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Abstract— Human multi-robot interaction exploits both the 

human operator’s high-level decision-making skills and the 

robotic agents’ vigorous computing and motion abilities. While 

controlling multi-robot teams, an operator’s attention must 

constantly shift between individual robots to maintain 

sufficient situation awareness. To conserve an operator’s 

attentional resources, a robot with self-reflect capability on its 

abnormal status can help an operator focus her attention on 

emergent tasks rather than unneeded routine checks. With the 

proposing self-reflect aids, the human-robot interaction 

becomes a queuing framework, where the robots act as the 

clients to request for interaction and an operator acts as the 

server to respond these job requests. This paper examined two 

types of queuing schemes, the self-paced Open-queue 

identifying all robots’ normal/abnormal conditions, whereas 

the forced-paced shortest-job-first (SJF) queue showing a single 

robot’s request at one time by following the SJF approach. As 

a robot may miscarry its experienced failures in various 

situations, the effects of imperfect automation were also 

investigated in this paper. The results suggest that the SJF 

attentional scheduling approach can provide stable 

performance in both primary (locate potential targets) and 

secondary (resolve robots’ failures) tasks, regardless of the 

system’s reliability levels. However, the conventional results 

(e.g., number of targets marked) only present little information 

about users’ underlying cognitive strategies and may fail to 

reflect the user’s true intent. As understanding users’ 

intentions is critical to providing appropriate cognitive aids to 

enhance task performance, a Hidden Markov Model (HMM) is 

used to examine operators’ underlying cognitive intent and 

identify the unobservable cognitive states. The HMM results 

demonstrate fundamental differences among the queuing 

mechanisms and reliability conditions. The findings suggest 

that HMM can be helpful in investigating the use of human 

cognitive resources under multitasking environments.  

Keywords- Human-robot Interaction; Cognitive Assistant; 

Task Switching; Hidden Markov model; System Reliability; 

Scheduling. 
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1. INTRODUCTION  

Robotic agents have been widely used to support humans 

in completing a variety of dangerous tasks, such as 

searching for trapped victims in risky environments or 

replacing human soldiers on a battlefield. In most of the 

human multi-robot interaction, robots operate with relative 

independence and are capable of operating in parallel, 

whereas an operator is usually incapable to control multiple 

robots at a time and regularly shifts her attention from one 

robot to another to monitor the robots’ status and acquire 

situation awareness (SA). The robots’ effectiveness 

therefore greatly depends on periodic human intervention. 

For example, a mobile robot could successfully explore the 

environment and perform the assigned tasks for a period of 

time only requiring an operator’s attention when it detects 

targets (e.g., trapped victims). In other words, the overall 

system performance is significantly affected by the 

effectiveness of operators’ attention allocation (Chen, 2009; 

Lewis, 2013; Prewett et al., 2010; Verma and Rai, 2013).  

Human-robot interaction (HRI) examines the uses of 

robotic systems and evaluates the interaction in human-

robot teams. Goodrich and Schultz (2007) suggested the 

quality of communication between human operators and 

robotic agents is essential to achieve an appropriate 

interaction as well as an efficient HRI structure. Therefore, 

to better design the communication schemes in human-robot 

teams, it is critical to understand how the operators allocate 

their attentional resources to communicate multi-robot 

teams. As an operator’s attentional resources are typically 

shared among a variety of tasks, however, even periodic 

human interventions may not be able to sufficiently serve 

the robots’ emergent requests. Previous research 

(Cummings and Mitchell, 2008) demonstrated that humans 

are incapable of shifting attention between robots to obtain 

the required SA in an effective and efficient manner. As a 

result, operators need assistance to maintain sufficient SA in 

complex and time-critical situations. Follow-up studies 

(Chen et al., 2010; Crandall et al., 2011; Cummings et al., 

2012) used a timeline display to assist operators in 



identifying bottlenecks and potential scheduling conflicts. 

The results suggested that HRI performance can be 

improved by appropriately scheduling an operator’s 

attention to only those robots that are in need of interaction.  

To enhance task performance, automated robot self-

reflection is frequently used to improve the HRI processes 

under a variety of complex conditions (Chien et al., 2012b; 

Wang et al., 2011). Automatically reporting a robot’s 

abnormal status not only eliminates an operator’s need to 

monitor, but also allows an operator to focus on critical 

interactions, thereby increasing the number of robots 

serviced during this interval. Although automated supports 

could conserve human cognitive resources, applying 

automated applications to direct an operator’s attention from 

an ongoing task to a specific task may decrease the 

operator’s SA and potentially increases the cognitive loads 

to acquire the necessary information while responding to a 

robot request (Eriksen and Yenh, 1985; Kiesel et al., 2010).  

Inappropriately directing an operator to service a 

particular robot has been found to have a negative effect on 

overall performance in human-robot systems (Crandall et al., 

2011). Most of time, operators may be less inclined to use 

relevant automated aids if the gain is offset by the mental 

cost of switching attention (Bainbridget, 1983; Crandall et 

al., 2011; Endsley and Kaber, 1999). Koch et al. (2010) 

concluded that switching costs arise from “both transient 

and long-term carry-over of task-set activation and 

inhibition” and may lead to the perception of a higher 

workload and lower overall system effectiveness. These 

costs are associated with impaired performance in task-

switch paradigms, as compared with repetition trials (Kiesel 

et al., 2010). Therefore, operators may take more time to 

complete mixed-task blocks (i.e., alternating between two or 

more tasks) than in repetitive single-task situations (Koch et 

al., 2005). Although enhancing robot autonomy can provide 

assistance with the control process and allow operators to 

interact with each robot as needed, the aforementioned 

studies suggested that the required interactions may greatly 

increase an operator’s perceived cognitive loads. Therefore, 

identifying an effective interaction scheme to satisfy 

operators’ cognitive demands as well as to respond to robots’ 

requests in time is indeed the most critical aspect of 

enhancing the HRI performance.  

Understanding the association between the operators’ 

cognitive states and their resulting behaviors is needed for 

improving human supervisory control in highly automated 

systems (Crandall et al., 2005; Olsen and Wood, 2004). In 

HRI fields, researchers employ two primary methods to 

investigate the supervisory processes. The first approach 

examines the overall system performance, such as the 

number of targets detected (Chen, 2009; Chien et al., 2012b), 

area explored (Scerri et al., 2011), or vehicles’ damage 

levels (Chien et al., 2016; Imbert et al., 2014; Miller and 

Parasuraman, 2007). The other approach characterizes 

operators’ attention allocation, such as the response rate in 

answering the robots’ requests (Crandall and Cummings, 

2007; Mekdeci and Cummings, 2009; Mercado et al., 2016). 

However, when an operator makes choices among 

alternatives, similar actions may be a result of different 

intentions. For example, a robot can be terminated because 

the assigned task has been successfully completed or the 

robot is incompetent to perform the task. Therefore, these 

conventional measures (overall performance and response 

rate) might be unable to reflect the underlying cognitive 

factors that significantly influence operators’ intent and 

behaviors.   

Conventional approaches evaluate the HRI performance 

by the overall task results that merely reflect the observable 

behaviors and fail to examine operators’ cognitive intentions 

or decision-making processes. In order to capture more 

insights from human supervisory control processes, we 

adopt the Hidden Markov Model (HMM) to explore the 

human’s cognitive states (Baum et al., 2011). HMM is a 

well-established method for parameter estimation and has 

been shown useful in modeling human behaviors and 

discovering unobservable human intentions in a wide range 

of application domains, such as astronaut supervisory 

monitoring behaviors (Hayashi et al., 2005) and 

collaborative web search processes (Yue et al., 2014). HMM 

analysis provides advantages over conventional approaches 

by making the explicit contexts for human supervisory 

control and assisting with interpretation of unobservable 

human intentions. 

As decision makers’ attention allocation may greatly 

influence by their scheduling strategies, the potential gains 

in various system developments of effective means to 

convey task recommendations warrant further investigation. 

Two different types of cognitive queues are evaluated in this 

paper, namely the Open-queue and SJF-queue methods. The 

Open-queue method presents all the robots’ conditions and 

sends out failure alarms at the same time. The SJF-queue 

method, a more sophisticated queuing mechanism, presents 

only one robot request generated by the shortest-job-first 

principle. The Open-queue scheduling mechanism was 

previously seen in Cummings et al. (2007) study, in which 

a timeline display was used to show each intelligent 

agent’s current status and to project the upcoming tasks. 

As the SJF approach is known to maximize throughput 

(Garey et al., 1976), we therefore develop a single event 

queuing display along with the SJF discipline. Prior research 

suggested that the operators with poor attentional control 

strategies tended to rely more heavily on automated aids, 

regardless of the system reliability levels (Chen et al., 2011; 

Chen and Terrence, 2009). To address these issues, two 

different system reliability levels are also investigated in this 

study, in which the robot failures are misdiagnosed (i.e., not 

detected) to simulate the effect of unreliable system. Both 

the conventional analysis and the HMM approach are used 

to measure the differences between the queuing types and 

reliability levels. We hypothesize that H1: High reliability 

level will result in better overall performance, covering both 

primary and secondary tasks. Since the SJF method is 

known to maximize throughput (Garey et al., 1976), we 

hypothesize that H2: The SJF-queue method will outperform 



the Open-queue approach across all the experimental 

scenarios. Moreover, a reliable queuing system can 

optimize attentional resources in both queuing conditions, 

whereas an unreliable queuing system may provide 

insufficient information and fail to effectively direct 

operators’ attention. Hence, we hypothesize, H3: In both the 

Open-queue and SJF-queue schemes, the high reliability 

will lead to better outcomes than the low reliability 

condition. As decision makers must prioritize tasks/alarms 

in the Open-queue, we hypothesize that H4: Operators will 

experience heavier workloads in the self-paced Open-queue 

condition, which could be a result of a higher level of 

perceived frustration, since no clear guidance will be 

provided in the Open-queue scheme. In other words, fewer 

workloads would be reported in the SJF-queue condition, 

regardless of the reliability levels. Additionally, since 

operators are allowed to perform the tasks based on their 

own strategies in the Open-queue scheme, we therefore 

hypothesize H5: HMM’s transition patterns will be more 

complex under the Open-queue group.  

2. RELATED WORK 

2.1.  Human-Robot Interaction (HRI) 

Human-agent teaming for multi-robot control is a 

complex process that requires both skilled operators and 

delicate system designs to effectively enhance overall HRI 

performance. To maintain appropriate situation awareness 

(SA), an operator must efficiently manage her cognitive 

resources and allocate attention among a variety of tasks. 

The situation in which one operator controls a team of 

robots is considered to be a more exhaustive and complex 

task than managing a single robot, which requires the 

operator to simultaneously manage attentional resources 

among robots to maintain necessary SA. Various factors 

affecting human-robot supervisory control processes (such 

as perceived cognitive load, allocation of attention, and 

cognitive capacity) have been studied in previous research 

(Donmez et al., 2010; Lewis et al., 2010; Nagavalli et al., 

2015; Visser and Parasuraman, 2011). Attentional control 

has been identified as one of the most critical factors 

influencing human supervision of robot teams, since most of 

the HRI tasks inevitably involve multitasking conditions 

(Chen and Barnes, 2014,  Chappelle et al., 2011). However, 

due to limited cognitive resources, human operators may 

encounter enormous difficulties in responding to robots’ 

requests for interaction in a timely fashion.  

The degree of attention allocation in multi-robot control 

tasks varies from completely manual control to supervisory 

control with a high level of automation (LOA). Sheridan and 

Verpank (1978) developed the first LOA taxonomy, which 

classifies autonomy into ten levels based on the range of 

control that an operator could manage. Operators must 

(partially) manually control the machines and make 

decisions in low LOA conditions, while fully autonomous 

systems are used under high LOA conditions. In other words, 

the intelligence of robots determines the human supervisory 

control behaviors, which may allow an operator to use 

cognitive resources to focus on higher level mission-related 

goals (e.g., decision selection) without spending resources 

on low level tasks (e.g., monitoring processes). However, 

while applying automation, operators and automated agents 

may perform similar operations with different purposes. 

These contradictory intentions may result in unexpected 

outcomes leading to serious system failures. Thus, while 

directing operators’ attention to necessary (automated) 

events, it is important to maintain appropriate system 

awareness and resolve the potential conflicts between a 

human’s intentions and system suggestions in a variety of 

diverse situations.  

Several solutions have been proposed to assist operators 

in managing sufficient cognitive resources in order to 

maintain adequate awareness and appropriate performance 

for multi-robot control tasks. Cummings et al. (2007) 

designed the schedule management aids that included 

timeline displays to show upcoming events, decision support 

tools to provide potential solutions, and task summary 

panels to recap mission statuses, along with color schemes 

to visualize a variety of tasks. Although the provided aids 

are beneficial in presenting the potential schedule 

bottlenecks and warning the operator of possible conflicts, 

the authors concluded that showing the potential problems 

without providing appropriate solutions is not more helpful 

than the baseline design (i.e., no visualizations). In addition, 

the vivid visualization aids of emerging problems may 

distract operator attention and interrupt the primary tasks.  

The interruption management approach is therefore 

proposed to lessen operators’ switching costs and allow the 

operators to have higher levels of SA during the tasks. 

Ratwani et al. (2007) used a tracking history list to remind 

the operators of the original tasks before the interruption. 

Chen et al. (2010) provided a changing history list to record 

what occurred during the interruption to recover the overall 

SA. However, providing support through a visual summary 

or a history of prior events may consume large amounts of 

cognitive resources to process the represented information, 

in which the (endless) list could lead operators to fix their 

attention on the changes to that list and neglect the 

important awareness of the ongoing tasks. Therefore, with 

respect to effectively managing cognitive resources, 

providing cognitive support to assist operators in achieving 

efficient attentional control is critical to enhancing HRI 

performance.  

2.2. Cognitive Issues in HRI 

Human interaction with multi-robot teams has been 

widely explored and raised many research questions. Prior 

research investigated the effects of robot team size on 

performance (i.e., metrics of tasks) and the influences of the 

robot’s LOA (i.e., metrics of robots). The metrics of tasks 

examine the number of robots that an operator can 

effectively control in various contexts (Lewis et al., 2010); 

whereas the metrics of robots identify the amount of effort 

that an operator has to invest in operating a single robot. 



These metrics provide thorough mechanisms to evaluate the 

quality of human multi-robot interaction and to measure the 

difficulties in a number of task contexts.  

However, the appropriate performance thresholds for a 

robot may vary widely depending on the task requirements. 

For example, a robot that paints street lines requires a higher 

degree of precision than a street-sweeping robot that collects 

rubbish from streets. As a consequence, robots typically 

need to be serviced on demand rather than sequentially, 

which introduces an additional complexity to human 

supervisory control of multi-robot teams. In addition, 

previous studies indicated that decision makers often over-

estimated their cognitive capabilities and failed to identify 

optimal scheduling strategies in controlling robot teams 

(Crandall et al., 2011; Sheridan and Tulga, 1978). The 

performance degradation therefore may not be simply 

caused by the size of robotic teams or the difficulty of 

assigned tasks but can be greatly affected by switching 

attention between tasks. To determine human strategies in 

multitasking environments, Cummings and Mitchell (2008) 

developed a neglect tolerance model that examined 

operators’ interactions with robots in a sequence of control 

episodes. The identified timeline intervals in their work 

were applied to a fan-out equation to predict the threshold 

for a human operator to control multi-robot teams.  

The attention allocation of multiple concurrent tasks 

such as in controlling multi-robot can be referred to as the 

cost of switching attention (Goodrich et al., 2005; Kiesel et 

al., 2010). To appropriately manage limited cognitive 

resources, task realization largely depends on a human’s 

capabilities of attention allocation (Crandall and Cummings, 

2007; Wickens and Hollands, 1999). In the research of 

Steinhauser and Hübner (2008), the cost of task switching is 

compared with repetition tasks and controlled processing 

tasks. Kiesel et al. (2010) further investigated the global 

switching costs of both repetition tasks and switching tasks 

as well as the local switching costs of simple repetition tasks. 

Switching tasks produce greater costs (i.e. more failed tasks 

and longer reaction time) and even lead to higher frequency 

of error rates (Steinhauser and Hübner, 2008). Therefore, 

providing aids to direct human’s attention to various 

conditions is important to help operators allocate attention to 

emergent tasks as well as to maintain efficient awareness of 

the original task (Altmann and Trafton, 2007; Goodrich et 

al., 2005). 

2.3. Cognitive assistance in HRI 

In time critical missions, it is particularly important that 

an operator can allocate attention effectively since the 

failure of managing a high-priority task in a timely manner 

not only lessens the effectiveness of the system, but also 

potentially results in disastrous consequences (Crandall et 

al., 2011). To mitigate the effect of operators’ cognitive 

limitations, applying cognitive assistance to manage 

attention resources is required, in which several directions 

were developed to improve operator attention allocation in 

HRI-related tasks.  

First, a thread of approaches focuses on visualizations 

that present the status, plans, and progress of robots in the 

system. This kind of visualization approach implicitly 

directs the operators to specific tasks and when to perform 

them. Cummings and Mitchell (2008) investigated timeline 

visualizations for unmanned aerial-vehicle (UAV) systems 

by presenting a schedule of anticipated events. Through the 

display, the operator can identify and select the task to 

perform and decide when to perform it. A subsequent study 

by Cummings et al. (2007) found that a single operator can 

control multiple UAVs with decision support tools, but the 

influences of the provided decision making tool on operator 

performance and SA cannot always be predicted.  

The second research thread proposes a warning system 

that detects potential critical events and sends an alert or 

signal explicitly to the operator. Lee et al. (2004) explored 

how the alert strategy and modality affected automobile 

collision-warning systems that mitigated distractions and 

directed a driver’s attention to the car ahead when it 

unexpectedly braked. They found that graded alerts led to a 

greater safety margin, resulting in fewer inappropriate 

responses to nuisance warnings and higher trust ratings to 

the system aids. Meanwhile, they suggested that the 

vibrating seat designed in their study as a haptic alert was 

perceived as less annoying and more appropriate, which 

suggested the graded haptic alerts offered a great 

opportunity to apply context awareness in a safety-critical 

domain. Donmez et al. (2009) investigated whether 

sonification (continuous auditory alerts) can inform the 

operator about the state of a monitored task and thereby 

support UAV control. Their results showed sonification can 

support operators in predicting states of monitored tasks but 

might also interfere with other ongoing tasks (i.e., too much 

distraction).   

Another direction works to explicitly provide 

suggestions or dictums for the operator to pay attention at a 

specific event at a given time. Crandall et al. (2011) 

modeled the operator’s attention in order to lead the 

human’s attention to the most effective event as well as the 

most needed event to perform the tasks. Their results 

showed that operators' attention allocation was effectively 

devoted to the primary goal (target detection) but was not as 

effective in the secondary mission, maintaining the robotic 

agents’ safety (Crandall et al., 2011). In other words, the 

operators were unable to effectively allocate their attention 

to the secondary missions in complex and time-critical 

situations. The rate of system presentation of elements in a 

(timeline) display varied from a few seconds to several 

minutes; however, human detection rates remained constant. 

Since concentrating attentional resources on different events 

is problematic, Eriksen and Yenh (1985) suggested that 

providing a cuing signal directed the concentration of 

attentional capacity into needed events. According to the 

previous studies from different directions of attention 

allocation, allowing robots to self-report abnormal states 

seems to be a fundamental approach of reducing the 

switching costs and enabling the operator to better prepare 



for the robots’ abnormalities. However, before applying the 

self-report aids, it is important to understand the effects of 

different types of cognitive mechanisms (such as the Open-

/SJF-queue methods in this study) and investigate the 

potential influences resulting from various types of 

cognitive assistance.  

2.4. Assessing cognitive assistance 

Examining the effectiveness of different attention 

allocation methods requires the development of proper 

performance assessments. Existing literature generally 

measures the task performance (Chien et al., 2012b), 

experienced workload (Lewis et al., 2010), or scheduling 

intervals (e.g., neglect tolerance model in Cummings and 

Mitchell (2008). For example, NASA Task Load Index 

(NASA-TLX; Hart and Staveland, 1988)  is a subjective 

multidimensional assessment instrument, in which 

participants report experienced workload with a task, an 

intelligent agent, a robotic system, etc. Additionally, the 

neglect tolerance model shows such operator interactions 

with an individual robot and the sequence of control 

episodes based on different time intervals. However, these 

approaches only identify the differences by analyzing the 

overall results (e.g., number of targets found, workload 

score, or interaction time), which is incapable of (1) 

identifying the fine-grained difference of interactions during 

the whole task completion course; and (2) revealing the 

human’s decision-making strategy and latent cognitive 

intentions. As understanding operators’ cognitive intentions 

and attentional strategies in multitasking environments is 

important, to further investigate these issues, a dedicated 

approach is needed to better understand complex human 

interactions.  

To permit a fine-grained understanding of the human 

interaction process, it is intuitive to think of modeling the 

implicit behavior sequence as a whole, which requires 

taking into account behavior-behavior relations. A Markov 

model can be applied in this situation as it accounts for both 

the current behavior and its predecessor. To the best of our 

knowledge, the Markov model has not yet been widely 

applied to analyze HRI systems, but it is frequently used in 

other domains. For example, using Markovian analysis, 

Chapman (1981) identified nine hidden search states in a 

behavioral pattern for web search behaviors. Chen and 

Cooper (2002) used the Markov model to analyze the 

patterns of Web-based library catalog browsing.  

However, the Markov approach only attempts to model 

and interpret two consecutive behaviors at a time, which 

cannot directly reflect latent human cognition patterns. To 

overcome this issue, previous studies (Boussemart and 

Cummings, 2008; Yue et al., 2014) tried to model human 

interactions at the hidden cognitive state level, at which 

HMM is often adopted. Yue et al. (2014) assumed that user 

behaviors are driven by hidden cognitive states instead of 

being directly influenced by the prior interactions. Therefore, 

by using HMM, researchers can bridge hidden cognitive 

states with observed actions in one unified framework.  

2.5. Hidden Markov Model (HMM)  

When an operator makes choices among alternatives, the 

observed behaviors simply represent the adopted actions; 

however, similar actions may result from a variety of 

intentions. Highly probable actions may not best represent 

the user’s intentions, whereas improbable events may 

convey more insights into operators’ true internal (cognitive) 

states. Conventional approaches evaluate interactions and 

performance through the accumulated results (e.g., number 

of targets found) that merely reflect the operators’ adopted 

behaviors, and may fail to examine intentions or cognitive 

strategies, which prompted us to perform a holistic 

evaluation on the intermediated behaviors.  

To better model human supervisory control processes, 

HMM (Baum et al., 2011) was applied to examine operators’ 

supervisory processes under different queuing approaches 

and system reliabilities to discover the variables influencing 

operators’ cognitive states as well as their behavioral 

patterns. HMM is a well-established machine learning 

method that has been shown to be useful in modeling human 

behaviors and examining unobservable human intentions in 

a wide range of application domains. For example, it has 

been used for modeling astronaut supervisory monitoring 

behaviors (Hayashi et al., 2005) and web search processes 

(Xie and Joo, 2010; Yue et al., 2014). However, little 

attention has been paid to using the HMM approach in the 

HRI field.  

HMM analysis provides advantages over conventional 

approaches by making the context surrounding human 

supervisory control explicit and aiding in the interpretation 

of unobservable human intentions. HMM assumes that there 

are several hidden states (namely, hidden user intentions) 

that govern the presence or absence of certain user 

interactions. While modeling user behaviors, HMM employs 

a two-layer model, in which the hidden state layer reflects 

the user’s cognitive states, while the observed action layer 

represents the sequence of user actions. The hidden layer 

can be inferred from observed interactions, using the Baum-

Welch algorithm (Baum et al., 2011).  

 

 

Figure 1.  An illustration of Hidden Markov Model. 

 

An illustration of HMM is provided in Figure 1. HMM 

assumes a sequence of user behaviors from A1 to AM, and a 

sequence of hidden states from H1 to HM. Here, M stands for 

the total number of human behaviors in one supervisory 

control process. Each behavior is supposed to be generated 

by one corresponding hidden state; however, different 

behaviors can be generated by the same hidden state with 

different probabilities. The hidden state sequence results in a 
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Markov Chain. A HMM model has several parameters, 

including the number of hidden states, the transition 

probabilities among any two hidden states, and the emission 

probability from one state to any of the behaviors. In this 

paper, we will follow this line of work by adopting the 

HMM for behavior sequence modeling and assessment in 

HRI domain. 

3. METHODS 

To examine human attention allocation in multi-robot 

teams, urban search and rescue (USAR) missions were used 

in our study along with different types of scheduling 

displays (Figure 2 and Figure 4). The USAR mission is 

composed of human operator(s) and robotic agents, where 

an operator has to perform supervisory control of multiple 

robots and interact with them to explore the environments 

and execute the search and rescue missions. The USAR 

robots are capable to perform some basic tasks, such as path 

plan or re-plan; however, due to the environmental 

complexity, the robots may be unable to sense and avoid all 

the potential risks (e.g., bump into a furniture and get 

tangled). An operator must monitor the robots’ statuses and 

interact with each as needed. 

An earlier study (Chien et al., 2011) found that HRI 

performance can be improved by appropriately directing the 

operator’s attention to robots in need of interaction. When 

robot self-reflection (Scheutz and Kramer, 2007) is used to 

identify a need for interaction with an operator, the resulting 

HRI forms a queuing system, in which the operator acts as a 

server to process the robot requests. To understand the 

effectiveness of different attention direction approaches, two 

types of queuing mechanisms were used to schedule 

operator attention in this paper:  

1) Open-queue: showing the entire queue with the 

current status for each robot (Figure 2). This queuing 

mechanism gives operators an overview of all robots’ states 

and provides color cues to differentiate the normal and 

abnormal status of robots along with the type of experienced 

failure. 

2) SJF-queue: showing a single robot’s request at a 

time based on the shortest-job-first discipline (Figure 4). 

This mechanism prioritizes the robot failure requests and 

displays the failure requiring the least effort to repair (i.e., 

the suggested robot can be repaired quickly). Although an 

operator could resolve more robots’ failures in a limited 

time through this approach, due to the nature of a forced-

queue scheme, the operator must follow the system 

suggestion to resolve the current prioritized request in order 

to proceed the next task, which provides little flexibility for 

the operator in handling the robots’ requests. 

Participants’ cognitive strategies and reliance behaviors 

may significantly depend on the system reliability. Since 

guaranteeing perfect automation is unrealistic, to examine 

the effects of system reliability, two levels of automation 

aids, high (90%) vs. low (50%), were simulated in addition 

to the two queuing approaches. For example, in the low 

reliability condition, half of the robots’ failures were 

misdiagnosed and were not reported to the operator. 

Additionally, HMM was adopted to further analyze the 

participants’ cognitive intentions and decision-making 

strategies among the experimental setups.  

3.1 Testbed Systems 

Urban search and rescue simulation (USARSim; Lewis 

et al., 2007), a high-fidelity robotic simulation, was used in 

our study to simulate USAR missions, featuring USAR 

robots and environments. USARSim supports human multi-

robot coordination by accurately rendering user interface 

elements and representing robot automation and its remote 

environment, which link the operator’s awareness with the 

robot’s behaviors. 

Multi-robot control system (MrCS; Carpin et al., 2007), a 

multi-robot control infrastructure, was also included in our 

study to provide a user interface to control and display 

multiple robots simulated in USARSim. MrCS provides 

tools to control robots in the simulation, displaying multiple 

camera and laser output, and supporting inter-robot 

communication. 

USARSim and MrCS were used in our study to simulate a 

USAR foraging task, in which an operator controlled multi-

robot teams to explore the environments, detect the presence 

of victims, and locate the victims on the map.  
 

 

Figure 2.  MrCS display in Open-queue: showing current conditions of all 

robots in the status panel (left-most window). 

Figure 2 shows the MrCS user interface in the Open-

queue condition. Thumbnails of robot camera feeds are 

shown on the top, which display each robot’s current view. 

Current locations and paths of the robots are shown on the 

Map window (middle) which allows operators to mark the 

position of victims. The red dots shown on the Map window 

are the victim marks that placed by a participant. A 

manually controlled panel in the bottom right allows 

teleoperation and camera pan and tilt. The status panel (left) 

for the Open-queue condition shows the current status for 

each robot and briefly summarizes any problems using 

differently colored indicators (Figure 3). 

 



 

Figure 3.  Status panel: Green color represents a robot is working 

appropriately; yellow color represents a robot is encountering problems; 

white color represents a robot is under manually controlled. 

Green tile indicates that the robot is in autonomous 

condition and functioning safely; yellow tile indicates an 

abnormal condition, such as being stuck at a corner. When a 

robot is manually controlled, its tile turns white. An operator 

has several ways to select a robot to control, from the status 

panel, camera thumbnail, or map window. Once a robot is 

selected, its camera view is also presented in the video of 

interest (middle right), which provides a larger display to 

help operators further examine the images.   

 

 

Figure 4.  MrCS display in SJF-queue: showing a single alarm, by 

following the first-in-first-out or shortest-job-first principle respectively, in 

the status panel (left-most window). 

Figure 4 shows the status window (left) for the SJF-queue 

condition in which only one robot in an abnormal state is 

presented at a time. Additional alarms can only be reviewed 

after the presenting problem is resolved. To avoid “clogging” 

the status window with an unrecoverable failure, operators 

have an option to use the “Dead button” (bottom left, Figure 

2 and Figure 4). Once switched off, the robot will stop 

reporting and no longer be scheduled.  

3.2. Primary Task: Victim Detection 

The main goal of this study is to help an operator to 

efficiently detect victims in the multitasking situations. 

Through the system, once an operator notices a victim 

appearing in a thumbnail, a complex sequence of actions for 

the victim detection task is initiated. The operator first 

identifies the robot detecting a victim and selects it in order 

to see the camera view in a larger window (video of interest 

in Figure 2). After the operator has successfully selected a 

robot, the next step is to locate it on the map by matching 

each robot’s unique border color or numerical label. Then, 

the operator must determine the orientation of the robot and 

its camera using cues such as prior direction of motion and 

matching surroundings between camera and map views. To 

gain this information, the operator may choose to 

teleoperate (i.e., manually control) the selected robot to 

locate it on the map and determine its orientation by 

observing the direction of movement. The operator must 

estimate the victim’s location on the map corresponding to 

an image of the victim in the camera view, and then place a 

red dot on the map window to represent a victim’s location 

(as the red dot shown in Figure 2 and Figure 4). If “another” 

victim is marked nearby, the operator must consider whether 

the current victim has already been recorded on the map to 

prevent missing or duplicate marks. In additional, a number 

of victims are evenly distributed in the environment and are 

simulated as paralyzed patients, in which the victims are 

unable to move and the robots can detect the victims all the 

time. 

3.3. Secondary Task: Failure Resolved  

The secondary task of this study is to resolve robot 

failures. An operator has to identify and select the failed 

robot, then teleoperate it to its next predefined waypoint 

where the automation can be resumed. To simulate a real 

robotic system, the simulated Pioneer P3-AT robot equips 

with the similar accessories and sensors as a real P3-AT 

robot, including laser sensor, color sensor, gyroscopic 

sensor, video camera, navigation package, global 

positioning system (GPS), and wireless Ethernet 

communications. These sensors are designed for exploring 

the environments, collecting surrounding data and detecting 

the robot’s current state. As the USAR tasks often occurred 

in the hazard situations, the design of the multiple sensors 

can not only overcome the tough environments but also 

compensate the potential system failures caused by the risky 

conditions. For example, while the video camera fails to 

provide the instant environmental information, the operator 

can refer to the GPS to regain the robot’s current location. 

TABLE I.THREE TYPES OF FAILURES OCCURRED IN THE STUDY 

Failure Description 

Teleoperation 

Lagged 

Robot executed operator's command with 

2~3 seconds delay 

Camera Sensor 

Failed 

Robot's video feed will be frozen right 

before the failure happened 

Map Viewer 

Failed 

Robot's position on the map viewer will be 

unable to update 

Recoverable failures were categorized into 3 major types 

(Table I), based on the data for commonly occurring on-

field repairable failures for the Pioneer P3-AT (Carlson et 

al., 2004). Two of these, camera and map failures, involve 

loss of display due to communication difficulties. 

Teleoperation lag is a control problem identified by 

Sheridan (1993) and determined to significantly degrade 

operator performance. 

 In this study, to resolve a robot’s failure, the operator 



needed to manually guide the robot from its current location 

to the next waypoint. Because each of the failure types 

imposed different difficulties for recovery, they took 

varying amounts of time to resolve. In order to estimate a 

typical resolution duration for different failures, a pretest 

using 10 participants was conducted. The resulting durations 

were adopted from our prior study (Chien et al., 2012a), in 

which the camera failure was the easiest to overcome and 

the loss of map indication proved to be the lengthiest failure 

to repair, with teleoperation delay falling in the middle. This 

ordering of estimated interaction times allowed failures to 

be presented to the operator in the SJF-queue following a 

shortest-job-first discipline, known to maximize throughput 

(Garey et al., 1976). In addition, to fulfill our experimental 

designs and satisfy the SJF methods, only one type of a 

failure will be injected to a robot at one time (e.g., 

teleoperation lagged and camera sensor failed will not be 

occurred to a robot simultaneously).    

3.4. Experimental Conditions  

The selected USAR environment was an office-like hall 

with many rooms full of obstacles such as chairs and desks. 

Victims were evenly distributed throughout the environment, 

and robots entered the environment from different locations.  

A total of six P3-AT robots were used in our study to 

perform the USAR task. Robots followed predefined paths 

of waypoints, similar to paths generated by an autonomous 

path planner (Chien et al., 2010) to explore the environment. 

All robots traveled paths of the same distance with ten 

visible victims and four system failures (i.e., robots’ failures 

not detected) along each designated path. Upon reaching a 

pre-programmed failure waypoint, the robot experienced a 

failure and sent a request to the queue. The operator then 

needed to assume manual control to teleoperate the robot 

out of its predicament and on to its next waypoint where 

communication could be reestablished with the lost camera 

feed or control, and autonomous exploration resumed.  

3.5. Participants and Procedure  

Forty-eight student participants were recruited from the 

University of Pittsburgh community, a group balanced in 

terms of gender (average age = 26.53). None had prior 

experience with robot control, although most were frequent 

computer users. A 2x2 between-subject design was applied 

to the study, in which each participant only experienced one 

of the queuing displays (Open-queue or SJF-queue) along 

with one of the reliability levels (high-90% or low-50%). 

Participants first read standard instructions about the 

experimental conditions. Participants were instructed that 

their primary task was to detect and mark as many victims 

as possible and their secondary task was to resolve robot 

failures. Additionally, they were also informed that a 

cognitive queue was used in managing the robot failure 

tasks, but that the queuing reliability was not perfectly 

reliable. In the following 15-minute training sessions, 

participants practiced control operations by resolving 

failures, three times for each type. Participants were 

encouraged to find and mark at least one victim in the 

training environment under the guidance of the study 

conductor. After the training session, participants began the 

15-minute experimental session controlling 6 robots in the 

assigned condition. Participants had been told the main task 

was to locate victims via detecting and that resolving robot 

failures was a secondary task. At the conclusion of the 

session, participants were asked to complete the NASA-

TLX workload survey (Hart and Staveland, 1988). 

3.6. Evaluation: User Behavior Analysis using Hidden 

Markov Model (HMM) 

To provide a deeper understanding of human interactions 

on different attentional scheduling conditions, this study 

examined the users’ decision-making processes in visual 

search and scrutinized their hidden intentions when 

performing USAR tasks. Latent user intentions were 

automatically detected through HMM, a two-layer 

(including hidden layer and observed layer) unsupervised 

machine learning model that assumed the observed layer 

was generated from the hidden layer. The hidden layer 

included a set of hidden states, whereas the observed layer 

consisted of observed user behaviors. Prior research 

suggested, with a small number of tweaks, HMM can 

quickly learn the users’ hidden states by using the Baum-

Welch algorithm (Baum et al., 2011).  

To learn the hidden states and corresponding parameters, 

we first need to specify the number of hidden states, which 

is a non-trivial task because of the lack of ground-truth. A 

complex model with a large number of hidden states may 

describe user interactions more accurately and specifically 

for one dataset, but it may be unable to predict other datasets 

under different task contexts. In HMM model selection, an 

information criterion such as Akaike information criterion 

(AIC; Akaike, 1974) or Bayesian information criterion (BIC; 

Mcquarrie, 1998) is adopted to avoid over-fitting. For this 

study, we chose to use the BIC score to determine the 

optimal number of hidden states for the HMM, because the 

BIC score accounts for the sample size (Yue et al., 2014). 

There are two important output matrices for a HMM: 

Emission Probability (also known as output probabilities) 

represents the distributions of the observed interactions from 

a specific state; Transition Probability shows the probability 

of transferring from one hidden state to another. Both of 

these measures were adopted in this paper.  

4. RESULTS 

Data were analyzed using a 2x2 between-subject ANOVA 

with scheduling mechanisms (Open-queue vs. SJF-queue) 

and reliability levels (high-90% vs. low-50%) to determine 

the differences in operators' performance. The following 

measurements (Table II) were adopted in our analysis:  

Two types of analyses were adopted: 1) the conventional 

performance analysis, and 2) the HMM analysis. The 

conventional performance analysis examined the overall 

performance in the primary and secondary tasks, and the 



TABLE II. MEASUREMENT SCALES AND ITS DEFINITION AND CONCEPT 

Measure Definition & Concept 

Conventional Performance Analysis 

Total Detected 

Victims 

The number of victims detected by the 

robots while exploring the environment, 

which results in an operator’s opportunity to 

detect the victim appearances 

Victim  

Finding Rates 

Number of correctively marked victims 

divided by Total detected victims, which 

indicates an operator’s performance in the 

primary task  

Victim  

Missing Rates 

Number of missing victims divided by Total 

detected victims, which represents an 

operator’s SA in the primary task 

Failures  

Resolved 

The amount of robots’ failures resolved by 

an operator, which shows an operator’s 

performance in the secondary task 

Area  

Explored 

The total distance travelled by the robots, 

where larger distance leads to better 

opportunities to find more victims 

Workload  

Survey 

An operator’s experienced workload is 

evaluated by the NASA-TLX workload 

survey, where task performance may decline 

when the operator perceives too high or too 

low workload 

Hidden Markov Model Analysis 

Emission 

Probability 

Counting the frequency that a specific 

interaction is generated by a cognitive state 

Transition 

Probability 

Computing the probability of transferring 

from one cognitive state to another 

subjective perceived workload. However, these 

examinations considered only the accumulated results (e.g., 

number of victims found) and failed to reveal an operator’s 

hidden cognitive intentions. The HMM analysis was 

therefore included in our analysis to further access the 

operator’s cognitive strategies via the emission and 

transition probabilities. A small portion of the preliminary 

results of the conventional performance analysis (number of 

victim detections and failures resolved, and workload scores) 

was presented in (Chien et al., 2013, 2012c); however, this 

paper adopted more precise measures (e.g., victim finding 

and missing rates) to determine the differences and applied 

the HMM approach to scrutinize the cognitive variances.  

4.1. Conventional Performance Analysis 

4.1.1. Victim Detection (Primary Task) 

Since the number of marked and unmarked victims are 

related to the existing of victim appearances, the number of 

detected victims was therefore first examined. The results 

showed a main effect for reliability conditions (F1,44=4.888, 

p=.032) and queue mechanisms (F1,44=5.426, p=.024), 

where more victims were detected under the high reliability 

and in the Open-queue condition (as shown in Figure 5). A 

pair-wise T-test showed that more victims were detected in 

the Open-queue method than in the SJF-queue condition 

(p=.041) under high reliability; as well as more victim 

targets were sensed in the high reliability than low reliability 

condition (p=.059) under the Open-queue approach.  

 
Figure 5.  Number of total detected victims.  

To better examine the relationship between the correct 

victim marks and total detected victims, an adjusted 

measure, victim finding rates, was used and computed by 

the number of correct victim marks divided by the total 

detected victims. Significantly higher victim finding rates 

were observed in the low reliability condition (F1,44=5.976, 

p=.019), as shown in Figure 6. A pair-wise T-test further 

revealed that, under the Open-queue condition, more victims 

were successfully marked in the low reliability than in high 

reliability condition (p=.051); however, the same effect was 

not observed in the SJF-queue approach.  

 
Figure 6.  Victim finding rates. 

An unmarked victim (i.e., missed target) can result from 

insufficient SA that should be addressed in the victim 

detecting process. An unmarked victim was defined as a 

victim appearing in a robot’s camera without being located 



by the operator. Another adjusted measure, victim missing 

rates, was calculated by the number of unmarked victims 

divided by the total detected victims. The results revealed a 

main effect for reliability conditions (F1,44=5.976, p=.019), 

in which higher victim missing rates were found under high 

reliability condition (as shown in Figure 7). The results of 

pair-wise T-test revealed that, in the Open-queue condition, 

more victims were missed in the high reliability than low 

reliability condition (p=.051). No statistical effect was found 

in the SJF-queue condition between the reliability levels.  

 
Figure 7.  Victim missing rates.  

4.1.2. Failure Resolved (Secondary Task) 

To examine the effects of unreliable automation, pre-

programmed system failures were injected along a robot’s 

route. When a robotic agent encountered the predesigned 

failures, the robot sent a request for further interaction and 

waited for the operator’s assistance. The results showed that 

significantly more failures were resolved under high 

reliability condition (F1,44=6.057, p=.018), as shown in 

Figure 8. A pair-wise T-test revealed that, under the Open-

queue approach, participants resolved more robot failures in 

higher reliability condition (p=.055); however, similar 

results were found in the SJF-queue regardless of the 

reliability levels.   

 
Figure 8.  Number of robot failures resolved. 

4.1.3. Area Explored  

Exploring larger areas could result in greater opportunities 

to detect more victims. The results showed marginal 

differences in the queue scheme (F1,44=2.844, p=.099), 

which suggested that when an operator interacted with the 

robotic agents via the Open-queue approach, the robots were 

able to travel longer distances; however, this effect was not 

observed in the lower reliability level (as shown in Figure 9).  

 
Figure 9.  Area explored. 

4.1.4. Interactive Behaviors between Queue and Camera 

The participants had multiple ways to interact with the 

robotic agents (i.e. selecting from the robot cameras, from 

the cognitive queuing assistant, or from the map window). 

The results revealed that the selection behaviors were 

significantly influenced by the queue schemes (F1,44=20.867, 

p<.001), in which the operators were inclined to interact 

with the robots through the provided cognitive queue in the 

Open-queue condition (as shown in Figure 10). Neither 

interactions nor reliability levels were found to be 

statistically significant.  

 
Figure 10.  Number of selections in the cognitive queue.  



As shown in Figure 11, the results showed significant 

differences in reliability conditions (F1,44=3.450, p=.070) 

and queuing displays (F1,44=4.307, p=.044), in which the 

results indicated that operators tended to interact with the 

robots via the camera panels under low reliability level and 

in the SJF-queue condition. A pair-wise T-test further 

identified decreased reliability in the Open-queue condition 

significantly increased the use of robot cameras (p=.043); 

however, this effect was not observed in the SJF-queue. 

 
Figure 11.  Number of selections in robot cameras.  

4.1.5. Perceived Workload  

The NASA-TLX instrument was used to evaluate an 

operator’s perceived workload in performing the USAR task. 

The results showed a significant interaction between the 

reliability levels and queue types (F1,44=3.879, p=.055), in 

which the highest workload was reported under high system 

reliability in the Open-queue condition, and the lowest 

workload score was reported under high reliability condition 

in the SJF-queue scheme (as shown in Figure 12). A pair-

wise T-test further revealed that under higher system 

reliability, operators perceived heavier workloads in the 

Open-queue than SJF-queue condition (p=.010). To 

investigate the influence related to the prescriptive aids in 

the SJF-queue scheme, the frustration scale was analyzed 

separately. The results showed that, under high reliability, 

higher frustration scores were reported in the Open-queue 

than SJF-queue situation (p=.062).   

The analysis above measured the participants’ overall 

performance while interacting with the cognitive queuing 

assistants to prioritize robots’ requests under various 

conditions. However, these measures failed to reveal the 

underlying factors affecting operators’ cognitive states and 

decision-making strategies while performing supervisory 

control over multiple robots in multitasking environments. 

The deficiency of cognitive resources has been a 

longstanding problem in multitasking conditions, in which 

the operators themselves may not be aware that insufficient 

resources increase the difficulty of reflecting on the problem. 

As a result, identifying the deficiency in provided cognitive 

queuing aids requires a fine-grained approach to further 

evaluate the interaction between human operators and 

cognitive assistants. Therefore, a machine learning approach, 

HMM, was adopted to examine the operators’ cognitive 

intentions.  

 
Figure 12.  Perceived Workload. 

4.2. Hidden Markov Model (HMM) Analysis 

A HMM requires a list of sequentially observed user 

interactions as input. The interactions used in this study 

were obtained through two test-bed systems, USARSim and 

MrCS, by recording users’ click actions. Based on users’ 

click actions, we sorted the logged actions into six 

categories, including status panel, camera, map, teleop, auto, 

and victim (details are included in Table III). An operator 

can select a robot to control from either its thumbnail 

(indicated as Camera in table III), its icon on the map 

window (Map), or its legend on the cognitive assistant 

(Queue). The victim detection task is completed by placing 

a mark on the map window (Victim). In the failure recovery 

task, an operator first selects a failed robot and manually 

controls the robot to the next predefined waypoint (Manual), 

then completes the task by returning the robot to the 

autonomous mode (Auto). 
TABLE III. USER INTERACTION CATEGORIZATION 

Interaction Description 

Queue 

A user checked the cognitive assistant (coined as 

status panel in Figure 2 and Figure 4) and 

selected a robot from the queue 

Camera A user clicked on a camera to select a robot  

Map A user selected a robot in the map window 

Manual 
A user manually controlled a robot to solve the 

robot failures or to locate a victim 

Auto 
A user clicked on the auto button to set a robot to 

the autonomous mode 

Victim A user added/deleted a victim mark on the map 



Probabilities and transitions among the retrieved hidden 

states reveal a great deal about an operator’s strategies and 

interactions with the system aids. For example, the 

probability of the use (or disuse) of the provided cognitive 

assistant (i.e., Queue) provides evidence for its role in 

influencing operators’ internal cognitive states, whereas the 

resulting transitions are likely to involve robot failures that 

have been resolved.  

4.2.1. Open-queue Model  

Four hidden states were identified in the high reliability 

condition and were labeled based on the emission 

probability, which represents the probability of the observed 

interactions from a cognitive state (Table IV, emission 

probabilities lower than 0.10 were omitted for legibility 

purposes). The first hidden state had a high probability (62%) 

of generating an interaction with Queue (defined in Table 

IV); we therefore named it HQ. Based on the same naming 

schema, we noted the rest of interactions as HC (Camera), 

HA (Auto), and HM (Manual). The results revealed that, in 

the Open-queue condition, operators tended to interact with 

robots through the camera or queue panels (HC and HQ 

states, respectively) rather than from the map window, 

leaving the Map state out of the model. Additionally, the 

Victim state was observed across HQ, HC, HA, and HM 

states, but never dominated in any of the conditions. 

Therefore, due to its low probability, the Victim state was 

not included in the model.  

TABLE IV. EMISSION PROBABILITIES IN OPEN-QUEUE under the High 

Reliability CONDITION 

OPEN 

HR 
QUEUE CAMERA MAP MANUAL AUTO VICTIM 

HQ 0.62 0.12 
 

  0.17 

HC  0.75    0.18 

HA     0.79 0.20 

HM    0.94  
 

Transitions among these four hidden states were plotted in 

Figure 13 (transition probabilities lower than 0.10 were also 

omitted for legibility purposes). A pattern of high transition 

probability was observed in HQ→HM→HA, when an 

operator resolved a robot request from the queue (HQ) and 

manually drove the robot from the failure point to the next 

predefined waypoint (HM). Upon reaching the waypoint, 

the robot resumed the autonomous mode (HA); then the 

operator selected another robot from the queue to fulfill the 

robot’s requests (HA→HQ). 

 

Figure 13.  Transition probabilities of hidden states in Open-queue under 

the high reliability condition. 

Another four hidden states model was found in the low 

reliability condition (shown in Table V), which was similar 

to the retrieved structures in the high reliability condition. 

The HM, HA, HC, and HQ states significantly involved the 

interactions of Manual, Auto, Camera, and Queue, 

respectively.  

TABLE V. EMISSION PROBABILITIES IN OPEN-QUEUE under the Low 

Reliability CONDITION 

OPEN 

LR 
QUEUE CAMERA MAP MANUAL AUTO VICTIM 

HM  0.05  0.79  0.14 

HA     0.72 0.23 

HC  0.84    
 

HQ 0.80  0.10    

The transition probabilities were visualized in Figure 14 

and the transition pattern (HQ→HM→HA) was again 

observed. However, while interacting with unreliable system 

aids, operators exhibited more complex behavioral patterns. 

When compared to the high reliability condition, decreasing 

system reliability generates more links (HM→HC: 21%; 

HA→HC: 30%) and transition pattern (HM→HA→HC) to 

the Camera state, which did not exist in the high reliability 

condition. 

To examine the potential differences in emission and 

transition probabilities between the high and low reliabilities 

in the Open-queue conditions, pair-wise T-tests were 

conducted. The results are summarized in Table VI. The 

comparisons in emission and transition probabilities 

indicated that operators relied more on the cameras than the 

provided cognitive queue under the low reliability condition. 



 

Figure 14.  Transition probabilities of hidden states in Open-queue under 

the low reliability condition. 

TABLE VI. T-TEST ANALYSIS IN EMISSION AND TRANSITION PROBABILITIES 

BETWEEN HIGH AND LOW RELIABILITY CONDITIONS IN OPEN-QUEUE 

Emission Probability 

States Post-hoc  

Queue (HQ) HR>LR, p=.050 

Camera (HC) LR>HR, p=.011 

Manual (HM) LR>HR, p=.035 

Transition Probability 

States Post-hoc  

HQ→HM HR>LR, p=.002 

HA→HQ HR>LR, p<.001 

HC→HM LR>HR, p<.001 

HA→HC LR>HR, p<.001 

HM→HC LR>HR, p<.001 

4.2.2. SJF-queue  

The emission probability matrices (table VII) revealed a 

four hidden states model in the SJF-queue under the high 

reliability condition. When compared to the SJF with Open 

conditions, the Queue state had low probability and was 

therefore excluded from the model. However, a Victim state 

was identified as a dominant state in the SJF condition, 

while it had little effect in the Open condition. The results 

revealed that operators were less likely to interact with the 

provided cognitive assistant (i.e., Queue) in the forced-

queue SJF condition.  

Two major patterns were observed in the transition 

probabilities in the SJF-queue condition (Figure 15), 

HM→HA→HC and HM→HV→HA→HC. These patterns 

indicated that operators allocated more attention to 

interacting with the cameras while performing the tasks. For 

TABLE VII. EMISSION PROBABILITIES IN SJF-QUEUE under the High 

Reliability condition  

SJF 

HR 
QUEUE CAMERA MAP MANUAL AUTO VICTIM 

HC 
 

0.79 
 

   

HM  
 

 0.88  
 

HV   0.11   0.87 

HA     0.93 
 

example, an operator may first manually drive the robot to 

(re)gain necessary awareness (HM) and then switch the 

robot back to autonomous mode (HA). From that point, the 

operator used the cameras (HC) to monitor overall statuses, 

including marking the location of victims and solving the 

robot failures. When a victim appeared on a robot camera, 

an operator manually controlled robots (HC→HM) to gain 

the victim’s location in order to increase the accuracy of a 

victim mark (HV). Once a mark had been placed, the robots 

were set to autonomous mode (HA) and the operator 

allocated her attention to the cameras (HC) to again perform 

supervisory control of the robot teams and maintain SA. If 

another victim appeared in a robot’s camera, the above 

procedures were repeated.   

 

 

Figure 15.  Transition probabilities of hidden states in SJF-queue under the 

high reliability condition. 

Identical models were retrieved from the emission 

probabilities matrices in SJF-queue under the low reliability 

condition. Table VIII includes emission distributions among 

the hidden states. As a result, the Map and Queue states 

were of little use and therefore are absent from the model.  

The identical transition patterns were found in the SJF-

queue under the low reliability condition (Figure 16). 

Further analyses (T-test) were conducted to identify the 

differences in emission and transition probabilities in SJF 

conditions with different reliability levels. However, no 

statistical difference was observed. 

 



TABLE VIII. EMISSION PROBABILITIES IN SJF-QUEUE under the Low 

Reliability CONDITION 

SJF 

LR 
QUEUE CAMERA MAP MANUAL AUTO VICTIM 

HM    0.87  
 

HV  0.13 
 

  0.78 

HC 
 

0.86     

HA     0.91 
 

 

Figure 16.  Transition probabilities of hidden states in SJF-queue under the 

low reliability condition. 

5. DISCUSSION 

Using limited cognitive resources effectively is critical in 

human multi-robot interaction, in which operators must 

efficiently allocate their attention to urgent events and 

simultaneously selectively filter out any unnecessary 

information (Kirlik, 1993). Prior studies (Chien et al., 2012b; 

Crandall et al., 2005; Kozima and Yano, 2004; Yan et al., 

2013) suggested that robot self-reflection can enhance the 

performance of human-robot teams, which allows operators 

to focus on important tasks rather than shifting attention to 

interact with robots sequentially in a round-robin fashion. 

This study further examines the effect of unreliable 

automation (high-90% vs. low-50%) in a human multi-robot 

control system along with two types of queuing principles 

(Open vs. SJF) for scheduling the operator’s attention. The 

Open-queue displays the current status for each robot so that 

an operator can choose which robots to assist in a self-paced 

fashion; while the SJF-queue only provides an alarm by 

following the shortest-job-first discipline to direct an 

operator to service the highest priority task. In terms of the 

reliability conditions, under low system reliability, only half 

of the robot failure requests are reported to the cognitive 

queuing aids and the other failures are excluded from the 

queue.  

5.1. System reliability in Queuing Aids  

Although the measures of the total number of detected 

victims favored the high reliability condition, victim missing 

rates were also increased under high reliability level. In 

other words, better performance in victim finding rates was 

found under the low system reliability. The result may be 

caused by an insufficient attention allocation strategy. Under 

the high system reliability, as most of the robots’ failures 

were accurately reported through the queuing aids, the 

operators were capable of maintaining adequate SA in 

robots’ statuses and efficiently allocating attention to fulfill 

robots’ requests. As a result, operators may spend more 

resources on assisting robots’ failures rather than devoting 

sufficient attention to monitoring victim appearances. This 

attentional strategy led to the robots having better chances to 

remain in the autonomous mode (rather than in the failed 

status and waiting for the operator’s assistance) to explore 

the environments and therefore have greater opportunities to 

detect potential victims; however, this attentional approach 

resulted in suboptimal performance in the primary task, 

locating and marking the victim appearances. Our results 

confirmed these assumptions. Participants resolved more 

robot failures and experienced higher victim missing rates in 

the high system reliability; whereas higher victim finding 

rates and fewer robot failures were accomplished under the 

low reliability condition. Since half of the robot failures 

were not detected under the low system reliability, 

participants could focus their attention on detecting the 

potential victims, which resulted in higher response rates for 

victim appearance (i.e., higher victim finding rates).  

In addition, the system’s reliability greatly influenced 

operators’ interactive behaviors with the robots. More 

camera selections were observed under low system 

reliability, indicating that the unreliable system led the 

operators to actively supervise robot statuses and system 

performance through the cameras, rather than passively 

received notifications from the provided cognitive queuing 

assistant. As the operators devoted more attentional 

resources to the cameras, the behavioral changes also 

increased opportunities for them to detect the victims’ 

appearances. The aforementioned results partially confirmed 

our first hypothesis, in which higher reliability levels 

increased the overall number of detected victims and area 

explored but did not necessarily contribute to better victim 

finding rates. 

5.2. Queuing mechanisms 

Significantly higher numbers of total detected victims and 

larger areas explored were found in the Open-queue than 

the SJF-queue condition. Our second hypothesis was based 

on Garey's (1976) findings that suggested the SJF scheme 

can effectively enhance task performance. However, our 

results showed that the SJF-queue scheme failed to 

outperform the Open-queue approach across all the 

experimental setups, which negated our second hypothesis. 

The Open-queue approach presented all robots’ conditions 

and used different colors to indicate robots’ current 

situations. The frequent updates of color cues seemed to 

drastically attract operators’ attention and encouraged them 

to respond robots’ requests in a timely manner. The situation 

was confirmed by the differences in the interactive 

behaviors between queuing aids and robot cameras. As 



shown in Figure 10 and Figure 11, in the SJF-queue 

approach, little attention was devoted to the provided 

cognitive assistant (i.e., queue) and operators tended to 

interact with robots through the cameras, whereas contrary 

results were found in the Open-queue condition (i.e., 

operators relied more on the queuing assistant in the Open-

queue). In the Open-queue condition, operators were not 

required to follow the system recommendation to interact 

with a specified robot request. However, under the self-

paced interactions, operators may devote additional 

resources to sort the high-priority robot requests, which 

reserved little attentional resources for monitoring victims’ 

appearances. Because of the ineffective scheduling strategy 

in the Open-queue condition, showing all robots statuses 

along with failure requests may distract an operator’s 

attention and lead the participant eager to solve the failed 

robots, instead of focusing on the victim detection task.  

5.3. System reliability x Queuing mechanisms 

As the insufficient attentional scheduling strategy was 

observed in the Open-queue scheme, increased system 

reliability led the operators to allocate even more attention 

to responding to the robots’ requests, which led to the poor 

performance in victim finding rates. Therefore, the effects of 

system reliability were not as expected. Since most of the 

robot failures were reported in the Open-queue condition 

under high reliability, the endless robots’ requests largely 

consumed operators’ attentional resources leading to lesser 

attention available for the victim detection tasks. In other 

words, with low system reliability in Open-queue, operators 

had more resources to focus on the primary task. These 

observations were supported as the higher number of failure 

resolved and increased victim missing rates were both under 

the high reliability condition in the Open-queue; however, 

the effects of system reliability were not found in the SJF-

queue. The differences in outcomes of victim 

finding/missing rates and failures resolved remained 

negligible between the reliability levels in the SJF 

conditions, which suggested that the SJF scheme can 

effectively help operators to achieve stable performance in 

the primary as well as secondary tasks regardless of the 

effects of unreliable system aids. Our third hypothesis 

surmised both queuing approaches would achieve better 

outcomes under the high system reliability. However, the 

measures of victim finding/missing rates favored the low 

reliability condition in the Open-queue, and little difference 

was observed between queuing reliability in the SJF-queue 

approach, which denied the third hypothesis. 

Although securing system reliability in the Open-queue 

condition enhanced the performance in the failures resolved 

task, it failed to contribute to a better outcome in the victim 

detection task. The adoption of the Open-queue scheduling 

approach allowed operators to freely choose a robot to serve. 

This is particularly helpful when an operator had difficulties 

in complying with unreliable system aids. As observed in 

the Open-queue, under the low reliability level, increasing 

numbers of robot selections were shifted from the queuing 

aids to robot cameras, which showed that the interactive 

behaviors in the Open-queue approach were adaptable when 

the system aids contributed less assistance.  

5.4. User perception of workload and frustration  

The use of cognitive assistance may decrease operators’ 

perceived workload in the supervisory control process. An 

interesting finding in the workload survey was that both the 

highest and lowest workload scores were reported in the 

high reliability conditions, where the Open-queue had the 

highest workload and the SJF-queue was judged as having 

the lowest. However, participants experienced similar 

workloads between the two queuing methods under low 

system reliability.  

Since the Open-queue approach showed all robots’ 

(normal and abnormal) conditions and continuously reported 

each robot’s status via the color aids, participants might feel 

more distracted by the changes in color cues. This effect 

was exacerbated with the endless updates under the high 

reliability condition, which resulted in a higher level of 

perceived workload. The SJF mechanism prioritized robot 

requests based on the task difficulty and clustered similar 

types of robot failures, which reduced the decision-making 

time and decreased the cognitive cost to switching between 

recovery procedures by sharing the similar cognitive 

strategies among various types of failures. In other words, 

operators may not only take advantage of decreasing the 

cost of regaining SA between robots’ requests, but also 

resolve more failures with no effort (e.g., camera failure), 

leading the differences of perceived workload. 

Additionally, a high frustration was reported in the Open-

queue condition, while the lowest score was reported in the 

SJF-queue method under the high reliability condition. The 

effects may be caused by reasons similar to those seen in the 

workload variances, where endless robot failure requests can 

generate a higher level of frustration. The above results 

partially confirmed the forth hypothesis, in which a lower 

workload and frustration were judged in the SJF-queue than 

the Open-queue conditions; however, this effect was only 

found under the high reliability condition, but it did not exist 

in the low reliability situation.  

5.5. Hidden Markov Model 

This paper applied HMM to examine human supervisory 

control processes in human multi-robot interactions. 

Although a similar four-state HMM structure was observed 

among the experimental conditions, the results reveled that 

HMM-based analysis was able to discover fundamental 

differences between the two experimental queuing 

mechanisms under two levels of system reliability, which 

were difficult to examine through the conventional 

performance analysis. For example, although the results of 

the primary task (victim finding/missing rates) and the 

secondary task (failures resolved) were similar in both the 

Open and SJF schemes, a Queue (HQ) state was observed in 

the Open-queue condition, whereas a Victim (HV) state was 

retrieved in the SJF-queue condition. The variances in 

cognitive states revealed the fundamental differences 

between the two queuing conditions, which suggested that 



HMM could provide deeper analysis and further 

differentiate users’ behavioral patterns as well as cognitive 

intentions.    

The notable differences between the retrieved cognitive 

states (HQ vs. HV) also reflected the transition probabilities 

and resulting patterns. While a Victim state was generated 

by the SJF method, this could be that operators devoted 

more cognitive resources to the victim detection tasks rather 

than accepting the suggestions from the queue. The identical 

HMM structure was therefore found in the SJF-queue 

condition in both high and low reliability levels. That 

suggests that the SJF scheme was more robust regardless of 

the system reliability conditions. In the Open-queue 

condition, the cognitive Queue (HQ) state and transition 

pattern (HQ→HM→HA) revealed that a considerable 

amount of attentional resources was devoted to the subtask 

of monitoring robots’ conditions and assisting robot failure 

requests, which enabled the robots to explore larger areas 

and detect more potential victims, leading better 

performance in the measure of total victims detected and 

area explored in the Open-queue.    

Allowing operators a self-initiated series of events 

increased the complexity of the supervisory control 

processes. As shown in the Open-queue method, most of the 

cognitive states included at least two interactions (except 

HM in high reliability). In addition, different transition 

patterns were identified between the reliability conditions in 

the Open-queue (Figure 13 & 14). The post-hoc 

comparisons (Table VI) further proved the differences, in 

which decreasing reliability led the operators to divert from 

the cognitive queue and allocate more attention to the robots’ 

cameras. As a result, the Queue (HQ) and Camera (HC) 

states were greatly influenced by the reliability conditions, 

in which fewer Queue transitions and more Camera 

transitions were found in the low reliability condition. In 

other words, with the decreased system reliability in the 

Open-queue, more transition patterns were linked to the 

Camera state. For example, in the Open-queue, a new 

transition pattern (HM→HA→HC) was only found under 

low reliability. This pattern was also found in the SJF-queue 

across the system reliability conditions. The transition 

differences revealed operators’ adaptive behaviors while 

interacting with the low reliability aids, and further 

explained the performance variances (e.g., victim 

finding/missing rates and number of failure resolved).  

As the identical HMM model was observed in the SJF 

condition and more complicated HMM structures were 

retrieved in the Open-queue method between the reliability 

levels, the results supported our last hypothesis, in which 

more sophisticated HMM patterns were found in the Open-

queue group. These findings suggested that HMM can 

provide a high-level abstraction of users’ intentions and 

identify the underlying behavioral patterns that are difficult 

to achieve through a conventional analysis. 

6. CONCLUSION 

Human multi-robot interaction is a complex process, in 

which human operators must continuously shift their 

attention between operating robotic agents and monitoring 

the system’s status among various tasks. Prior research 

concludes that human operators often fail to schedule their 

attention to the correct events on time, which leads to 

suboptimal task performance. To optimize attentional 

resources, this study investigated two different scheduling 

approaches under two levels of system reliabilities.  

The results confirmed that human attentional resources 

can be effectively scheduled and directed to emergent events 

rather than normal monitoring. The SJF-queue approach was 

capable of providing a balanced performance in both the 

primary and secondary tasks with a lower level of perceived 

workload, whereas the Open-queue scheme seemed less 

effective in the USAR context. However, it is unrealistic to 

decide which queuing mechanism is superior since different 

contexts require different cognitive assistance. For example, 

while monitoring multiple street-sweeping robots, the SJF-

queue can prioritize and suggest easier tasks (e.g., camera 

sensor failed) for operators; whereas when supervising a team 

of surveillance robots, the Open-queue can be a better 

choice to allow an operator to choose the tasks based on the 

context (e.g., daytime vs. nighttime). The results also 

suggested that simply increasing the system reliability may 

not necessarily contribute to better task performance. Thus, 

examining how human operators deploy their cognitive 

resources between cognitive assistance and task contexts 

will be critical to enhance the overall performance.  

The increased use of human-robot systems raises many 

societal challenges as well as research opportunities. As the 

modern robotic systems not only supplant the inherent task 

risks of human operators’ safety but also optimize the 

benefits of technological capabilities, the rapid growth in 

task complexity requires more flexible system designs to 

enhance competitiveness. However, under the multitasking 

conditions, human operators may have insufficient resources 

to monitor and interact with multi-agent teams 

simultaneously. The developed SJF queuing mechanism can 

efficiently schedule an operator’s limited cognitive 

resources to the needed events in a timely manner. In 

addition, investigating how human operators consume their 

attentional resources in the multitask settings is also critical 

to facilitate the processes of human-machine interaction. As 

the results demonstrated, the HMM analysis enables 

researchers to better understand an operator’s cognitive 

states and intentions as well as to predict potential behaviors 

by elaborating on strategies and biases that may be difficult 

to study through conventional approaches. The user 

interaction measured in the present HMM analysis was 

obtained from the logs of the clicked behaviors in our 

experimental system, with no customization of the context-

specific or system-specific interactive behaviors. Therefore, 

by following the standard process, the behavior 

categorization schemes and the procedures of performing a 

HMM are capable of being generalized to other HRI 

systems. Understanding the interactive process can provide 

researchers with useful suggestions to improve the design of 



cognitive assistance. We expect that the HMM approach 

could benefit researchers in further investigating users’ 

cognitive needs.  

Due to the experimental setup, this study only 

investigated the interaction between a single operator and 

multiple robot teams, in which only one type of the 

predesigned failures was injected to a robot at one time. 

Although the present research has been carefully conducted, 

it might always have some extreme situations in realistic 

that were excluded in this study (e.g., a complete failure of 

multiple sensors). In future works, we hope to examine a 

range of team structures (e.g., multiple operators controlling 

various number of intelligent agents) and system reliability 

(e.g., multiple sensor failures or false alarm prone vs. miss 

prone) combinations to develop a more robust cognitive 

assistant.  

ACKNOWLEDGMENT 

This research was supported in part by the AFOSR 

[FA955008-10356] and the ONR [N0001409-10680]. 

REFERENCES 

Akaike, H., 1974. A new look at the statistical model identification. IEEE 

Trans. Automat. Contr. 19.  

Altmann, E.M., Trafton, J.G., 2007. Timecourse of recovery from task 

interruption: data and a model. Psychon. Bull. Rev. 14, 1079–1084.  

Bainbridget, L., 1983. Ironies of Automation. Automatica 19, 775–779. 

Baum, L.E., Petrie, T., Soules, G., Weiss, N., Baum, B.Y.L.E., Petrie, 

T.E.D., 2011. A Maximization Technique Occurring in the 

Statistical Analysis of Probabilistic Functions of Markov Chains. 

Statistics (Ber). 41, 164–171. 

Boussemart, Y., Cummings, M., 2008. Behavioral recognition and 

prediction of an operator supervising multiple heterogeneous 

unmanned vehicles. Humans Oper. unmanned. 

Carlson, J., Murphy, R.R., Nelson, A., 2004. Follow-up analysis of mobile 

robot failures, in: IEEE International Conference on Robotics and 

Automation 2004 Proceedings ICRA 04 2004. Ieee, pp. 4987–4994. 

Carpin, S., Lewis, M., Wang, J., Balakirsky, S., Scrapper, C., 2007. 

Bridging the gap between simulation and reality in urban search and 

rescue. Rob. 2006 Robot Soccer World Cup X, Lecture Notes in 

Computer Science 4434, 1–12.  

Chappelle, W., McDonald, K., McMillan, K., 2011. Important and Critical 

Psychological Attributes of USAF MQ-1 Predator and MQ-9 

Reaper Pilots According to Subject Matter Experts. Sch. Aerosp. 

Med. wright Patterson AFB OH Aerosp. Med. Dept/aerosp. Med. 

Consult. div. 

Chen, J., 2009. Concurrent performance of military tasks and robotics tasks: 

Effects of automation unreliability and individual differences. Proc. 

4th ACM/IEEE Int. HRI 181–188. 

Chen, J.Y.C., Barnes, M.J., 2014. Human–Agent Teaming for Multirobot 

Control: A Review of Human Factors Issues. IEEE Trans. Human-

Machine Syst. 44, 13–29.  

Chen, J.Y.C., Barnes, M.J., Harper-Sciarini, M., 2010. Supervisory control 

of multiple robots: Human-performance issues and user-interface 

design. Syst. Man, Cybern. Part C Appl. Rev. IEEE Trans. 41, 1–20. 

Chen, J.Y.C., Barnes, M.J., Kenny, C., 2011. Effects of Unreliable 

Automation and Individual Differences on Supervisory Control of 

Multiple Ground Robots, in: Human Robot Interaction (HRI). ACM, 

pp. 371–378. 

Chen, J.Y.C., Terrence, P.I., 2009. Effects of imperfect automation and 

individual differences on concurrent performance of military and 

robotics tasks in a simulated multitasking environment. Ergonomics 

52, 907–920.  

Chien, S.Y., Lewis, M., Sycara, K., Liu, J.-S., Kumru, A., 2016. Influence 

of Cultural Factors in Dynamic Trust in Automation, in: 2016 IEEE 

International Conference on Systems, Man, and Cybernetics (SMC). 

IEEE SMC. 

Chien, S.Y., Mehrotra, S., Brooks, N., Lewis, M., Sycara, K., 2012a. 

Scheduling Operator Attention for Multi-Robot Control, in: 

IEEE/RSJ International Conference on Intelligent Robots and 

Systems. 

Chien, S.Y., Mehrotra, S., Lewis, M., Brooks, N., Sycara, K., 2012b. 

Scheduling Operator Attention for Multi-Robot Control. IEEE/RSJ 

Int. Conf. Intell. Robot. Syst. (IROS 2012). 

Chien, S.Y., Mehrotra, S., Lewis, M., Sycara, K., 2013. Imperfect 

Automation in Scheduling Operator Attention on Control of Multi-

Robots, in: Proceedings of the Human Factors and Ergonomics 

Society Annual Meeting. 

Chien, S.Y., Mehrotra, S., Lewis, M., Sycara, K., 2012c. Effects of 

Unreliable Automation in Scheduling Operator Attention for Multi-

Robot Control. IEEE Int. Conf. Syst. Man, Cybern. (IEEE SMC 

2012). 

Chien, S.Y., Wang, H., Lewis, M., 2010. Human vs. algorithmic path 

planning for search and rescue by robot teams. Hum. Factors Ergon. 

Chien, S.Y., Wang, H., Lewis, M., Mehrotra, S., Sycara, K., 2011. Effects 

of Alarms on Control of Robot Teams, in: Proceedings of the 

Human Factors and Ergonomics Society Annual Meeting. SAGE 

Publications, pp. 434–438. 

Crandall, J., Cummings, M., 2007. Developing performance metrics for the 

supervisory control of multiple robots. Proceeding ACMIEEE Int. 

Conf. Humanrobot Interact. HRI 07 33.  

Crandall, J., Cummings, M., Penna, M.Della, Jong, P.M.A.De, 2011. 

Computing the Effects of Operator Attention Allocation in Human 

Control of Multiple Robots. IEEE Trans. Syst. Man Cybern. Part A 

Syst. Humans 41, 385–397. 

Crandall, J., Goodrich, M., Olsen, D.R., Nielsen, C.W., 2005. Validating 

Human–Robot Interaction Schemes in Multitasking Environments. 

IEEE Trans. Syst. Man Cybern. Part A Syst. Humans 35, 438–449.  

Cummings, M., Brzezinski, A., Lee, J.D., 2007. The impact of intelligent 

aiding for multiple unmanned aerial vehicle schedule management. 

IEEE Intell. Syst. Spec. Issue Interact. with Auton. 22, 52–59. 

Cummings, M.L., How, J.P., Whitten, A., Toupet, O., 2012. The impact of 

human-automation collaboration in decentralized multiple 

unmanned vehicle control. Proc. IEEE 100, 660–671.  

Cummings, M.L., Mitchell, P.J., 2008. Predicting Controller Capacity in 

Supervisory Control of Multiple UAVs. IEEE Trans. Syst. Man, 

Cybern. - Part A Syst. Humans 38, 451–460.  

Donmez, B., Cummings, M.L., Graham, H.D., 2009. Auditory decision 

aiding in supervisory control of multiple unmanned aerial vehicles. 

Hum. Factors 51, 718–729.  

Donmez, B., Nehme, C., Cummings, M.L., 2010. Modeling workload 

impact in multiple unmanned vehicle supervisory control. IEEE 

Trans. Syst. Man, Cybern. Part ASystems Humans 40, 1180–1190.  

Endsley, M.R., Kaber, D.B., 1999. Level of automation effects on 

performance, situation awareness and workload in a dynamic 

control task. Ergonomics 42, 462–492. 

Eriksen, C.W., Yenh, Y.Y., 1985. Allocation of attention in the visual field. 

J. Exp. Psychol. Hum. Percept. Perform. 11, 583–597. 

Garey, M.R., Johnson, D.S., Sethi, R., 1976. The Complexity of Flowshop 

and Jobshop Scheduling. Math. Oper. Res. 1, 117–129.  

Goodrich, M.A., Quigley, M., Cosenzo, K., 2005. Task switching and 

multi-robot teams. MultiRobot Syst. From Swarms to Intell. Autom. 

III, 185–195. 

Hart, S.G., Staveland, L.E., 1988. Development of NASA-TLX (Task Load 

Index): Results of empirical and theoretical research, in: Hancock, 

P.A., Meshkati, N. (Eds.), Human Mental Workload. North-Holland, 

pp. 139–183.  

Hayashi, M., Beutter, B., McCann, R.S., 2005. Hidden Markov model 

analysis for space shuttle crewmembers’ scanning behavior. 2005 

IEEE Int. Conf. Syst. Man Cybern. 2, 1615–1622.  

Imbert, J.-P., Hodgetts, H.M., Parise, R., Vachon, F., Dehais, F., Tremblay, 

S., 2014. Attentional costs and failures in air traffic control 

notifications. Ergonomics 57, 1817–1832.  

Kiesel, A., Steinhauser, M., Wendt, M., Falkenstein, M., Jost, K., Philipp, 

A.M., Koch, I., 2010. Control and interference in task switching--a 

review. Psychol. Bull. 136, 849–874.  

Kirlik, A., 1993. Modeling strategic behavior in human-automation 



interaction: why an “aid” can (and should) go unused. Hum. Factors 

35, 221–242. 

Koch, I., Gade, M., Schuch, S., Philipp, A.M., 2010. The role of inhibition 

in task switching: a review. Psychon. Bull. Rev. 17, 1–14.  

Koch, I., Prinz, W., Allport, A., 2005. Involuntary retrieval in alphabet-

arithmetic tasks: Task-mixing and task-switching costs. Psychol. 

Res. 69, 252–261.  

Kozima, H., Yano, H., 2004. A robot that learns to communicate with 

human caregivers. Proc. 1st Int. Work. Epigenetic Robot. Model. 

Cogn. Dev. Robot. Syst. 47–52. 

Lee, J.D., Hoffman, J.D., Hayes, E., 2004. Collision Warning Design to 

Mitigate Driver Distraction. Chi 6, 65–72.  

Lewis, M., 2013. Human Interaction With Multiple Remote Robots. Rev. 

Hum. Factors Ergon. 9, 131–174.  

Lewis, M., Wang, H., Chien, S.Y., Velagapudi, P., Scerri, P., Sycara, K., 

2010. Choosing autonomy modes for multirobot search. Hum. 

Factors 52, 225–233.  

Lewis, M., Wang, J., Hughes, S., 2007. USARSim: Simulation for the 

Study of Human-Robot Interaction. J. Cogn. Eng. Decis. Mak. 1, 

98–120.  

Mcquarrie, A.T.C.-L., 1998. Regression and Time Series Model Selection. 

455. 

Mekdeci, B., Cummings, M.L., 2009. Modeling multiple human operators 

in the supervisory control of heterogeneous unmanned vehicles. 

Proc. 9th Work. Perform. Metrics Intell. Syst. 1–8.  

Mercado, J.E., Rupp, M. a., Chen, J.Y.C., Barnes, M.J., Barber, D., Procci, 

K., 2016. Intelligent Agent Transparency in Human-Agent Teaming 

for Multi-UxV Management. Hum. Factors J. Hum. Factors Ergon. 

Soc.  

Miller, C.A., Parasuraman, R., 2007. Designing for Flexible Interaction 

between Humans and Automation: Delegation Interfaces for 

Supervisory Control. Hum. Factors 49, 57–75.  

Nagavalli, S., Chien, S.Y., Lewis, M., Chakraborty, N., Sycara, K., 2015. 

Bounds of Neglect Benevolence in Input Timing for Human 

Interaction with Robotic Swarms. Proc. Tenth Annu. ACM/IEEE 

Int. Conf. Human-Robot Interact. 197–204.  

Olsen, D.R., Wood, S.B., 2004. Fan-out: measuring human control of 

multiple robots, in: CHI 04 SIGCHI Conference on Human Factors 

in Computing Systems. ACM, pp. 231–238. 

Prewett, M.S., Johnson, R.C., Saboe, K.N., Elliott, L.R., Coovert, M.D., 

2010. Managing workload in human-robot interaction: A review of 

empirical studies. Comput. Human Behav. 26, 840–856.  

Ratwani, R.M., Andrews, A.E., McCurry, M., Trafton, J.G., Peterson, M.S., 

2007. Using peripheral processing and spatial memory to facilitate 

task resumption, in: Proceedings of the Human Factors and 

Ergonomics Society Annual Meeting. SAGE Publications, pp. 244–

248. 

Scerri, P., Ma, Z., Chien, S.Y., Wang, H., Lee, P.J., Lewis, M., Sycara, K., 

2011. An initial evaluation of approaches to building entry for large 

robot teams. J. Intell. Robot. Syst. Theory Appl. 64, 145–159.  

Scheutz, M., Kramer, J., 2007. Reflection and Reasoning Mechanisms for 

Failure Detection and Recovery in a Distributed Robotic 

Architecture for Complex Robots. Components 3699–3704.  

Sheridan, T., 1993. Space teleoperation through time delay: review and 

prognosis. IEEE Trans. Robot. Autom. 9, 592–606.  

Sheridan, T.B., Tulga, M.K., 1978. A Model for Dynamic Allocation of 

Human Attention Among Multiple Tasks, in: 14th Ann. Conf. on 

Manual Control. p. 569–592 (SEE N79–15588 06–54). 

Sheridan, T.B., Verpank, W.L., 1978. Human and computer control of 

undersea teleoperators, Distribution. 

Steinhauser, M., Hübner, R., 2008. How task errors affect subsequent 

behavior: evidence from distributional analyses of task-switching 

effects. Mem. Cognit. 36, 979–990.  

Verma, A., Rai, R., 2013. Modeling multi operator-multi-uav (MOMU) 

operator attention allocation problem, in: ASME International 

Mechanical Engineering Congress and Exposition, Proceedings 

(IMECE). ASME, p. V001T01A007.  

Visser, E.De, Parasuraman, R., 2011. Adaptive Aiding of Human-Robot 

Teaming : Effects of Imperfect Automation on Performance , Trust , 

and Workload. Hum. Factors 5, 209–231.  

Wang, H., Kolling, A., Brooks, N., Owens, S., Abedin, S., Scerri, P., Lee, 

P., Chien, S.Y., Lewis, M., Sycara, K., 2011. Scalable target 

detection for large robot teams, in: Proceedings of the 6th 

International Conference on Human-Robot Interaction. ACM, pp. 

363–370. 

Wickens, C.D., Hollands, J.G., 1999. Engineering Psychology and Human 

Performance, Engineering psychology and human performance. 

Prentice Hall.  

Xie, I., Joo, S., 2010. Transitions in search tactics during the Web-based 

search process. J. Am. Soc. Inf. Sci. Technol. 61, 2188–2205.  

Yan, Z., Jouandeau, N., Cherif, A.A., 2013. A survey and analysis of multi-

robot coordination. Int. J. Adv. Robot. Syst. 10.  

Yue, Z., Han, S., He, D., 2014. Modeling search processes using hidden 

states in collaborative exploratory web search. Proc. 17th ACM 

Conf. Comput. Support. Coop. Work Soc. Comput. - CSCW ’14 

820–830. 

 


