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Abstract

Deep learning based methods have achieved remarkable
progress in action recognition. Existing works mainly focus
on designing novel deep architectures to achieve video repre-
sentations learning for action recognition. Most methods treat
sampled frames equally and average all the frame-level pre-
dictions at the testing stage. However, within a video, dis-
criminative actions may occur sparsely in a few frames and
most other frames are irrelevant to the ground truth and may
even lead to a wrong prediction. As a result, we think that
the strategy of selecting relevant frames would be a further
important key to enhance the existing deep learning based
action recognition. In this paper, we propose an attention-
aware sampling method for action recognition, which aims
to discard the irrelevant and misleading frames and preserve
the most discriminative frames. We formulate the process of
mining key frames from videos as a Markov decision pro-
cess and train the attention agent through deep reinforcement
learning without extra labels. The agent takes features and
predictions from the baseline model as input and generates
importance scores for all frames. Moreover, our approach is
extensible, which can be applied to different existing deep
learning based action recognition models. We achieve very
competitive action recognition performance on two widely
used action recognition datasets.

Introduction
Action recognition has drawn a large amount of atten-
tion due to its potential in practical applications like video
surveillance and behavior analysis. Since deep learning
has achieved great success in the task of object recog-
nition with competitive performance achieved on Ima-
geNet (Krizhevsky, Sutskever, and Hinton 2012), recent
works have focused on learning deep representations from
a large number of labeled video data. These works can be
mainly divided into the following categories: two-stream
based methods (Simonyan and Zisserman 2014; Wang et
al. 2016; Diba, Sharma, and Van Gool 2017; Feichtenhofer,
Pinz, and Wildes 2017; Du et al. 2018), Recurrent Neural
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Figure 1: Flow-chart of our proposed method for action
recognition. Each stream takes a sequence of frames or op-
tical flow stacks as input. Then, a agent trained by deep
reinforcement learning generates importance scores for all
frames, which finds the attentions of the video for recogni-
tion.

Networks based methods (Donahue et al. 2015), 3D Con-
vNets based methods (Tran et al. 2015) and their combi-
nations (Yue-Hei Ng et al. 2015; Carreira and Zisserman
2017). Among these works, two-stream based methods play
the most important role because they can exploit informa-
tion from video data efficiently. To test a video efficiently,
these methods first sample frames sparsely and uniformly
from the whole video. Then they perform recognition for
each frame and average all the frame-level predictions to ob-
tain the video-level prediction.

However, discriminative actions may occur sparsely in
a few frames and most other frames are irrelevant, which
may lead to a wrong video-level prediction. Most existing
two-stream based works treat every sampled frame equally
and pay little attention to the different importance of frames
at the testing stage. We think that the irrelevant frames,
which will bring in large proportion of noise, should be dis-
carded by hard attention. Motivated by this, we propose an
attention-aware sampling method (AS) to identify discrimi-
native frames and discard the irrelevant frames simultane-
ously. The agent in our method takes a sequence of fea-
tures and predictions from the baseline action recognition
model as input and outputs a sequence of probabilities for
each frame. Since hard attention model is non-differentiable,
which cannot be trained end-to-end with the whole network,
we apply deep reinforcement learning (DRL) to train the at-
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tention agent.
Our method owns the following advantages. The first ad-

vantage is that it needs no extra labels. The agent is trained
with a supervision reward guided by the classifier of the
baseline action recognition model, which means only video-
level labels are needed. Secondly, since our agent takes in-
formation from a trained baseline model as input, the agent
is independent from the training procedure of the baseline
model, which means our method is compatible to most exist-
ing two-stream based methods. Thirdly, our method is sim-
ple and can boost the performance of the baseline model ef-
fectively. The main contributions of this paper are summa-
rized as follows:
• We discover a novel problem for action recognition,

which is that irrelevant frames should be differentiated
and discarded during the testing stage.

• To address this issue, we propose an attention-aware sam-
pling method to select discriminative frames in videos,
where the agent is trained by DRL.

• We conduct experiments on two widely used benchmark
datasets to demonstrate the effectiveness of our method
and achieve competitive results.

Related Work
Deep learning based Action Recognition. Since it
achieved great success on ImageNet (Krizhevsky, Sutskever,
and Hinton 2012), deep learning has been widely used in ac-
tion recognition. These works can be mainly divided into the
following categories: two-stream-based (Simonyan and Zis-
serman 2014; Wang et al. 2016), LSTM-based (Donahue et
al. 2015), 3D ConvNets-based (Tran et al. 2015), and their
combination (Yue-Hei Ng et al. 2015; Carreira and Zisser-
man 2017). Karparthy et al. (Karpathy et al. 2014) first eval-
uated ConvNets on a large dataset, called Sports-1M. How-
ever, the deep model achieved lower performance than hand-
craft features (Wang and Schmid 2013) because it failed
to capture the complicated temporal information, although
they tried different fusion methods including early fusion,
late fusion and slow fusion. To overcome this problem, Si-
monyan et al. (Simonyan and Zisserman 2014) designed
the two-stream ConvNets composed of spatial and tempo-
ral ConvNets. The spatial and temporal networks take RGB
frames and stacked optical flow as input, respectively. The fi-
nal predictions are obtained by averaging the outputs of two
streams. Due to the great success of two-Stream ConNets,
many improved methods based on it have been proposed
and achieved state-of-the-art performances. Feichtenhofer et
al. (Feichtenhofer, Pinz, and Zisserman 2016) improved it
by changing the position and method of fusion. Zhang et
al. (Zhang et al. 2016) replaced optical flow with motion
vector due to the high computational cost of optical flow.
Feichtenhofer et al. (Feichtenhofer, Pinz, and Wildes 2016;
2017) applied Residual Networks in two-stream model and
injected residual connections between two streams, aiming
to achieve spatio-temporal interaction between two streams.
Zhu et al. (Zhu et al. 2016) proposed a key volume mining
deep framework to identify key volumes and conduct classi-
fication simultaneously. Wang et al. (Wang et al. 2016) mod-

eled long-term temporal structure by proposing a temporal
segment network using multiple clips sparsely sampled from
the whole video. In (Diba, Sharma, and Van Gool 2017),
Diba et al. proposed a temporal linear encoding layer to ag-
gregated frame-level information into video-level represen-
tation. Du et al. (Du et al. 2018) proposed an interaction-
aware spatio-temporal pyramid attention layer inspired by
PCA.

Most existing works focus on designing novel deep ar-
chitectures to model long-term temporal structure and learn
discriminative spatio-temporal features. However, they ig-
nore the different importance of frames and treat every frame
equally during the testing stage, which can hurt the final per-
formance. Therefore, we propose an attention-aware sam-
pling method to discard the irrelevant frames and preserve
the key frames.
Deep reinforcement learning. Reinforcement learning has
been originated from the understanding of humans’ decision
making process, which aims to enable the agent to decide
the behavior from its experiences. Unlike conventional su-
pervised machine learning method, reinforcement learning
is supervised through the reward signals of actions. Deep re-
inforcement learning is a combination of deep learning and
reinforcement learning, which has been applied in various
tasks in recent years. For example, Mnih et al. (Mnih et
al. 2013) combined reinforcement learning with CNN and
achieved the human-level performance in the Atari game.
Rao et al. (Rao, Lu, and Zhou 2017) applied DRL to face
recognition and Zhou et al. (Zhou and Qiao 2017) to video
summarization. More recently, it has been applied to track-
ing (Dong et al. 2018), segmentation (Han et al. 2018) and
person search (Chang et al. 2018).

However, little progress has been made in reinforcement
learning for action recognition. The process of selecting key
frames is a kind of hard attention mechanism in our method.
Considering that there are no labels for the key frames and
our hard attention model is non-differentiable, we formu-
late the process of mining key frames as a Markov descision
process and apply deep reinforcement learning to train the
attention model.

Method
The pipeline of our framework is shown in Figure 1. Our
attention-aware sampling framework is composed of two
parts: a baseline action recognition model and an attention
agent. The baseline model takes a sequence of frames as in-
put and generates features and frame-level predictions for
each frame, which are the inputs of the agent. The output of
the agent is a sequence of probabilities. At inference stage,
the probabilities are viewed as importance scores for each
frame and are used to pick the most discriminative frames.
We first introduce the baseline model as follows.

Baseline model
We build our architecture on one of the best two-steam mod-
els: Temporal Segment Networks (Wang et al. 2016). In
this work, the two streams are trained separately: the spa-
tial stream takes RGB frames as input to exploit appearance
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Figure 2: Process of training attention-aware sampling (AS) agent via deep reinforcement learning (spatial stream). The AS
agent receives state {st}Tt=1 and takes action {at}Tt=1 to select part of the video. The feedback reward is computed based on
the difference between the original video-level prediction p0 and the new prediciton p1.

information; the temporal stream takes stacks of optical flow
images as input to exploit motion information. The final pre-
diction is obtained by averaging the outputs of two streams.
For convenience, we take one stream for an example to il-
lustrate our method.

The classical action recognition framework is composed
of a feature extractor F (·) and a classifier CL(·). Given
a video V , first we sample T frames {v1, v2, ..., vT } with
equal temporal spacing between them. Then we obtain a se-
quence of features {sft }Tt=1 and predictions {srt}Tt=1 calcu-
lated by F (vt) and CL(sft ), respectively. We train the base-
line model with the standard categorical cross-entropy loss
and the parameters of the baseline model are fixed when
training the attention agent.

Attention-aware sampling
Discriminative actions may occur sparsely in a few frames.
Hence, not all frames in a video are helpful to recognition. It
is necessary to discard irrelevant frames to avoid the adverse
effect from them.

Attention models have been widely used in various com-
puter vision tasks. In our approach, we consider the process
of seeking the most discriminative frames as the process of
finding temporal attentions, which is formulated as a one-
step Markov decision process (MDP). Figure 2 provides a
sketch map of this process. The agent, interacting with an
environment which provides rewards and updates its state,
learns by maximizing the total expected reward to select the
frames, finally resulting in m most discriminative frames.

The state, agent, action and reward of the MDP are elabo-
rated below.

State. The state st contains two components: (sft , s
r
t ). sft

is the feature of frame vt extracted by F (vt) and srt is the
prediction calculated by the classifier CL(sft ). These two
components are essential and complementary because sft
provides visual content for the agent while srt indicates how
accurate the frame is.

Agent. The agent is a bidirectional long-short term mem-
ory network (BiLSTM) topped with a fully connected (FC)
layer. For a video with length T , the BiLSTM takes as input
the state {st}Tt=1 and produces corresponding hidden states
{ht}Tt=1. Each ht is the concatenation of the forward hidden
state hft and the backward hidden state hbt , which encapsu-
late the future information and the past information with a
strong emphasis on the parts surrounding the tth frame. The
FC layer that ends with the sigmoid function predicts for
each frame an action selection probability pat = σ(Wht).

Action. The action is the selection of each sampled
frame. We define 2 types of action as ‘discarding’ and ‘re-
maining’. As shown in Figure 2, the agent emits a vector
pa ∈ RT×1 for each video, where pat ∈ [0, 1] represents the
probability of choosing action ‘remaining’ for the tth frame.
More specifically, the FC layer of the agent outputs a prob-
ability pat for each frame vt, where a frame-selection action
at is sampled:

at ∼ Bernoulli(pat ), (1)

where at ∈ {0, 1} indicates whether the tth frame is selected
or not. The selected frames is defined as {srt |at = 1, t =
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1, 2, ..., T}.
Reward. The reward reflects how good the action taken

by the agent is with regard to the state s. We generate the
reward with the pre-trained classifier CL(·). We first define
the r0 reward as follows:

r0 = sgn(p1c − p0c), (2)

where c is the ground truth label of the video and pc rep-
resents the probability of predicting the video as class c. p0
represents the video-level prediction of all frames and p1 is
decided by the hard attention model:

p0 =

∑T
t=1 s

r
t

T
, p1 =

∑T
t=1 ats

r
t∑T

t=1 at
. (3)

The reward r0 takes value in {−1, 1}, reflecting the pre-
dicted possibility variation of the ground truth if the pre-
dicted action does not change after one iteration. Moreover,
if it changes, a strong stimulation of r = Ω is enforced when
it turns from incorrect to correct, and a strong punishment of
r = −Ω if the turning goes otherwise. We set Ω as 10 in the
paper. Thus, the final form of the reward R can be written
as:

R =

{
Ω , if stimulation
−Ω , if punishment
r0 , otherwise

(4)

Training with Policy Gradient
The goal of our attention-aware sampling agent is to learn
a policy function πθ with parameters θ by maximizing the
expected reward

J(θ) = Epθ(a1:T )[R], (5)

where pθ(a1:T ) denotes the probability distributions over
possible action sequences, and R is computed by Eq. 4.
As defined above, our action sets consists of the different
choices of selecting the frames. There are 2 actions for each
frame and the exponential size 2T is computationally infea-
sible for deep Q-learning. Thus, we employ the policy gra-
dient method.

Following the REINFORCE algorithm proposed by
Williams (Williams 1992), we can compute the derivative
of the expected reward J(θ) w.r.t. the parameters θ as

5θJ(θ) = Epθ(a1:T )[R

T∑
t=1

5θlog πθ(at|ht)], (6)

where at is the action taken by the agent for the frame vt
and ht is the hidden state from the BiLSTM.

Since Eq.6 involves the expectation over high-
dimensional action sequences, which is hard to compute
directly, we approximate the gradient by running the agent
for N episodes on the same video and then taking the
average gradient

5θJ(θ) ≈ 1

N

N∑
n=1

T∑
t=1

Rn 5θ log πθ(at|ht), (7)

where Rn is the reward computed at the nth episode.

Algorithm 1 Attention-aware sampling agent training
Input: Frames {vt} from training set {V }
Output: Parameters θ of the hard attention model

1: Initialize θ with random values
2: for i← 1, 2, ...,M do
3: Sample a sequence of T frames {vt}Tt=1 from

training set {V }
4: Compute features {sft }Tt=1 and predictions {srt}Tt=1
5: Get a video-level prediction p0
6: Compute probabilities {pat }Tt=1
7: for episode← 1, 2, ..., N do
8: Sample {at}Tt=1 from policy πθ
9: Get the new video-level prediction p1

10: Compute reward Rn
11: end for
12: Update θ with gradient5θJ(θ) and5θLsampling
13: Update the moving average of rewards b for the cor-

responding video
14: end for
15: return θ

Although the gradient in Eq.7 gives the direction of up-
dating θ, it may contain high variance which will make the
network hard to converge. Therefore, we normalize the re-
ward through subtracting the reward by a constant baseline
b, so the gradient becomes

5θJ(θ) ≈ 1

N

N∑
n=1

T∑
t=1

(Rn − b)5θ log πθ(at|ht), (8)

where b is simply computed as the moving average of re-
wards experenced so far for each video.

Besides the J(θ) term to maximize the expected reward,
we minimize the following term during training to help the
agent select m frames from the whole T frames when test-
ing,

Lsampling = β · || 1
T

T∑
t=1

pat −
m

T
||, (9)

where β is the hyperparameter that balances the weighting
and the best choice of m will be discussed in the Experi-
ments section.

The details of training the proposed attention-aware sam-
pling agent are summarized in Algorithm 1.

Inference
Given a sequence of T frames {vt}Tt=1 of a test video V ,
we first employ F (·) and CL(·) to compute their features
{sft }Tt=1 and recognition predictions {srt}Tt=1, and then we
apply a trained hard attention model π to predict the frame-
selection probabilities as importance scores. Finally, we se-
lect m frames according to the importance scores, which are
the temporal attentions of the testing video. The inference of
attention-aware sampling is summarized in Algorithm 2.

Discussion about the non-selected frames
In our attention-aware sampling method, the agent selects
the key frames to obtain a video-level prediction and dis-
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Algorithm 2 Attention-aware sampling agent testing
Input: Frames {vt} of testing video {V }
Output: Video-level prediction p1

1: Initialize θ from the trained attention model
2: Get features {sft }Tt=1 and predictions {srt}Tt=1
3: Compute probabilities {pat }Tt=1 through policy πθ
4: Sort the frames in descending order by probabilities
5: Select the first m frames
6: Get the video-level prediction p1
7: return p1

cards the irrelevant frames. To further demonstrate the ef-
fectiveness of our method, we preserve some information of
the irrelevant frames:

at ∈ {α, 1}, (10)

where α ∈ (0, 1) is a hyperparameter. Instead of discard-
ing the irrelevant frames, we set a small weight for them.
However, in our experiments, the performance is worse than
the pure hard attention model. We think that there are two
main reasons leading to this phenomenon. Firstly, the agent
in our attention model can discriminate key frames from ir-
relevant ones. Secondly, the irrelevant frames are not help-
ful to recognition, which should be discarded at the testing
stage.

Experiments
We conducted experiments on two widely used datasets
to evaluate our proposed attention-aware sampling method,
and compared it with state-of-the-art action recognition ap-
proaches. The following describes the details of the experi-
ments and results.

Datasets and Experiment Settings
Datasets. We evaluate our approach on two challeng-
ing action recognition datasets: UCF101 (Soomro, Zamir,
and Shah 2012) and HMDB51 (Kuehne et al. 2011). The
UCF101 dataset consists of 101 action classes with 13,320
video clips and provides videos with a fixed resolution of
320 × 240. We follow the provided evaluation protocol and
report the average accuracy over three splits. The HMDB51
dataset is a large collection of realistic videos from various
sources, such as movies and web videos. The dataset is com-
posed of 6,766 video clips from 51 action categories. We
also evaluate our approach using three training/testing splits
and report average accuracy over these splits.

Implementation Details. We first train the two streams
separately. We use the mini-batch stochastic gradient de-
scent algorithm to learn the baseline model parameters,
where the batch size is set to 128, weight decay set to
5 × 10−4 and momentum set to 0.9. We initialize network
weights with pre-trained models from ImageNet and Kinet-
ics. For the models pre-trained on ImageNet, our temporal
stream uses optical flow stack with L = 5 frames and is
trained with dropout 0.7. The learning rate is initialize as
0.001 and decreases to its 1

10 after 190 and 300 epochs. The

maximum epoch is set as 340. For the extraction of opti-
cal flow, we choose the TVL1 (Zach, Pock, and Bischof
2007) optical flow algorithm implemented in OpenCV with
CUDA. For spatial network, the learning rate is initialized
as 0.001 and decreases to its 1

10 after 30 and 60 epochs. The
whole training procedure stops at 80 epochs. During train-
ing, we use the same augmentations as (Wang et al. 2016).
The input RGB frames or optical flow frames are of size
256 × 340, and the width and height of cropped region are
randomly sampled from {256, 224, 192, 168}, which will be
resized to 224 × 224 for training. To train the models pre-
trained on Kinetics, the learning rate is initialize as 0.001
and decreases to its 1

10 after 10 and 20 epochs. The maxi-
mum epoch is set as 30 for both streams. We use Pytorch
to train our deep neural network, and specifically, 4 GTX
1080Ti GPUs are used for the parallel computing.

For the attention-aware sampling network, we use
Adam (Kingma and Ba 2014) as the optimization algorithm.
The learning rate is initialize as 10−5 and decreases to its 1

10
after 20 and 40 epochs. The whole training procedure stops
at 45 epochs. The weight decay and hyperparameter β are
set to 10−5 and 0.1, respectively.

Finally, we present our testing scheme for our method.
Following the testing scheme of the original two-stream
ConvNets (Simonyan and Zisserman 2014), we first sam-
ple 25 RGB frames or optical flow stacks from the videos.
Meanwhile, we crop 4 corners and 1 center, and their hor-
izontal flippings. Then our attention agent takes each 25-
volume as inputs to select m frames or optical flow stacks
and averagely aggregates predictions of 10×m regions to get
the video-level prediction for single stream. For the fusion of
spatial and temporal stream networks, we take a average of
them. The value of m is seleted from {4, 8, 12, 16, 20} and
m = 12 leads to the best performance according to our ex-
periments.

Ablation Study
We first compare our method with several baselines that dif-
fer in feature extraction. Then we analyze our method with
different experiment settings, including the input state st,
the weight α and the number of the frames we select from
T = 25 frames.

Performance evaluation of our approach with differ-
ent baselines. In this subsection, we verify the effective-
ness of our attention-aware sampling method. First we re-
implement original two-stream and TSN works whose net-
works are adapted from BN-inception. Besides, we compare
two different pre-trained models, which are pre-trained on
ImageNet and Kinetics, respectively. Different from Ima-
geNet, Kinetics is a very large benchmark dataset for ac-
tion recognition, which consists of approximately 300, 000
videos from 400 action categories. In testing, this baseline
averagely aggregates predictions of 25 × 10 (equal to the
number of volumes when doing 10 views testing at 25 tem-
poral locations) sampled volumes to get the video-level pre-
diction. However, discriminative actions may occur sparsely
in a video and 25 sampled frames probably contain some
irrelevant frames which may lead to a wrong prediction.
Therefore, we propose the attention-aware sampling (AS)
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method to select key frames and discard irrelevant frames.
For a fair comparison, we sample the same 250 volumes as
the input to our framework and our attention model selects
m× 10 volumes according to the state {st}Tt=1.

As shown in Table 1, the performance of pre-training on
Kinetics is much better than that of pre-training on ImageNet
(69.9%vs.75.8%), because a large amount of training data
on Kinetics can reduce the risk of over-fitting and help both
streams learn more robust features. Then it is shown that our
AS method can boost the recognition performance of models
pre-trained on ImageNet and Kinetics to 71.2% and 77.3%,
respectively. We also evaluate the performance of randomly
selecting frames and this brings worse recognition accuracy
(75.4%vs.75.8%) because this will discard key frames and
destroy the completeness of the action. The results demon-
strate the effectiveness of our AS method. The learned agent
is able to discriminate key frames from irrelevant frames and
seek different attentions of videos for the recognition.

TSN Kinetics Random AS Acc.
66.7

X 68.5*
X 69.9
X X 75.8
X X X 75.4

X 68.6
X X 71.2
X X X 77.3

Table 1: Two-stream accuracy(%) with different baseline
models on HMDB51 dataset (3 splits) when m = 12. The
line without X denotes the result of the two-Stream Con-
vNets (Simonyan and Zisserman 2014) with BN-inception
backbone. 68.5* is the result reported in (Wang et al. 2016)
and AS denotes our attention-aware sampling method.

Performance evaluation of our approach with differ-
ent state settings. In this subsection, we focus on the study
of the state which the agent take as input. sft is the output of
the feature extractor F (vt), which contains the visual con-
tent of frame vt. srt is the recognition output of the classifier
CL(sft ), which indicates how accurate the recognition out-
put is and how important the frame vt is to the recognition
of the video. Results on comparing the performance of dif-
ferent states are reported in Table 2. It is shown that srt can
help the agent learn a better policy (71.3%vs.72.2%).

Performance evaluation of our approach with dif-
ferent numbers of frames selected by the agent. The
attention-aware sampling method mines the key frames in
videos. Experimental results in Table 1 demonstrate that AS
method improves the performance. We tried different m in
our experiments, which is the number of frames the agent
selects given T sampled frames. A small m will increase
the risk of discarding key information while a large m will
increase the risk of introducing irrelevant noise. Therefore,
we need to find a balance between keeping important in-
formation and discarding irrelevant noise, which is decided
by m. Results in Table 3 show the influence of different

Method State HMDB51
Original —– 67.1
TSN —– 70.9

Original + AS sft 68.0

Original + AS sft , s
r
t 69.1

TSN + AS sft 71.3

TSN + AS sft , s
r
t 72.2

Table 2: The two-stream accuracy (%) with different state
settings on HMDB51 dataset(split1).

m. It is noted that m = 25 stands for the baseline and
means the agent selects all sampled frames. We observe that
m = 12 yields the best performance under 2 different se-
lection schemes. Besides, when m ≤ 16, the performance
of AS method is better than that of randomly sampling,
which also demonstrates that our agent can learn a good pol-
icy. However, AS method gets a worse performance when
m = 20. We believe that this is because the agent mix up
the key information and noise due to the loss Lsampling.

Then we will introduce and analyze the difference be-
tween the frame-based selection and region-based selec-
tion testing schemes in details. Given 250 (1 center, 4 cor-
ners and their flippings at 25 temporal locations) volumes
sampled from a testing video, we put each 25 volumes into
our framework and the agent outputs 25 importance scores.
Hence, we can get 250 importance scores from a video. Then
there are 2 selection schemes: frame-based selection and
region-based selection. The first one is that we average the
10 importance scores of the same frame and obtain 25 (equal
to 25 temporal locations) importance scores. Then we se-
lect m frames and aggregate the predictions of the m frames
(10m volumes) to get a video-level prediction. The second
one is that we selectm volumes from each 25 volumes of the
same region. Then we aggregate the predictions of the 10m
volumes. The difference between them is that region-based
selection may contain more temporal locations than frame-
based selection. Moreover, region-based selection performs
spatial attention slightly. Therefore, the best performance of
region-based selection is better than that of frame-based se-
lection (64.3% vs. 64.1%).

m Random Frame Region
4 61.5 63.3 63.6
8 62.7 63.4 63.7
12 63.1 64.1 64.3
16 63.1 63.8 63.7
20 63.6 63.3 63.3
25 63.5 63.5 63.5

Table 3: Accuracy (%) of the spatial stream of TSN (pre-
trained on Kinetics) with different m and selection schemes
on HMDB51 (split1). Frame means the frame-based selec-
tion and region means the region-based selection.

Influence of the non-selected frames. To analyze the in-
fluence of the frames discarded and further demonstrate the
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effectiveness of our method, we preserve some information
of the irrelevant frames and the results are summarized in
Table 4. We can see that the pure hard attention achieves the
best performance. We think that there are two main reasons
leading to this phenomenon. Firstly, the agent in our atten-
tion model can discriminate key frames from irrelevant ones.
Secondly, the irrelevant frames are not helpful to recogni-
tion, which should be discarded at the testing stage.

α 0 0.1 0.2 0.3
Acc. 71.24 71.00 71.15 70.94

Table 4: TSN (pre-trained on ImageNet) accuracy(%) with
different α.

Comparison with state-of-the-art results. After explor-
ing the experiment settings and analyzing the effect of
attention-aware sampling method, we compare our method
with state-of-the-art methods action recognition methods,
which are presented in Table 5. We see that among the two-
stream based methods without 3D convolutional kernels,
such as TLE (Diba, Sharma, and Van Gool 2017) (71.1%),
Spatiotemporal Pyramid (Wang et al. 2017) (68.9%) and
ISTPAN (Du et al. 2018) (70.7%), our method achieves
the best performance on the HMDB51 (71.2%) and out-
performs some methods with 3D convolutional kernels: ST-
ResNet (Feichtenhofer, Pinz, and Wildes 2016) and STM-
ResNet (Feichtenhofer, Pinz, and Wildes 2017). The reason
why the performance of I3D (Carreira and Zisserman 2017)
(80.2%) is better is that their method uses two 3D ConvNets
and takes 64 frames as the input when training, which leads
to a high temporal resolution and can capture fine-grained
temporal structure of actions. However, 3D ConvNets tend
to overfitting without a large amount of training data (Kinet-
ics) and the performance of our method is much better than
that of I3D with the models pre-trained on ImageNet (72.2%
vs. 66.4% on HMDB51 split1).

We also observe that the improvement of AS method on
UCF101 is lower than that on HMDB51 (0.4% vs. 1.3%).
We believe that videos in UCF101 are of higher quality than
those in HMDB51. Therefore, videos in UCF101 contain
less noise and it is harder for the agent to select the key
frames.

Conclusion
In this paper, we discover a novel problem for action recog-
nition, which is that irrelevant frames should be differenti-
ated and discarded during the testing stage. To address this
issue, we proposed a novel attention-aware sampling method
for action recognition to discard misleading frames and se-
lect discriminative frames simultaneously. We formulate the
process of mining the key frames of videos as a Markov de-
cision process and train the attention model through deep
reinforcement learning without extra labels. Moreover, our
approach is extensible, which can be applied to different ex-
isting deep learning based action recognition models. Our
method achieves very competitive performance of action
recogntion on widely used UCF101 and HMDB51 datasets.

Method UCF101 HMDB51
IDT(2013) 85.9 57.2
Two-Stream ConvNet(2014) 88.0 59.4
Two-Stream+LSTM (2015) 88.6 —
TDD (2015) 90.3 63.2
Two-stream Fusion (2016) 92.5 65.4
Key Volume Mining (2016) 93.1 63.3
TSN* (2 modalities) (2016) 94.0 68.5
TLE (2017) 95.6 71.1
Spatiotemporal Pyramid (2017) 94.6 68.9
ISTPAN (2018) 95.5 70.7
C3D (2015) 85.2 —
STM-ResNet (2017) 94.2 68.9
MF-Net + Kinetics (2018) 96.0 74.6
I3D + Kinetics (2017) 97.9 80.2
TSN 94.2 69.9
TSN + Kinetics 96.5 75.8
TSN + AS 94.6 71.2
TSN + AS + Kinetics 96.8 77.3

Table 5: Performance comparison with the state-of-the-art.
The first part contains methods without using 3D convolu-
tional kernels and methods of the second part benefit a lot
from 3D convolutional kernels.
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