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Attention and Anticipation in Fast Visual-Inertial Navigation

Luca Carlone and Sertac Karaman

Abstract—We study a Visual-Inertial Navigation (VIN) problem
in which a robot needs to estimate its state using an on-board
camera and an inertial sensor, without any prior knowledge of
the external environment. We consider the case in which the robot
can allocate limited resources to VIN, due to tight computational
constraints. Therefore, we answer the following question: under
limited resources, what are the most relevant visual cues to
maximize the performance of visual-inertial navigation? Our
approach has four key ingredients. First, it is task-driven, in
that the selection of the visual cues is guided by a metric
quantifying the VIN performance. Second, it exploits the notion
of anticipation, since it uses a simplified model for forward-
simulation of robot dynamics, predicting the utility of a set of
visual cues over a future time horizon. Third, it is efficient and
easy to implement, since it leads to a greedy algorithm for the
selection of the most relevant visual cues. Fourth, it provides
formal performance guarantees: we leverage submodularity to
prove that the greedy selection cannot be far from the optimal
(combinatorial) selection. Simulations and real experiments on
agile drones show that our approach ensures state-of-the-art VIN
performance while maintaining a lean processing time. In the easy
scenarios, our approach outperforms appearance-based feature
selection in terms of localization errors. In the most challenging
scenarios, it enables accurate visual-inertial navigation while
appearance-based feature selection fails to track robot’s motion
during aggressive maneuvers.
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Please cite the conference version as: L. Carlone and S. Karaman, “Attention and anticipation in fast visual-inertial navigation”

IEEE Intl. Conf. on Robotics and Automation (ICRA), pp. 3886-3893, 2017.

SUPPLEMENTARY MATERIAL

• Video: https://www.youtube.com/watch?v=uMLXNRiVuyU

I. INTRODUCTION

The human brain can extract conceptual information from

an image in a time lapse as short as 13 ms [1]. One has

proof of the human’s capability to seamlessly process large

amount of sensory data in everyday tasks, including driving

a car on a highway, or walking on a crowded street. In the

cognitive science literature, there is agreement on the fact

that efficiency in processing the large amount of data we

are confronted with is due to our ability to prioritize some

aspects of the visual scene, while ignoring others [2]. One

can imagine that sensory inputs compete to have access to the

limited computational resources of our brain. These resource

constraints are dictated by the fixed amount of energy available

to the brain as well as time constraints imposed by time-critical

tasks. Visual attention is the cognitive process that allows

humans to parse a large amount of visual data by selecting

relevant information and filtering out irrelevant stimuli, so to

maximize performance1 under limited resources.

L. Carlone and S. Karaman are with the Laboratory for Information &
Decision Systems (LIDS), Massachusetts Institute of Technology, Cambridge,
MA, USA, {lcarlone,sertac}@mit.edu

1This definition oversimplifies the attention mechanisms in humans. While
the role of attention is to optimally allocate resources to maximize perfor-
mance, it is known that some involuntary attention mechanisms can actually
hinder the correct execution of a task [2].

Robots vs. humans. The astonishing progress in robotics and

computer vision over the last three decades might induce us

to ask: how far is robot perception from human performance?

Let us approach this question by looking at the state of the art

in visual processing for different tasks. Without any claim to

be exhaustive, we consider few representative papers (sampled

over the last 3 years) and we only look at timing performance.

A state-of-the-art approach for object detection [3] detects

objects in a scene in 22ms on a Titan X GPU. A high-

performance approach for stereo reconstruction [4] builds a

triangular mesh of a 3D scene in 10-100ms on a single CPU (at

resolution 800 × 600). A state-of-the-art vision-based SLAM

approach [5] requires around 400ms for local mapping and

motion tracking and more than 1s for global map refinement

(CPU, multiple cores). The reader may notice that for each

task, in isolation, modern algorithms require more time than

what a human needs to parse an entire scene. Arguably, while

a merit of the robotics and computer vision communities has

been to push performance in each task, we are quite far

from a computational model in which all these tasks (pose

estimation, geometry reconstruction, scene understanding) are

concurrently executed in the blink of an eye.

Efficiency via general-purpose computing. One might argue

that catching up with human efficiency is only a matter of time:

according to Moore’s law, the available computational power

grows at exponential rate, hence we only need to wait for more

powerful computers. An analogous argument would suggest

that using GPU rather than CPU would boost performance

in some of the tasks mentioned above. By comparison with

human performance, we realize that this argument is not com-

pletely accurate. While it is true that we can keep increasing

the computational resources to meet given time constraints

(i.e., enable faster processing of sensory data), the increase in

computation implies an increase in energy consumption; for

instance, a Titan X GPU has a nominal power consumption of

250W [6] while a Core i7 CPU has a power consumption

as low as 11W [7]. On the other hand, human processing

constantly deals with limited time and energy constraints,

and is parsimonious in allocating only the resources that are

necessary to accomplish its goals.

Efficiency via specialized computing. Another potential al-

ternative to enable high-rate low-power perception and bridge

the gap between human and robot perception is to design

specialized hardware for machine perception. As extensively

discussed in our previous work [8], algorithms and hardware

co-design allows minimizing resource utilization by exploiting

a tight-integration of algorithms and specialized hardware, and

leveraging opportunities (e.g., pipelining, low-cost arithmetic)

provided by ASICs (Application-Specific Integrated Circuits)

and FPGAs (Field-Programmable Gate Arrays). While we
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have shown that using specialized hardware for VIN leads

to a reduction of the power consumption of 1-2 orders of

magnitude (with comparable performance), three main obser-

vations motivate the present work. First, the development of

specialized hardware for perception is an expensive and time-

consuming process and the resulting hardware is difficult to

upgrade. Second, rather than designing optimized hardware

that can meet given performance requirements, it may be

desirable to develop a framework that can systematically trade-

off performance for computation, hence more flexibly ad-

justing to the available, possibly time-varying, computational

resources and performance requirements. Third, extensive bi-

ological evidence suggests that efficient perception requires

both specialized circuitry (e.g., visual perception in humans is

carried out by highly specialized areas of the brain [9]) and a

mechanism to prioritize stimuli (i.e., visual attention [2]).

Contribution. In this paper, we investigate how to speed-

up computation (or, equivalently, reduce the computational

effort) in visual navigation by prioritizing sensor data in a

task-dependent fashion. In particular, we focus on a motion

estimation task, Visual-Inertial Navigation (VIN), and con-

sider the case in which, due to constraints on the on-board

computation, a robot can only use a small number of visual

features in the environment to support motion estimation. We

then design a visual attention mechanism that selects a suitable

set of visual features to maximize localization accuracy; our

general framework is presented in Section III.

Our approach is task-driven: we consider a motion estima-

tion task (VIN), and our approach selects features that max-

imize a task-dependent performance metric, that we present

in Section III-A. Contrarily to the literature on visual feature

selection, we believe that the utility of a feature is not an

intrinsic property of the feature itself (e.g., appearance), but it

rather stems from the intertwining of the environment and the

observer state. Our approach seamlessly captures both visual

saliency and the task-dependent utility of a set of features.

Our attention mechanism is predictive in nature: when

deciding which feature is more useful, our approach performs

fast forward-simulations of the state of the robot leading to

a feature selection that is aware of the dynamics and the

“intentions” of the robot. The forward simulation is based on

a simplified model which we present in Section III-B.

Since the optimal allocation of the resources is a hard

combinatorial problem, in Section IV we present a greedy

algorithm for attention allocation. In the same section, we

leverage recent results on submodularity to provide formal

performance guarantees for the greedy algorithm. Section IV

also reviews related techniques based on convex relaxations.

Section V provides an experimental evaluation of the pro-

posed approach. The results confirm that our approach

can boost performance in standard VIN pipelines and en-

ables accurate navigation under agile motions and strict re-

source constraints. The proposed approach largely outperforms

appearance-based feature selection methods, and drastically

reduces the computational time required by the VIN back-end.

This paper extends the preliminary results presented in [10].

In particular, the discussion on convex relaxations for features

selection (Section IV-A and Section IV-B), the performance

guarantees of Proposition 12, the simulation results of Sec-

tion V-A, and the experimental evaluation on the 11 EuRoC

datasets [11] are novel and have not been previously published.

II. RELATED WORK

This work intersects several lines of research across fields.

Attention and Saliency in Neuroscience and Psychology.

Attention is a central topic in human and animal vision

research with more than 2500 papers published since the

1980s [2]. While a complete coverage is outside the scope of

this work, we review few basic concepts, using the surveys of

Carrasco [2], Borji and Itti [12], Scholl [13], and the work of

Caduff and Timpf [14] as main references. Scholl [13] defines

attention as the discrimination of sensory stimuli, and the allo-

cation of limited resources to competing attentional demands.

Carrasco [2] identifies three types of attention: spatial, feature-

based, and object-based. Spatial attention prioritizes different

locations of the scene by moving the eyes towards a specific

location (overt attention) or by focusing on relevant locations

within the field of view (covert attention). Feature-based atten-

tion prioritizes the detection of a specific feature (color, motion

direction, orientation) independently on its location. Object-

based attention prioritizes specific objects. In this work, we are

mainly interested in covert spatial attention: which locations

in the field of view are the most informative for navigation?

Covert attention in humans is a combination of voluntary and

involuntary mechanisms that guide the processing of visual

stimuli at given locations in the scene [2]. Empirical evidence

shows that attention is task-dependent in both primates and

humans [14], [15]. Borji and Itti [12] explicitly capture this

aspect by distinguishing bottom-up and top-down attention

models; in the former the attention is captured by visual cues

(stimulus-driven), while in the latter the attention is guided

by the goal of the observer. Caduff and Timpf [14] study

landmark saliency in human navigation and conclude that

saliency stems from the intertwining of intrinsic property of a

landmark (e.g., appearance) and the state of the observer (e.g.,

prior knowledge, observation pose). Another important aspect,

that traces back to the guided search theory of Wolfe [16] and

Spekreijse [17], is the distinction between pre-attentive and

attentive visual processes. Pre-attentive processes handle all

incoming sensory data in parallel; then, attentive processes

only work on a filtered-out-version of the data, which the

brain deems more relevant. General computational models for

attention are reviewed in [12], including Bayesian models,

graph-theoretic, and information-theoretic formulations.

Feature Selection in Robotics and Computer Vision. The

idea of enhancing performance in visual SLAM and visual

odometry via active feature selection is not novel. Sim and

Dudek [18] and Peretroukhin et al. [19] use training data

to learn a model of the quality of the visual features. Each

feature is mapped from a hand-crafted predictor space to a

scalar weight that quantifies its usefulness for pose estimation;

in [19] the weights are then used to rescale the measurement

covariance of each observation. Ouerhani et al. [20] construct

a topological map using attentional landmarks. Newman and



Ho [21] consider a robot equipped with camera and laser range

finder and perform feature selection using an appearance-

based notion of visual saliency. Sala et al. [22] use a co-

visibility criterion to select good landmarks that are visible

from multiple viewpoints. Siagian and Itti [23] investigate a

bio-inspired attention model within Monte Carlo localization.

Frintrop and Jensfelt [24] use an attention framework for

landmark selection and active gaze control; feature selection

is based on the VOCUS model [24], which includes a bottom-

up attentional system (which computes saliency from the

feature appearance), and can incorporate a top-down mecha-

nism (which considers task performance). Active gaze control,

instead, is obtained as the combination of three behaviors:

landmark redetection, landmark tracking, and exploration of

new areas. Hochdorfer and Schlegel [25] propose a landmark

rating and selection mechanism based on area coverage to

enable life-long mapping. Strasdat et al. [26] propose a re-

inforcement learning approach for landmark selection. Chli

and Davison [27] and Handa et al. [28] use available priors

to inform feature matching, hence reducing the computational

cost. Jang et al. [29] propose an approach for landmark classi-

fication to improve accuracy in visual odometry; each feature

class is used separately to estimate rotational and translational

components of the ego-motion. Shi et al. [30] propose a feature

selection technique to improve robustness of data association

in SLAM. The notion of visual attention and saliency has

been also investigated in the context of scene understanding.

For instance, Oliva and Torralba [31] propose the notion of

Space Envelop to obtain a coarse description of a scene which

abstracts away unnecessary details, while Torralba et al. [32]

propose an attention mechanism for natural search tasks, which

combines bottom-up saliency and top-down aspects to identify

the image region that is likely to attract the attention of human

observer searching for a given object. Very recent work in

computer vision use attention to reduce the computational

burden in neural networks. Mnih et al. [33] reduce the

processing of object detection and tracking with a recurrent

neural network by introducing the notion of glimpse, which

provides higher resolution in areas of interest within the image.

Xu et al. [34] use visual attention to improve image content

description. Cvišić and Petrović [35] speed up computation in

stereo odometry by feature selection; the selection procedure

is based on bucketing (which uniformly distributes the features

across the image), and appearance-based ranking.

Our approach is loosely related to techniques for graph

sparsification in which features are pruned a-posteriori from

the SLAM factor graph to reduce computation; we refer the

reader to the survey [36] for a review of these techniques.

The contributions that are most relevant to our proposal are

the one of Davison [37], Lerner et al. [38], Mu et al. [39],

Wu et al. [40], and Zhang and Vela [41]. The pioneering

work of Davison [37] is one of the first papers to use in-

formation theoretic constructs to reason about visual features,

and shares many of the motivations discussed in the present

paper. Contrarily to the present paper, Davison [37] considers

a model-based tracking problem in which the state of a

moving camera has to be estimated from observations of

known features. In hindsight, we also provide a theoretical

justification for the use of a greedy algorithm (similar to the

one used in [37]) which we prove able to compute near-optimal

solutions. Lerner et al. [38] study landmark selection in a

localization problem with known landmarks; the robot has

to choose a subset of landmarks to observe so to minimize

the localization uncertainty. The optimal subset selection is

formulated as a mixed-integer program and relaxed to an

SDP. While the problem we solve in this paper is different

(visual inertial odometry vs. localization with known map),

an interesting aspect of [38] is the use of a requirement

matrix that weights the state covariance and encodes task-

dependent uncertainty constraints. Mu et al. [39] propose a

two-stage approach to select a subset of landmarks to minimize

the probability of collision and a subset of measurements to

accurately localize those landmarks. Our approach shares the

philosophy of task-driven measurement selection, but has three

key differences. First, we use a simplified linear model for

forward dynamics simulation: this is in the spirit of RANSAC,

in that a simplified algebraic model is used to quickly filter out

less relevant data. Second, we consider different performance

metrics, going beyond the determinant criterion used in [39]

and related work on graph sparsification. Third, we perform

feature selection in a single stage and leverage submodularity

to provide formal performance guarantees. Wu et al. [40]

consider a multi camera system and split the feature selection

process into a cascade of two resource-allocation problems:

(i) how to allocate resources among the cameras, and (ii) how

to select features in each camera, according to the allocated

resources. The former problem is solved by taking simplifying

assumptions on the distribution of the features, the latter is

based on the heuristic feature selection scheme of [42]. Our

paper attempts to formalize feature selection by leveraging

the notion of submodularity. Zhang and Vela [41] perform

feature selection using an observability score and provide sub-

optimality guarantees using submodularity. Our proposal is

similar in spirit to [41] with few important differences. First,

our approach is based on anticipation: the feature selector

is aware of the intention (future motion) of the robot and

selects the features accordingly. Second, we operate in a

fixed-lag smoothing setup and investigate other performance

metrics. Third, from the theoretical standpoint, we provide

multiplicative suboptimality bounds and we prove conditions

under which those bounds are non-vanishing.

Sensor Scheduling and Submodularity. Feature selection

is deeply related to the problem of sensor scheduling in control

theory. The most common setup for sensor scheduling is the

case in which N sensors monitor a phenomenon of interest

and one has to choose κ out of the N available sensors

to maximize some information-collection metric; this setup

is also known as sensor selection or sensor placement. The

literature on sensor selection includes approaches based on

convex relaxation [43], Bayesian optimal design [44], and

submodular optimization [45]. The problem is shown to be

NP-hard in [46]. Shamaiah et al. [47] leverage submodularity



and provide performance guarantees when optimizing the log-

determinant of the estimation error covariance. A setup which

is closer to the one in this paper is the case in which the sensed

phenomenon is dynamic; in such case the sensor scheduling

can be formulated in terms of the optimal selection of κ
out of N possible measurements to be used in the update

phase of a Kalman filter (KF). Vitus et al. [48] use a tree-

search approach for sensor scheduling. Zhang et al. [49] proves

that sensor scheduling within Kalman filtering is NP-hard and

shows that the trace of the steady state prior and posterior KF

covariances are not submodular, despite the fact that greedy

algorithms are observed to work well in practice. Jawaid and

Smith [50] provide counterexamples showing that in general

the maximum eigenvalue and the trace of the covariance are

not submodular. Tzoumas et al. [51] generalize the derivation

of [50] to prove submodularity of the logdet over a fixed time

horizon, under certain assumptions on the observation matrix.

Summers et al. [52] show that several metrics based on the

controllability and observability Gramians are submodular.

Visual-Inertial Navigation. As the combined use of the

visual and vestibular system is key to human navigation, recent

advances in visual-inertial navigation on mobile robots are

enabling unprecedented performance in pose estimation in

GPS-denied environments using commodity hardware. The lit-

erature on visual-inertial navigation is vast, with many contri-

butions proposed over the last two years, including approaches

based on filtering [53], [42], [54], [55], [56], [57], fixed-lag

smoothing [58], [59], [60], [61], and full smoothing [62], [63],

[64], [65], [66], [67], [68]. We refer the reader to [68] for a

comprehensive review.

Notation. We use lowercase and uppercase bold letters to

denote vectors (e.g. v) and matrices (e.g. M ), respectively.

Sets are denoted by sans script fonts (e.g. A). Non-bold face

letters are used for scalars and indices (e.g. j) and function

names (e.g. f(·)). The symbol |A| denotes the cardinality of

A. The identity matrix of size n is denoted with In. An m×n
zero matrix is denoted by 0m×n. M � 0 indicates that the

matrix M is positive semidefinite. The symbol ‖·‖ denotes the

Euclidean norm for vectors and the spectral norm for matrices.

III. ATTENTION IN VISUAL-INERTIAL NAVIGATION

We design an attention mechanism that selects κ relevant

visual features (e.g., Harris corners) from the current frame in

order to maximize the performance of visual-inertial motion

estimation. The κ features have to be selected out of N
available features present in the camera image; the approach

can deal with both monocular and stereo cameras (a stereo

camera is treated as a rigid pair of monocular cameras).

We call F the set of all available features (with |F|= N ). If

we denote with f(·) our task-dependent performance metric

(we formalize a suitable metric for VIN in Section III-A), we

can state our feature selection problem as follows:

max
S⊂F

f(S) subject to |S|≤ κ (1)

The problem looks for a subset of features S, containing no

more than κ features, which optimizes the task performance

f(·). This is a standard feature selection problem and has been

used across multiple fields, including machine learning [69],

robotics [39], and sensor networks [43]. Problem (1) is NP-

hard [46] in general. In the rest of this paper we are interested

in designing a suitable performance metric f(S) for our VIN

task, and provide fast approximation algorithms to solve (1).

We would like to design a performance metric f(·) that

captures task-dependent requirements: in our case the metric

has to quantify the uncertainty in the VIN motion estimation.

Moreover, the metric should capture aspects already deemed

relevant in related work. First, the metric has to reward

the selection of the most distinctive features (in terms of

appearance) since these are more likely to be re-observed

in consecutive frames. Second, the metric has to reward

features that remain within the field of view for a longer time.

Therefore, anticipation is a key aspect: the metric has to be

aware that under certain motion some of the features are more

likely to remain in the field of view of the camera. Third,

the metric has to reward features that are more informative to

reduce uncertainty. In the following section we propose two

performance metrics that seamlessly capture all these aspects.

A. Task-dependent Performance Metrics for VIN

Here we propose two metrics that quantify the accumulation

of estimation errors over the horizon H , under the selection

of a set of visual features S. Assume that k is the time

instant at which the features need to be selected. Let us

call x̂k the (to-be-computed) state estimate of the robot at

time k: we will be more precise about the variables included

in x̂k in Section III-B1; for now the reader can think that

x̂k contains the estimate for the pose and velocity of the

robot at time k, as well as the IMU biases. We denote with

x̂k:k+H
.
= [x̂k x̂k+1 . . . x̂k+H ] the future state estimates

within the horizon H . Moreover, we call Pk:k+H the covari-

ance matrix of our estimate x̂k:k+H , and Ωk:k+H
.
= P−1

k:k+H

the corresponding information matrix. Two natural metrics to

capture the accuracy of x̂k:k+H are described in the following.

Worst-case Estimation Error. The worst-case error vari-

ance is quantified by the largest eigenvalue λmax(Pk:k+H)
of the covariance matrix Pk:k+H , see e.g., [43]. Call-

ing λmin(Ωk:k+H) the smallest eigenvalue of the infor-

mation matrix Ωk:k+H , if follows that λmax(Pk:k+H) =
1/λmin(Ωk:k+H), hence minimizing the worst-case error is the

same as maximizing λmin(Ωk:k+H). Note that the information

matrix Ωk:k+H is function of the selected set of measurements

S, hence we write λmin(Ωk:k+H(S)).
Therefore our first metric (to be maximized) is:

fλ(S) = λmin(Ωk:k+H(S)) = λmin

(

Ω̄k:k+H +
∑

l∈S

∆l

)

(2)

where on the right-hand-side, we exploited the additive struc-

ture of the information matrix, where Ω̄k:k+H is the infor-

mation matrix of the estimate when no features are selected

(intuitively, this is the inverse of the covariance resulting from

the IMU integration), while ∆l is the information matrix



associated with the selection of the l-th feature. We will give

an explicit expression to Ω̄k:k+H and ∆l in Section III-B.

Volume and Mean Radius of the Confidence Ellipsoid.

The ε-confidence ellipsoid is the ellipsoid that contains the

estimation error with probability ε. Both the volume and the

mean radius of the ε-confidence ellipsoid are proportional to

the determinant of the covariance matrix. In particular, the

volume V and the mean radius R̄ of an n-dimensional ellipsoid

associated with the covariance Pk:k+H can be written as [43]:

V =
(απ)n/2

Γ(n2 + 1)
det(P

1
2

k:k+H) , R̄ =
√
α det(Pk:k+H)

1
2n (3)

where α is the quantile of the χ2 distribution with n degrees

of freedom and upper tail probability of ε, Γ(·) is the Gamma

function, and det(·) is the determinant of a square matrix.

From (3) we note that to minimize the volume and the

mean radius of the confidence ellipsoid we can equivalently

minimize the determinant of the covariance. Moreover, since

log det(Pk:k+H) = log det(Ω−1
k:k+H) = − log det(Ωk:k+H)

then minimizing the size of the confidence ellipsoid is the

same as maximizing the log-determinant of the information

matrix, leading to our second performance metric:

fdet(S) = log det(Ωk:k+H(S)) = log det

(

Ω̄k:k+H +
∑

l∈S

∆l

)

(4)

where we again noted that the information matrix is function

of the selected features and can be written in additive form.

Probabilistic Feature Tracks. The performance metrics

described so far already capture some important aspects: they

are task-dependent in that they both quantify the motion

estimation performance; moreover, they are predictive, in the

sense that they look at the result of selecting a set of features

over a short (future) horizon. As we will see in Section III-B2,

the model also captures the fact that longer feature tracks are

more informative, therefore it implicitly rewards the selection

of features that are co-visible across multiple frames.

The only aspect that is not yet modeled is the fact that,

even when a feature is in the field of view of the camera,

there is some chance that it will not be correctly tracked and

the corresponding feature track will be lost. For instance, if the

appearance of a feature is not distinctive enough, the feature

track may be shorter than expected.

To model the probability that a feature track is lost, we intro-

duce N Bernoulli random variables b1, . . . , bN . Each variable

bl represents the outcome of the tracking of feature l: if bl = 1,

then the feature is successfully tracked, otherwise, the feature

track is lost. For each feature we assume pl = Prob(bl = 1) to

be given. In practice one can correlate the appearance of each

feature to pl, such that more distinctive features have higher

probability of being tracked, or can learn the probabilities from

data. Using the binary variables b
.
= {b1, . . . , bN}, we write

the information matrix at the end of the horizon as:

Ωk:k+H(S, b) = Ω̄k:k+H +
∑

l∈S bl∆l (5)

which has a clear interpretation: if the l-th feature is correctly

tracked, then bl = 1 and the corresponding information matrix

∆l is added to Ω̄k:k+H ; on the other hand, if the feature tracks

is lost, then bl = 0 and the corresponding information content

simply disappears from the sum in (5).

Since b is a random vector, our information matrix is now a

stochastic quantity Ωk:k+H(S, b), hence we have to redefine

our performance metrics to include the expectation over b:

f(S) = E [f(Ωk:k+H(S, b))] (6)

where the function f(·) denotes either fλ(·) or fdet(·).
Computing the expectation (6) leads to a sum with a com-

binatorial number of terms, which is hard to even evaluate. To

avoid the combinatorial explosion, we use Jensen’s inequality,

which produces an upper bound on the expectation of a

concave function as follows:

E [f(Ωk:k+H(S, b))] ≤ f(E [Ωk:k+H(S, b)]) (7)

Since both fλ(·) and fdet(·) are concave functions, the

Jensen’s inequality produces an upper bound for our expected

cost. In the rest of this paper we maximize this bound, rather

that the original cost. The advantage of doing so is that the

right-hand-side of (7) can be efficiently computed as:

f(E [Ωk:k+H(S, b)] = f(Ω̄k:k+H +
∑

l∈S pl∆l) (8)

where we used the definition (5), the fact that the expectation

is a linear operator, and that E [bl] = pl. Therefore, our

performance metrics can be written explicitly as:

fλ(S) = λmin

(

Ω̄k:k+H +
∑

l∈S

pl∆l

)

(9)

fdet(S) = log det

(

Ω̄k:k+H +
∑

l∈S

pl∆l

)

which coincide with the deterministic counterparts (2), (4)

when pl = 1, ∀l. Interestingly, in (9) the probability that

a feature is not tracked simply discounts the corresponding

information content. Therefore, the approach considers fea-

tures that are more likely to get lost as less informative,

which is a desired behavior. We remark that the probabilities

pl only capture the distinctiveness of the visual features,

while the geometric aspects (e.g., co-visibility) are captured

in the matrices ∆l, as described in Section III-B2. While

the derivation so far is quite general and provides a feature

selection mechanism for any feature-based SLAM system, in

the following we focus on visual-inertial navigation and we

provide explicit expressions for the matrices Ω̄k:k+H and ∆l

appearing in eq. (9).

B. Forward-simulation Model

The feature selection model proposed in Section III and the

metrics in Section III-A require to predict the evolution of

the information matrix over the horizon H . In the following

we show how to forward-simulate the IMU and the camera;

we note that we do not require to simulate actual IMU



measurements, but only need to predict the corresponding

information matrix, which depends on the IMU noise statistics.

The forward-simulation model depends on the future motion

of the robot (the IMU and vision models are function of the

future poses of the robot); therefore, anticipation is a key

element of our approach: the feature selection mechanism

is aware of the immediate-future intentions of the robot and

selects features accordingly. As we will see in the experiments,

this enables a more clever selection of features during sharp

turns and aggressive maneuvers. In practice, the future poses

along the horizon can be computed from the current control

actions; for instance, if the controller is planning over a reced-

ing horizon, one can get the future poses by integrating the

dynamics of the vehicle. In this sense, our attention mechanism

involves a tight integration of control and perception.

The algorithms for feature selection that we present in Sec-

tion IV are generic and work for any positive definite Ω̄k:k+H

and any positive semidefinite ∆l. Therefore, the non-interested

reader can safely skip this section, which provides explicit

expressions for Ω̄k:k+H and ∆l in the visual-inertial setup.

Before delving into the details of the IMU and vision model

we remark a key design goal of our forward-simulation model:

efficiency. The goal of an attention mechanism is to reduce the

cognitive load later on in the processing pipeline; therefore,

by design, it should not be computational demanding, as that

would defeat its purpose. For this reasons, in this section

we present a simplified VIN model which is designed to be

efficient to compute, while capturing all the aspects of interest

of a full visual-inertial estimation pipeline, e.g., [68].

1) IMU Model and Priors: Our simplified IMU model is

based on a single assumption: the accumulation of the rotation

error due to gyroscope integration over the time horizon

is negligible. In other words, the relative rotation estimates

predicted by the gyroscope are accurate. This assumption

is realistic, even for inexpensive IMUs: the drift in rotation

integration is typically small and negligible over the time

horizon considered in our attention system (in our tests we

consider a time horizon of 3s).

Assuming that the rotations are accurately known allows

restricting the state to the robot position, linear velocity, and

the accelerometer bias. Therefore, in the rest of this paper, the

(unknown) state of the robot at time k is xk
.
= [tk vk bk],

where tk ∈ R
3 is the 3D position of the robot, vk ∈ R

3 is

its velocity, and bk is the (time-varying) accelerometer bias.

We also use the symbol Rk to denote the attitude of the

robot at time k: this is assumed to be known from gyroscope

integration over the horizon H , hence it is not part of the state.

As in most VIN pipelines, we want to estimate the state

of the robot at each frame2. Therefore, the goal of this

subsection, similarly to [68], is to reformulate a set of IMU

measurements between two consecutive frames k and j as

a single measurement that constrains xk and xj . Differently

from [68], we show how to get a linear measurement model.

The on-board accelerometer measures the acceleration ak

2 The derivation is identical for the case in which we associate a state to
each keyframe, rather than each frame, as done in related work [68].

of the sensor with respect to an inertial frame, and is affected

by additive white noise ηk and a slowly varying sensor bias

bk. Therefore, the measurement ãk ∈ R
3 acquired by the

accelorometer at time k is modeled as [68]:

ãk = RT

k (ak − g) + bk + ηk, (10)

where g is the gravity vector, expressed in the inertial frame.

To keep notation simple, we omit the reference frames in our

notation, which follow closely the convention used in [68]:

position tk and velocity vk are expressed in the (inertial) world

frame,3 while the bias bk is expressed in the sensor frame.

Given position tk and velocity vk at time k, we can forward-

integrate and obtain tj and vj at time j > k:

vj = vk +
∑j−1

i=k aiδ

(from (10) we know ai = g +Ri(ãi − bi − ηi),

and assuming constant bias between frames, bi = bk)

= vk + gδkj +
∑j−1

i=k Ri (ãi−bk−ηi) δ (11)

tj = tk +
∑j−1

i=k

(
viδ +

1
2aiδ

2
)

(substituting ai = g +Ri(ãi − bk − ηi))

= tk +
∑j−1

i=k (viδ +
1
2gδ

2 + 1
2Rk (ãi−bk−ηi) δ

2)

(substituting vj from (11) with j = i)

= tk + 1
2gδ̂

2
kj +

∑j−1
i=k

1
2Ri (ãi−bk−ηi) δ

2

+
∑j−1

i=k (vk+gδki+
∑i−1

h=k Rh (ãh−bk−ηh) δ) (12)

where δ is the sampling time of the IMU, δkj
.
=
∑j−1

i=k δ, and

δ̂2kj
.
=
∑j−1

i=k δ2; as in [68], we assumed that the IMU bias

remains constant between two frames. The evolution of the

bias across frames can be modeled as a random walk:

bj = bk − ηb

kj (13)

where ηb

kj is a zero-mean random vector.

Noting that the state appears linearly in (11)-(13), it is easy

to rewrite the three expressions together in matrix form:

zIMU

kj = Akjxk:k+H + ηIMU

kj (14)

where zIMU

kj ∈ R
9 is a suitable vector,4 and ηIMU

kj ∈ R
9

is zero-mean random noise. We remark that while zIMU

kj is

function of the future IMU measurements, this vector is not

actually used in our approach (what matters is Akj and the

information matrix of ηIMU

kj ), hence we do not need to simulate

future measurements. An explicit expression for the matrix

Akj ∈ R
9×9(H+1), the vector zIMU

kj , and the covariance of ηIMU

kj

is given in Appendix A. The matrix Akj is a sparse block

matrix with 9×9 blocks, which is all zeros, except the blocks

corresponding to the state at times k and j.

3As usual when adopting MEMS inertial sensors, we assume that a local
reference frame on Earth (our “world” frame) can be approximated as inertial,
since the effects of the Earth rotation are negligible with respect to the
measurement noise. For a more comprehensive discussion on reference frames
for inertial navigation we refer the reader to [70, Chapter 2.2].

4The expression of zIMU
kj

is inconsequential for the following derivation, but

the interested reader can find details and derivations in Appendix A.



From linear estimation theory, we know that, using the

IMU measurements (14) for all consecutive frames k, j in the

horizon H , the information matrix of the optimal estimate of

the state xk:k+H given the IMU data is:

Ω̄IMU

k:k+H =
∑

kj∈H

(AT

kjΩ
IMU

kj Akj) (15)

where H is the set of consecutive frames within the time

horizon H , and ΩIMU

kj ∈ R
9×9 is the information matrix of

the noise vector ηIMU

kj introduced in eq. (14).

While the IMU measurements constrain the states in the

future horizon H , the predicted information matrix at time

k +H is also influenced by the initial information matrix at

time k. This information matrix, referred to as Ω̄PRIOR

k ∈ R
9×9,

is computed and maintained by the VIN estimator,5 and can

be understood as a prior on the state at time k. The presence

of this information matrix results in an additional term in the

expression of Ω̄k:k+H , which is the information matrix of the

state estimate before any vision measurement is selected, as

per eq. (5). In particular, Ω̄k:k+H can be written as:

Ω̄k:k+H = Ω̄IMU

k:k+H + Ω̄PRIOR

k:k+H (16)

where Ω̄PRIOR

k:k+H is a matrix which is zero everywhere except

the top-left 9× 9 block which is equal to Ω̄PRIOR

k , to reflect our

prior on the state at time k. The matrix Ω̄k:k+H represents the

information matrix of an optimal estimator of the state xk:k+H

before selecting visual measurements and follows the notation

we have already introduced in (5). The presence of priors and

measurements proceeds in full analogy with a standard fixed-

lag smoother, while here we have the advantage of working

with a linear model.

2) Vision Model: Also for the vision measurements, we are

interested in designing a linear measurement model, which

simplifies the actual (nonlinear) perspective projection model.

To do so, we have to express a pixel measurement as a linear

function of the unknown state that we want to estimate.

A (calibrated) pixel measurement of an external 3D point

(or landmark) l identifies the 3D bearing of the landmark in the

camera frame. Mathematically, if we call ukl the unit vector

corresponding to the (calibrated) pixel observation of l from

the robot pose at time k, ukl satisfies the following relation:

ukl ×
(
(RW

cam,k)
T(pl − tW

cam,k)
)
= 03 (17)

where × is the cross product between two vectors, pl is the 3D

position of landmark l (in the world frame), RW

cam,k and tW

cam,k

are the rotation and translation describing the camera pose

at time k (w.r.t. the world frame). In words, the model (17)

requires the observed point (transformed to the camera frame)

to be collinear to the measured direction ukl, since the cross

product measures the deviation from collinearity [71].

Now we note that for two vectors v1 and v2, the cross

product v1×v2 = [v1]×v2, where [v1]× is the skew symmetric

matrix built from v1. Moreover, we note that the camera pose

5 In our implementation, the VIN estimation is a fixed-lag smoother based
on iSAM2 (described in Section V) and the information matrix at time k is
obtained by marginalizing states in the smoother other than xk .

w.r.t. the world frame, (RW

cam,k, t
W

cam,k), can be written as the

composition of the IMU pose w.r.t. the world frame, (Rk, tk),
and the relative pose of the camera w.r.t. the IMU, (RIMU

cam, t
IMU

cam)
(known from calibration). Using these two considerations, we

rewrite (17) equivalently as:

[ukl]×
(
(RkR

IMU

cam)
T(pl − (tk +Rkt

IMU

cam))
)
= 03 (18)

In presence of measurement noise, (18) becomes:

[ukl]×
(
(RkR

IMU

cam)
T(pl − (tk +Rkt

IMU

cam))
)
= ηcam

kl (19)

where ηcam
kl is a zero-mean random noise with known covari-

ance. Under the assumptions that rotations are known from

gyroscope integration, the unknowns in model (19) are the

robot position tk (which is part of our state vector xk:k+H )

and the position of the observed 3D landmark pl. Rearranging

the terms we obtain:

[ukl]×(R
IMU

cam)
TtIMU

cam = [ukl]×(RkR
IMU

cam)
T(tk − pl) + ηcam

kl

The only unknowns in the previous equation are tk and pl,

hence the model is linear in the state and can be written in

matrix form:

zcam
kl = Fklxk:k+H +Eklpl + ηcam

kl (20)

with zcam
kl

.
= [ukl]×(R

IMU

cam)
TtIMU

cam, and for suitable matrices

Fkl ∈ R
3×9(H+1) and Ekl ∈ R

3×3. In order to be triangulated,

a point has to be observed across multiple frames. Stacking

the linear system (20) for each observation pose from which

l is visible, we get a single linear system:

zcam
l = Flxk:k+H +Elpl + ηcam

l (21)

where zcam
l ∈ R

3nℓ , Fl ∈ R
3nℓ×9(H+1), and El ∈ R

3nℓ×3

are obtained by stacking (row-wise) zcam
kl , Fkl, and Ekl,

respectively, for the nℓ frames in which l is visible. As for

the IMU model, the expression of zcam
l is inconsequential

for our derivation, as it does not influence the future state

covariance. On the other hand Fl and El depend on the future

measurements ukl: for this reason, computing these matrices

requires simulating pixel projections of pl for each frame in

the horizon. When using a stereo camera, we have an estimate

of pl hence we can easily project it to the future frames. In

a monocular setup, we can guess the depth of new features

from the existing features in the VIN back-end. We remark

that when simulating pixel projections at future frames in

the horizon, we also perform a visibility check (i.e., we use

the camera projection model to assert whether a landmark

projects within the image frame), hence restricting the set of

future visual measurements according to the expected motion

of the vehicle and the camera field of view. This aspect is

crucial in making our feature selection approach “predictive”

in nature. As discussed in Proposition 1 below, the resulting

model seamlessly captures the intuitive fact that landmarks

that remain visible and can be tracked across multiple frames

are more informative.

Now we note that we cannot directly use the linear

model (21) to estimate our state vector xk:k+H , since it

contains the unknown position of landmark l. One way to



circumvent this problem is to include the 3D point in the state

vector. This is undesirable for two reasons; first, including

the landmarks as part of the state would largely increase

the dimension of the state space (and hence of the matrices

in (9)). Second, it may create undesirable behaviors of our

performance metrics; for instance, the metrics might induce

to select features that minimize the uncertainty of a far 3D

point rather than focusing on the variables we are actually

interested in (i.e., the state of the robot).

To avoid this undesirable effects, we analytically eliminate

the 3D point from the estimation using the Schur complement

trick [72]. We first write the information matrix of the joint

state [xk:k+H pl] from the linear measurements (21):

Ω
(l)
k:k+H =

[
F T

l Fl F T

l El

ET

l Fl ET

l El

]

∈ R
(9H+12)×(9H+12) (22)

where, for simplicity, we assumed the pixel measurement noise

to be the identity matrix. Using the Schur complement trick

we marginalize out the landmark l and obtain the information

matrix of our state xk:k+H given the measurements (21):

∆l = F T

l Fl − F T

l El(E
T

l El)
−1ET

l Fl ∈ R
9(H+1)×9(H+1) (23)

Eq. (23) is the (additive) contribution to the information matrix

of our state estimate due to the measurements of a single

landmark l. This is the matrix that we already called ∆l in (5).

The matrix ∆l is sparse, and its sparsity pattern is dictated by

the co-visibility of landmark l across different frames [73]. It is

worth noticing that (ET

l El)
−1 is the covariance of the estimate

of the landmark position [73], and it is invertible as long as

the landmark l can be triangulated. In our implementation, we

only consider landmarks that can be triangulated (for which

(ET

l El)
−1 invertible) as candidates for feature selection.

The following proposition formally proves that longer fea-

ture tracks lead to “larger” ∆l hence the formulations (9) will

encourage the selection of features with long tracks.

Proposition 1 (Long Feature Tracks). Consider two land-

marks l1 and l2 having identical predicted future pixel mea-

surements till time k1 (i.e., zcam
τl1

= zcam
τl2

) for τ = k, . . . , k1,

but such that l1 is only tracked till k1, while l2 is tracked till

a later frame k2 (with k < k1 < k2 ≤ H). Then ∆l1 � ∆l2 .

The proof of Proposition 1 is given in Appendix B. Propo-

sition 1 ensures that features with long tracks carry a “larger”

information content ∆l hence contributing more to the objec-

tives (9) (recall that for both choices of performance metrics

it holds f
(
Ω̄k:k+H +∆l1

)
≤ f

(
Ω̄k:k+H +∆l2

)
whenever

∆l1 � ∆l2 ). Note, however, that Proposition 1 ensures that

long feature tracks “dominate” short tracks only when their

future measurements are identical. Therefore, in general, a

heuristic selection based on feature track length may provide

a suboptimal solution for (1) (intuitively, such choice would

not account for the geometry of the features).

Remark 2 (Linear measurement models). Sections III-B1

and III-B2 provide linear measurement models for inertial and

visual measurements. In particular, we assumed that rotations

are known over a short time horizon and this allowed us to

obtain measurement models that are linear with respect to the

unknown robot state. Within our framework, one might directly

use linearized models of the nonlinear inertial and perspective

models commonly used in VIN [68]. Our choice to design

linear models has three motivations. First, we operate over

a smaller state space (which does not include rotations and

gyroscope biases), hence making matrix manipulations faster.

Second, we avoid the actual computational cost of linearizing

the nonlinear models. Third, thanks to the simplicity of the

models, we enable a geometric understanding of our feature

selection mechanisms (Section IV-D).

IV. ATTENTION ALLOCATION: ALGORITHMS AND

PERFORMANCE GUARANTEES

In this section we discuss computational approaches to find

a set of features that approximately solves the feature selection

problem (1). It is known that finding the optimal subset S
⋆

which solves (1) exactly is NP-hard [46], hence we cannot

hope to find efficient algorithms to compute S
⋆

in real-world

problems.6 The solution we adopt in this paper is to design

approximation algorithms, which are computationally efficient

and provide performance guarantees (roughly speaking, pro-

duce a set which is not far from the optimal subset S
⋆
). We

remark that we are designing a covert attention mechanism:

our algorithms only select a set of features that have to be

retained and used for state estimation, while we do not attempt

to actively control the motion of the camera.

In the following we present two classes of algorithms. The

former is based on a convex relaxation of the original combina-

torial problem (1). We do not claim the convex relaxations as

original contributions, since they have been proposed multiple

times in other contexts, see, e.g., [43]. We briefly review

the convex relaxations and the corresponding performance

guarantees in Section IV-A and Section IV-B. The second

class of approximation algorithms includes greedy selection

methods, and are discussed in greater details in Section IV-C.

We provide performance guarantees for the greedy algorithms

in Section IV-D.

A. Convex Relaxations

This section presents a convex-relaxation approach to com-

pute an approximate solution for problem (1).

Using (9), we rewrite problem (1) explicitly as:

max
S⊂F

f
(
Ω̄k:k+H +

∑

l∈S pl∆l

)
subject to |S|≤ κ (24)

where f(·) denotes either fλ(·) or fdet(·) (for the moment

there is not need to distinguish the two metrics).

Introducing binary variables sl, for l = 1, . . . , N , we

rewrite (24) equivalently as:

max
s1,...,sN

f
(
Ω̄k:k+H +

∑

l∈S slpl∆l

)
(25)

subject to
∑N

l=1 sl ≤ κ , sl ∈ {0, 1} ∀ l ∈ {1, . . . , N}

6 In typical real-world problems, the set of available visual feature is larger
than 200, and we are asked to select 10−100 features, depending on on-board
resources. In those instances, the cost of a brute force search is prohibitive.



Problem (25) is a binary optimization problem. While prob-

lem (25) would return the optimal subset S
⋆
, it is still NP-hard

to solve, due to the constraint that sl have to be binary.

Problem (25) admits an simple convex relaxation:

f⋆
cvx

= max
s1,...,sN

f
(
Ω̄k:k+H +

∑

l∈S slpl∆l

)
(26)

subject to
∑N

l=1 sl ≤ κ , sl ∈ [0, 1] ∀ l ∈ {1, . . . , N}
where the binary constraint sl ∈ {0, 1} is replaced by the

convex constraint sl ∈ [0, 1]. Convexity of problem (26)

follows from the fact that we maximize a concave cost under

linear inequality constraints.7

This convex relaxation has been proposed multiple times in

other contexts (see, e.g., [43]). The solution s⋆1, . . . , s
⋆
N of (26)

is not binary in general and a rounding procedure is needed

to distinguish the features that have to be discarded (sl = 0)

from the features that have to be selected (sl = 1). A common

rounding procedure is to simply select the κ features with the

largest sl, while randomized rounding procedures have also

been considered [38]. We use the former, and we call S
◦

the

set including the indices of the κ features with the largest s⋆l ,

where s⋆1, . . . , s
⋆
N is the optimal solution of (26).

B. Performance Guarantees for the Convex Relaxations

The convex relaxation (26) has been observed to work well

in practice, although there is no clear (a-priori) performance

guarantee on the quality of the set S
◦
.

Let us call f⋆
cvx

the optimal objective of the relaxed

problem (26), f(S◦) the objective attained by the rounded

solution, and f(S⋆) the optimal solution of the original NP-

hard problem (25). Then, one can easily obtain a-posteriori

performance bounds by observing that:

f(S◦) ≤ f(S⋆) ≤ f⋆
cvx

(27)

where the first inequality follows from optimality of S
⋆

(any

subset of κ features has cost at most f(S⋆)), while the latter

from the fact that (26) is a relaxation of the original problem.

The chain of inequality (27) suggests a simple (a-posteriori)

performance bound for the quality of the set produced by the

convex relaxation (26):

f(S⋆)− f(S◦) ≤ f⋆
cvx

− f(S◦) (28)

i.e., the suboptimality gap f(S⋆) − f(S◦) of the subset S
◦

is bounded by the difference f⋆
cvx

− f(S◦), which can be

computed (a posteriori) after solving (26).

C. Greedy Algorithms and Lazy Evaluation

This section presents a second approach to approximately

solve problem (1). Contrarily to the convex relaxation of

Section IV-A, here we consider a greedy algorithm that selects

κ features that (approximately) maximize the cost f(·).
The algorithm starts with an empty set S

#
and performs κ

iterations. At each iteration, it adds the feature that, if added

to S
#

, induces the largest increase in the cost function. The

pseudocode of the algorithm is given in Algorithm 1.

7Both the smallest eigenvalue and the log-determinant of a positive definite
matrix are concave functions [74] of the matrix entries.

Algorithm 1: Greedy algorithm with lazy evaluation

1 Input: Ω̄k:k+H , ∆l, for l = 1, . . . , N , and κ ;

2 Output: feature subset S
#

;

3 S
# = ∅ ;

4 for i = 1, . . . , κ do

5 % Compute upper bound for f(S#∪{l}), l = 1, . . . , N
6 [U1, . . . , UN ] = upperBounds(Ω̄k:k+H ,∆1, . . . ,∆N ) ;

7 % Sort features using upper bound

8 F↓ = sort(U1, . . . , UN ) ;

9 % Initialize best feature

10 fmax = −1 ; lmax = −1 ;

11 for l ∈ F↓
do

12 if Ul < fmax then

13 break ;

14 end

15 if f(S# ∪ l) > fmax then

16 fmax = f(S# ∪ l) ; lmax = l ;

17 end

18 end

19 S
# = S

# ∪ lmax ;

20 end

In line 3 the algorithm starts with an empty set. The “for”

loop in line 4 iterates κ times: at each time the best feature is

added to the subset S
#

(line 19). The role of the “for” loop

in line 11 is to compute the feature that induces the maximum

increase in the cost (lines 15-17). The remaining lines provide

a lazy evaluation mechanism. For each feature l we compute

an upper bound on the cost f(S#∪{l}) (line 6). The features

are sorted (in descending order) according to this upper bound

(line 8). The advantage of this is that by comparing the current

best feature with this upper bound (line 12) we can avoid

checking features that are guaranteed to attain a smaller cost.

Clearly, the lazy evaluation is advantageous if the upper

bound is faster to compute than the actual cost. The following

propositions provide two useful (and computationally cheap)

upper bounds for our cost functions.

Proposition 3 (Upper bounds for log det: Hadamard’s

inequality, Thm 7.8.1 [75]). For a positive definite matrix

M ∈ R
n×n with diagonal elements Mii, it holds:

det(M) ≤∏n
i=1 Mii ⇔ log det(M) ≤∑m

i=1 logMii (29)

Proposition 4 (Eigenvalue Perturbation Bound [76]). Given

Hermitian matrices M ,∆ ∈ R
n×n, and denoting with λi(M)

the i-th eigenvalue of M , the following inequalities hold:

|λi(M +∆)− λi(M)| ≤ ‖∆‖ (30)

min
j

|λi(M)− λj(M +∆)| ≤ ‖∆vi‖ (31)

where vi is the eigenvector of M associated to λi(M).

Eq. (30) is a restatement of the classical Weyl inequality,

while (31) is a tighter bound from Ipsen and Nadler [76]. To

clarify how the bounds in Proposition 4 provide us with an

upper bound for λmin, we prove the following result.



Corollary 5 (Upper bounds for λmin). Given two symmetric

and positive semidefinite matrices M ,∆ ∈ R
n×n the follow-

ing inequality holds:

λmin(M +∆) ≤ λmin(M) + ‖∆vmin‖ (32)

where vmin is the eigenvector of M associated to the smallest

eigenvalue λmin(M).

The proof of Corollary 5 is given in Appendix C. While Al-

gorithm 1 highlights the simplicity of the greedy algorithm, it

is unclear whether this algorithm produces good subsets of

features. We tackle this question in the next section.

D. Performance Guarantees for the Greedy Algorithm

This section shows that the greedy algorithm (Algorithm 1)

admits provable sub-optimality bounds. These bounds guar-

antee that the greedy selection cannot perform much worse

than the optimal strategy. The section tackles separately the

two metrics presented in Section III-A, since the corresponding

performance guarantees are fundamentally different.

Our results are based on the recent literature on sub-

modularity and submodular maximization. Before delving in

the guarantees for each metric, we provide few preliminary

definitions, which can be safely skipped by the expert reader.

Definition 6 (Normalized and Monotone Set Function [77]).

A set function f : 2F → R is said to be normalized if f(∅) =
0; f(S) is said to be monotone (non-decreasing) if for any

subsets A ⊆ B ⊆ F, it holds f(A) ≤ f(B).

Definition 7 (Submodularity [77]). A set function f : 2F →
R is submodular if, for any subsets A ⊆ B ⊆ F, and for any

element e ∈ F \ B, it holds that:

f(A ∪ {e})− f(A) ≥ f(B ∪ {e})− f(B) (33)

Submodularity formalizes the notion of diminishing returns:

adding a measurement to a small set of measurement is more

advantageous than adding it to a large set. Our interest towards

submodularity is motivated by the following result.

Proposition 8 (Near-optimal submodular maximiza-

tion [77]). Given a normalized, monotone, submodular set

function f : 2F → R, and calling S
⋆

the optimal solution

of the maximization problem (1), then the set S
#

, computed

by the greedy Algorithm 1, is such that:

f(S#) ≥ (1− 1/e)f(S⋆) ≈ 0.63f(S⋆) (34)

This bound ensures us that the worst-case performance of

the greedy algorithm cannot be far from the optimum. In the

following we tailor this result to our feature selection problem.

1) Sub-optimality guarantees for log det: It is possible to

show that log det is submodular with respect to the set of

measurements used for estimation. This result and the corre-

sponding performance guarantees are formalized as follows.

Proposition 9 (Submodularity of log det [47]). The set

function fdet(S) defined in (4) is monotone and submodular.

Moreover, the greedy algorithm applied to (1) using fdet(S)
as objective enjoys the following performance guarantees:

fdet(S) ≥ (1− 1/e)fdet(S
⋆) +

fdet(∅)
e

(35)

The result is proven in [47] and has been later rectified

to account for the need of normalized functions in [50]. The

extra term
fdet(∅)

e in (35) indeed follows from the application

of Proposition 8 to the normalized function fdet(S)− fdet(∅).
2) Sub-optimality guarantees for λmin: Currently, no result

is readily available to bound the suboptimality gap of the

greedy algorithm applied to the maximization of the smallest

eigenvalue of the information matrix (or equivalently minimiz-

ing the largest eigenvalue of the covariance). Indeed, related

work provides counterexamples, showing that this metric is not

submodular in general, while the greedy algorithm is observed

to perform well in practice [50]. In this section we provide a

first result showing that, despite the fact that fλ(S) fails to

be submodular, it is not far from a submodular function. This

notion is made more precise in the following.

Definition 10 (Submodularity ratio [69], [78]). The submod-

ularity ratio of a non-negative set function f(·) with respect

to a set S and an integer κ ≥ 1 is defined as:

γS

.
= min

L⊆S,
E:|E|≤κ,E ∩L=∅

∑

e∈E
(f(L ∪ {e})− f(L))

f(L ∪ E)− f(L)
(36)

It is possible to show that if γS ≥ 1, then the function f(·)
is submodular. However, in this context we are interested in

the submodularity ratio, since it enables a less restrictive sub-

optimality bound, as described in the following proposition.

Proposition 11 (Approximate submodular maximiza-

tion [69], [78]). Let f(·) be a non-negative monotone set

function and let S
⋆

be the optimal solution of the maximization

problem (1), then the set S
#

, computed by the greedy Algo-

rithm 1 is such that:

f(S#) ≥ (1− e−γ
S
# )f(S⋆) (37)

where γ
S
# is the submodularity ratio of f(·) with respect to

S
#

and κ = |S#|.
Proposition 11 provides a multiplicative suboptimality

bound whenever γS# > 0. In the following we show that this

is generally the case when maximizing the smallest eigenvalue.

Proposition 12 (Non-vanishing Submodularity ratio of

λmin). Call S
#

the set returned by the greedy algorithm

maximizing λmin. For any set L ⊆ S
#

call µ̄ the eigenvec-

tor corresponding to the smallest eigenvalue of the matrix

Ω̄k:k+H +
∑

l∈L
∆l. Moreover call µ̄0, µ̄2, . . . , µ̄H ∈ R

3,

the subvectors of µ̄ corresponding the robot positions at time

k, . . . , k+H . Then the submodularity ratio of λmin is bounded

away from zero if µ̄i 6= µ̄j , for some i, j.

The proof of Proposition 12 is given in Appendix D. In

words, Proposition 12 states that the submodularity ratio does

not vanish as long as the directions of largest uncertainty



change along the future horizon. The following corollary is

a straightforward consequence of Proposition 12.

Corollary 13 (Approximate submodularity of λmin). The

set function fλ(S) defined in (9) is monotone. Moreover,

under the assumptions of Proposition 12, the greedy algorithm

applied to (1) using fλ(S) as objective enjoys the guarantees

of Proposition 11 for a nonzero γ
S
# .

Proof: Monotonicity follows from the Weyl inequal-

ity [76]. The guarantees of the greedy algorithm follow

from Proposition 11 and Proposition 12.

Corollary 13 guarantees that the approximation bound

of Proposition 11 does not vanish, hence the greedy algorithm

always approximate the optimal solution up to a constant-

factor. Empirical evidence, shown in Section V, confirms that

the greedy algorithm applied to the maximization of fλ(S)
has excellent performance, producing near-optimal results in

all test instances.

Remark 14 (Geometric Intuition Behind Greedy Selec-

tion with λmin). Our linear model enables a deeper un-

derstanding of the geometry behind the greedy selection.

The greedy selection rewards features l with large objective

λmin(Ω̄k:k+H + ∆l) or, equivalently, large marginal gain

λmin(Ω̄k:k+H +∆l)−λmin(Ω̄k:k+H). The following chain of

relations provides a geometric understanding of which features

induce a large marginal gain:

λmin(Ω̄k:k+H +∆l)− λmin(Ω̄k:k+H)
(from Rayleigh quotient)

= min‖ν‖=1 ν
T(Ω̄k:k+H +∆l)ν −min‖µ‖=1 µ

T(Ω̄k:k+H)µ
(calling µ̄ the minimizer of the second summand)

= min‖ν‖=1 ν
T(Ω̄k:k+H +∆l)ν − µ̄T(Ω̄k:k+H)µ̄

(substituting a suboptimal solution µ̄ in the first summand)

≤ µ̄T(Ω̄k:k+H +∆l)µ̄− µ̄T(Ω̄k:k+H)µ̄
(simplifying and substituting the expression of ∆l)

= µ̄T∆lµ̄ = µ̄TF T

l (I−El(E
T

l El)
−1ET

l )Flµ̄

(defining the idempotent matrix Q
.
= (I−El(E

T

l El)
−1ET

l ))
= µ̄TF T

l QFlµ̄ = µ̄TF T

l QQFlµ̄ = ‖QFlµ̄‖2
(using the triangle inequality and substituting Fl)

≤ ‖Q‖2‖Flµ̄‖2= ‖Flµ̄‖2=
∑H

k=0‖[ukl]×(R
W

cam,k)
Tµ̄k‖2

where µ̄k is the subvector of µ̄ at the entries corresponding

to the robot position coordinates at time k. Intuitively, the

inequalities reveal that the marginal gain is small when

‖[ukl]×(R
W

cam,k)
Tµ̄k‖ is small, i.e., when we pick landmark

observations where the measured bearing ukl is nearly par-

allel to the directions of large uncertainty µ̄k, transformed

in the camera frame by the rotation (RW

cam,k)
T. For instance,

if we have large uncertainty in the forward direction, it is

not convenient to use features in front of the robot (i.e.,

with bearing parallel to the direction of largest uncertainty);

accordingly, the greedy approach would select features in the

periphery of the image, which intuitively provide a better way

to reduce uncertainty.

V. EXPERIMENTS

This section provides three sets of experimental results. The

first set of tests, in Section V-A, shows that the greedy algo-

rithm attains near-optimal solutions in solving problem (1),

while being faster than general purpose solvers for the convex

relaxations discussed in Section IV-A. The second set of tests,

in Section V-B, evaluates our c++ pipeline in realistic simula-

tions, showing that our feature selection techniques boost VIN

performance; the same section also shows the advantage of

using our lazy evaluation. The third set of tests, in Section V-C,

evaluates our approach on real data collected by an agile micro

aerial vehicle.

A. Assessment of the Greedy Algorithms for Feature Selection

This section answers the following question: how good is

the greedy Algorithm 1 to (approximately) solve the combina-

torial optimization problem (1)? In particular, we show that

the greedy algorithm finds a near-optimal solution of (1), for

both choices of the cost function (9); we also show that the

convex relaxation approach of Section IV-A finds near-optimal

solutions, while being more computationally expensive.

Testing setup. To generate random instances of problem (1),

we consider a robot moving along a straight line at a constant

speed of 2m/s. The robot is equipped with an IMU with

sampling period δ = 0.01s; we choose the accelerometer noise

density equal to 0.02m/(s2
√

Hz), and the accelerometer bias

continuous-time noise density to be 0.03m/(s3
√

Hz). We also

simulate an on-board monocular camera, which measures 3D

points randomly scattered in the environment, at a (key)frame

rate of 0.5s. The robot has to select a set of κ features out of

N available visual measurements. We assume that at the time

of feature selection, the position covariance of the robot is

10−2 ·I3, while its velocity and accelerometer bias covariances

are 10−2 ·I3 and 10−4 ·I3, respectively. Using this information,

we build the matrix Ω̄k:k+H , using a prediction horizon of

2.5s. Moreover, from the available feature measurements, we

build the matrices ∆l; in these tests we assume pl = 1, i.e.,

we disregard appearance during feature selection.

Techniques and evaluation metrics. We compare two ap-

proaches to solve (1): the greedy algorithm of Algorithm 1

and the convex relaxation approach (26). We implemented the

convex relaxation using CVX/MOSEK as parser/solver for (26),

and then we computed the rounded solution as described

in Section IV-A. For the evaluation in this section, we imple-

mented both the greedy algorithm and the convex relaxation

in Matlab. We evaluate these approaches for each choice of

the objective functions fλ and fdet defined in (9). Ideally, for

each technique, we should compare the objective attained by

the techniques, versus the optimal objective. Unfortunately,

the optimal objective is hard to compute and a brute-force ap-

proach is prohibitively slow, even for relatively small problem

instances.8 Luckily, the convex relaxation (26) also produces

an upper bound on the optimal cost of (1) (c.f. eq. (27)), hence

we can use this upper bound to understand how far are the

greedy and the rounded solution of (26) from optimality.

Results. We consider problems of increasing sizes in which

we are given N features and we have to select half of them

8Even in a small instance in which we are required to select 50 out of 100
available visual measurements, a brute-force approach would need to evaluate
around 1029 possible sets.



(κ = N/2) to maximize the objective in (1). For each N , we

compute statistics over 50 Monte Carlo.

Fig. 1(a) shows the smallest eigenvalue objective fλ attained

by the different techniques for increasing number of features

N . Besides the greedy, the rounded convex relaxation (la-

bel: rounded), and the relaxed objective (label: relaxed), we

show the objective attained by picking a random subset of

κ features (label: random). We are solving a maximization

problem hence the larger the objective the better. Fig. 1(a)

shows that in all tested instances, greedy and rounded match

the upper bound relaxed (the three lines are practically indis-

tinguishable), hence they both produce optimal solutions (c.f.

eq. (28)). The resulting solution is far better than random. This

result is somehow surprising, since the smallest eigenvalue is

not submodular in general, and the greedy algorithm enjoys

weaker performance guarantees (Corollary 13). However, this

observation is in agreement with related work in other fields,

e.g., [49]. While both greedy and rounded return good solutions,

solving the convex problem (26) is usually more expensive

than computing the greedy solution: the CPU time of our

greedy algorithm in Matlab (without lazy evaluation) is around

0.4s (for N = 50), while CVX requires around 0.8s.
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Fig. 1. Techniques to approximately solve problem (1) for (a) the smallest
eigenvalue objective fλ, and (b) the log-determinant objective fdet. The
figure reports the objective attained by the greedy algorithm (greedy), the
rounded solution (rounded), and a random selection (random). The upper
bound relaxed, attained by the convex problem (26) (before rounding), is
shown for comparison.

Analogous considerations hold for the objective fdet.
Fig. 1(b) shows the log-determinant attained by the different

techniques, for increasing number of available features N ;

also in this case the algorithms have to select κ = N/2
features. As in the previous tests, greedy and rounded attain

the optimal solution in all test instances, matching the upper

bound relaxed, and performing remarkably better than a random

choice. Regarding the CPU time, our Matlab implementation

of the greedy algorithm to optimize fdet takes around 0.1s (for

N = 50), while CVX requires more than 1min to solve (26).9

We remark that while CVX is a state-of-the-art general-purpose

solver for convex programming, our analysis does not rule out

the possibility of designing fast specialized solvers, e.g., [79];

such an attempt, however, is outside the scope of this paper.

Since the greedy algorithms are as accurate as the convex

9CVX uses a successive approximation method to maximize the log-det
objective, which is known to be fairly slow.

relaxation techniques, while being faster than general-purpose

convex solvers, in the following we focus on the former.

B. Importance of Feature Selection in VIN

This section answers the following question: does the fea-

ture selection resulting by solving (1) lead to performance

improvements in VIN? In the following we show that the

proposed feature selection approach boosts VIN performance

in realistic Monte Carlo simulations.

Testing setup. We adopt the benchmarking problem of [68]

and pictured in Fig. 2(a) as testing setup. We simulate a robot

that follows a circular trajectory with a sinusoidal vertical

motion. The total length of the trajectory is 120m. The on-

board camera has a focal length of 315 pixels and runs at a

rate of 2.5Hz (simulating keyframes). Simulated acceleration

and gyroscope measurements are obtained as in [68].

Implementation and evaluation metrics. In this section we

focus on the greedy algorithms and we use those to select a

subset of visual features. We implemented the greedy algo-

rithms and the construction of the matrices required in the

functions (9) in c++, using eigen for the computation of the

log-determinant and the smallest eigenvalue. For numerical

reasons, rather than computing the determinant and taking the

logarithm, we directly compute the log-determinant from the

Cholesky decomposition of the matrix. For the computation

of the smallest eigenvalue we use eigen’s svd function.

Our feature selection approach is used as an add-on to a

visual-inertial pipeline similar to the one described in [68].

Our VIN pipeline estimates the navigation state (robot pose,

velocity, and IMU biases) using the structureless visual model

and the pre-integrated IMU model described in [68]. The

entire implementation is based on the GTSAM optimization

library [80]. Our implementation differs from [68] in three

important ways. First, in this paper we use the iSAM2 algo-

rithm within a fixed-lag smoothing approach; we marginalize

out states outside a smoothing horizon of 6s, which helps

bounding latency and memory requirements. Second, we do

not adopt SVO as visual front-end; in this simulations we do

not need a front-end as we simulate landmark observations,

while in the following section we describe a simple real-

world front-end. Finally, rather than feeding to the VIN esti-

mator all available measurements, we use the feature selection

algorithms described in this paper to select a small set of

informative visual observations.

In this section we evaluate two main aspects of our ap-

proach. First, we show that a clever selection of the features

does actually impact VIN accuracy. Second, we show that

the lazy evaluation approach discussed in Section IV-C speeds

up the computation of the greedy solution. We use two

metrics for accuracy: the absolute translation error, which

is the Euclidean distance between the estimated position and

the actual position, and the relative translation error, which

computes the Euclidean norm of the difference between the

estimated translation between time k and time k + 1 and the

actual translation. Indeed the relative translation error quan-

tifies how quickly the estimate drifts from the ground truth.

Since absolute positions are not observable in visual-inertial



odometry, the relative error is a more reliable performance

metric. When useful, we report absolute and relative rotation

errors (defined in analogy with the translation ones).
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Fig. 2. Simulation results: (a) simulated environment, (b) table with CPU
times for different implementations of the greedy algorithms, (c) absolute
translation errors, (d) absolute rotation errors.

Results. We simulate 50 Monte Carlo runs; in each run we

add random noise to the acceleration, gyroscope, and camera

measurements. To make the simulation realistic, the statistics

about measurement noise are identical to the ones used in the

real tests of Section V-C. In each run, the robot performs VIN

and, at each camera frames, it selects κ = 20 visual features

out of all the features in the field of view. We compare three

feature selection strategies. The greedy selection resulting

from Algorithm 1 with the eigenvalue objective fλ (label:

minEig), the greedy selection with the log-determinant cost fdet
(label: logDet), and a random selection which randomly draws

κ of the available features (label: random).

Fig. 2(c)-(d) show the absolute translation and absolute

rotation errors, averaged over 50 Monte Carlo runs. From the

figure is clear that a clever selection of the features, resulting

from logDet or minEig, deeply impacts performance in VIN. Our

techniques largely improve estimation errors, when compared

against the random selection; both approaches result in similar

performance. From the figure we note that the absolute errors

have some oscillations: this is a consequence of the fact that

the trajectory is circular; in general, this stresses the fact that

absolute metrics may be poor indicators of performance in

visual-inertial odometry. In this case, the relative error metrics

confirm the results of Fig. 2(c)-(d): the average translation and

rotation errors are given in Table I; in parenthesis we report the

error reduction percentage with respect to the random baseline.

Fig. 2(b) reports the CPU time required for feature selection.

The figure considers both cost functions (logDet and minEig) and

Technique Rel. Translation Error [m] Rel. Rotation Error [rad]

random 0.0103 0.0049

minEig 0.0064 (-37%) 0.0025 (-48%)

logDet 0.0053 (-48%) 0.0018 (-63%)

TABLE I
RELATIVE TRANSLATION AND ROTATION ERRORS FOR THE SIMULATED

TESTS OF SECTION V-B (AVERAGE OVER 50 MONTE CARLO RUNS)

compares timing when using our lazy evaluation, as described

in Algorithm 1, against a naive implementation of the greedy

algorithm that always tests the marginal gain of every feature

(i.e., for which the stopping condition in line 12 of Algorithm 1

is disabled). The naive greedy (without lazy evaluation) al-

ways results in κN objective evaluations. When using lazy

evaluation, the number of objective evaluation depends on

the tightness of the upper bounds used in Algorithm 1. From

Fig. 2(b), we see that the advantage of using the lazy evaluation

is marginal for the log-determinant cost; this is not surprising,

since the Hadamard’s inequality of Proposition 3 usually gives

a fairly loose bound. On the other hard, the advantage of using

the lazy evaluation is significant for the minEig, resulting in a

reduction of the computational time of 20%. The average CPU

time required by Algorithm 1 (with lazy evaluation) to select

κ = 20 features is 0.069s for logDet and 0.195s for minEig.

While these timing may be already acceptable for applications,

there are large margins to speed up computation: we postpone

these considerations to Section VI.

C. Real Tests: Agile Navigation on Micro Aerial Vehicles

In this section we show that our feature selection approach

enhances VIN performance in real-world navigation problems

with micro-aerial vehicles (MAVs).

Testing setup. We use the EuRoC benchmark [11] for our

evaluation. The EuRoC datasets are collected with an AscTech

Firefly hex-rotor helicopter equipped with a VI (stereo) visual-

inertial sensor. The camera records stereo images at resolution

752×480 and framerate 20Hz; IMU data is collected at 200Hz.

We refer to [11] for a technical description of the datasets.

In this context we only remark that the datasets contain test

instances at increasing levels of complexity, collected in a

machine hall environment and in a smaller Vicon room. In

our tests, the measurement variances, as well as the intrinsic

and extrinsic calibration parameters match exactly the one

specified in the dataset. The most relevant parameters used

in our tests are given in Table II; in the front-end we used

openCV’s goodFeaturesToTrack for feature detection and the

Lucas-Kanade method for feature tracking; as input to the

detector we specify a minimum quality level for the features

and a desired number of features to extract (N ). From these

N features our selector has to retain κ = 10 features that will

be used by the back-end. In this sense, feature detection and

tracking at the front-end are pre-attentive mechanisms: they

work on a large set of features, which are later filtered out

by our feature selector. The feature selector uses a predictive

horizon of 3s; in practice, the future pose estimates along

the horizon can be computed from the control inputs, by

integrating the dynamics of the vehicle (Section III-B). Since

the control inputs are not available in the EuRoC dataset, we

compute the future poses by attaching ground truth motion



increments to the current pose estimate. The only assumption

in doing so is that the control loop and the estimation quality

are good enough to track a desired set of future poses; this is

the case in VIN in which the short-term drift is small.
Parameter name Value

Front-end
Nr. features to detect (N ) 100

Minimum quality level 0.001
Time between keyframes 0.2s

Back-end
Smoothing window 6s
iSAM2 iterations 1

Feature selector
Nr. features to select (κ) 10

Horizon 3s

TABLE II
VIN AND FEATURE SELECTION PARAMETERS

Techniques. We compare four VIN approaches. The first

two VIN approaches use the minEig and the logDet selectors

proposed in this paper. The third approach uses a selector

that picks the κ features with highest quality (i.e., highest

score in goodFeaturesToTrack). This selector is commonly

used in VIN and only accounts for the appearance of the

visual features; we denote it with the label “quality”, follow-

ing openCV’s terminology. The fourth technique is a VIN

approach using 200 features (selected as the ones with largest

score in goodFeaturesToTrack) and is used to have a reference

performance for the case in which the VIN system has less

stringent computational constraints (label: no-selection).

In order to compute the tracking probabilities pl, we

modified openCV’s goodFeaturesToTrack in order to have

access to the features’ scores. Then, we mapped the scores to

probabilities in [0, 1], such that more distinguishable features

have higher tracking probabilities pl.
Results: Accuracy. Fig. 3 shows the performance of the

compared techniques on all the 11 EuRoC datasets. The

EuRoC benchmark includes datasets of different levels of

complexity, with the difficult datasets being challenging for

standard VIN pipeline due to the fast motion of the MAV.

In this section we show that we can obtain accurate position

estimation with as few as κ = 10 features; this budget is

enforced for each frame; for instance, if we are tracking r
features from the previous frame, then in the current frame

we can only retain κ− r features.

Fig. 3(a) compares the VIN performance using the relative

translation errors as metric. The figure confirms that the diffi-

cult datasets tend to have larger translation errors. Moreover,

it shows that the proposed techniques, minEig and logDet, lead

to smallest errors compared to the baseline quality. Clearly,

the technique no-selection, which uses 20x more features,

leads to the smaller errors. To better appreciate the advantage

of minEig and logDet with respect to quality, Fig. 3(b) shows

the relative improvement, i.e., the relative translation error

reduction, of the two techniques with respect to quality. The

figure shows that the proposed feature selectors result in

much smaller drift across all but one datasets. The average

error reduction is larger than 20% and overcomes 40% in

the datasets MH_02_easy, MH_05_difficult, and V2_01_easy.

In particular, in the dataset MH_05_difficult the estimate

resulting from the quality-based feature selection diverged

after a sharp turn, while our techniques were able to ensure

accurate pose estimation. The dataset V1_03_difficult is the

only one in which the proposed techniques have slightly worse

performance. We noticed that in datasets with severe motion

blur the advantage of the proposed techniques may vary, and

this is due to the fact that we are using a simplistic model

for the tracking probabilities pl. For completeness, Fig. 3(c)

reports the absolute translation error as a percentage of the

trajectory traveled; this is another common metric for VIN.

We notice that no-selection has excellent performance, while

using 200 features (average error accumulation is 0.17% of the

trajectory length). The approach no-selection exhibits similar

or smaller estimation errors with respect to related techniques

benchmarked on the EuRoC datasets in [81].10 Moreover, the

proposed techniques, logDet and minEig, are able to ensure an

average error accumulation of 0.42% and 0.46%, respectively,

while using only 10 features!

To get a better intuition behind the large performance boost

induced by the proposed techniques, we report few snapshots

produced by our pipeline in Fig. 4. Each sub-figure shows, for

the current frame, the tracked features (green squares with the

optical flow vector), the available features (red crosses), and

the features selected (yellow circles) by (a) quality, (b) logDet,

and (c) minEig. The frames are captured during a sharp left turn

from the MH_03_medium dataset. The quality selector simply

picks the most distinguishable features, resulting in many

features selected on the right-hand side of the image; these

features are of scarce utility: they will soon disappear from

the field of view due to the motion of the MAV. On the other

hand, logDet and minEig are predictive and they leverage the

knowledge of the immediate motion of the platform; therefore

they tend to discard features that fall outside the field of view

and select features on the left-hand side of the image.

Results: Timing and Trade-offs. Fig. 5 reports the average

CPU time required by the VIN back-end for all techniques

and datasets. For the proposed techniques, the back-end time

includes both the CPU time spent on feature selection and the

time spent for estimation in VIN (factor graph optimization

with iSAM2). The figure shows that logDet is able to reduce

the back-end time by 30−40% in most scenarios, with respect

to no-selection; in particular, the average time for no-selection is

57ms while the average time for logDet is 35ms. The CPU time

of quality is even smaller, at the cost of degraded performance

(Fig. 3). Consistent with the Monte Carlo analysis, in our

current implementation logDet is faster than minEig, which

implies a back-end time larger than 100ms in our tests.

Fig. 6 provides a more detailed breakdown of the back-end

time for increasing number of selected features and for each of

the EuRoC datasets. The figure focuses on the logDet approach,

which currently has been already shown to be remarkably

faster than the minEig approach. The blue portion of each bar

reports the time spent on feature selection, while the red por-

tion corresponds to the time spent on factor graph optimization

10The interested reader can compare Fig. 2(a) in [81] with Fig. 3(c) in
the present paper, noting that we report errors as percentage of the distance
traveled and 10 out of 11 of the EuRoC datasets are less than 100m long [11];
furthermore, we notice that [81] reported systematic failures on 2 of the
datasets, while we are able to successfully complete all the datasets.
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Fig. 3. Accuracy for the compared techniques on the 11 EuRoC MAV datasets. (a) Relative translation error; (b) Relative improvement (relative translation
error reduction) of the proposed techniques with respect to the quality baseline; (c) Translation error as percentage of the overall trajectory length.

(a) quality (b) minEig (c) logDet

Fig. 4. Snapshots of the feature selection performed by the techniques quality, minEig, and logDet during a sharp left turn. Features tracked from previous
frames are shown as green squares (with the corresponding optical flow vectors), the newly detected features are shown as red crosses, and the selected
features are shown as yellow circles. We note that quality only selects the features from their appearance, and chooses many features on the right-hand side
of the frames: these features will soon fall out of the field of view due to the sharp turn.
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Fig. 5. CPU time for the back-end (including feature selection) for the
compared techniques on the EuRoC datasets.

in iSAM2; the sum of these two times corresponds to the

overall back-end time reported in Fig. 5. The figure compares

the timing results for the proposed approach versus no-selection

for increasing number of selected features (in all cases, no-

selection retains all the tracked features). The figure provides

few useful insights. First, the computational advantage in using

the proposed attention mechanism is more noticeable when

the number of selected features is small. In particular, when

selecting 5-10 features we typically have a large computational

saving by using the proposed approach. However, when the

number of features approaches the overall number of available

measurements (100 in our tests), the computational advantage

can be negligible. This is due to the fact that our current

implementation of the feature selection is relatively slow and

indeed its computational cost is often comparable with the

cost of running iSAM2. In Section VI we discuss extensions

that have the potential of making the selection time negligible.

The second insight is that the computational advantage of the

proposed approach is more evident in easy datasets, while

in some of the difficult datasets (e.g., V12_med, V13_hard,

V22_med, V23_hard) the computational advantage becomes

marginal or inexistent. This mismatch results from the fact

that in the easy datasets the front-end is able to track many

features (typically all the features that we set as upper bound)

which implies that the no-selection approach requires more time

to perform estimation. In the more difficult scenarios, instead,

the front-end typically tracks less features hence resulting in

faster estimation (and degraded performance). Note that while

in the difficult scenarios the computational advantage of our

approach may be limited, the accuracy boost resulting from

our approach still suggests its use over quality.

Fig. 7 provides the computation/performance trade-off for

increasing number of features and for each of the EuRoC

datasets, using the logDet selector. The back-end time, shown

as a dashed red line, corresponds to the sum of the feature

selection time and the iSAM2 estimation time. As expected

the time increases with the number of selected features. The
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Fig. 6. CPU time breakdown for the logDet selector for increasing number of selected features and for each of the EuRoC datasets. The blue portion of
each bar reports the time spent on feature selection (Algorithm 1), while the red portion corresponds to the time spent on factor graph optimization in iSAM2;
the sum of these two times corresponds to the overall back-end time. The back-end time is compared against the CPU time required by no-selection, shown
as a dashed green line.
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Fig. 7. Performance/computation trade-off for the logDet selector for increasing number of selected features and for each of the EuRoC datasets. The
back-end time, shown as a dashed red line, corresponds to the sum of the feature selection time and the iSAM2 estimation time. The figure also reports the
absolute translation error as a percentage of the trajectory traveled, shown as a solid blue line. Results are averaged over 5 runs performed on each dataset.

figure also reports the absolute translation error as a percentage

of the trajectory traveled, shown as a solid blue line. The error

typically decreases when increasing the number of selected

features. Results are averaged over 5 runs performed on each

dataset. The trade-off plots in Fig. 7 can be used to decide

the number of features to use to attain a desired level of

accuracy or given an upper bound on the time that can be

spent performing estimation at the back-end.

VI. CONCLUSION AND FUTURE WORK

This work provides an attention mechanism for visual-

inertial navigation. This mechanism takes the form of a feature

selector, which retains the most informative visual features

detected by the VIN front-end (pre-attentive process) and feeds

them to the estimation back-end. We proposed two algorithms

for feature selection. Both algorithms enjoy four desirable

qualities: they are predictive in nature, in that they are aware

of the motion of the robot in the immediate future; they are

task-driven, since they select a set of features that minimize

the VIN estimation error; they are greedy, hence efficient and

easy to implement; they come with performance guarantees

that bound their sub-optimality. We demonstrated our feature

selection extensively on both realistic Monte Carlo simulations

and real-world data collected by a micro aerial vehicle. The ex-

periments suggest that the feature selection seriously impacts

VIN performance; the use of the proposed techniques reduces

the estimation error in easy datasets, and enables accurate

estimation in difficult datasets in which standard approaches

would fail on a limited budget of visual features. This work

opens many avenues for future investigation.

Computational improvements. The first avenue for future

work consists in reducing the computational time of feature

selection. Two main ideas can make the feature selection

time negligible. The first stems from the observation that the

greedy algorithm is trivially parallelizable: the marginal gain

of each feature can be computed independently; leveraging

this fact alone would result in large computational savings.

The second idea is to use sparse matrix manipulation to

compute the determinant and the smallest eigenvalues; our

current implementation uses dense matrices. Another inter-

esting avenue consists in including a learning mechanism to

improve feature selection. A learning-based method may allow

capturing more complex sensory-motor dynamics and may

improve the feature selection over time, potentially adjusting

to changing environments and time-varying robot dynamics.



Task-driven perception. A second avenue for future work

consists in extending our attention framework. We plan to

explore two paths. First, while (1) minimizes the localization

uncertainty subject to a feature budget, one may also consider a

“dual” problem in which one minimizes the number of features

to be used, while satisfying a desired localization performance.

From the technical standpoint, this alternative formulation can

be tackled in a similar manner and in both cases greedy

algorithms have sub-optimality guarantees. This alternative

formulation would provide a grounded answer to the question:

how much visual information is needed to navigate at a

desired accuracy? The second avenue consists in extending

our attention framework to other tasks: for instance, how many

visual features does the robot need to sense in order to avoid

crashing into nearby obstacles? We believe these are necessary

steps towards a task-driven perception theory, that can enable

autonomy on robots with tight resource constraints.
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APPENDIX

A. Linear Imu Model

In this appendix we provide explicit expressions for the

matrices and vectors appearing in the IMU model (14).

Given the velocity vk and the position tk of the robot at

time k, we can get vk+1 and vk+1 by simple Euler integration

using the acceleration ak:

vk+1 = vk + akδ (38)

tk+1 = tk + vkδ +
1
2akδ

2 (39)

By induction, the velocity and position at time j > k are:

vj = vk +
∑j−1

i=k aiδ

tj = tk +
∑j−1

i=k viδ +
1
2

∑j−1
i=k aiδ

2

(substituting vi)

= tk +
∑j−1

i=k (vk +
∑i−1

h=k ahδ)δ +
1
2

∑j−1
i=k aiδ

2

(moving vk outside the sum)

= tk + (j−k)vkδ +
∑j−1

i=k

∑i−1
h=k ahδ

2

+ 1
2

∑j−1
i=k aiδ

2

(developing the double sum for i = k, . . . , j − 1

and noting that the summand i = k vanishes)

= tk + (j−k)vkδ

+ akδ
2

︸︷︷︸

i=k+1

+(ak + ak+1)δ
2

︸ ︷︷ ︸

i=k+2

(40)

+(ak + ak+1 + ak+2)δ
2

︸ ︷︷ ︸

i=k+3

+ . . . (41)

+(ak + ak+1 + . . .+ aj−2)δ
2)

︸ ︷︷ ︸

i=j−1

(42)

+ 1
2

∑j−1
i=k aiδ

2 (43)

Now we note that in the expanded sum in lines (40)-(42) the

term ak appears j−k−1 times, the term ak+1 appears j−k−2
times, and so on, till the term aj−2 which appears just once.

Therefore, we can write lines (40)-(42) succinctly as a single

sum, leading to:

tj = tk + (j−k)vkδ +
∑j−2

i=k (j−i−1)aiδ
2 + 1

2

∑j−1
i=k aiδ

2

(putting last two terms together)

= tk + (j−k)vkδ +
1
2aj−1δ

2 +
∑j−2

i=k (j−i− 1
2 )aiδ

2

(simplifying)

= tk + (j−k)vkδ +
∑j−1

i=k (j−i− 1
2 )aiδ

2

Defining δkj
.
= (j−k)δ and substituting ak from (10):

vj = vk +
∑j−1

i=k
(Ri(ãi−bk−ηi) + g) δ

= vk + gδkj − (
∑j−1

i=k
Riδ)bk +

∑j−1

i=k
Riãiδ

−
∑j−1

i=k
Riηiδ

tj = tk + vkδkj +
∑j−1

i=k
(j−i− 1

2
) (Ri(ãi−bk−ηi) + g) δ2

= tk + vkδkj +
∑j−1

i=k
(j−i− 1

2
)gδ2

−(
∑j−1

i=k
(j−i− 1

2
)Riδ

2)bk +
∑j−1

i=k
(j−i− 1

2
)Ri(ãi−ηi)δ

2

(44)

Let us now define the following vectors:

zv
kj

.
= gδkj +

∑j−1
i=k Riãiδ

ηv
kj

.
=

∑j−1
i=k Riηiδ

zt
kj

.
=

∑j−1
i=k (j−i− 1

2 )gδ
2

+
∑j−1

i=k (j−i− 1
2 )Riãiδ

2

ηt
kj

.
= +

∑j−1
i=k (j−i− 1

2 )Riηiδ
2 (45)

Using this notation we rewrite eq. (44) (putting position first)

and adding the random walk random model on the bias:

tj = tk + vkδkj −
(
∑j−1

i=k (j−i− 1
2 )Riδ

2)
)

bk + zt
kj − ηt

kj

vj = vk − (
∑j−1

i=k Riδ)bk + zv
kj − ηv

kj

bj = bk − ηb

kj (46)

In order to write (46) in compact matrix form, we define:

Nkj
.
=

∑j−1
i=k (j−i− 1

2 )Riδ
2 (47)

Mkj
.
=

∑j−1
i=k Riδ (48)

which allows rewriting (46) succinctly as:

zt
kj = tj − tk − vkδkj +Nkjbk + ηt

kj

zv
kj = vj − vk +Mkjbk + ηv

kj

zb

kj = bj − bk + ηb

kj (49)

where zb

kj = 03 is the expected change in the bias.

Let us now define the following matrices and vectors:

Akj =

[

−I3 −I3δkj Nkj

09×9 . . . 0 −I3 Mkj I9 09×9 . . .

0 0 −I3

]

z
IMU

kj =





zt

kj

zv

kj

zb

kj



 η
IMU

kj =





ηt

kj

ηv

kj

ηb

kj



 (50)



Using (50), we finally rewrite our model (49) as:

zIMU

kj = Akjxk:k+H + ηIMU

kj (51)

To fully characterize the linear measurement model (51) we

only have to compute the covariance of the noise ηIMU

kj , which

is given by:

cov(ηIMU

kj ) =

[
σ2

IMU
CCT 06×3

03×6 cov(ηb

kj)

]

(52)

where C includes the coefficient matrices of the noise in (46):

C =

[

(j−k− 1

2
)Rkδ

2 (j−k− 3

2
)Rk+1δ

2 . . . 1

2
Rj−1δ

2

Rkδ Rk+1δ . . . Rj−1δ

]

Using the fact that any rotation matrix satisfies RT

kRk = I3,
the matrix CCT can be computed simply as:

CCT =





(

∑j−1

i=k
(j−i− 1

2
)2
)

δ4I3

(

∑j−1

i=k
(j−i− 1

2
)
)

δ3I3
(

∑j−1

i=k
(j−i− 1

2
)
)

δ3I3 (j−k−1)δ2I3



 .

B. Proof of Proposition 1

The information matrix of the joint state (22) is additive

in the measurements, hence the information matrices of the

joint states [xk:k+H pl1 ] and [xk:k+H pl2 ] given the predicted

visual measurements to landmarks l1 and l2 can be respectively

written as:

Ω
(l1)
k:H =

k1∑

τ=k

Ω(l1)
τ Ω

(l2)
k:H =

k2∑

τ=k

Ω(l2)
τ (53)

where Ω
(l1)
τ (resp. Ω

(l2)
τ ) is the contribution to the information

matrix corresponding to the measurement of landmark 1 (resp.

2) at time τ . Since the proposition assumes that the future mea-

surements are identical, it follows
∑k1

τ=k Ω
(l1)
τ =

∑k1

τ=k Ω
(l2)
τ ;

this, combined with the fact that k2 > k1 implies:

Ω
(l2)
k:H = Ω

(l1)
k:H +

k2∑

τ=k1+1

Ω(l2)
τ � Ω

(l1)
k:H (54)

Now we only have to prove that the Schur complement

preserves the ordering Ω
(l2)
k:H � Ω

(l1)
k:H , since ∆l1 and ∆l2 are

simply the Schur complements of Ω
(l1)
k:H and Ω

(l2)
k:H , respec-

tively. For this purpose, we first observe that

Ω
(l2)
k:H � Ω

(l1)
k:H =⇒

(

Ω
(l2)
k:H

)−1

�
(

Ω
(l1)
k:H

)−1

(55)

Moreover, we make explicit the block structure of the two

matrices as follows:

Ω
(l1)
k:H

.
=

[
A1 B1

BT

1 C1

]

Ω
(l2)
k:H

.
=

[
A2 B2

BT

2 C2

]

(56)

where the upper-left blocks (A1 and A2) correspond to entries

of the information matrix associated to the states xk:k+H

and the bottom-right blocks (C1 and C2) correspond to the

landmark states we want to marginalize.

Now we note that using standard block inversion for the

block matrix Ω
(l1)
k:H we obtain:

(

Ω
(l1)
k:H

)−1

=

[
(A1 −B1C

−1
1 BT

1 )
−1 ⋆

⋆ ⋆

]

(57)

where we denoted with “⋆” blocks which are irrelevant for the

following derivation. Combining the inequality (55) with the

block inverse (57) we get:
[

(A2 −B2C
−1
2

BT

2 )
−1 ⋆

⋆ ⋆

]

�

[

(A1 −B1C
−1
1

BT

1 )
−1 ⋆

⋆ ⋆

]

(58)

Since diagonal blocks of positive semidefinite matrices are

also semidefinite, eq. (58) implies (A2 − B2C
−1
2 BT

2 )
−1 �

(A1 −B1C
−1
1 BT

1 )
−1 hence:

(A2 −B2C
−1
2 BT

2 ) � (A1 −B1C
−1
1 BT

1 ). (59)

Comparing the block structure in (56) with the description in

eqs. (22)-(23), we realize that (A1 −B1C
−1
1 BT

1 ) = ∆l1 and

(A2 − B2C
−1
2 BT

2 ) = ∆l2 hence (59) implies ∆l1 � ∆l2

concluding the proof.

C. Proof of Corollary 5

The proof relies on the inequality (31) for i chosen to be

the smallest eigenvalue. From the Weyl inequality [76], it

follows λj(M +∆) ≥ λmin(M), for all j. Using this fact, it

follows that the minimum in (31) is attained by λmin(M+∆).
Therefore, the inequality (31) becomes:

|λmin(M)− λmin(M +∆)|≤ ‖∆vmin‖ (60)

From the positive definiteness of M and ∆ (which implies

λmin(M) ≥ 0 and λmin(M + ∆) ≥ 0), and from the Weyl

inequality, it follows |λmin(M)−λmin(M+∆)|= λmin(M+
∆)− λmin(M), which substituted in (60) leads to (32).

D. Proof of Proposition 12

In order to show that the submodularity ratio (36) does not

vanish, we show that its numerator is bounded away from zero.

To do so, we consider a single summand in (36):

(a)
.
= f(L ∪ {e})− f(L) = λmin(ΩL +∆e)− λmin(ΩL) (61)

where ΩL
.
= Ω̄k:k+H+

∑

l∈L ∆l. Our task is to prove that (61)

is different from zero. To do so, we substitute the eigenvalue

with its definition through the Rayleigh quotient:

(a) = min‖µ‖=1 µ
T(ΩL +∆e)µ−min‖ν‖=1 ν

T(ΩL)ν
(calling µ̄ the minimizer of the first summand)

= µ̄T(ΩL +∆e)µ̄−min‖ν‖=1 ν
T(ΩL)ν

(since ν = µ̄ is suboptimal for the second summand)

≥ µ̄T(ΩL +∆e)µ̄− µ̄T(ΩL)µ̄
(simplifying and substituting the expression of ∆e from (23))

= µ̄T∆eµ̄ = µ̄TF T

e (I−Ee(E
T

e Ee)
−1ET

e )Feµ̄

(defining the idempotent matrix Qe
.
= (I−Ee(E

T

e Ee)
−1ET

e ))
= µ̄TF T

e QeFeµ̄ = µ̄TF T

e QeQeFeµ̄ = ‖QeFeµ̄‖2

Now we write Ee in terms of its 3× 3 blocks:

Ee =








Ee0

Ee1

...

EeH








(62)



Moreover, we recall that Fe has the following block structure:

Fe =








−Ee0 0 0 0 0 0 0 0 0 · · ·
0 0 0 −Ee1 0 0 0 0 0 · · ·
0 0 0 0 0 0 −Ee2 0 0 · · ·
...

...
...

...
...

...
...

...
...

. . .








where we noted that the nonzero blocks in Fe are the same

(up-to-sign) as the ones in Ee (c.f. the coefficient matrices

in (19)). It follows that Feµ̄ can be written explicitly as:

Feµ̄ =








−Ee0µ̄0

−Ee1µ̄1

...

−EeHµ̄H








(63)

Now we observe that Qe is an orthogonal projector onto the

null space of Ee, and the null space of Qe is spanned by the

columns of Ee. Therefore, any vector v that falls in the null

space of Qe can be written as a linear combination of the

columns of Ee:

Qev = 0 ⇔ v = Eew (64)

with w ∈ R
3. By comparison with (62), we note that Feµ̄

can be written as Eew if and only if µ̄1 = µ̄2 = . . . = µ̄H .

Therefore, if µ̄i 6= µ̄j for some i, j, then the vector Feµ̄

cannot be in the null space of Qe, and the lower bound (62)

must be greater than zero, concluding the proof.
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