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Abstract 

The synthesis and characterisation of a large family of hexametallic [MnIII
6] Single-Molecule Magnets of 

general formula [MnIII
6O2(R-sao)6(X)2(sol)4-6] (where R = H, Me, Et; X = ˉO2CR (R = H, Me, Ph etc) or Halˉ; 

sol = EtOH, MeOH and / or H2O) are presented. We show how deliberate structural distortions of the [Mn3O] 

trinuclear moieties within the [Mn6] complexes are used to tune their magnetic properties. These findings 

highlight a qualitative magneto-structural correlation whereby the type (anti- or ferromagentic) of each Mn2 

pairwise magnetic exchange is dominated by the magnitude of each individual Mn-N-O-Mn torsion angle. 

The observation of magneto-structural correlations on such large polymetallic complexes is rare and 

represents one of the largest studies of this kind. 

 

Introduction 

Studies of the magnetic behaviour of polymetallic cluster compounds have increased greatly in recent 

years because such species are the gateway for discovering fascinating new physics.1 The emergence of 

Molecular Nanomagnets in proposed applications as diverse as information storage, molecular 

spintronics, quantum computation and magnetic refrigeration2 has seen synthetic chemists, physicists, 

theoreticians and materials scientists working to create, understand and design molecules with specific 

properties. One successful strategy for obtaining such clusters is self-assembly using flexible bridging 

ligands,3 and a class of ligands that have seen a huge resurgence recently in this respect are oximes.4 

Phenolic oximes, with the generic structure shown in Figure. 1, have existed for decades with uses not 

only academically, but as industrial metal extractants and anti-corrosive agents in protective coatings.4 

Some time ago we initiated a somewhat alternative approach to making Mn III cluster compounds - a 

project involving the use of derivatised salicyaldoximes in which we used the deliberate targeted 

structural distortion of pre-made/known SMMs as a means of enhancing SMM properties.5 After the 

serendipitous discovery of both ferromagnetic (S=6) and antiferromagnetic (S=2) oxime-based [MnIII
3O] 

triangles6 we speculated that the exchange between the metals in some such systems could be controlled 

by the degree of twisting of the Mn-N-O-Mn moiety.7 We decided that the way to address this question 

was to derivatise the oximate carbon atom with alkyl or aryl groups (R, Figure. 1), i.e. make Me-saoH2, 

Et-saoH2 and Ph-saoH2 and analogues thereof on the assumption that additional steric bulk would make a 

planar Mn-N-O-Mn moiety “impossible”. In order to test our idea, we decided to remake analogues of 

the [MnIII
6O2(sao)6(O2CR’)2(solvent)4] family of SMMs8 replacing the ‘planar’ sao2- ligand with the ‘non-

planar’ R-sao2- ligands.6,7 We chose to examine the family of hexanuclear species rather than the 

trinuclear species because the former class of complexes promised to afford molecules with S=12 ground 

states and large axial zero-field splitting parameters. An advantage for this approach is the weak 

exchange between the MnIII centres in this class of SMMs, which is typically only a few wavenumbers 
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(<1-2 cm-1) in magnitude,9 meaning that the switching of an antiferromagnetic exchange to a 

ferromagnetic exchange interaction should be easier to achieve – since only minor structural 

modifications can lead to major changes in J.10  

 

 

Figure 1. Structure of the phenolic oximes R-saoH2 (R = H, saoH2; Me, Me-saoH2; Et, Et-saoH2 etc). 

 

Our appoach was successful11 with the discovery that the clusters [Mn6O2(Et-sao)6(O2CPh)2(EtOH)4(H2O)2] 

and [Mn6O2(Et-sao)6(O2CPh(Me)2)2(EtOH)6] both possessed S=12 ground states, the latter molecule 

displaying an energy barrier to magnetisation reversal of ~86 K.6,7 Understanding, in detail, the relationship 

between the structure of a cluster and its magnetic properties is non-trivial (especially quantitatively) since it 

depends on the combination of a number of factors, but an initial study of a total of twelve members of this 

family suggested that the dominant factor determining the sign and strength of the exchange was the relative 

twisting of the Mn-O-N-Mn moiety.11 In order to expand and enhance our previous magneto-structural 

correlations, we have now extended the family to twenty four members and below describe their structures 

and magnetic behaviour, which is summarised in Tables 1 and 2 (at the end of this document) with 1-24 being 

listed in order of increasing ground spin state S. 

 

Results and Discussion 

The synthesis of the clusters is straightforward:6,7† Reaction of a simple MnII salt (e.g. 

MnII(ClO4)2·6H2O, MnBr2, MnCl2·4H2O etc) with the (derivatised) salicyaldoxime ligand R-saoH2 (R = 

H, Me, Et) in alcohol (ROH, R = Me, Et) in the presence of a carboxylic acid (or the corresponding 

sodium salt) and a suitable base (NaOMe, NH4OH or NEt3) affords hexametallic complexes of general 

formula [MnIII
6O2(R-sao)6(X)2(sol)4-6] (R = H, Me, Et; X = carboxylate or halide; sol = MeOH, EtOH 

H2O) in excellent yields in 2-3 days.† 

All twenty four complexes display very similar molecular structures; interatomic distances and angles 

relevant to the discussion herein are shown in Table 1. All molecules possess an inversion centre, besides 
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complex 9 which lacks any molecular symmetry. They can be described (Figures. 2-3) as consisting of 

two parallel off-set, stacked [MnIII
3(μ3-O)]7+ triangular subunits linked via two ‘central’ oximate O-atoms 

(Ooxim) and two ‘peripheral’ phenoxide O-atoms (Oph), leading to a [MnIII
6(μ3-O)2(μ3-ONR)2(μ-ONR)4]

8+ 

core. The bridging between neighbouring Mn ions within each triangle occurs through an NO oximate 

group, such that each Mn2 pair forms a –Mn-N-O-Mn- moiety, and thus the Mn3 triangle a (-Mn-O-N-)3 

ring. In all complexes the coordination spheres of the Mn ions are completed by two terminal 

carboxylates (one on each triangle; except for complexes 1, 3-5 where the carboxylates are bridging in a 

η1:η1:μ fashion), a phenoxide O-atom, and by terminal alcohol solvent molecules and/or H2O molecules. 

In complexes 23 and 24 the carboxylates are replaced by halides. All Mn ions are in the 3+ oxidation 

state, as confirmed by a combination of bond-length considerations, BVS calculations12 and charge-

balance. The Jahn-Teller axes all lie perpenidicular to the [Mn3O]7+ planes. 

 

 

Figure 2. The molecular structures of 1 (top) and 14 (bottom) representing the two different structural types in 

the [Mn6] family. Colour code: Purple = Manganese, Red = Oxygen and Blue = Nitrogen. 
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Figure 3. (left) The [Mn6] core common to 1 and its analogues in which the carboxylate is bridging, showing 

the Mn-Ophen interaction involving a 5-coordinate MnIII ion. (right) The [Mn6] core common to 14 and its 

analogues in which the carboxylate or halide is terminally bonded. The Mn-N-O-Mn torsion angle is denoted 

α. Colour code as Figure. 2.   

 

More detailed structural comparisons show that we can subdivide the 24-member family into two general 

types, [MnIII
6O2(R-sao)6(X)2(sol)4] and [MnIII

6O2(R-sao)6(X)2(sol)5,6], as a consequence of the distortion 

imparted on the core via the inclusion of increasingly bulky oxime ligands. This is illustrated in Figures. 2-3. 

Approximately half the family appears to possess two symmetry equivalent (s.e.) square-based pyramidal 

five-coordinate MnIII ions (i.e Mn3 in Figure 2). On closer inspection it becomes clear that the Mn-Ophen 

distances vary greatly and range from a relatively short 2.374 Å in 17 to a rather long 3.524 Å in 1. These Mn-

Ophen interactions form two symmetry equivalent bridges (when sufficiently close) between the two [Mn3O(R-

sao)3]
+ units which add to the two ever-present symmetry equivalent Mn-Ooxim bridges located at the “centre” 

of the [Mn6] cores (Figure. 3). [Mn6O2(Et-sao)6(O2CPh2OPh)2(EtOH)4] (10) differs to all others in this respect 

by possessing a genuine five coordinate MnIII situated at the periphery of the [Mn6] core and isolated from any 

Ophenolic or Ooxim donor atoms. Table 1 shows that the Mn-Ophen distances decrease as the [Mn6] cores become 

more structurally distorted (the oximes employed are bulkier). 

The second major structural difference lies in the individual Mn-N-O-Mn torsion angles (α) within each 

[Mn3O(R-sao)3] unit which range from a minimum of 8.36 º (in 4) to a maximum of 47.56 º (in 10). As 

previously suggested,11 it is clear that the individual Mn-N-O-Mn torsion angles are relatively small when the 

underivatised (or “planar”) sao2- ligands are employed in their construction (ranging from 8.36 to 29.83º), and 

become much larger (ranging from 16.76 to 47.56º) when the functionalised (“non-planar”) Me-sao2- and Et-

sao2- ligands are used. Finally, we can see that as the bulk of the oxime is increased and the triangles become 

more puckered it becomes impossible for the carboxylate ligand to bridge and it becomes terminally ligated 

instead of μ-bridging, with the vacated site occupied by an additional solvent molecule. 

In short, as we replace sao2- with its bulkier analogues R-sao2- we force the carboxylate to bridge 

terminally, the Mn-O-N-Mn angle to be increasingly twisted (non-planar) and the Mn-Ophen distance to 

become shorter. 
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In general there are no significant intermolecular interactions observed between the individual [Mn6] clusters 

containing bridging / terminal carboxylates (1-22). In some cases non-bonding solvent molecules of 

crystallisation (MeOH / EtOH) act as H-bonding connectors, linking the [Mn6] moieties together via 

ROH…Ophen (R = Et, Me) interactions (e.g. as observed in 2, 3, 6 and 17). The halogen containing complexes 

23 and 24, however, exhibit intramolecular interactions between the X‾ ions (X = Br (23), I (24)) and nearby 

terminal EtOH molecules (Br1…H14(O8) = 2.459 Å, I1…H441(O44) = 2.687 Å). Intermolecular interactions 

observed in 23 are limited to H-bonding interactions between the terminal Br- ligands and the aromatic 

protons belonging to the Et-sao2- ligands of an adjacent [Mn6] complex (Br1…H17(C17) = 2.859 Å). The 

crystal structure of 24 shows two types of close contact interactions. More specifically the I‾ and oxygen 

atoms (of terminal EtOH ligands) of each [Mn6] unit H-bond with the –CH3 protons and aromatic C-Haromatic 

protons of nearest neighbour Me-sao2- ligands, respectively (I1…H152(C15) = 3.178 Å, O38…H181(C18) = 

2.713 Å). 

 

Magnetic studies  

Dc magnetic susceptibility studies were carried out on crystalline samples of 1-24 in the 5 - 300 K 

temperature range in a field of 0.1 T.6,7 The magnetic susceptibility data obtained from each member 

were simulated using the MAGPACK13 program employing the Hamiltonians in (1)-(3) (Scheme 1) to 

provide the isotropic parameters S, J and g summarised in Table 2. Figure. 4 shows the χMT vs. T data 

and, where possible, their associated simulations (solid lines). It is clear from Table 2 that for several 

complexes the experimental data do not allow for an undoubted determination of the ground spin state 

since there are many S states that are essentially degenerate; for example, see complexes 7, 10, 11, 12 and 

13. However, we enter the values from the simulations for completeness. The magnetic susceptibility 

curves obtained illustrate how, despite their structural similarities, complexes 1-24 show dramatically 

different magnetic behaviour. 

 

(1) Ĥ = -2J(Ŝ1
.Ŝ2 + Ŝ2

.Ŝ3 + Ŝ1
.Ŝ3 + Ŝ1΄

.Ŝ2΄ + Ŝ2΄
.Ŝ3΄ + Ŝ1΄

.Ŝ3΄ + Ŝ2
.Ŝ3΄ + Ŝ2΄.Ŝ3 + Ŝ2

.Ŝ2΄) 

 

(2) Ĥ = -2J1(Ŝ1
.Ŝ2 + Ŝ2

.Ŝ3 + Ŝ2
.Ŝ3΄ + Ŝ2΄

.Ŝ3 + Ŝ1΄
.Ŝ2΄ + Ŝ2

.Ŝ2΄ + Ŝ2΄
.Ŝ3΄) -2J2(Ŝ1

.Ŝ3 + Ŝ1΄
.Ŝ3΄) 

 

(3) Ĥ = -2J1(Ŝ1
.Ŝ2 + Ŝ2

.Ŝ3 + Ŝ1΄
.Ŝ2΄ + Ŝ2΄

.Ŝ3΄) -2J2(Ŝ1
.Ŝ3 + Ŝ1΄

.Ŝ3΄) -2J3(Ŝ2
.Ŝ3΄ + Ŝ2

.Ŝ2΄ + Ŝ2΄
.Ŝ3) 
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Scheme 1. Schematic detailing the 1, 2- and 3-J models employed to simulate the experimental data. 

 

 

← Figure 4. Plots of χMT vs. T for complexes 1-24. 

The solid lines represent simulations of the 

experimental data in the temperature range 300 – 5 

K. For parameters see Table 2. 
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The χMT vs. T curves obtained for complexes 1-6 show dominant antiferromagnetic exchange with room 

temperature values ranging from 13.88 to 18.38 cm3 mol-1 K. In each case χMT remains approximately 

constant before dropping more rapidly at temperatures below 100 K and reaching values of between 4.91 

and 11.12 cm3 mol-1 K. In the case of 1 a slight upturn in χMT was observed at 25 K reaching a maximum 

value of 9.71 cm3 mol-1 K at 5 K.  

Despite attempts to use the 1-J and 2-J models of Scheme 1, the data obtained for complex 1 could only 

be simulated with the 3-J model described by Eqn. (3), giving S = 4, J1 = 1.25, J2 = -4.6, J3 = -1.8 cm-1 

and g = 1.99. A 2-J model (Eqn. (2)) was employed to simulate the experimental data obtained from 

complex 2 to yield the parameters S = 4, J1 = +1.2, J2 = -1.95 cm-1, g = 2.01. Despite much effort we were 

unable to successfully simulate the data for complexes 3-6. The χMT vs. T curves obtained from 

complexes [Mn6O2(Et-sao)6(O2CC12H17)2(EtOH)4(H2O)2] (7) and [Mn6O2(Et-

sao)6(O2CC(CH3)3)2(MeOH)6] (8) appear very similar in line shape to those obtained from 1-6 with 

similar room temperature values of 18.54 and 19.41 cm3 mol-1 K, respectively. In both cases χMT remains 

constant until a temperature of approximately 50 K where a gradual increase occurs before reaching 

maxima at 20 and 10 K and χMT values of 28.80 and 26.02 cm3 mol-1 K, respectively. The value then 

drops sharply in both cases to 15.29 and 23.32 cm3 mol-1 K at 5 K. Simulation of these data using the 2-J 

model (2) suggests ground spin states of S = 5±1 (7) and S = 5 (8) (Table 2) but with many (excited) 

states that are essentially degenerate.  

Magnetic susceptibility studies on complexes 9-13 show room temperature χMT values in the 18.48 - 

19.88 cm3 mol-1 K range which gradually increase with decreasing temperature, reaching low temperature 

values of between 25.43 and 42.32 cm3 mol-1 K. Such values lie between the two S = 4 (10 cm3 mol-1 K) 

and S = 12 (78 cm3 mol-1 K) extremes and suggest ‘intermediate’ (4 < S < 12) ground spin states, 

diagnostic of competing anti- and ferromagnetic exchange between the MnIII ions. This is corroborated by 

the spin Hamiltonian parameters obtained from the simulation of the experimental data (see Table 2): a 2 -

J model was employed for complexes 9-13 affording S = 6, g = 2.01, J1 = 1.39 and J2 = -1.92 cm-1 (9); S 

= 7±1, g = 1.97, J1 = 1.76 and J2 = -1.92 cm-1 (10); and S = 9±1, g = 1.98, J1 = 1.39 and J2 = -0.99 cm-1 

(11). The simulations for 12 and 13 give S = 11±1 ground states. Again it is clear that in each case the 

presence of weak exchange leads to a situation in which many S states are essentially degenerate making 

assignment of a ground state difficult and in some cases perhaps inappropriate.  

The third type of susceptibility curve (complexes 14-24) shows a constant increase in χMT with 

decreasing temperature indicative of ferromagnetic exchange between the Mn centres. The room 

temperature χMT values are all above 18.0 cm3 mol-1 K and in each case increase gradually before rising 

more abruptly in the 75-100 K temperature region. The maximum χMT values range between 49.71 and 

69.95 cm3 mol-1 K. All exhibit S = 12 ground states with S = 11 excited states at energies of up to 9 cm-1 

(Table 2) above the ground state. It should be noted that the χMT vs. T curve obtained for [Mn6O2(Me-
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sao)6(I)2(EtOH)6] (24) reaches a rather low maximum value 28.31 cm3 mol-1 K suggestive of the presence 

of an “intermediate” spin ground state (Figure 4); however simulation of the data shows this not to be the 

case (S = 12, g = 2.00, J1 = +0.95 and J2 = +0.40, Table 2) - the lineshape and the low temperature 

downturn in χMT being attributed to the significant intermolecular interactions observed in its crystal 

structure (vida supra). The S = 12 ground states may be simply explained as a product of six 

ferromagnetically coupled MnIII ions, while the S = 4 ground spin states may be rationalised as two 

antiferromagnetically coupled (S = 2) [MnIII
3] triangles which are ferromagnetically coupled to one 

another.6,7,11 Each Mn…Mn pair is relatively weakly coupled with J values of < 2 cm-1 - in line with 

previously reported values for oxime-bridged MnIII…MnIII complexes.9 Many, indeed probably all, 

members of this large family exhibit non-isolated spin ground states,11,14 the “nesting” of excited states on 

the ground state being a direct result of the weak magnetic coupling - resulting in the breakdown of the 

so-called “giant spin” model.14 With this in mind and within the confines of our simplistic model, 

variable field and temperature dc magnetisation data were collected in the 0.5–7 T and 2-7 K field and 

temperature ranges. In each case we attempted to fit the data with an axial ZFS plus Zeeman Hamiltonian 

(4) by a method described recently by Piligkos in the whole field and temperature range, 15 

(4) H = D(Ŝz
2- S(S+1)/3) + μBgHŜ 

where D is the axial anisotropy, μB is the Bohr magneton, Ŝz is the easy-axis spin operator, and H is the 

applied field. The results are summarised in Table 2 with representative plots given in Figure. 5. 

Complexes 1-9 possess relatively low spin ground states (S = 4, 5 and 6) with D values ranging from -

0.75 to -1.59 cm-1, while the ferromagnetic complexes (14-24) in the lower half of Table 2 possess much 

smaller zfs parameters ranging from D = -0.34 cm-1 to -0.44 cm-1.6,7,11 A previously reported ligand field 

study on a sub-group of this [Mn6] family revealed the differences in their ground state anisotropies stem 

from the difference in projection coefficients of the single ion aniostropy to spin states of different total 

spin quantum number (S) and not the geometrical distortions of the individual metal ions.16 
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Figure 5. Plots of reduced magnetisation (M/NμB) versus H/T for 4 (top), 14 (middle) and 15 (bottom) in 

the noted field ranges and the 2 – 6 K temperature range. The solid lines correspond to the fit of the data 

as documented in Table 2. 

 

Each member of this family possesses a non-zero spin ground state (4 ≤ S ≥ 12) with sizeable zfs, both of 

which are prerequisites for single-molecule magnetism behaviour. In order to investigate this in more 

detail, ac magnetic susceptibility measurements were carried out on crystalline samples of 1-24 in the 2 – 

10 K temperature range in a 3.5 G ac field oscillating at frequencies ranging from 50 to 1000 Hz. Fully 

visible out-of-phase (χM″) signals indicative of SMM behaviour (Figure. 6 shows those obtained for 

complex 14) were observed for all family members except for [Mn6O2(sao)6(keto-
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acetate)2(EtOH)2(H2O)2] (3), [Mn6O2(Me-sao)6(O2C-th)2(EtOH)4(H2O)2] (6) and [Mn6O2(Me-

sao)6(I)2(EtOH)6] (24), in which only the tails and not the peaks of the signals were observed. The ac data 

obtained were combined with single-crystal dc relaxation measurements performed on a μ-SQUID17 and 

fitted to the Arrhenius equation τ = τoexp(Ueff/(kT)), where τo is the prexponential factor, τ is the 

relaxation time, Ueff is the barrier to the relaxation of the magnetisation and k is the Boltzmann constant, 

to give the effective barrier to magnetisation reorientation (Ueff) for each [Mn6] complex. These data are 

summarised in Figure. 7 and Table 2 and span barrier heights of between ~24-86 K. 

 

 

Figure 6. AC out-of-phase χ//
M vs. T plot obtained for complex 14 in an oscillating field of 3.5 Oe and 

frequencies of 50-1000 Hz. 

 

 

 

Figure 7. Plots of ln(1/ τ) vs. 1/T obtained from ac magnetic susceptibility data for a cross section of family 

members.  
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High Frequency Electron Paramagnetic Resonance Studies 

High frequency EPR measurements were performed on single crystals of complex 2 (S = 4) and 15 (S = 

12) to verify the ground state spin value and the zero field splitting (ZFS) parameters. Details of the 

experimental technique can be found elsewhere.18,19 Figure. 8 displays easy-axis (B//c) temperature 

dependent spectra obtained for complex 15 at 331 GHz. With increasing temperature, several strong 

peaks labeled a, b, c, d and e are observed within the field range of the magnet, corresponding to the 

following fine-structure transitions: mS = -12 → -11, -11 → -10, -10 → -9, -9 → -8 and -8 → -7, 

respectively, where mS represents the spin projection onto the easy axis of the crystal. Weaker satellite 

peaks seen as shoulders on the main peaks appear to be caused by a slight D-strain in the sample, i.e. a 

small fraction of molecules experiencing different microenvironments and, hence, different (lower) D-

values.20 Multi-frequency measurements enabled accurate determination of the following ZFS parameters 

for the majority species (strongest resonance peaks) associated with complex 15: D = -0.360(5) cm-1, 

B4
0 = -5.7(5) × 10-6 cm-1 and g = 1.98(1) for this S = 12 complex. 

The inset to Figure. 8 shows the easy-axis spectrum for complex 2 obtained at 285 GHz and 15 K. 

Several resonances are again observed, most of which can be assigned to fine-structure transitions within 

an S = 4 ground state, i.e. mS = -4 → -3, -3 → -2, etc. However, attempts to fit the entire spectrum using a 

single-spin description were not entirely satisfactory. Nevertheless, through combined multi -frequency 

and temperature dependent measurements, we were able to ascertain that some of the peaks correspond to 

transitions within low-lying excited spin multiplets (labeled ES in the inset to Figure. 8).21,22 The 

remaining peaks could then be fit to a S = 4 model, allowing us to determine approximate ZFS parameters 

associated with this multiplet: D = -1.27(2) cm-1 and B4
0 = +1.3(3) × 10-4 cm-1. The observation of excited 

state intensity in the spectrum of complex 2 is not surprising given the frustrated interactions within the 

triangular Mn3 units. 

 

← Figure 8. Easy axis temperature dependence spectra 

for complex 15 at 331 GHz. The inset shows the easy 

axis spectrum for complex 2 at 285 GHz, 15 K.  
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The use of a giant spin description to fit the EPR spectra allows for direct comparisons with magnetic 

measurements. In particular, one can estimate the magnetisation reversal barriers for both complexes: 

29.2 K for the low spin system (2) and 75 K for the high spin system (15), i.e. an increase by a factor of 

2.56, which is in good agreement with the AC susceptibility measurements (an increase of 2.70). 21,22 

 

Discussion 

Understanding the relationship between structure and magnetic behaviour in polymetallic cluster 

compounds is an extremely difficult task, and increasingly so as the nuclearity increases, since one must 

consider all contributions to the exchange, including, for example, the innocence or non-innocence of 

(terminal) co-ligands.23 For the [Mn6] family this means we must consider the combination of four 

different ligand types (oxime, phenoxide, oxide and carboxylate), their relative positions, the bond 

lengths and angles associated with each; and at least four different exchange interactions. A 

comprehensive quantitative analysis is thus rather difficult to achieve and will require theoretical input. 24 

In earlier work we suggested that while clearly all magnetic pathways must play some role in 

determining the size and magnitude of the Mn…Mn exchange, the dominant factor was the twisting of the 

Mn-O-N-Mn moiety as induced by the distortion imposed on the molecule by bulkier oximes (R-sao2-).11 

In order to shed further light on this we have examined all of the structural parameters in the magnetic 

cores of complexes 1-24. In particular we have examined the relationship between the observed J-value 

for a particular Mn…Mn exchange and (a) the out-of-plane shift of the central oxide - previous studies on 

analogous trinuclear systems have suggested an increasingly ferromagnetic interaction as this distance 

increases;25 (b) the Mn-(μ3-O)-Mn angle - experimental studies of [MnIII
3O(O2CR)6L3]

+ species suggest a 

switch from antiferromagnetic to ferromagnetic at angles below ~120º;26 (c) the MnIII-O2- distances; (d) 

the Mn-N-O-Mn distances; (e) the Mn-N-O-Mn torsion angles, α. An examination of the data of Tables 1 

and 2 allows us to make some general conclusions: 

i) In all cases the exchange between the [Mn3] triangles appears to be ferromagnetic.  

ii) The exchange between Mn2 pairs is dominated by the Mn-O-N-Mn torsion angles; the larger the 

torsion angle, the more ferromagnetic the pairwise interaction; the smaller the Mn-N-O-Mn torsion angle 

the more antiferromagnetic the pairwise interaction.  

iii) Above a torsion angle of approximately 31o the exchange appears to switch from antiferromagnetic to 

ferromagnetic, i.e. if α > ~31o, then J > 0 (F); if α < 31o then J < 0 (AF). When a [Mn3] triangle contains 

torsion angles that are both above and below this value the data can only be simulated using both F and 

AF exchange.  

iv) It is the individual torsion angles between neighbouring Mn ions that dictates the behaviour of the 
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complex, and not the average torsion angle. For example, complex 2 has αv= 32.5o but an S = 4 ground 

state, complex 14 has αv= 36.5o and an S = 12 ground state, and complex 11 has αv= 37.4o and an S ≈ 9 

ground state.  

v) The presence of the carboxylate in either coordinating mode (µ or terminally bonded) appears to have 

little effect on the sign of J. This is exemplified by complexes 1 and 6, both of which display S = 4 

ground states despite the fact that the former contains a bridging carboxylate and the latter a terminal 

carboxylate. The synthesis of the [MnIII
6O2(Et-sao)6(Br)2(EtOH)6] (23) and [MnIII

6O2(Me-

sao)6(I)2(EtOH)6] (24) derivatives shows that we are able to replace the peripheral ˉO2CR carboxylate 

groups with halides while keeping the [Mn6] core intact; the magnetic properties of these complexes 

appear identical.27 

vi) If each Mn2 exchange is ferromagnetic (i.e. an S = 12 complex), the larger the Mn-N-O-Mn torsion 

angle (α), the larger the barrier to magnetisation relaxation (Ueff). For example, comparing complexes 14 

and 16 (Table 2) with J = +0.93 cm-1 and J= +1.60 cm-1, respectively, the Ueff values are 53.1 K and 79.9 

K. This presumably arises because an increase in torsion angle leads to an increase in |J| which results in 

a more isolated ground state, and a reduction in tunneling.14 This is reflected in the simulation of the 

susceptibility data. For example in complex 14 (S = 12) where J= +0.93 cm-1, the first excited state of S = 

11 is located only 5 cm-1 above the ground-state, whereas in complex 15 (S = 12) where J= +1.63 cm-1 the 

first excited state of S = 11 is located 9 cm-1 above the ground-state, i.e. twice as high. However, given 

the complicated nature of the magnetic relaxation in such species,14 one has to treat this statement as 

somewhat speculative. 

 

 

Figure 9. Plot of best fit parameter J vs. Mn-N-O-Mn torsion angle (°) taken from all members of the [Mn6] 

family. Note: As necessary due the confines of this study, the mean average torsion angles were used to 

construct this qualitative plot.  
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In summary, an examination of Tables 1 and 2 suggests no obvious correlation between J and any of (a)-

(d), but there does appear to be a correlation between the magnitude of the exchange and the Mn-N-O-Mn 

torsion angle - the larger the torsion angle the more ferromagnetic the pairwise exchange. This has also 

been suggested in recent DFT calculations on analogous oxime-bridged [Mn3] triangles.6d,28 Figure. 9 

shows a plot of torsion angle (α) versus J-value for the [Mn6] family; a linear fit suggesting J = 0 at a 

torsion angle value of approximately 31° - in good agreement with previous predictions.11 It is important 

to emphasise of course that this is purely qualitative in nature, since in each case we simulated the 

experimental susceptibility data using the most simple model available, for example, for complex 15 we 

employed a 1-J model even though four different exchange interactions are present. Indeed it is clear that 

these are very complicated molecules. It is likely that most, if not all, possess excited states nested upon 

the ground state rendering the analysis and interpretation of the data within the giant-spin model 

somewhat difficult and qualitative in nature, albeit with clearly defined trends. We also point out, as we 

have done on several occasions, that the above correlation is (unfortunately) valid only for this family of 

[Mn6] molecules (and the structurally analogous “half” [Mn3] complexes)29 and it is unlikely that it can 

be extended to other systems. Those investigating the exchange within similar [Mn 3O]n+ triangles,4,25 

even if they are oxime-based, should thus bear this caveat in mind. In our opinion it is unwise to assume 

that the same “twisting” rules we introduced to exploit and explain the behaviour of 1-24 can applied to 

molecules that, despite some obvious similarities, clearly have different strutural architectures. 

 

Conclusions  

We have synthesised and characterised twenty four members of a hexametallic [Mn 6] family of Single-

Molecule Magnets. Each member possesses a common [Mn6O2(R-sao)6]
2+ core comprising two linked 

[Mn3O(R-sao)3]
+ triangles. The type of magnetic exchange within the molecule can be controlled using 

targeted structural distortion of the core. By employing “planar” non-derivatised oximes (saoH2) the 

molecules are “unpuckered”, the dominant intra-triangle exchange is antiferromagnetic and the molecules 

have low spin (S = 4 ground states). By derivatising the oxime carbon atom to contain bulkier 

substituents, the [Mn6] molecules become increasingly puckered as evidenced by large increases in the 

Mn-N-O-Mn torsion angles. The result is that pairwise exchange becomes increasingly ferromagnetic, 

resulting in ferromagnetic molecules with S = 12 spin ground states. Qualitatively, the “switch” from 

antiferromagnetic to ferromagnetic comes at an Mn-N-O-Mn angle above approximately 31o. DFT 

calculations on the whole family are currently underway and will reported separately. 28 More recent 

developments have also focused on synthesizing the analogous ‘half’ molecules, i.e. the species 

[Mn3O(R-sao)3(O2CR′)1(sol)x] (R = H, Me, Et, Ph; R′ = CH3, Ph(Cl)2, Ph(CF3)2 etc; sol = py, H2O, 

EtOH),29 in order to shed yet further light on this intriguing family of nanomagnets.  
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Experimental 

All manipulations were performed under aerobic conditions, using materials as received. CAUTION! 

Although no problems were encountered in this work, care should be taken when using the potentially 

explosive perchlorate anion. 

The syntheses, structures and magnetic properties of complexes 1, 2, 6, 7, 9-12, 14-20, 23 and 24 have already 

been communicated or reported.5a, 5b, 7a, 7b, 27, 30 Compounds 3-5, 8, 13, 21 and 22 are reported here for the first 

time. General synthetic strategy applicable to all twenty four compounds: 

Method A. To pale pink solutions of Mn(ClO4)2
.6H2O in MeOH (EtOH or MeCN) were added equivalent 

amounts of the derivatized oximes, the corresponding carboxylic acid and CH3ONa (or NEt4OH). The 

solutions were left stirring for ~30 min, filtered and then left to slowly evaporate. In each case suitable 

crystals grew after a period of 3-5 days.  

Method B. The sodium salt of the corresponding carboxylic acid was treated with equivalent amounts of 

Mn(ClO4)2
.6H2O, the derivitized oximes and CH3ONa (or NEt4OH) in MeOH (or EtOH). Single crystals were 

grown upon slow evaporation. 

Method C (for complexes 23 and 24). The Mn(ClO4)2
.6H2O metal source was replaced with MnIIX2.4H2O (X 

= Brˉ (23), Iˉ (24) and reacted with one equivalent of R-saoH2 (R = Et (23), Me (24)) and NEt4(OH) base in 

EtOH. Single crystals were obtained upon slow evaporation of these dark green / black solutions. For all 24 

compounds the yields vary from minimum of 30% to a maximum of 50%. 

Elemental Anal. calcd (found) for dried 3 solvent free: C 47.75 (47.08), H 4.67 (4.26), N 4.64 (4.46). 4: C 

48.61 (48.49), H 3.85 (4.03), N 11.02 (10.74). 5: C 46.67 (46.85), H 4.90 (4.33), N 5.10 (4.96). 8: C 48.45 

(48.26), H 5.58 (5.04), N 4.84 (5.03). 13: C 45.41 (45.64), H 5.39 (4.87), N 4.89 (4.89). 21: C 50.91 (50.67), 

H 5.13 (5.09), N 4.45 (4.12). 22: C 44.20 (43.95), H 4.09 (4.02), N 4.55 (4.83). 

Variable temperature, solid-state direct current (dc) and alternating current (ac) magnetic susceptibility data 

down to 1.8 K were collected on a Quantum Design MPMS-XL SQUID magnetometer equipped with a 7 T dc 

magnet. Diamagnetic corrections were applied to the observed paramagnetic susceptibilities using Pascal’s 

constants. Magnetic studies below 1.8 K were carried out on single crystals using a micro-SQUID apparatus 

operating down to 40 mK,17 and using a magnetometer consisting of a micro-Hall bar.21 

Diffraction data were collected at 150 K on a Bruker Smart Apex CCDC diffractometer, equipped with an 

Oxford Cryosystems LT device, using Mo radiation.31 See CIF files for full details and Table SI1 in the ESI. 

CCDC-706507 (3), CCDC-706508 (4), CCDC-706509 (5), CCDC-706510 (8), CCDC-706504 (13), CCDC-

706505 (21) and CCDC-706506 (22) contain the supplementary crystallographic data for this paper. These 

data can be obtained free of charge from CCDC via www.ccdc.cam.ac.uk/data_request/cif.  

http://www.ccdc.cam.ac.uk/data_request/cif


Page 16 of 24 

Tables 

Complex 

Mn-(μ3-O) 
distance/Å 

Mn-(μ3-O)-Mn 
angles/° 

Mn3plane-
(μ3-O)/Å 

Mn-
Ophen/
Å 

Mn-
O2CR′/Hal−dista
nce/Å 

Mn1-O, 
Mn2-O, 
Mn3-O Mn1-2, Mn2-3, Mn1-3 

[Mn6O2(sao)6(O2CH)2(MeOH)4] (1) 1.872(2), 
1.879(2), 
1.857(2) 

119.36(8), 121.42(8), 
114.90(8) 

0.226 3.524 2.138(2), 2.112(2) 

[Mn6O2(Me-sao)6(O2CCPh3)2(EtOH)4] (2) 1.874(2), 
1.898(2), 
1.864(2) 

119.76(9), 119.55(9), 
120.18(9) 

0.078 2.384 2.062(2) 

[Mn6O2(sao)6(ketoacetate)2(EtOH)2(H2O)2] 
(3) 

1.863(2), 
1.869(2), 
1.877(2) 

115.33(8), 120.75(8), 
120.16(8) 

0.211 3.582 2.096(2), 2.129(2) 

[Mn6O2(sao)6(O2CPh)2(MeCN)2(H2O)2] (4) 1.868(2), 
1.873(2), 
1.872(2) 

115.28(9), 120.50(9), 
121.27(9) 

0.186 3.271 2.104(2), 2.148(2) 

[Mn6O2(sao)6(1-Me-cyclohex)2(MeOH)4] 
(5)a 

1.869(2), 
1.867(2), 
1.877(2) 

122.04(11), 
115.71(11), 119.37(11) 

0.184 3.348 2.127(2), 2.116(2) 

  
1.878(2), 
1.850(2), 
1.875(2) 

121.50(11), 
115.82(10), 119.84(10) 

0.182 3.606 2.099(2), 2.106(2) 

[Mn6O2(Me-sao)6(O2C-th)2(EtOH)4(H2O)2] 
(6) 

1.882(2), 
1.863(2), 
1.880(2) 

119.43(10), 
121.73(11), 118.79(11) 

0.025 2.619 2.135(2) 

[Mn6O2(Et-
sao)6(O2CC12H17)2(EtOH)4(H2O)2] (7) 

1.875(2), 
1.884(2), 
1.887(2) 

120.22(6), 117.50(5), 
121.45(5) 

0.100 2.519 2.114(2) 

[Mn6O2(Et-sao)6(O2CC(CH3)3)2(MeOH)6] 
(8) 

1.872(4), 
1.883(3), 
1.892(4) 

119.93(19), 
118.17(18), 120.95(18) 

0.107 2.478 2.115(4) 

[Mn6O2(Et-sao)6(O2CC(CH3)3)2(EtOH)5] (9)b 1.891(3), 
1.885(3), 
1.876(3) 

119.09(13), 
119.93(13), 120.55(13) 

0.072 2.458 2.104(3) 

  
1.883(3), 
1.864(3), 
1.892(3) 

120.15(14), 
120.28(13), 118.63(13) 

0.105 2.388 2.131(3) 

[Mn6O2(Et-sao)6(O2CPh2OPh)2(EtOH)4] (10) 1.881(4), 
1.887(4), 
1.853(4) 

119.10(2), 119.60(2), 
121.00(2) 

0.057 2.379 2.098(5) 

[Mn6O2(Et-
sao)6(O2CPh4OPh)2(EtOH)4(H2O)2] (11) 

1.875(1), 
1.879(1), 
1.888(1) 

120.56(5), 118.64(5), 
120.53(5) 

0.057 2.417 2.118(2) 

[Mn6O2(Me-sao)6(O2CPhBr)2(EtOH)6] (12) 1.941(2), 
1.900(2), 
1.837(2) 

125.47(12), 
116.36(12), 117.63(12) 

0.080 2.491 2.086(2) 

[Mn6O2(Me-sao)6(O2CC(CH3)3)2(MeOH)6] 
(13) 

1.874(2), 
1.878(2), 
1.886(2) 

120.22(10), 118.67(9), 
120.96(9) 

0.042 2.411 2.072(2) 

[Mn6O2(Et-sao)6(O2CPh)2(EtOH)4(H2O)2] 1.878(2), 119.99(8), 118.21(8), 0.090 2.488 2.118(2) 

http://pubs.rsc.org/en/content/articlehtml/2009/dt/b822235e#tab2fna
http://pubs.rsc.org/en/content/articlehtml/2009/dt/b822235e#tab2fnb
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Complex 

Mn-(μ3-O) 
distance/Å 

Mn-(μ3-O)-Mn 
angles/° 

Mn3plane-
(μ3-O)/Å 

Mn-
Ophen/
Å 

Mn-
O2CR′/Hal−dista
nce/Å 

Mn1-O, 
Mn2-O, 
Mn3-O Mn1-2, Mn2-3, Mn1-3 

(14) 1.884(2), 
1.888(2) 

121.12(8) 

[Mn6O2(Et-sao)6(O2CPh(Me)2)2(EtOH)6] 
(15) 

1.890(3), 
1.889(3), 
1.877(2) 

118.48(13), 
121.31(13), 120.11(13) 

0.034 2.480 2.131(3) 

[Mn6O2(Et-sao)6(O2C11H15)2(EtOH)6] (16) 1.881(2), 
1.889(2), 
1.886(2) 

121.04(7), 118.72(7), 
120.01(7) 

0.053 2.438 2.106(2) 

[Mn6O2(Et-
sao)6(O2CPh(Me))2(EtOH)4(H2O)2] (17) 

1.879(2), 
1.894(2), 
1.878(2) 

120.39(7), 118.94(7), 
120.12(7) 

0.081 2.374 2.126(2) 

[Mn6O2(Et-sao)6(O2C-
Napth)2(EtOH)4(H2O)2] (18) 

1.888(2), 
1.870(2), 
1.886(2) 

121.35(11), 
119.09(11), 118.67(11) 

0.103 2.509 2.103(2) 

[Mn6O2(Et-sao)6(O2C-
Anthra)2(EtOH)4(H2O)2] (19) 

1.875(4), 
1.886(4), 
1.886(4) 

120.9(2), 118.4(2), 
120.0(2) 

0.096 2.522 2.149(4) 

[Mn6O2(Et-sao)6(O2CPh(C
CH)2(EtOH)4(H2O)2] (20) 

1.876(2), 
1.878(2), 
1.881(2) 

121.23(9), 117.87(9), 
120.44(9) 

0.074 2.482 2.116(2) 

[Mn6O2(Me-sao)6(O2CPh(C
CH))2(EtOH)6] (21) 

1.871(2), 
1.892(2), 
1.885(1) 

119.91(9), 117.89(9), 
121.52(10) 

0.090 2.441 2.129(5) 

[Mn6O2(Me-sao)6(O2CPh(Cl)2)2(MeOH)6] 
(22) 

1.874(2), 
1.883(2), 
1.884(2) 

120.19(10),118.38(9), 
120.92(10) 

0.081 2.447 2.114(2) 

[Mn6O2(Et-sao)6(Br)2(EtOH)6] (23) 1.882(2), 
1.888(2), 
1.875(2) 

118.85(11), 
120.75(11), 120.38(11) 

0.014 2.429 2.688(7) 

[Mn6O2(Me-sao)6(I)2(EtOH)6] (24) 1.873(2), 
1.883(2), 
1.887(2) 

120.03(9), 119.08(9), 
120.06(9) 

0.099 2.513 2.918(5) 

 

a Two Mn6 complexes in the asymmetric unit, therefore two sets of data documented.b Complex 9 has no 

centre of symmetry. 

Table 1. Selected interatomic distances (Å) and angles (º) for complexes 1-24. 
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Cmpl. 
Crystal 
sys. Sp. Grp. 

α/° J/cm−1 

S
b 

1st
exc. 

st./cm−1b g
c D/cm−1d τ0/s

e Ueff/K
f Mn1-2, Mn2-3, Mn1-3 J1, J2,J3

a 

(1) Triclinic P-1 25.57, 10.42, 18.01 +1.25, −4.6,−1.8 4 3(8) 1.99 −1.39 2.0 × 
10−8 

28.0 

(2) Monoclinic C2/c 25.50, 42.44, 29.74 +1.2, −1.95 4 5(10.5) 2.01 n.a. 6.8 × 
10−10 

31.7 

(3) Triclinic P-1 19.06, 18.89, 11.92 n.a. 4 n.a. n.a. n.a. n.a. n.a. 

(4) Triclinic P-1 28.18, 16.18, 8.36 n.a. 4 n.a. 2.02 -1.59 6.57 
× 
10−8 

23.8 

(5) Triclinic P-1 9.66, 29.83, 15.60 n.a. 4 n.a. n.a -1.18 1.70 
× 
10−8 

28.8 

      13.53, 23.80, 37.33               

(6) Triclinic P-1 27.40, 31.10, 36.35 n.a. n.a. n.a. n.a. n.a. n.a n.a. 

(7) Triclinic P-1 27.83, 40.07, 41.46 +1.55, −2.20 5 ± 
1 

4(0.01) 1.98 n.a. 9.3 × 
10−10 

31.2 

(8) Triclinic P-1 26.93, 34.45, 40.70 +1.49, −1.92 5 4(0.5) 2.01 n.a. 4.52 
× 
10−11 

59.2 

(9) Triclinic P-1 36.92, 23.27, 42.12 +1.39, −1.92 6 7(0.5) 2.01 -0.75 3.0 × 
10−8 

30.0 

      32.33, 16.76, 42.24               

(10) Monoclinic I2/a 47.56, 31.76, 23.75 +1.76, −1.92 7 ± 
1 

6(0.1) 1.97 -0.39 1.5 × 
10−10 

43.2 

(11) Triclinic P-1 30.36, 38.38, 43.71 +1.39, −0.99 9 ± 
1 

8(0.03) 1.98 -0.37 1.2 × 
10−10 

56.9 

(12) Triclinic P-1 30.43, 42.94, 31.91 +1.15, −0.73 11 
± 1 

12(0.2) 1.98 -0.50 1.7 × 
10−10 

50.2 

(13) Triclinic P-1 29.64, 38.51, 44.47 +1.65, −0.95 11 
± 1 

12(0.02) 2.02 n.a 3.58 
× 
10−10 

57.6 

(14) Triclinic P-1 31.26, 38.20, 39.92 +0.93 12 11(5) 1.99 -0.43 8.0 × 
10−10 

53.1 

(15) Monoclinic P21/n 39.10, 43.04, 34.86 +1.63 12 11(9) 1.99 -0.43 2 × 
10−10 

86.4 

(16) Triclinic P-1 42.61, 36.73, 34.07 +1.60 12 11(7.6) 1.99 -0.43 2.5 × 
10−10 

79.9 

(17) Triclinic P-1 47.16, 38.19, 30.37 +1.85, −0.70 12 11(1.4) 1.97 -0.44 7.5 × 
10−10 

69.9 

(18) Monoclinic P21/c 41.09, 33.28, 40.50 +1.31 12 11(6.23) 2.03 -0.34 4.33 
× 
10−10 

60.1 

(19) Triclinic P-1 42.32, 39.28, 25.60 +1.75, −0.90 12 11(0.79) 2.00 -0.44 3.99 
× 
10−10 

60.1 

(20) Triclinic P-1 38.85, 38.67, 32.06 +0.79 12 11(3.75) 1.97 n.a. 6.23 
× 
10−11 

66.8 

(21) Triclinic P-1 43.61, 33.72, 29.53 +1.57, −0.70 12 11(0.91) 1.98 n.a. 4.37 
× 

60.3 

http://pubs.rsc.org/en/content/articlehtml/2009/dt/b822235e#tab2fnb
http://pubs.rsc.org/en/content/articlehtml/2009/dt/b822235e#tab2fnb
http://pubs.rsc.org/en/content/articlehtml/2009/dt/b822235e#tab2fnc
http://pubs.rsc.org/en/content/articlehtml/2009/dt/b822235e#tab2fnd
http://pubs.rsc.org/en/content/articlehtml/2009/dt/b822235e#tab2fne
http://pubs.rsc.org/en/content/articlehtml/2009/dt/b822235e#tab2fnf
http://pubs.rsc.org/en/content/articlehtml/2009/dt/b822235e#tab2fna
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Cmpl. 
Crystal 
sys. Sp. Grp. 

α/° J/cm−1 

S
b 

1st
exc. 

st./cm−1b g
c D/cm−1d τ0/s

e Ueff/K
f Mn1-2, Mn2-3, Mn1-3 J1, J2,J3

a 

10−10 

(22) Triclinic P-1 43.24, 27.61, 30.94 +1.45, −0.35 12 11(2.78) 1.98 -0.39 1.55 
× 
10−10 

48.5 

(23) Monoclinic P21/c 33.40, 43.89, 33.00 +1.03, +0.83 12 11(3.99) 2.03 -0.36 5.45 
× 
10−10 

54.1 

(24) Monoclinic P21/c 33.01, 31.28, 37.16 +0.95, +0.40 12 11(2.05) 2.00 -0.36 n.a. n.a. 

 

a Calculated from dc susceptibility studies.b Calculated from both dc susceptibility and magnetization measurements. 

The latter were collected in the field and temperature ranges 0–7 T and 2–7 K. In each case the data were fit by a matrix-

diagonalization method to a model that assumes only the ground state is populated, includes axial zero-field splitting 

(DŜz
2), and carries out a full powder average. The corresponding Hamiltonian is H = D(Ŝz

2−S(S + 1)/3) 

+μBgHŜ where D is the axial anisotropy, μB is the Bohr magneton, Ŝz is the easy-axis spin operator, and H is the applied 

field (see ref. 15).c Calculated from dc susceptibility measurements.d Calculated from magnetization 

measurements.e Calculated from dc susceptibility data and/or single-crystal relaxation measurements performed on a 

micro-SQUID; n.a. = not available.f Calculated from dc susceptibility data and/or single-crystal relaxation measurements 

performed on a micro-SQUID; n.a. = not available. 

Table 2. Magnetostructural parameters for complexes 1-24; Mn-N-O-Mn torsion angles vs. J and S. 

http://pubs.rsc.org/en/content/articlehtml/2009/dt/b822235e#tab2fnb
http://pubs.rsc.org/en/content/articlehtml/2009/dt/b822235e#tab2fnb
http://pubs.rsc.org/en/content/articlehtml/2009/dt/b822235e#tab2fnc
http://pubs.rsc.org/en/content/articlehtml/2009/dt/b822235e#tab2fnd
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Notes and references 
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salicyaldoxime ligand R-saoH2 (R = H, Me, Et) in alcohol (ROH, R = Me, Et) in the presence of a carboxylic 
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complexes of general formula [MnIII
6O2(R-sao)6(X)2(sol)4–6] (R = H, Me, Et; X = carboxylate or halide ; sol = 

MeOH, EtOH H2O) in excellent yields in 2–3 days. 
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