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ATTED-II (http://atted.jp) is a coexpression database for

plant species with parallel views of multiple coexpression

data sets and network analysis tools. The user can efficiently

find functional gene relationships and design experiments to

identify gene functions by reverse genetics and general mo-

lecular biology techniques. Here, we report updates to

ATTED-II (version 8.0), including new and updated coex-

pression data and analysis tools. ATTED-II now includes

eight microarray- and six RNA sequencing-based coexpres-

sion data sets for seven dicot species (Arabidopsis, field mus-

tard, soybean, barrel medick, poplar, tomato and grape) and

two monocot species (rice and maize). Stand-alone coex-

pression analyses tend to have low reliability. Therefore,

examining evolutionarily conserved coexpression is a more

effective approach from the viewpoints of reliability and

evolutionary importance. In contrast, the reliability of spe-

cies-specific coexpression data remains poor. Our assess-

ment scores for individual coexpression data sets indicated

that the quality of the new coexpression data sets in ATTED-

II is higher than for any previous coexpression data set. In

addition, five species (Arabidopsis, soybean, tomato, rice

and maize) in ATTED-II are now supported by both micro-

array- and RNA sequencing-based coexpression data, which

has increased the reliability. Consequently, ATTED-II can

now provide lineage-specific coexpression information. As

an example of the use of ATTED-II to explore lineage-specific

coexpression, we demonstrate monocot- and dicot-specific

coexpression of cell wall genes. With the expanded coexpres-

sion data for multilevel evaluation, ATTED-II provides new

opportunities to investigate lineage-specific evolution in

plants.

Keywords: Arabidopsis � Comparative transcriptomics �

Database � Evolution � Gene coexpression � Gene network.

Abbreviations: AUC, area under the curve; CS6, cellulose
synthase 6; GH3, glycoside hydrolase 3; GH9, glycoside hydro-
lase 9; GO, Gene Ontology; MR, mutual rank; PCC, Pearson’s
correlation coefficient; RNAseq, RNA sequencing.

Introduction

Identifying similarities in the expression profiles of different
genes, or coexpression, can provide insight to elucidate gene
function (Eisen et al. 1998, Walker et al. 1999). Backed up by the
enlargement of public gene expression repositories, the useful-
ness of coexpression information has been expanding (Rung
and Brazma 2013). Because the biological functions of paralo-
gous genes are not clearly distinguished by their sequence simi-
larities, a gene coexpression database is a prominent resource to
estimate gene function, especially in plants, which generally
have more paralogous genes than animals (Tang et al. 2008).
The quality of coexpression data is primarily based on the
number of samples (Ballouz et al. 2015), and this characteristic
limits application of coexpression analysis in non-model spe-
cies. However, recent technical advancements in RNA sequen-
cing (RNAseq) are overcoming this difficulty. During the last
decade, gene coexpression databases have been constructed
and used for a wide variety of species (Aoki et al. 2007,
Usadel et al. 2009).

With the maturation of coexpression data, meta-analyses of
coexpression are becoming increasingly important.
Coexpression analysis based on a single platform will have tech-
nical biases associated with that platform. For example, the
properties of cross-hybridization and the dynamic range of
probes differ among microarray platforms, as does the signal-
to-noise ratio. These technical biases can lead to false positives
in the coexpression analysis. Therefore, multiple platform com-
parisons for a single species are an effective way to eliminate
false positives. Examination of coexpression conservation be-
tween closely related species has similar benefits. In addition,
comparisons between evolutionarily distant species have high-
lighted the evolutionary conservation of coexpression, which
supports the functional relationship of the gene pairs, rather
than the technical reliability (Stuart et al. 2003, Oti et al. 2008,
Movahedi et al. 2011, Okamura et al. 2015). Some coexpression
databases allow assessment of coexpression conservation
(Obayashi and Kinoshita 2011, Obayashi et al. 2011).
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Species-specific co-expression has also attracted researchers
with an evolutionary viewpoint (Stuart et al. 2003, Oldham et al.
2006), but false species-specific relationships can also be gen-
erated by the technical bias of the platform or by different
sample compositions. Therefore, species-specific coexpression
analysis always requires evidence that the results are independ-
ent from both the platform characteristics and the sample
composition.

We constructed and developed ATTED-II (http://atted.jp), a
coexpression database for plant species, which provides a par-
allel view of multiple coexpression data sets with network ana-
lysis tools (Obayashi et al. 2007, Obayashi et al. 2009, Obayashi
et al. 2011, Obayashi et al. 2014). The user can effectively find
functional gene relationships and design experiments to con-
firm the gene functions by reverse genetics and general mo-
lecular biological techniques (Obayashi and Kinoshita 2010).
Here, we report updates to ATTED-II that include new and
updated coexpression data and analysis tools. ATTED-II now
includes eight microarray- and six RNAseq-based coexpression
data sets for nine species (Arabidopsis, field mustard, soybean,
barrel medick, poplar, tomato, grape, rice and maize).
Importantly, five species (Arabidopsis, soybean, tomato, rice
and maize) are now supported by both microarray- and
RNAseq-based coexpression data. Our assessment scores for
the data indicate that the new coexpression data sets are of
higher quality than any previous coexpression data sets in
ATTED-II. These highly reliable coexpression data will enable
us to detect lineage-specific coexpression. As an example, we
demonstrate monocot- and dicot-specific coexpression
with the updated ATTED-II. With the expanded coexpression
data with multilevel evaluation, ATTED-II provides
new opportunities to investigate lineage-specific evolution in
plants.

Results and Discussion

The new co-expression data for nine species from

14 sources

We updated both the microarray- and RNAseq-based coexpres-
sion data (Table 1) in ATTED-II. For the microarray platform,
tomato (Solanum lycopersicum microarray; Sly-m) was newly
included, and additional microarray data for Arabidopsis
(Arabidopsis thaliana; Ath-m), soybean (Glycine max; Gma-
m), barrel medick (Medicago truncatula; Mtr-m), rice (Oryza
sativa; Osa-m) and grape (Vitis vinifera; Vvi-m) were down-
loaded from a public repository (Kolesnikov et al. 2015). For
RNAseq-based coexpression data, field mustard (Brassica rapa

RNAseq; Bra-r), soybean (Gma-r), rice (Osa-r), tomato (Sly-r)
and maize (Zea mays; Zma-r) were newly added, and the
Arabidopsis coexpression data were updated (Ath-r). In total,
ATTED-II provides information from 14 sources for the nine
species. Among the nine species, five (Arabidopsis, soybean,
tomato, rice and maize) are supported by data from both the
microarray and RNAseq platforms, which enhances the reliabil-
ity of the coexpression detection in these species described
below.

Similarity among the 14 coexpression data sets

To provide an overview of the 14 coexpression data sets, we
examined the similarities among them. We first quantified the
similarity between pairs of coexpressed gene lists from different
sources using the coexpression similarity (COXSIM) value,
which is the weighted concordance rate of a gene list
(Obayashi et al. 2013). Because the COXSIM values are calcu-
lated for every pair of corresponding guide genes, the median of
the COXSIM values for all guide gene pairs was used to repre-
sent the similarity of the two coexpression data sets.
Supplementary Fig. S1 shows the similarities among the 14
coexpression data sets. Among all data set pairs, the five pairs
from the same species (Ath, Gma, Sly, Osa and Zma) showed
the highest similarities, as expected. In contrast, the Mtr-m
coexpression data showed similarity only to the Gma-r data
(0.018), probably owing to the low quality of the barrel
medick data. The similarity table is also represented as a den-
drogram in Fig. 1. In the dendrogram, the high similarities of the
platform pairs (microarray and RNAseq) for the five species are
represented as the longest branches, whereas barrel medick,
which did not show strong similarity to the other platforms,
was placed near the root of the dendrogram. Importantly, this
dendrogram reflects the phylogenetic branching of the brassica
family (Ath and Bra) and the monocot–dicot branching, sug-
gesting the potential to analyze the evolution of coexpression.

Significance of the coexpressed gene list

When coexpression is supported by data from multiple plat-
forms in the same species or closely related species, the coex-
pression can be regarded as reliable. Because selection of the
best platform to assess the coexpressed gene list of interest
depends on multiple factors, we used the maximum COXSIM
value (maxCOXSIM) between the target gene list and each
reference gene list as the measure of supportability of the
target coexpressed gene list (Obayashi et al. 2013). The
maxCOXSIM was then compared with the null distribution
to calculate the statistical significance. We slightly refined the
null distribution of themaxCOXSIM to estimate amore realistic
P-value. The previous null distribution of maxCOXSIM was con-
structed by randomization of the individual gene list. However,
the actual coexpressed gene list has two types of constraints
that reduce the degrees of freedom. One constraint concerns
the characteristic of correlation. When both of the two variable
pairs A–B and B–C are correlated, the pair A–C is not inde-
pendent. The other constraint concerns gene expression pat-
terns. Compared with the conceptually possible variation in
gene expression patterns, actual gene expression patterns in
cellular systems are very limited. Therefore, independent ran-
domization of the gene list allows too many degrees of freedom
and consequently leads to overestimated p-values. To achieve
more realistic p-values of maxCOXSIM, we used the distribu-
tion of the actual COXSIM values between any combination of
guide genes of the Arabidopsis (Ath-r) and rice (Osa-r) data sets
as the null distribution of the COXSIM values (Supplementary

Fig. S2). Based on this COXSIM distribution, the thresholds of
maxCOXSIM were defined, after Bonferroni correction, for 13
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Fig. 1 Hierarchical clustering of coexpression data. Data sets were hierarchically clustered by the complete linkage method. The pairwise
similarities among all coexpression data sets are shown in Supplementary Fig. S1. Because COXSIM values are not exactly symmetric, the
median of the COXSIM for a pair is not exactly symmetric. Therefore, the average values of the median COXSIM between one target and one
reference, and vice versa, were used to represent symmetric similarity between data sets, and 1 – similarity was used to represent the distance
between data sets. The coexpression data set version is shown in parentheses under the data set ID. ‘CodonS’ is the codon score from Table 1.
‘Sample’ indicates the number of samples in the data set.

Table 1 Coexpression data in ATTED-II version 8.0

Common name Scientific

name

Data set

IDa

Version No. of

genes

No. of

samples

Codon

scoreb
Reproducibility

scorec
Release date

Arabidopsis Arabidopsis thaliana Ath-m c6.0 20,836 15,275 2.29 2.57 August 31, 2015
Ath-r c2.0 25,296 1,401 1.67 2.20 August 31, 2015

Field mustard Brassica rapa Bra-r c1.0 35,431 257 1.63 1.25 August 31, 2015

Soybean Glycine max Gma-m c2.0 15,902 1,115 1.63 1.61 August 31, 2015
Gma-r c1.0 42,787 410 1.73 1.48 August 31, 2015

Barrel medick Medicago truncatula Mtr-m c2.0 6,226 909 1.08 – August 31, 2015

Rice Oryza sativa Osa-m c5.0 20,625 2,098 1.59 1.79 August 31, 2015
Osa-r c1.0 17,548 222 1.49 1.64 August 31, 2015

Poplar Populus trichocarpa Ppo-m c1.0 21,909 404 1.29 1.59 May 23, 2013

Tomato Solanum lycopersicum Sly-m c1.0 5,786 401 1.07 1.51 August 31, 2015
Sly-r c1.0 23,195 288 1.34 1.27 August 31, 2015

Grape Vitis vinifera Vvi-m c2.0 9,564 245 1.18 1.32 August 31, 2015

Maize Zea mays Zma-m c2.0 11,069 755 1.62 1.94 August 31, 2015
Zma-r c1.0 22,592 1,571 2.55 1.85 August 31, 2015

a -m, microarray-based coexpression data; -r, RNAseq-based coexpression data.
b Coincidence score between coexpressed gene lists and codon similarity gene lists. The agreement between the two types of gene lists is quantified using the COXSIM
value for each guide gene. The median COXSIM value (1E-02) was used to assess overall performance. A higher score indicates better performance.
c Coincidence score with reference data sets represented by the median of the normalized COXSIM value (1E-01). A higher score indicates better performance.
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guide gene lists. The thresholds of maxCOXSIM for p< 0.1,
p< 0.01 and p< 0.001 are 0.081, 0.189 and 0.377, respectively,
and are represented as one, two and three stars on the ATTED-
II coexpressed gene page. As an example, the supportabilities
for the coexpressed gene list of CS6/At5g64740 are available in
http://atted.jp/cgi-bin/coex_list.cgi?gene=836595. The propor-
tions of genes of each significance level in each data set are
shown in Fig. 2. This supportability analysis suggests that
Arabidopsis, soybean, rice and maize are the best species for
coexpression analysis.

Performance of overall gene coexpression data

We then assessed the 14 sets of coexpression data using three
independent scores: (i) the Gene Ontology (GO) score; (ii)
codon score; and (iii) reproducibility score. Because rich gene
annotation resources are available for Arabidopsis, we first
tested for enrichment of the GO biological process annotations
(GO score; Obayashi et al. 2014). The GO scores showed im-
provement with each update of the Arabidopsis coexpression
data (Table 2). Compared with the improvement seen with
addition of RNAseq data (Ath-r), the improvement with the
addition of microarray data (Ath-m) from c5-0 to c6-0 was
small, implying saturation of sample variation for this
platform. Although the GO score is informative for
Arabidopsis, this score is not generally applicable for the
numerous species that lack comprehensive GO annotations
(Obayashi et al. 2014).

As the second assessment, we determined the codon score,
which is a coincident score between a coexpressed gene table
and a gene–gene codon usage similarity table (Obayashi et al.
2014). Because codon usage information is available for genes in
any species, the codon score can be applied to any coexpression
data. The codon scores (Table 2) also showed general improve-
ment with addition of Arabidopsis coexpression data, in good
agreement with the GO scores [Pearson’s correlation coeffi-
cient (PCC) = 0.91].

The third assessment score is based on the similarity of the
coexpression data sets (Fig. 1; Supplementary Fig. S1). As dis-
cussed above, reproducible coexpression data can be assumed
to be of high quality. However, to use supportability directly as a
measure of overall quality of a data set, the quality of the ref-
erence data set should be considered. Generally, lower quality
reference data do not affect maxCOXSIM, which is the highest
COXSIM value among all reference data sets. In most cases,
taking the maximum value means selecting the data sets of
the closest or the same species if available. However, the data
set of the closest species is not always the best choice in terms
of similarity assessment. For example, microarray probes for a
particular gene are not always available, or they may cross-
hybridize, and thus be omitted from coexpression calculations.
In such cases, the second or third best platform would be se-
lected based on the maxCOXSIM value. Thus we can expect
higher maxCOXSIM values if an ideal reference platform can be
used. Therefore, we normalized the maxCOXSIM values by the

Fig. 2 Number of guide genes for each supportability level. Supportability levels are represented as stars, where no star is the lowest and three
stars is the highest. The numbers in the color-coded bars indicate the percentage of genes in each supportability level in each data set. Genes
without any reference genes in the other data sets are shown as blank boxes.
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evolutionary distance. As a measure of coexpression data qual-
ity, we designed the reproducibility score, which is the median
of the normalized maxCOXSIM for all of the guide genes in a
data set. The reproducibility scores for the Arabidopsis coex-
pression data also showed improvement with each addition of
new data, in good agreement with the GO scores (PCC = 0.88;
Table 2).

Based on their potential as proxies for the species-specific
GO score, we applied the codon score and the reproducibility
score to assess all 14 coexpression data sets (Table 1). The
codon score varied, with the highest scores for Zma-r (2.55)
and Ath-m (2.29) and the lowest scores for Sly-m (1.07) and
Mtr-m (1.08). Based on the codon score and the COXSIM values
between the data sets (Fig. 1; Supplementary Fig. S1), we
decided not to provide the Mtr-m coexpression data in the
parallel view of gene coexpression, and thus they were not
used in the calculation of reproducibility scores and were just
made available as bulk-downloadable data. The reproducibility
scores showed a similar trend to the codon score (PCC = 0.61),
suggesting that both scores correctly assess the performance of
each coexpression data set. Note that the association between
gene expression and codon preference may vary among
plant species, and thus the codon scores may not always be
comparable among species.

An example of lineage-specific coexpression

supported by multiple platforms

Data from multiple platforms for a single species can confirm
not only the existence, but also the absence, of coexpression.
Among the five species with both microarray and RNAseq data,
tomato had the lowest coexpression data (Sly-m, Sly-r) quality
(Table 1; Fig. 1). Therefore, to examine monocot- and dicot-
specific coexpression, we compared two monocots (rice and
maize) and two dicots (Arabidopsis and soybean). Based on the
reciprocal best hit method, there were 7,882 orthologous
groups composed of one gene from each of the four species.
Among the 7,882 orthologous groups, 1,548 had coexpression
data from all eight data sets (microarray and RNAseq data for
the four species). Before investigating the differences between
the monocot and dicot species, we first compared the average
coexpression strength in the four microarray data sets (Ath-m,

Gma-m, Osa-m and Zma-m) and the four RNAseq data sets
(Ath-r, Gma-r, Osa-r and Zma-r) by the geometric average of
the mutual rank (MR) values (Supplementary Fig. S3A). The
coexpression averages within each platform were similar
(PCC = 0.70), and platform-specific bias was not observed.
Because most gene pairs are not coexpressed, the peak of the
distribution of the average coexpression is around MR= 10,000,
which is approximately half of the number of genes in each data
set. Next, we compared the average coexpression strength of
dicots (Ath-m, Ath-r, Gma-m and Gma-r) and of monocots
(Osa-m, Osa-r, Zma-m and Zma-r) (Supplementary Fig.

S3B). The general trend of the average coexpression was similar
to that seen in the comparison of platforms (Supplementary

Fig. S3A). Most of the gene pairs in dicots and monocots were
not coexpressed (approximate MR= 10,000). However, some of
the coexpressed gene pairs showed strong coexpression in
both monocots and dicots, indicating evolutionarily
conserved coexpression. The distribution of the average
coexpression was expanded relative to the platform-specific
coexpression distribution (Supplementary Fig. S3A), suggest-
ing the existence of monocot-specific and dicot-specific
coexpression.

Here, we focused on six gene pairs among four genes as
examples of various coexpression patterns. Among the six
gene pairs, one gene pair shows evolutionarily conserved coex-
pression, one gene pair is not coexpressed and the other four
gene pairs show lineage-specific coexpression (Supplementary

Fig. S3B). Interestingly, these examples revealed coexpression
switching (Fig. 3). The gene encoding cellulose synthase 6 (CS6)
was coexpressed with the gene for a protein of unknown func-
tion (Unk) in all eight data sets, and thus this unknown protein
is very likely to be a cell wall rearrangement factor. In monocots,
these two genes show coexpression with the gene for glycoside
hydrolase 3 (GH3), which degrades the major hemicelluloses in
monocots (xylan, arabinan and arabinoxylan; Minic 2008). On
the other hand, in dicots, these two genes are coexpressed with
the gene for glycoside hydrolase 9 (GH9), which degrades
glucan and cellulose (Minic 2008). Monocots and dicots use
distinct sets of genes to construct the different types of cell wall
(Yokoyama and Nishitani 2004, Minic 2008). By using gene
coexpression, the difference in the individual gene modules

Table 2 Consistency of the three assessments for Arabidopsis coexpression data in ATTED-II

Data set ID Version No. of

genes

No. of

samples

GO score
a

Codon

scoreb
Reproducibility

scorec
Release date

Ath-m c6.0 20,836 15,275 7.08 2.29 2.57 August 30, 2015
c5.0 20,836 11,171 7.02 2.24 2.55 May 17, 2013
c4.1 20,906 1,388 5.48 1.56 2.08 April 8, 2008
c4.0 20,906 1,388 5.06 1.59 1.82 March 18, 2008
c3.1 20,703 771 4.96 1.46 2.14 September 12, 2007
c3.0 22,263 771 4.96 1.46 2.10 May 25, 2006

Ath-r c2.0 25,296 1,401 4.81 1.67 2.20 August 30, 2015
c1.0 25,838 328 4.27 1.59 1.67 August 17, 2013

a Predictive performance of the GO annotation represented by AUC0.01 (1E-04). A higher score indicates better performance.
b Coincidence score with codon similarity represented by the median of the COXSIM value (1E-02). A higher score indicates better performance.
c Coincidence score with reference data sets represented by the median of the normalized COXSIM value (1E-01). A higher score indicates better performance.

5

Plant Cell Physiol. 57(1): e5(1–9) (2016) doi:10.1093/pcp/pcv165

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
c
p
/a

rtic
le

/5
7
/1

/e
5
/2

4
7
0
1
5
4
 b

y
 g

u
e

s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2

http://pcp.oxfordjournals.org/lookup/suppl/doi:10.1093/pcp/pcv165/-/DC1
http://pcp.oxfordjournals.org/lookup/suppl/doi:10.1093/pcp/pcv165/-/DC1
http://pcp.oxfordjournals.org/lookup/suppl/doi:10.1093/pcp/pcv165/-/DC1
http://pcp.oxfordjournals.org/lookup/suppl/doi:10.1093/pcp/pcv165/-/DC1
http://pcp.oxfordjournals.org/lookup/suppl/doi:10.1093/pcp/pcv165/-/DC1
http://pcp.oxfordjournals.org/lookup/suppl/doi:10.1093/pcp/pcv165/-/DC1
http://pcp.oxfordjournals.org/lookup/suppl/doi:10.1093/pcp/pcv165/-/DC1
http://pcp.oxfordjournals.org/lookup/suppl/doi:10.1093/pcp/pcv165/-/DC1
http://pcp.oxfordjournals.org/lookup/suppl/doi:10.1093/pcp/pcv165/-/DC1


can be detected even in the common genes between the two
lineages.

Development of NetworkDrawer for subnetwork

analyses

Network representation is a suitable method to provide
an overview of the module structure of multiple gene relation-
ships, such as coexpression. ATTED-II provides NetworkDrawer,
a coexpression network drawing tool. Coexpression network is
generally scale free (Jordan et al. 2004, van Noort et al. 2004),
meaning that the user has little control over the density of the
network. NetworkDrawer draws edges for the three genes with
the strongest coexpression with every gene. This constraint
provides a medium-density network for a variety of query
gene sets. However, even with this drawing constraint, large
gene networks easily become too complicated to investigate
manually. Therefore, an automatic network analysis tool is
needed. To find biologically meaningful subnetworks in large
coexpressed gene networks, we implemented an automatic
subnetwork detection and analysis workflow, as previously

introduced in a mammalian coexpression database (Obayashi
et al. 2013). After the coexpressed gene network is drawn, a
subnetwork detection algorithm automatically initiates. All of
the detected subnetworks are then checked for enrichment of
GO biological process annotations and cis-elements. Fig. 4
shows an example NetworkDrawer output page for the CS6,
GH3 and GH9 genes discussed above. The gene network based
on the Ath-m data set reflects stronger coexpression between
the CS6 (TSD1 in the Fig. 4) and GH3 (PRC1 in the Fig. 4) genes
than between either of these genes and the GH9 gene. In this
case, three biologically meaningful subnetworks were detected,
which generally correspond to each query gene.

Materials and Methods

Construction of gene coexpression data

To calculate coexpression from the microarray-based data, we downloaded the
GeneChip CEL files from ArrayExpress (Kolesnikov et al. 2015). Mapping from

probe to gene was based on National Center for Biotechnology Information

(NCBI) Gene Expression Omnibus platform files (Barrett et al. 2013). Probes

Fig. 3 Example of lineage-specific coexpression. The genes encoding the four proteins cellulose synthase 6, glucoside hydrolase 3, glucoside
hydrolase 9 and the protein of unknown function are represented as a coexpression network (also highlighted in Supplementary Fig. S3).
Stronger coexpression (MR <500) is represented in bold. Blue and red edges represent monocot- and dicot-specific coexpression, respectively.
All of the coexpression data for the eight data sets, with orthologous information, can be downloaded from ATTED-II (http://atted.jp/top_
download.shtml).
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only associated with a GenBank ID were re-mapped to the Entrez Gene ID using
Blastn against the RefSeq sequences of the species (Altschul et al. 1997). Note

that ATTED-II is now based on the NCBI Entrez Gene ID with the RefSeq

sequences as the gene model for stable development for multiple species.

The MR of the weighted PCC was used as the coexpression measure, as previ-
ously described (Obayashi and Kinoshita 2009). To calculate the coexpression in

RNAseq-based data, we downloaded the Sequence Read Archive format data

from the DNA Data Bank of Japan (Ogasawara et al. 2013), converted it to the
FASTQ format and mapped it to the NCBI RefSeq sequences (Brown et al.

2015) using Bowtie (Langmead et al. 2009). Lower quality data were filtered

out by the total mapped count<10,000,000. The mapped counts were

summed for each gene model for use as the gene expression value. Genes
with consistently low expression (highest count across all runs <100) were

omitted. After conversion to a base-2 logarithm with a pseudo count of

0.125, quantile normalization was applied for each experiment, and the aver-

age expression levels were subtracted for each gene. Using all of the experi-
mental data, PCCs between all gene pairs were calculated, and these values

were then converted to MRs.

Similarity of gene lists

We previously introduced the measure COXSIM to compare the coexpressed

gene list from a guide gene g of interest ðlistgoÞ and that from a reference guide
gene r (listr0) in a weighted manner (Obayashi et al. 2013). Because the gene

compositions of listg0 and listr0 are different, we excluded the genes in both lists

that lacked the corresponding genes in the other data set, resulting in listg and

listr, respectively. The correspondence of genes between species was deter-
mined by the Blastp Reciprocal Best Hit method.

COXSIMgr ¼
X

k

i¼1

nði; listg; listrÞ=
X

k

i¼1

i; ð1Þ

where n(i, listg, listr) is the number of genes in the top i genes in listg with
corresponding genes in the top i genes in listr. We previously used 100 for k,

meaning that we checked the gene correspondence of the top 100 coexpressed

genes. However, the total number of genes in the gene list is different among

the data sets, and thus the random inclusion rate of unrelated genes in the top
100 are different. Therefore, we have modified the number of genes in k to be

the top 1% of all genes in listg. Typically, the k values are approximately 100 for

different species comparisons and approximately 200 for same species

comparisons.

Because the best reference guide gene is initially unknown, we
checked all possible reference guide genes. The reference guide gene set R

is composed of the Blastp best hit genes from one target species in every

other species. The selection of the genes with the highest similarity is inde-

pendent of the data set composition, and thus the best-hit gene is sometimes
not available in the reference data set, and, in that case, we did not use the

data set as the reference. When multiple data sets are available for the species

including the guide gene g, the same gene in the other data set is also

included in the reference guide gene set R. The COXSIM values are calculated
between the target guide gene g and every reference gene r in R. The refer-

ence gene r̂ that gives the maxCOXSIM value is regarded as the best reference

guide gene.

maxCOXSIMg ¼ COXSIMgr̂ ¼ max
r2R

COXSIMgr

� �

ð2Þ

To assess the statistical significance, the maxCOXSIMg value is then com-

pared with the null distribution. To reflect the characteristics of the coex-

pression data, the actual COXSIMgr values between any combination of

Arabidopsis gene g and rice gene r were used as the null distribution of
the COXSIM values because almost all gene pairs are functionally independ-

ent (Supplementary Fig. S2). Based on this COXSIM distribution with

Bonferroni correction for the 13 guide gene lists, the p-values of

Fig. 4 Update of NetworkDrawer with subnetwork analysis functions. NetworkDrawer output coexpression network for Arabidopsis (Ath-m) for
a set of three query genes (white nodes; CS6/At5g64740, GH3/At5g20950 and GH9/At5g49720) with automatically retrieved coexpressed genes
(gray nodes). Orange lines indicate highly reliable coexpression supported by data from the other data sets. Red dotted lines indicate protein–
protein interaction. After construction of the coexpression network, subnetworks are automatically detected. For each subnetwork, enrichment
tests are then conducted for GO annotations and heptamer cis-elements in the proximal promoter region [–300, –1] under Bonferroni
correction. The subnetworks having at least one significantly enriched factor are shown on the right operation panel. Genes for a subnetwork
of interest are highlighted by the yellow balloon marks, which can be manually selected with the right operating panel.
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maxCOXSIM were determined. The thresholds of maxCOXSIM for p< 0.1,
p< 0.01 and p< 0.001 were 0.081, 0.189 and 0.377, respectively.

Reproducibility score based on similarity of

coexpression data

As suggested from Fig. 2, the maxCOXSIMgvalue is one representation of the

quality of a guide gene, and thus the medianmaxCOXSIMgvalue for every guide

gene in a data set reflects the total quality of the data set. However, the

maxCOXSIMgvalue should be considered from the viewpoint of the adequate-
ness of the selected reference guide gene r̂ . We designed the reproducibility

score as a more accurate measure of data set quality:

Reproducibility ¼ median
g2platform

COXSIMgr̂ = Reference Adequatenessg r

h i

ð3Þ

Because different data sets from the same species are the best reference to

check technical reproducibility (Supplementary Figs. S1, S2), the adequateness

of the reference guide gene in the same species should be the highest,
whereas that of the reference guide gene in the evolutionarily most distant

species should be the lowest. We hypothesized that the conservation of gene

coexpression could be approximated by using the conservation of the guide

gene sequences. Based on this idea, we used the conservation ratio between
protein sequences of the target guide gene g and the selected reference

guide gene r̂ to measure the adequateness of the selected guide gene r̂ as

the reference.

Reference Adequatenessgr̂ ¼
Blastp bitscore from g to r̂ð Þ

ðBlastp bitscore from g to gÞ
ð4Þ

The reproducibilityscore, which is themedian of the normalizedmaxCOXSIM

for all of the guide genes in a data set in Equation 3, is used as the coexpression

quality value of the data set (Tables 1, 2).

Predictive performance of GO terms by gene

coexpression data

Using the GO biological process annotations downloaded from NCBI (August 10,
2015, gene2go), the Arabidopsis coexpression data were assessed (Table 2).

Owing to the differences in the relevance of GO terms to our purposes along

with their hierarchical topology, we selected particular GO terms for coexpression
evaluation, as described previously (Kinoshita and Obayashi 2009). We selected

GO terms associated with 5–20 genes with comparable information content,

resulting in 1,197 GO biological process terms for Arabidopsis. The genes asso-

ciated with at least one selected GO term were then used in this assessment,
resulting in 3,708 and 4,163 genes for the Ath-m and Ath-r data sets, respectively.

All of the genes within each data set were divided into two groups, those sharing

at least one GO termwith another gene. The differences in the distribution of the

degrees of coexpression were assessed using the partial receiver operating char-
acteristic (ROC) area under the curve (AUC)0.01 (McClish 1989). Note that this

GO score scheme is not applicable for most of the other species. For example,

only 27 GO biological process terms have been identified for rice.

Coincidence score with codon similarity

Protein-coding sequences were retrieved from NCBI RefSeq (Brown et al. 2015).

For each gene, the 61-dimensional vector was constructed from the number of

codons in the protein-coding sequence. When multiple RefSeq sequences were
available for a gene, the longest sequence was used for the calculation of codon

usage. The PCCs between the vectors of any two genes were calculated

and then converted to MRs, which were used as the codon usage similarity
index. Codon similarity tables are also downloadable from the ATTED-II bulk-

download page (http://atted.jp/ top_download.shtml) in the same format as

the coexpression tables.

Supplementary data

Supplementary data are available at PCP online.
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