 A2(ST )−1 D.

Since D2 = −1, we have

S−1 A2(ST )−1ST A1SD = DST A1SS−1 A2(ST )−1 = ST A1SDS−1 A2(ST )−1.

Hence, S−1 A2(ST )−1 commute with ST A1SD. There exists an orthogonal matrix S′

such that SS′ is a symplectic matrix, and (SS′)T A1(SS′) and (SS′)−1 A2((SS′)T )−1 are
diagonal matrices. Considering the inverse of A−1

2 , we obtain (i).

J. Derivation of Eq. (185)

First, SLD operators for x , y, and the nuisance parameter z can be calculated by solving
the equation ∂ρt

∂ t j
= 1

2

(
ρt L j + L jρt

)
:

Lx = − x ′

1 − |n|2 I +

(
a′ +

x ′n

1 − |n|2
)

· σ

L y = − y′

1 − |n|2 I +

(
b′ +

y′n

1 − |n|2
)

· σ

L z = − z

1 − |n|2 I +

(
c +

zn

1 − |n|2
)

· σ ,
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where s := a · b, a′ = a−sb
1−s2 , b′ = b−sa

1−s2 , x ′ = x−ys

1−s2 , and y′ = y−xs

1−s2 . By definition, the
SLD Fisher information can be evaluated as (Jt)i j := Tr ρt(L i L j + L j L i )/2 and the
D-matrix can be evaluated as (Dt)i j := i Tr ρt [L i , L j ]. Explicitly, we get

J =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
1−s2 + x ′2

1−|n|2 − s
1−s2 + x ′ y′

1−|n|2
x ′z

1−|n|2

− s
1−s2 + x ′ y′

1−|n|2
1

1−s2 + y′2

1−|n|2
y′z

1−|n|2

x ′z
1−|n|2

y′z
1−|n|2 1 + z2

1−|n|2

⎞
⎟⎟⎟⎟⎟⎟⎠

,

J−1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1−|n|2+y′2(1−s2)+z2

1−|n|2+x ′2+2x ′ y′s+y′2+z2 − x ′ y′(1−s2)+(1−|n|2+z2)s

1−|n|2+x ′2+2x ′ y′s+y′2+z2 − (x ′+sy′)z
1−|n|2+x ′2+2x ′ y′s+y′2+z2

− x ′ y′(1−s2)+(1−|n|2+z2)s

1−|n|2+x ′2+2x ′ y′s+y′2+z2
1−|n|2+x ′2(1−s2)+z2

1−|n|2+x ′2+2x ′ y′s+y′2+z2 − (sx ′+y′)z
1−|n|2+x ′2+2x ′ y′s+y′2+z2

− (x ′+sy′)z
1−|n|2+x ′2+2x ′ y′s+y′2+z2 − (sx ′+y′)z

1−|n|2+x ′2+2x ′ y′s+y′2+z2
1−|n|2+x ′2+2sx ′ y′+y′2

1−|n|2+x ′2+2x ′ y′s+y′2+z2

⎞
⎟⎟⎟⎟⎟⎟⎠

,

and

D = 1√
1 − s2

⎛
⎜⎜⎜⎝

0 −2z 2y

2z 0 −2x

−2y 2x 0

⎞
⎟⎟⎟⎠ .

Finally, substituting the above into Eq. (144), we get Eq. (185).
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40. Guţă, M., Janssens, B., Kahn, J.: Optimal estimation of qubit states with continuous time measurements.

Commun. Math. Phys. 277(1), 127–160 (2008)
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