
Attention and Long Short-Term Memory Network for Remaining
Useful Lifetime Predictions of Turbofan Engine Degradation

Paulo Roberto de Oliveira da Costa, Alp Akcay, Yingqian Zhang, and Uzay Kaymak

School of Industrial Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
p.r.d.oliveira.da.costa@tue.nl, a.e.akcay@tue.nl, yqzhang@tue.nl, u.kaymak@tue.nl

ABSTRACT

Machine Prognostics and Health Management (PHM) is of-
ten concerned with the prediction of the Remaining Useful
Lifetime (RUL) of assets. Accurate real-time RUL predic-
tions enable equipment health assessment and maintenance
planning. In this work, we propose a Long Short-Term Mem-
ory (LSTM) network combined with global Attention mech-
anisms to learn RUL relationships directly from time-series
sensor data. We use the NASA Commercial Modular Aero-
Propulsion System Simulation (C-MAPPS) datasets to assess
the performance of our proposed method. We compare our
approach with current state-of-the-art methods on the same
datasets and show that our results yield competitive results.
Moreover, our method does not require previous degradation
knowledge, and attention weights can be used to visualise
temporal relationships between inputs and predicted outputs.

1. INTRODUCTION

In machine Prognostics and Health Management (PHM), Re-
maining Useful Lifetime (RUL) relates to the amount of time
left before a piece of equipment cannot perform its intended
function. Accurate RUL prognostics enable the interested
parties to assess an equipment’s health status and to plan fu-
ture maintenance actions, e.g. logistics of personnel, spare
parts and services (Papakostas et al., 2010). In the PHM liter-
ature, Physics, Statistical and Machine Learning approaches
have been proposed to address the RUL prediction problem.
More recently, Machine Learning methods have attracted
more attention given their ability to learn without prior infor-
mation about the degradation mechanisms (Lei et al., 2018).

Machine Learning methods have been studied for RUL pre-
diction, with Neural Networks (NN) receiving much atten-
tion given their ability to approximate functions directly from
raw data. Recently, Deep NN methods have been proposed to
prognostics problems containing high amounts of temporal

Paulo R. de Oliveira da Costa et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution 3.0 United States Li-
cense, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

input data (da Costa et al., 2020). In particular, recent results
show that Long Short-Term Memory Networks (LSTM) (Lis-
tou Ellefsen et al., 2019) and Convolutional Neural Networks
(CNN) (Li et al., 2018) architectures have outperformed tradi-
tional prognostics algorithms in RUL predictions for turbofan
engine degradation data. Event though LSTMs have shown
strong performance on the RUL prediction task, the relation-
ships between inputs and outputs of LSTMs are not easy to
interpret. To address this issue, soft attention models (Luong
et al., 2015; Bahdanau et al., 2015), offer the promise of pro-
viding interpretability of trained weights while retaining the
predictive power of Deep Learning approaches.

In our proposed model, we demonstrate that when com-
bined with a variable-level attention mechanism, an LSTM
(Hochreiter & Schmidhuber, 1997) can offer transparency di-
rectly at the temporal relationship of input variables and out-
put RUL. We show the effectiveness of the proposed method
against other methods for the RUL prediction of aircraft en-
gines in the Commercial Modular Aero-Propulsion System
Simulation (C-MAPSS) datasets. The main contributions of
this work are summarised as follows:

• We learn an LSTM model directly from raw multidimen-
sional temporal data.

• We use a soft attention mechanism to provide visualisa-
tion of the learned attention weights at each RUL pre-
diction step. The learned weights provide more trans-
parency on the parts of the input important at each pre-
diction step.

• The proposed method achieves high-performance results
in several C-MAPPS datasets without incurring in unsu-
pervised pretraining.

The rest of this paper is organised as follows. In the next
section, we briefly discuss the state-of-the-art methods for
RUL prediction in the C-MAPPS datasets. In section 3, we
present our model detailing the learning algorithm and the ar-
chitecture of our proposed LSTM. In section 4, we present
the experimental setup and the selected hyperparameters of
our method. Finally, in section 5, we compare and contrast

International Journal of Prognostics and Health Management, ISSN2153-2648, 2019 034 1

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

the performance of proposed methods using our datasets and
provide analysis of the results.

2. RELATED WORK

In the prognostics literature, several artificial intelligence
methods have been proposed to predict the RUL of assets,
e.g. linear regression (He & Bechhoefer, 2008), Support Vec-
tor Regression (SVR) (Benkedjouh et al., 2013), fuzzy-logic
systems (Zio & Di Maio, 2010) and Neural Networks (Tian,
2012). Neural Networks have drawn much attention given
their ability to approximate complex functions directly from
raw data without information about real degradation (Huang
et al., 2007).

However, in many PHM applications, sequential temporal
data coming from sensors are the norm. Neural Networks
architectures such as Recurrent Neural Networks (RNN) are
a natural fit for such problems given that their recurrent in-
ternal structure can handle sequential input data. However,
due to vanishing gradients, RNNs have issues when learn-
ing long-term dependencies (Bengio et al., 1994). To address
these issues, Long Short-Term Memory (LSTM) (Hochre-
iter & Schmidhuber, 1997) and Gated Recurrent Unit (GRU)
(Cho et al., 2014) networks were introduced. Such networks
possess internal gates that control how information flow in
the network during learning. Gated architectures enable the
network to preserve its memory state over time and reduce
the vanishing gradient problem.

In PHM, Yuan et al. (2016) recently showed that LSTMs
could outperform RNNs, GRUs and Adaboost-LSTM in an
RUL prediction task. Zheng et al. (2017) showed that a se-
quence of LSTM layers followed by FFNNs could outper-
form other methods including CNNs in three distinct degra-
dation datasets. Wu et al. (2018) presented similar results
by extracting features based on a dynamic difference proce-
dure and later training an LSTM for RUL predictions. Results
showed that the LSTM also outperforms simpler RNNs and
GRU architectures under similar machinery conditions. More
recently, Listou Ellefsen et al. (2019) showed that Restricted
Boltzmann Machines could be used to extract useful weight
information by pretraining on degradation data in an unsuper-
vised manner. In this two-stage method, weights extracted in
the first step are then used in a further step to fine-tune a su-
pervised LSTM and FFNN model. A genetic algorithm (GA)
is used to select the best performing hyperparameters. The
methodology holds the state-of-the-art prediction results for
the C-MAPSS datasets, presenting it as an effective method
for temporal degradation data prediction.

CNNs are notable for being able to extract spatial informa-
tion from 2D and 3D data (Hossain et al., 2019). CNNs can
also handle 1D sequential data and extract high-level features
by combining convolution and max-pooling operations while
sliding a local receptive field over input features. In machine

prognostics, Babu et al. (2016) proposed a 2D deep CNN to
predict the RUL of a system based on normalised variate time
series from sensor signals; they show the effectiveness of the
CNN in comparison to Multi-Layer Perceptron (MLP), SVR
and Relevance Vector Regression (RVR). Li et al. (2018) pro-
posed to apply 1D convolutions in sequence without pooling
operations. The results show that the proposed architecture
can extract features useful for RUL prediction. They show
competitive results on the C-MAPPS dataset without incur-
ring in high training times encountered when training recur-
rent models.

Attention is a popular mechanism used in a wide range of
neural network architectures. It was originally introduced in
Natural Language Processing (NLP) for machine translation
tasks (Bahdanau et al., 2015), but has been successfully ap-
plied in other tasks, e.g. computer vision (Xu et al., 2015). In
such tasks, we often are interested in focusing the attention
of the learning network in parts of the inputs instead of the
whole input sequence. Besides performance gain, attention
mechanisms can also be used as a tool for interpreting the be-
haviour of neural architectures, by analysing the parts of the
input that the network learns to attend (Galassi et al., 2019).
Moreover, attention weights learned from data can be used to
visualise and investigate the relationship between inputs and
outputs of neural network architectures.

Recent results show that LSTMs and CNNs architectures
have outperformed traditional prognostics algorithms in RUL
predictions for turbofan engine degradation data. However,
CNNs do not maintain temporal information, and although
LSTMs can maintain temporal information on its hidden
states, they require unsupervised pretraining and consider-
able hyperparameter search to achieve state-of-the-art results
on unseen data. Thus, in this work, we propose an LSTM
architecture with attention mechanisms capable of learning
RUL degradation. We learn our model directly on the input
data without requiring feature engineering or unsupervised
pretraining method. Later, we visualise the learned attention
weights to interpret the behaviour of the network.

3. METHODOLOGY

In this section, we present our proposed LSTM method to
predict the RUL of aircraft engines simulated data. We first
introduce the problem and the notations and then further dis-
cuss the proposed method and its components.

3.1. Problem Definition

We denote our training data pairs as {xi,yi}Ni=1, containing
N training examples. Where xi denotes a multivariate time-
series input of length Ti and q features, i.e. {xi = (xit)

Ti
t=1} ∈

Rq×Ti . Moreover, yi denotes the RUL values of length Ti
where {yi = (yit)} ∈ RTi

≥0. Where for each t ∈ {1, 2, ..., Ti},
xit ∈ Rq and yit ∈ R≥0 represent the t-th measurement of

2

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

sensor inputs and RUL labels. We aim to learn a function
g such that we can approximate the corresponding RUL at
testing time directly from degradation data, i.e. ŷi ≈ g(xi).

3.2. Time Windows Processing

To allow temporal sequences influence the RUL prediction
at a point in time we apply a time window approach for
feature extraction. The sequential input is assumed to be
xi = (xit)

Ti
t=1 where Ti denotes the size of each sequence

length. We define a function φ that divides each sequence of
size Ti in sequential time windows of size Tw, i.e. φt(xi) =
(xit−Tw+1, ..., x

i
t). After the transformation, at time t all pre-

vious sensor data within the time window φt(x
i) are collected

to form a high-dimensional input vector used to predict yit+1.
Thus, after the transformation each original time series will
have ni = Ti − Tw training samples.

3.3. Long Short-Term Neural Networks

LSTMs have recurrent connections capable of learning the
temporal dynamics of sensor data in prognostics scenarios.
Moreover, they control how information flows within the
LSTM cells by updating a series of gates capable of learn-
ing long-term relationships in the input data.

In our LSTM implementation, the memory cell (Figure 1)
consists of three non-linear gating units that update a cell state
Ct ∈ Rl, using a hidden state vector ht−1 ∈ Rl and inputs
xit ∈ Rq , where l is the dimension of the LSTM hidden state
and q the input dimension:

ft = σ
(
Wfx

i
t +Rfht−1 + bf

)
(1)

it = σ
(
Wix

i
t +Riht−1 + bi

)
(2)

ot = σ
(
Wox

i
t +Roht−1 + bo

)
(3)

where σ is a sigmoid activation function responsible for
squeezing the output to the 0-1 range, Wg ∈ Rl×q are the
input weight matrices, Rg ∈ Rl×l are the recurrent weight
matrices, and bg ∈ Rl are bias vectors. Where the subscript g
can either be the forget gate f , input gate i or the output gate
o, depending on the activation being calculated.

After computing ft, it and ot ∈ Rl, the new cell state C̃t

candidate is computed as follows:

C̃t = tanh
(
WCx

i
t +RCht−1 + bC

)
(4)

where, tanh represents the hyperbolic tangent function and
similar to the gate operations: WC ∈ Rl×q , RC ∈ Rl×l, and
bC ∈ Rl.

The previous cell state Ct−1 is then updated to the new cell
state Ct:

Ct = ft ⊗ Ct−1 + it ⊗ C̃t (5)

where ⊗ denotes the element-wise multiplication.

In other words, in the previous equations, the forget gate ft
is responsible for deciding which information will be thrown
away from the cell state. Next, the input gate it decides which
states will be updated from a candidate cell state. The input
and forget gates are then used to update a new cell state for
the next time step.

Lastly, the output gate ot decides which information the cell
will output and new hidden state ht is computed by applying
a tanh function to the current cell state times the output gate
results.

ht = ot ⊗ tanh(Ct) (6)

3.4. Attention Mechanism

Our global attention mechanism is based on the implementa-
tion of Luong et al. (2015). At each time step t we take as
input the hidden states ht at the top layer of stacked LSTM
layers. After, we decide on a context vector ct that captures
relevant information about the next target yt+1.

Given the target hidden state ht and the context vector ct, we
use a concatenation layer to combine the information from
both vectors and learn Wc ∈ Rc×2l, via a Fully-Connected
layer of size c to produce an attention vector at of the form:

at = tanh(Wc[ct;ht]) (7)

Where the context vector ct is defined as:

ct =

t∑
j=1

αt,jhj (8)

In other words, we consider all the hidden states of the LSTM
encoder weighted by attention weights αt,j . In our imple-
mentation, the attention weights are derived by comparing
the current hidden state ht with the complete sequence hid-
den states hj , j = 1, .., t. Where the attention weights αt,j

are defined as:

αt,j =
exp(e(ht, hj))∑t
j=1 exp(e(ht, hj))

(9)

and e(ht, hj) is given by the multiplicative equation (Luong
et al., 2015):

e(ht, hj) = hTt Whj (10)

where W ∈ Rl×l. Thus, given attention weights αt,j the
context vector ct is computed as the weighted average over
all the hidden states and attention vectors at are passed to the
Fully-Connected (Dense) layers in the network.

3

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

Ct−1

xt

Ct

tanh

ht−1

ht

ht

σ σ

tanh

σ

ft

it

ot

tanh

xt−1

ht

σ σ

tanh

σ tanh

xt+1

ht

σ σ

tanh

σ

Figure 1. LSTM memory cell.

. . .LSTMLSTMLSTM LSTM

. . .LSTMLSTMLSTM LSTM

L
S

T
M

F
U

L
L

Y
 C

O
N

N
E

C
T

E
D

𝑡ℎ1 ℎ2 ℎ3𝛼𝑡,1 𝛼𝑡,2 𝛼𝑡,3

A
T

T
E

N
T

IO
N

𝑡+1

𝑎𝑡

𝑐𝑡

𝑊𝑐

CONTEXT VECTOR
𝛼𝑡,𝑡

Figure 2. LSTM Architecture with global attention. At each time
step t, the model infers a variable-length alignment weight vector at

based on the current target state ht and a context vector ct based on
all previously seen states.

3.5. Loss Function

During training, we aim at minimising a regression loss L us-
ing the observed RUL at time t and inputs between t−Tw +1
and t. The parameters of LSTM are optimised towards min-
imising a regression loss function Li for each training exam-
ple of weights θ in the network.

Li(θ) = ||ŷit+1 − yit+1||2 (11)

The losses for each batch of training examples are then av-
eraged. The loss function errors are passed to weights of the
networking using the Back-propagation Through Time (BTT)
algorithm. Lastly, weights are optimised using the Adam al-

gorithm (Kingma & Ba, 2015). The proposed architecture is
shown in Figure 2.

4. DESIGN OF EXPERIMENTS

In this section, we describe the experiments using the pro-
posed model to predict the RUL of turbofan engine degrada-
tion data. We describe the datasets used in the experiments
and the details about the implementation.

4.1. C-MAPPS Datasets

The proposed method is evaluated using the benchmark Com-
mercial Modular Aero-Propulsion System Simulation (C-
MAPPS) (Saxena et al., 2008) datasets containing turbofan
engine degradation data. The C-MAPPS datasets are com-
posed of four distinct datasets that contain information com-
ing from 21 sensors as well as 3 operational settings. Each of
the four datasets possesses several degradation engines split
into training and testing data. Moreover, the datasets contain
run-to-failure information collected under various operating
conditions and fault modes.

Engines in the datasets are considered to start with various
degrees of initial wear but are considered healthy at the start
of each record. As the number of cycles increases the en-
gines begin to deteriorate until they can no longer function.
Unlike the training datasets, the testing datasets contain tem-
poral data that terminates some time before a system failure.

The original prediction task is to predict the RUL of the test-
ing units using the training units (Saxena et al., 2008). The
details about the four datasets are given in Table 1. We refer
to the datasets as FD001, FD002, FD003 and FD004. The op-
erating conditions in the datasets vary between one (sea level)
in FD001 and FD003, to six, based on different combinations
of altitude (0 - 42000 feet), throttle resolver angle (20 - 100)
and Mach (0 - 0.84) in FD002 and FD004. Also, fault modes
vary between one (HPC degradation) in FD001 and FD002
and two (HPC degradation and Fan degradation) in FD003
and FD004.

4

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

Data FD001 FD002 FD003 FD004
Engines: Training (N) 100 260 100 249
Engines: Testing 100 259 100 248
Operating Conditions 1 6 1 6
Fault Modes 1 1 2 2

Table 1. The C-MAPPS datasets. Each dataset contains a number
of training engines (Engines: Training (N)) with run-to-failure in-
formation and a number of testing engines (Engines: Testing) with
information terminating before a failure is observed.

4.2. Data Preprocessing

The temporal input data coming from 21 sensor values and
3 operational settings are used across the experiments. We
note that for both FD001 and FD003 datasets, 7 sensor values
have constant readings and have little impact in predicting
target RUL values.

We normalise the input data and RUL values by scaling each
feature individually such that it is in the (0-1) range using the
min-max normalisation method:

x̄i,jt =
xi,jt −min(xj)

max(xj)−min(xj)
(12)

where xi,jt denotes the original i-th data point of the j-th input
feature at time t and xj the vector of all inputs of the j-th
feature.

In our datasets, RUL targets are only available at the last time
step for each engine in the test datasets. However, it is reason-
able to estimate the RUL as a constant value when the engines
operate in normal conditions (Heimes, 2008). Similar to the
works of Listou Ellefsen et al. (2019) and Lei et al. (2018), we
propose to use a piece-wise linear degradation model to de-
fine the correct RUL values in the training datasets. That is,
after an initial period with constant RUL values, we assume
that the RUL targets decrease linearly as the number of ob-
served cycles progresses. We denote as Re the initial period
in which the engines are still working in their desired condi-
tions. To allow comparison to previous works, a constant Re

of 125 cycles is selected in our experiments.

4.3. Performance Metrics

Similar to other prognostic studies using the same datasets,
we measure the performance of the proposed method of tar-
get datasets using two metrics. We propose to use the Root
Mean Squared Error (RMSE) as this can be directly related
to Eq. (11).

Moreover, we evaluate our model using a scoring function
shown in Eq. (13) proposed by Saxena et al. (2008):

s =

{∑n
i=1 e

− ci
a1 − 1, if ci < 0∑n

i=1 e
ci
a2 − 1, if ci ≥ 0

(13)

40 30 20 10 0 10 20 30 40
error

0

10

20

30

40

50

Pe
rfo

rm
an

ce
 M

et
ric

Scoring RMSE

Figure 3. Performance metrics plot. The Scoring performance met-
ric overpenalises positive errors of the RUL prediction.

where a1 = 13 and a2 = 10 and ci = ˆRULi−RULi (Saxena
et al., 2008). That is, ci is the difference between predicted
and observed RUL values. The scoring metric penalises pos-
itive errors more than negative errors as these have an impact
on RUL prognostics tasks as it can be seen in Figure 3.

4.4. Hyperparameter Analysis

To choose the network architecture for the C-MAPSS data,
we performed 10-fold cross validation to estimate the perfor-
mance of the models. We randomly split units in the original
training datasets into training and cross-validation (used for
stopping criteria) datasets containing 90% and 10% engines
of the original dataset. For example, for FD001, 90 engines
are selected for training and 10 for cross-validation.

Hyperparameter Range

Learning rate {0.001, 0.01, 0.1}
Batch size {256, 512, 1024}
Number of layers (LSTM, Dense) {1, 2}
Number of neurons (LSTM) {20, 32, 64, 100}
Number of neurons (Dense) {20, 30}
Number of neurons (Attention) {128}
L2 Regularisation {0.0, 0.01, 0.1}
Tw {15, 20, 30, 40}

Table 2. Hyperparameter values evaluated in the proposed method-
ology.

We present the most sensitive hyperparameters: number of
LSTM neurons, number of LSTM layers, size of time win-
dow Tw and batch size and report report the average RMSE
on the test datasets for each dataset in Figures 4-7. For
each hyperparameter test we start with a network of the
form LSTM(32) + DROPOUT(0.5) + RELU(DENSE(30))
+ DROPOUT(0.1) + RELU(DENSE(20)) + DENSE(1), and

5

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

proceed to perform grid-search on the individual parameters.
In our notation, a learning layer in the network is denoted
as ACTIVATION(LAYER(UNITS)), dropout (Srivastava et al.,
2014) layers as DROPOUT(RATE) and RELU represents the
Rectified Linear Unit Function. In our tests, the remaining
parameters of the model, i.e. size of Dense layers, L2 reg-
ularisation and dropout rate were chosen based on previous
architectures (Li et al., 2018; Listou Ellefsen et al., 2019) con-
sidering the values in Table 2. We train the network for 200
epochs using the Adam (Kingma & Ba, 2015) optimiser with
a learning rate of 0.001 and batch size of 256 and select Tw
equal to 30, 20, 30, 20 for FD001, FD002, FD003 and FD004
respectively.

Time Window In our experiments, the time window Tw was
the most sensitive hyperparameter. In the tests, we considered
values of Tw in {15, 20, 30, 40}. Results in Figure 4 show
that for FD001 and FD003 a Tw of 30 timesteps yields the
best performing scores, 14.0 and 13.4 respectively. For the
remaining two datasets, the lowest RMSE values are found
for a Tw of size 20. FD002 has its lowest RMSE at 17.4
and FD004 at 19.4. Moreover, a change in the time window
results in RMSE up to 28.4 for FD004 and 20.6 for FD002. It
should be noted that in the testing sets the shortest length for
datasets FD001, FD002, FD003, FD004 are 31, 21, 38 and
19. Thus, the Tw considered in these experiments takes into
account the shortest available length in the test datasets.

15 20 30 40
10.0

12.0

14.0

16.0

18.0

20.0

22.0

24.0

26.0

28.0

30.0
FD001
FD002
FD003
FD004

Time Steps

Figure 4. RMSE on the test datasets for different values of Tw.

Batch Size The batch size has also an important effect on the
trained model as it affects performance and training speed.
Results in Figure 5 show that increasing the batch size does
not lead to increased performance. In fact, on average, a
batch size of 256 results in the lowest RMSE values across
all datasets. Therefore, to allow for more stochastic moves
during gradient descent we select a batch size of 256 for our
final models.

Number of LTSM Neurons The number of neurons in the

256 512 1024
10.0

12.0

14.0

16.0

18.0

20.0

22.0

FD001
FD002
FD003
FD004

Batch Size

Figure 5. RMSE on the test data for different values of batch size.

LSTM layer has different results depending on the studied
dataset shown in Figure 6. For example, for FD004, 32
neurons results in the lowest RMSE at 19.5. However, the
variation in performance between 32, 64 and 100 neurons
is small.Since 100 neurons result in reasonable performance
across all four datasets, we select 100 neurons as the best per-
forming value.

20 32 64 100
8.0

10.0

12.0

14.0

16.0

18.0

20.0

22.0

FD001
FD002
FD003
FD004

Number of neurons (LSTM)

Figure 6. RMSE on the test data for different number of neurons in
the LSTM layer.

Number of LTSM Layers We test up to two LSTM layers
in the results in Figure 7. In our experiments, adding more
LSTM layers did not result in better performance. As we also
perform dropout, adding more layers only added more com-
putational burden without further performance gains. Hav-
ing just one layer containing 100 neurons resulted in the best
overall results across all datasets.

6

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

RMSE

Method FD001 FD002 FD003 FD004 Re

LSTM + FFNN (Zheng et al., 2017) 16.14 24.49 16.18 28.17 130
MODBNE (Zhang et al., 2017) 15.04 25.05 12.51 28.66 -
CNN + FFNN (Li et al., 2018) 12.61 22.36 12.64 23.31 125
GA + LSTM (Listou Ellefsen et al., 2019) 12.56 22.73 12.10 22.66 115-135
Proposed LSTM + FFNN (± StDev) 13.64 (± 0.80) 17.76 (± 0.43) 12.49 (± 0.29) 21.30 (± 1.06) 125
Proposed LSTM + A (± StDev) 13.95 (± 0.43) 17.65 (± 0.47) 12.72 (± 0.73) 20.21 (± 0.63) 125

Table 3. RMSE comparison between the proposed LSTM methods and other methods in the literature on the C-MAPPS datasets

[32] [32, 32] [64] [64, 64] [100] [100, 100]
10.0

12.0

14.0

16.0

18.0

20.0

22.0

FD001
FD002
FD003
FD004

Number of neurons (LSTM)

Figure 7. RMSE on the test data for different number of LSTM
layers and neurons.

4.5. Training Parameters

Based on the results obtained from the previous sec-
tion, we select the following architecture, LSTM(100) +
DROPOUT(0.5) + ATTENTION(128) + RELU(DENSE(30))
+ DROPOUT(0.1) + RELU(DENSE(20)) + DENSE(1). Sim-
ilar to our hyperparameter search, we split the data into train-
ing and cross-validation datasets containing 90% and 10% en-
gines of the original training dataset. To reduce the effect of
randomness we perform 10 experiments for each dataset and
average the results.

Moreover, the inputs and RUL outputs are normalised indi-
vidually according to Eq. (12) and the time window trans-
formation φt is applied. L2 regularisation is applied in the
weights θ in Eq. (11), while dropout layers are used after each
LSTM layer to control overfitting. We train the models for a
maximum of 200 epochs and select mini-batches of 256 sam-
ples for gradient updates. We stop training if no improvement
is seen for 20 epochs in the cross-validation dataset. We train
the network for 200 epochs using the Adam algorithm, clip-
ping the gradient norms to 1 and using a batch size of 256. We
select the learning rate of 0.001 based on grid-search after the
remaining architecture has been defined. Finally, we select
Tw equal to 30, 20, 30, 20 for training in FD001, FD002,

FD003 and FD004 respectively.

We evaluate our models using the C-MAPPS testing datasets,
where the goal is to predict the RUL of input sequences seem
up to a point before failure. For testing, each RUL label in the
testing datasets is provided. In our results, we use rectified
labels based on the value Re = 125 for training, validation
and testing. That is if RUL values are aboveRe they are set to
125. To be able to compare our model outputs to the rectified
RUL in the test datasets we multiply the outputs of our LSTM
model by Re to retrieve their original scale.

All our experiments are performed on an Intel Core i5 7th
generation processor with 16 GB RAM and a GeForce GTX
1070 Graphics Processing Unit. We implement the models
using the Python 3.6 programming language and the Keras
(Chollet et al., 2015) deep learning library with TensorFlow
(Abadi et al., 2015) backend.

5. RESULTS

In this section, we present and compare the results using the
proposed architecture against other methods in the literature.
We present the performance of our architecture using the
RMSE and scoring function. We also present the attention
activations to visualise time-related features used for RUL
prediction at each time step.

5.1. LSTM Performance

We implement two versions of the proposed architecture: one
containing the Attention layer (LSTM + A) and one without
Attention mechanism (LSTM + FFNN). We also present a
comparison of the models to the state-of-the-art results in the
C-MAPPS datasets for the RMSE and Scoring performance
metrics in Tables 3 and 4.

We compare our model to other Deep Learning architectures
applied to the same datasets. We compare to LSTM methods
proposed by Listou Ellefsen et al. (2019) (GA + LSTM) and
Zheng et al. (2017) as LSTM + FFNN as to test whether our
LSTM implementation can offer any gains over previously
implemented LSTM architectures. Our approach is similar
to the one proposed by Zheng et al. (2017), but here we do
not read an entire sequence of inputs to make an RUL esti-

7

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

Scoring Function

Method FD001 FD002 FD003 FD004 Re

LSTM + FFNN (Zheng et al., 2017) 338 4,450 852 5,550 130
MODBNE (Zhang et al., 2017) 334 5,585 422 6,558 -
CNN + FFNN (Li et al., 2018) 274 10,412 284 12,466 125
GA + LSTM (Listou Ellefsen et al., 2019) 231 3,366 251 2,840 115-135
Proposed LSTM + FFNN (± StDev) 300 (± 31) 1,638 (± 192) 267 (± 42) 2,904 (± 979) 125
Proposed LSTM + A (± StDev) 320 (± 30) 2,102 (± 250) 223 (± 17) 3,100 (± 576) 125

Table 4. Scoring function comparison between the proposed LSTM methods and other methods in the literature on the C-MAPPS datasets

mation for each time step in the input sequence, i.e. while
predicting for time the next time step t + 1 we learn hid-
den vectors over a sequence size Tw until time t. Moreover,
different from the previously proposed LSTM model we do
not perform pre-clustering of operating conditions in datasets
FD002 and FD004 nor perform unsupervised pretraining as
reported in Listou Ellefsen et al. (2019). We also compare to
the Convolutional Neural Network (CNN + FFNN) method-
ology proposed by Li et al. (2018) and the Multiobjective
Deep Belief Networks Ensemble (MODBNE) proposed by
Zhang et al. (2017) which presented high-performance results
in the datasets.

In Table 3, we present the performance results of the proposed
model using the RMSE performance function. As it can be
seen from the results, our model achieves lower RMSE values
for datasets FD002 and FD004. Thus, our proposed method
can yield better performance on datasets with more operat-
ing conditions. Our model results in 21% (FD002) and 11%
(FD004) relative improvement over the previously reported
RMSE. For the remaining datasets, our models are compara-
ble in performance with the ones reported by Listou Ellefsen
et al. (2019) (GA + LSTM), resulting in 8% (FD001) and 3%
(FD003) performance reduction. We point out that unlike the
GA + LSTM method we do not use heuristic search to select
the best performing hyperparameters or incur in unsupervised
pretraining of the network weights.

We compare our models in more detail with LSTM + FFNN
and GA + LSTM. In the first, the architecture proposed is sim-
ilar to our model, however, several differences are present. In
our implementation, we do not pre-cluster the operating con-
ditions on datasets FD002 and FD004. Moreover, we use a
ReLU activation function in the network, which matches the
input range of our normalised sensors. Moreover, as seen in
Section 4.4, tuning the time-window size leads to the most
improvement in our experiments. When compared to GA +
LSTM, our method differs on the lack of pretraining of the
network and in the overall final architecture, including acti-
vation functions. Furthermore, we use a much smaller time
window for training. Lastly, different from both methods, we
normalise both inputs and outputs to the 0-1 range, which
helps to stabilise learning. After weight optimisation, the out-

put is multiplied by Re to recover the original (rectified) val-
ues and compared to RUL values from the test datasets also
rectified by Re. As shown in Tables 3 and 4, the rectified
RUL values are similar to other others in the literature and
match the ones proposed in Li et al. (2018).

The modifications on the architecture result in higher per-
formance gains for FD002 and FD004 in comparison to the
other datasets. In our experiments, we have noted that in-
cluding the raw operating conditions features in the model,
selecting the correct time-window for propagating gradients
in the network and increasing the number of hidden neurons
in the LSTM layers led to the most benefits for these datasets.
Different from previous approaches, using non-clustered op-
erational settings leads to better predictions in our proposed
architecture. Moreover, increasing the number of hidden neu-
rons increases the capacity of the Neural Network of extract-
ing more complex features found in the input sequences of
FD002 and FD004. We argue that this modification also im-
proves performance in the attentional model as the attention
mechanism can attend to a larger and more diverse hidden
representation of the input space before a prediction.

Similarly, in Table 4, our methods can achieve much lower
scoring values for dataset FD002 yielding a 52% relative im-
provement over the best-reported results. Here, the benefits
come from the network being able to reduce late RUL pre-
dictions. In our tests, the average observed rectified RUL
of FD002 is 73.69 while the predictions coming from our
method average at 71.34. These results do not necessar-
ily translate in the same magnitude to the RMSE results as
the RMSE metric weighs both positive and negative errors
equally. As presented in Section 4.4, the choice of hyperpa-
rameters, in particular, the time window size and number of
neurons in the LSTM layers translate to the highest perfor-
mance gain in our method. For the remaining datasets, our
methods present similar performance to previously proposed
methods.

5.2. Attention Weights

In our experiments, the model combined with an attention
layer has achieved similar performance to the models contain-

8

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

30 28 26 24 22 20 18 16 14 12 10 8 6 4 2
Time Window

100
95
90
85
80
75
70
65
60
55
50
45
40
35
30
25
20
15
10
5

Ti
m

e
St

ep
 (C

yc
le

s)

0.000

0.015

0.030

0.045

0.060

0.075

(a) FD001

20 18 16 14 12 10 8 6 4 2
Time Window

100
95
90
85
80
75
70
65
60
55
50
45
40
35
30
25
20
15
10
5

Ti
m

e
St

ep
 (C

yc
le

s)

0.000

0.015

0.030

0.045

0.060

0.075

(b) FD002

30 28 26 24 22 20 18 16 14 12 10 8 6 4 2
Time Window

100
95
90
85
80
75
70
65
60
55
50
45
40
35
30
25
20
15
10
5

Ti
m

e
St

ep
 (C

yc
le

s)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

(c) FD003

20 18 16 14 12 10 8 6 4 2
Time Window

100
95
90
85
80
75
70
65
60
55
50
45
40
35
30
25
20
15
10
5

Ti
m

e
St

ep
 (C

yc
le

s)

0.000

0.015

0.030

0.045

0.060

0.075

(d) FD004

Figure 8. Average attention weights starting 100 time steps before a failure for cross-validation examples in each dataset.

30 28 26 24 22 20 18 16 14 12 10 8 6 4 2
Time Window

100
95
90
85
80
75
70
65
60
55
50
45
40
35
30
25
20
15
10
5

Ti
m

e
St

ep
 (C

yc
le

s)

0.000

0.015

0.030

0.045

0.060

0.075

(a) FD001

20 18 16 14 12 10 8 6 4 2
Time Window

100
95
90
85
80
75
70
65
60
55
50
45
40
35
30
25
20
15
10
5

Ti
m

e
St

ep
 (C

yc
le

s)

0.000

0.015

0.030

0.045

0.060

0.075

(b) FD002

30 28 26 24 22 20 18 16 14 12 10 8 6 4 2
Time Window

100
95
90
85
80
75
70
65
60
55
50
45
40
35
30
25
20
15
10
5

Ti
m

e
St

ep
 (C

yc
le

s)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

(c) FD003

20 18 16 14 12 10 8 6 4 2
Time Window

100
95
90
85
80
75
70
65
60
55
50
45
40
35
30
25
20
15
10
5

Ti
m

e
St

ep
 (C

yc
le

s)

0.000

0.015

0.030

0.045

0.060

0.075

(d) FD004

Figure 9. Standard deviation of attention weights starting 100 time steps before a failure for cross-validation examples in each dataset.

0 20 40 60 80 100 120
Time Steps (Cycles)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Se
ns

or
 V

al
ue

s

s11
s4

s7
s8

(a) Sensor values over time.

30 28 26 24 22 20 18 16 14 12 10 8 6 4 2
Time Window

120
115
110
105
100
95
90
85
80
75
70
65
60
55
50
45
40
35
30
25
20
15
10
5

Ti
m

e
St

ep
 (C

yc
le

s)

0.000

0.015

0.030

0.045

0.060

0.075

(b) Attention weights at each time step.

0 20 40 60 80 100 120
Time Steps (Cycles)

0

20

40

60

80

100

120

Re
m

ai
ni

ng
 U

se
fu

l L
ife

tim
e

(R
UL

)

Predicted RUL
Observed RUL

(c) Predicted RUL using LSTM + A and Ob-
served RUL targets.

Figure 10. Sensor values, attention weights and Remaining Useful Lifetime predictions for example ID 8 in FD001.

0 25 50 75 100 125 150 175 200
Time Steps (Cycles)

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns

or
 V

al
ue

s

s2
s8

s10
s14

(a) Sensor values over time.

20 18 16 14 12 10 8 6 4 2
Time Window

200
190
180
170
160
150
140
130
120
110
100
90
80
70
60
50
40
30
20
10

Ti
m

e
St

ep
 (C

yc
le

s)

0.000

0.015

0.030

0.045

0.060

0.075

(b) Attention weights at each time step.

0 25 50 75 100 125 150 175 200
Time Steps (Cycles)

0

20

40

60

80

100

120

Re
m

ai
ni

ng
 U

se
fu

l L
ife

tim
e

(R
UL

)

Predicted RUL
Observed RUL

(c) Predicted RUL using LSTM + A and Ob-
served RUL targets.

Figure 11. Sensor values, attention weights and Remaining Useful Lifetime predictions for example ID 32 in FD004.

ing just LSTM and Fully-Connected layers. A small improve-
ment in RMSE can be achieved for FD004 and FD002. While
for the scoring function, the LSTM + A model only outper-
forms the original LSTM model for FD003 dataset. However,

the attention weights in Eq. (9) can be retrieved to look at the
importance the networks give to each time step of the context
vector. This can help us interpret which timestep the network
focus on to make the RUL predictions for the next time step.

9

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

It is important to notice that in our attention mechanism the
network has access to both a context vector and the last hid-
den state ht. This architecture choice has the effect of forcing
the network to attend to parts different from the last time step
before a prediction. Which we expect to be the most relevant
for the prediction at the next time step. As we present below,
this has a direct impact on the learned attention weights in our
experiments.

In Figures 8 and 9, we present the average and standard de-
viations of attention weights over cross-validation examples
starting 100 time steps before a failure. In the figures, the ver-
tical axis corresponds to a time step and the horizontal axis
represents the size of the sliding window, with the leftmost
side representing the farthest time step from the current RUL
prediction i.e. xit−Tw+1. In the figures, we observe that at the
start of the predictions the networks does not focus on spe-
cific parts of the inputs to make a prediction. However, as
time progresses and the predictions approach the end of life-
time attention is shifted to the either the first few time steps
of the prediction window or to the last timesteps (closer to
the prediction point). This is can be seen in more details for
FD001, in Figures 8(a) and 9(a), and for FD003 in Figures
8(c) and 9(c). On average, at the end of the lifetime, the at-
tention shifts towards the start of the time window but the
standard deviation values show that attention is also present
at the end of the sliding window due to their high values.

We also present two specific examples, one for FD001 in Fig-
ure 10 and one for FD004 in Figure 11. In the figures, we
present selected sensor values, the learned attention weights
and the RUL prediction at each time step for an example com-
ing from the respective datasets. In Figure 10, we observe
how attention weights shift towards the end of the time win-
dow as sensors start to show a degradation trend. This in-
dicates that the network can attend to important parts of the
input features for the RUL prediction. We also notice that the
learned attention weights are lower in the central part of the
time window as degradation occurs. As the trend and slope of
the curves are important for degradation estimation, the net-
work could have learned that as time passes it needs to focus
on how much the curve is changing in the given time win-
dow. In Figure 11, the sensors in Figure 11(a) present a more
erratic behaviour and sensor tend to show small changes of
slope over time. This effect is due to different operating con-
ditions in the given dataset. More importantly, the learned
attention weights in Figure 11(b) show that the network has
learned to focus its attention on similar parts of the input as
time progresses, only focusing at the beginning and end of
the time window as RUL approaches zero.

These results offer new insights as of how the time-related
features are used by the LSTM architecture while making
RUL predictions. For example, a network containing at-
tention mechanisms trained to identify faulty behaviour can

be used to visually inspect input sensor values as time pro-
gresses. As it is hard to visually inspect all incoming sensor
data, attention mechanisms could offer a visualisation method
for fault prognostics and identification. In such cases, a tem-
poral visual inspection would offer a visual representation as
to when faulty behaviour starts. Such, early warnings could
be used to present future failures in complex systems.

6. CONCLUSION

In this work, we proposed an LSTM architecture for RUL pre-
diction of turbofan degradation engines using the C-MAPPS
datasets. We proposed an architecture containing an atten-
tion mechanism that has been used to visualise the temporal
relationships between inputs and predicted RUL outputs.

Our results show that the proposed methodology is compet-
itive with other proposed methods in RUL predictions. We
show the effectiveness of the model in comparison to other
Deep Learning methods previously proposed for the same
data. Our attention weights show that the LSTM network fo-
cuses on different parts of the temporal input while making a
prediction depending on which part of the degradation cycle
considered. Results of the attention mechanism can be used
for better interpretability of Deep Learning approaches.

As limitations to the proposed method, we point out that our
approach does not offer temporal attention relationships for
each input variable separately. Such an approach could be
used to visually identify specific faulty components before
failure occurs. Moreover, other empirical results in differ-
ent PHM datasets are necessary to validate the methodol-
ogy to different use cases. Lastly, our attention mechanism
works over latent temporal features of the inputs, an extension
could incorporate other architectures that incorporate tempo-
ral self-attention mechanisms while requiring less computa-
tional power than LSTM networks.

ACKNOWLEDGMENTS

This work was supported by the “Netherlands Organisation
for Scientific Research” (NWO). Project: NWO Big data -
Real Time ICT for Logistics. Number: 628.009.012

REFERENCES

Abadi, M., et al. (2015). TensorFlow: Large-scale ma-
chine learning on heterogeneous systems. Retrieved from
https://www.tensorflow.org/

Babu, G. S., Zhao, P., & Li, X.-L. (2016). Deep convolu-
tional neural network based regression approach for esti-
mation of remaining useful life. In International Confer-
ence on Database Systems for Advanced Applications (pp.
214–228).

Bahdanau, D., Cho, K., & Bengio, Y. (2015). Neural machine

10

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

translation by jointly learning to align and translate. In Pro-
ceedings of the 3rd International Conference on Learning
Representations, ICLR 2015.

Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-
term dependencies with gradient descent is difficult. IEEE
Transactions on Neural Networks, 5(2), 157–166.

Benkedjouh, T., Medjaher, K., Zerhouni, N., & Rechak,
S. (2013). Remaining useful life estimation based on
nonlinear feature reduction and support vector regression.
Engineering Applications of Artificial Intelligence, 26(7),
1751–1760.

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D.,
Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning
phrase representations using rnn encoder–decoder for sta-
tistical machine translation. In Proceedings of the 2014
Conference on Empirical Methods in Natural Language
Processing (EMNLP) (pp. 1724–1734).

Chollet, F., et al. (2015). Keras. Retrieved from https://
keras.io

da Costa, P. R. d. O., Akçay, A., Zhang, Y., & Kaymak, U.
(2020). Remaining useful lifetime prediction via deep do-
main adaptation. Reliability Engineering & System Safety,
195, 106682.

Galassi, A., Lippi, M., & Torroni, P. (2019). Attention,
please! a critical review of neural attention models in natu-
ral language processing. arXiv preprint arXiv:1902.02181.

He, D., & Bechhoefer, E. (2008). Development and valida-
tion of bearing diagnostic and prognostic tools using hums
condition indicators. In 2008 IEEE Aerospace Conference
(p. 1-8).

Heimes, F. O. (2008). Recurrent neural networks for remain-
ing useful life estimation. In 2008 International Confer-
ence on Prognostics and Health Management (p. 1-6).

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term
memory. Neural computation, 9(8), 1735–1780.

Hossain, M., Sohel, F., Shiratuddin, M. F., & Laga, H. (2019).
A comprehensive survey of deep learning for image cap-
tioning. ACM Computing Surveys (CSUR), 51(6), 118.

Huang, R., Xi, L., Li, X., Liu, C. R., Qiu, H., & Lee, J.
(2007). Residual life predictions for ball bearings based
on self-organizing map and back propagation neural net-
work methods. Mechanical Systems and Signal Process-
ing, 21(1), 193–207.

Kingma, D. P., & Ba, J. (2015). Adam: A method for
stochastic optimization. In 3rd International Conference
on Learning Representations, ICLR 2015.

Lei, Y., Li, N., Guo, L., Li, N., Yan, T., & Lin, J. (2018).
Machinery health prognostics: A systematic review from
data acquisition to rul prediction. Mechanical Systems and
Signal Processing, 104, 799–834.

Li, X., Ding, Q., & Sun, J. Q. (2018). Remaining useful
life estimation in prognostics using deep convolution neu-
ral networks. Reliability Engineering and System Safety,
172, 1–11.

Listou Ellefsen, A., Bjørlykhaug, E., Æsøy, V., Ushakov, S.,
& Zhang, H. (2019). Remaining useful life predictions for
turbofan engine degradation using semi-supervised deep
architecture. Reliability Engineering & System Safety, 183,
240–251.

Luong, T., Pham, H., & Manning, C. D. (2015, Septem-
ber). Effective approaches to attention-based neural ma-
chine translation. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing
(pp. 1412–1421). Association for Computational Linguis-
tics.

Papakostas, N., Papachatzakis, P., Xanthakis, V., Mourtzis,
D., & Chryssolouris, G. (2010). An approach to oper-
ational aircraft maintenance planning. Decision Support
Systems, 48(4), 604–612.

Saxena, A., Goebel, K., Simon, D., & Eklund, N. (2008).
Damage propagation modeling for aircraft engine run-to-
failure simulation. In 2008 International Conference on
Prognostics and Health Management, PHM 2008 (pp. 1–
9).

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., &
Salakhutdinov, R. (2014). Dropout: a simple way to pre-
vent neural networks from overfitting. The Journal of Ma-
chine Learning Research, 15(1), 1929–1958.

Tian, Z. (2012). An artificial neural network method for re-
maining useful life prediction of equipment subject to con-
dition monitoring. Journal of Intelligent Manufacturing,
23(2), 227–237.

Wu, Y., Yuan, M., Dong, S., Lin, L., & Liu, Y. (2018). Neuro-
computing Remaining useful life estimation of engineered
systems using vanilla LSTM neural networks. Neurocom-
puting, 275, 167–179.

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudi-
nov, R., . . . Bengio, Y. (2015). Show, attend and tell:
Neural image caption generation with visual attention. In
International Conference on Machine Learning (pp. 2048–
2057).

Yuan, M., Wu, Y., & Lin, L. (2016). Fault diagnosis and
remaining useful life estimation of aero engine using lstm
neural network. In 2016 IEEE International Conference on
Aircraft Utility Systems (AUS) (p. 135-140).

Zhang, C., Lim, P., Qin, A., & Tan, K. C. (2017). Multiob-
jective deep belief networks ensemble for remaining useful
life estimation in prognostics. IEEE Transactions on Neu-
ral Networks and Learning systems, 28(10), 2306–2318.

Zheng, S., Ristovski, K., Farahat, A., & Gupta, C. (2017).
Long Short-Term Memory Network for Remaining Useful

11

INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

Life estimation. In 2017 IEEE International Conference on
Prognostics and Health Management, ICPHM 2017 (pp.
88–95).

Zio, E., & Di Maio, F. (2010). A data-driven fuzzy approach

for predicting the remaining useful life in dynamic failure
scenarios of a nuclear system. Reliability Engineering &
System Safety, 95(1), 49–57.

12

