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Abstract

Multiple instance learning (MIL) is a variation

of supervised learning where a single class la-

bel is assigned to a bag of instances. In this pa-

per, we state the MIL problem as learning the

Bernoulli distribution of the bag label where the

bag label probability is fully parameterized by

neural networks. Furthermore, we propose a neu-

ral network-based permutation-invariant aggre-

gation operator that corresponds to the attention

mechanism. Notably, an application of the pro-

posed attention-based operator provides insight

into the contribution of each instance to the bag

label. We show empirically that our approach

achieves comparable performance to the best MIL

methods on benchmark MIL datasets and it out-

performs other methods on a MNIST-based MIL

dataset and two real-life histopathology datasets

without sacrificing interpretability.

1. Introduction

In typical machine learning problems like image classifica-

tion it is assumed that an image clearly represents a category

(a class). However, in many real-life applications multi-

ple instances are observed and only a general statement of

the category is given. This scenario is called multiple in-

stance learning (MIL) (Dietterich et al., 1997; Maron &

Lozano-Pérez, 1998) or, learning from weakly annotated

data (Oquab et al., 2014). The problem of weakly annotated

data is especially apparent in medical imaging (Quellec

et al., 2017) (e.g., computational pathology, mammography

or CT lung screening) where an image is typically described

by a single label (benign/malignant) or a Region Of Interest

(ROI) is roughly given.

MIL deals with a bag of instances for which a single class

label is assigned. Hence, the main goal of MIL is to learn a
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model that predicts a bag label, e.g., a medical diagnosis. An

additional challenge is to discover key instances (Liu et al.,

2012), i.e., the instances that trigger the bag label. In the

medical domain the latter task is of great interest because of

legal issues1 and its usefulness in clinical practice. In order

to solve the primary task of a bag classification different

methods are proposed, such as utilizing similarities among

bags (Cheplygina et al., 2015b), embedding instances to

a compact low-dimensional representation that is further

fed to a bag-level classifier (Andrews et al., 2003; Chen

et al., 2006), and combining responses of an instance-level

classifier (Ramon & De Raedt, 2000; Raykar et al., 2008;

Zhang et al., 2006). Only the last approach is capable of

providing interpretable results. However, it was shown

that the instance level accuracy of such methods is low

(Kandemir & Hamprecht, 2015) and in general there is a

disagreement among MIL methods at the instance level

(Cheplygina et al., 2015a). These issues call into question

the usability of current MIL models for interpreting the final

decision.

In this paper, we propose a new method that aims at incorpo-

rating interpretability to the MIL approach and increasing its

flexibility. We formulate the MIL model using the Bernoulli

distribution for the bag label and train it by optimizing the

log-likelihood function. We show that the application of the

Fundamental Theorem of Symmetric Functions provides a

general procedure for modeling the bag label probability

(the bag score function) that consists of three steps: (i) a

transformation of instances to a low-dimensional embed-

ding, (ii) a permutation-invariant (symmetric) aggregation

function, and (iii) a final transformation to the bag prob-

ability. We propose to parameterize all transformations

using neural networks (i.e., a combination of convolutional

and fully-connected layers), which increases the flexibility

of the approach and allows to train the model in an end-

to-end manner by optimizing an unconstrained objective

function. Last but not least, we propose to replace widely-

used permutation-invariant operators such as the maximum

operator max and the mean operator mean by a trainable

weighted average where weights are given by a two-layered

neural network. The two-layered neural network corre-

1According to the European Union General Data Protection
Regulation (taking effect 2018), a user should have the right to
obtain an explanation of the decision reached.
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sponds to the attention mechanism (Bahdanau et al., 2014;

Raffel & Ellis, 2015). Notably, the attention weights allow

us to find key instances, which could be further used to high-

light possible ROIs. In the experiments we show that our

model is on a par with the best classical MIL methods on

common benchmark MIL datasets, and that it outperforms

other methods on a MNIST-based MIL problem as well as

two real-life histopathology image datasets. Moreover, in

the image datasets we provide empirical evidence that our

model can indicate key instances.

2. Methodology

2.1. Multiple instance learning (MIL)

Problem formulation In the classical (binary) supervised

learning problem one aims at finding a model that predicts

a value of a target variable, y ∈ {0, 1}, for a given in-

stance, x ∈ R
D. In the case of the MIL problem, how-

ever, instead of a single instance there is a bag of instances,

X = {x1, . . . ,xK}, that exhibit neither dependency nor

ordering among each other. We assume that K could vary

for different bags. There is also a single binary label Y asso-

ciated with the bag. Furthermore, we assume that individual

labels exist for the instances within a bag, i.e., y1, . . . , yK
and yk ∈ {0, 1}, for k = 1, . . . ,K, however, there is no

access to those labels and they remain unknown during train-

ing. We can re-write the assumptions of the MIL problem

in the following form:

Y =

{

0, iff
∑

k yk = 0,

1, otherwise.
(1)

These assumptions imply that a MIL model must be

permutation-invariant. Further, the two statements could

be re-formulated in a compact form using the maximum

operator:

Y = max
k

{yk}. (2)

Learning a model that tries to optimize an objective based

on the maximum over instance labels would be problematic

at least for two reasons. First, all gradient-based learning

methods would encounter issues with vanishing gradients.

Second, this formulation is suitable only when an instance-

level classifier is used.

In order to make the learning problem easier, we propose to

train a MIL model by optimizing the log-likelihood function

where the bag label is distributed according to the Bernoulli

distribution with the parameter θ(X) ∈ [0, 1], i.e., the prob-

ability of Y = 1 given the bag of instances X .

MIL approaches In the MIL setting the bag probability

θ(X) must be permutation-invariant since we assume nei-

ther ordering nor dependency of instances within a bag.

Therefore, the MIL problem can be considered in terms of

a specific form of the Fundamental Theorem of Symmetric

Functions with monomials given by the following theorem

(Zaheer et al., 2017):

Theorem 1. A scoring function for a set of instances X ,

S(X) ∈ R, is a symmetric function (i.e., permutation-

invariant to the elements in X), if and only if it can be

decomposed in the following form:

S(X) = g
(

∑

x∈X

f(x)
)

, (3)

where f and g are suitable transformations.

This theorem provides a general strategy for modeling the

bag probability using the decomposition given in (3). A

similar decomposition with max instead of sum is given by

the following theorem (Qi et al., 2017):

Theorem 2. For any ε > 0, a Hausdorff continuous sym-

metric function S(X) ∈ R can be arbitrarily approximated

by a function in the form g
(

maxx∈X f(x)
)

, where max is

the element-wise vector maximum operator and f and g are

continuous functions, that is:

|S(X)− g
(

max
x∈X

f(x)
)

| < ε. (4)

The difference between Theorems 1 and 2 is that the for-

mer is a universal decomposition while the latter provides

an arbitrary approximation. Nonetheless, they both formu-

late a general three-step approach for classifying a bag of

instances: (i) a transformation of instances using the func-

tion f , (ii) a combination of transformed instances using a

symmetric (permutation-invariant) function σ, (iii) a trans-

formation of combined instances transformed by f using a

function g. Finally, the expressiveness of the score function

relies on the choice of classes of functions for f and g.

In the MIL problem formulation the score function in

both theorems is the probability θ(X) and the permutation-

invariant function σ is referred to as the MIL pooling. The

choice of functions f , g and σ determines a specific ap-

proach to modeling the label probability. For a given MIL

operator there are two main MIL approaches:

(i) The instance-level approach: The transformation f is

an instance-level classifier that returns scores for each

instance. Then individual scores are aggregated by

MIL pooling to obtain θ(X). The function g is the

identity function.

(ii) The embedding-level approach: The function f maps

instances to a low-dimensional embedding. MIL pool-

ing is used to obtain a bag representation that is inde-

pendent of the number of instances in the bag. The

bag representation is further processed by a bag-level

classifier to provide θ(X).
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It is advocated in (Wang et al., 2016) that the latter approach

is preferable in terms of the bag level classification perfor-

mance. Since the individual labels are unknown, there is

a threat that the instance-level classifier might be trained

insufficiently and it introduces additional error to the final

prediction. The embedding-level approach determines a

joint representation of a bag and therefore it does not in-

troduce additional bias to the bag-level classifier. On the

other hand, the instance-level approach provides a score

that can be used to find key instances i.e., the instances that

trigger the bag label. Liu et al. (2012) were able to show

that a model that is successfully detecting key instances is

more likely to achieve better bag label predictions. We will

show how to modify the embedding-level approach to be

interpretable by using a new MIL pooling.

2.2. MIL with Neural Networks

In classical MIL problems it is assumed that instances are

represented by features that do not require further process-

ing, i.e., f is the identity. However, for some tasks like

image or text analysis additional steps of feature extrac-

tion are necessary. Additionally, Theorem 1 and 2 indi-

cate that for a flexible enough class of functions we can

model any permutation-invariant score function. Therefore,

we consider a class of transformations that are parameter-

ized by neural networks fψ(·) with parameters ψ that trans-

form the k-th instance into a low-dimensional embedding,

hk = fψ(xk), where hk ∈ H such that H = [0, 1] for the

instance-based approach and H = R
M for the embedding-

based approach.

Eventually, the parameter θ(X) is determined by a transfor-

mation gφ : HK → [0, 1]. In the instance-based approach

the transformation gφ is simply the identity, while in the

embedding-based approach it could be also parameterized

by a neural network with parameters φ. The former ap-

proach is depicted in Figure 6(a) and the latter in Figure

6(b) in the Appendix.

The idea of parameterizing all transformations using neural

networks is very appealing because the whole approach

can be arbitrarily flexible and it can be trained end-to-end

by backpropagation. The only restriction is that the MIL

pooling must be differentiable.

2.3. MIL pooling

The formulation of the MIL problem requires the MIL pool-

ing σ to be permutation-invariant. As shown in Theorem 1

and 2, there are two MIL pooling operators that ensure the

score function (i.e., the bag probability) to be a symmetric

function, namely, the maximum operator:

∀m=1,...,M : zm = max
k=1,...,K

{hkm}, (5)

and the mean operator:2

z =
1

K

K
∑

k=1

hk. (6)

In fact, other operators could be used such as, the convex

maximum operator (i.e., log-sum-exp) (Ramon & De Raedt,

2000), Integrated Segmentation and Recognition (Keeler

et al., 1991), noisy-or (Maron & Lozano-Pérez, 1998) and

noisy-and (Kraus et al., 2016). These MIL pooling operators

could replace max in Theorem 2 and proofs would follow

in a similar manner (see Supplementary in (Qi et al., 2017)

for a detailed proof for the maximum operator). All of these

operators are differentiable, hence, they could be easily used

as a MIL pooling layer in a deep neural network architecture.

2.4. Attention-based MIL pooling

All MIL pooling operators mentioned in the previous sec-

tion have a clear disadvantage, namely, they are pre-defined

and non-trainable. For instance, the max-operator could be

a good choice in the instance-based approach but it might

be inappropriate for the embedding-based approach. Sim-

ilarly, the mean operator is definitely a bad MIL pooling

to aggregate instance scores, although, it could succeed in

calculating the bag representation. Therefore, a flexible

and adaptive MIL pooling could potentially achieve better

results by adjusting to a task and data. Ideally, such MIL

pooling should also be interpretable, a trait that is missing

in all operators mentioned in Section 2.3.

Attention mechanism We propose to use a weighted av-

erage of instances (low-dimensional embeddings) where

weights are determined by a neural network. Additionally,

the weights must sum to 1 to be invariant to the size of a

bag. The weighted average fulfills the requirements of the

Theorem 1 where the weights together with the embeddings

are part of the f function. Let H = {h1, . . . ,hK} be a

bag of K embeddings, then we propose the following MIL

pooling:

z =

K
∑

k=1

akhk, (7)

where:

ak =
exp{w⊤ tanh

(

Vh
⊤
k

)

}
K
∑

j=1

exp{w⊤ tanh
(

Vh⊤
j

)

}

, (8)

where w ∈ R
L×1 and V ∈ R

L×M are parameters. More-

over, we utilize the hyperbolic tangent tanh(·) element-wise

non-linearity to include both negative and positive values

for proper gradient flow. The proposed construction allows

to discover (dis)similarities among instances.

2Notice that the weight 1
K

can be seen as a part of the f func-
tion.
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Interestingly, the proposed MIL pooling corresponds to a

version of the attention mechanism (Lin et al., 2017; Raffel

& Ellis, 2015). The main difference is that typically in the

attention mechanism all instances are sequentially depen-

dent while here we assume that all instances are indepen-

dent. Therefore, a naturally arising question is whether the

attention mechanism could work without sequential depen-

dencies among instances, and if it will not learn the mean
operator. We will address this issue in the experiments.

Gated attention mechanism Furthermore, we notice that

the tanh(·) non-linearity could be inefficient to learn com-

plex relations. Our concern follows from the fact that

tanh(x) is approximately linear for x ∈ [−1, 1], which

could limit the final expressiveness of learned relations

among instances. Therefore, we propose to additionally

use the gating mechanism (Dauphin et al., 2016) together

with tanh(·) non-linearity that yields:

ak =
exp{w⊤

(

tanh
(

Vh
⊤
k

)

⊙ sigm
(

Uh
⊤
k

))

}
K
∑

j=1

exp{w⊤
(

tanh
(

Vh⊤
j )⊙ sigm

(

Uh⊤
j

))

}

, (9)

where U ∈ R
L×M are parameters, ⊙ is an element-wise

multiplication and sigm(·) is the sigmoid non-linearity. The

gating mechanism introduces a learnable non-linearity that

potentially removes the troublesome linearity in tanh(·).

Flexibility In principle, the proposed attention-based MIL

pooling allows to assign different weights to instances

within a bag and hence the final representation of the bag

could be highly informative for the bag-level classifier. In

other words, it should be able to find key instances. More-

over, application of the attention-based MIL pooling to-

gether with the transformations f and g parameterized by

neural networks makes the whole model fully differentiable

and adaptive. These two facts make the proposed MIL pool-

ing a potentially very flexible operator that could model

an arbitrary permutation-invariant score function. The pro-

posed attention mechanism together with a deep MIL model

is depicted in Figure 6(c) in the Appendix.

Interpretability Ideally, in the case of a positive label

(Y = 1), high attention weights should be assigned to in-

stances that are likely to have label yk = 1 (key instances).

Namely, the attention mechanism allows to easily interpret

the provided decision in terms of instance-level labels. In

fact, the attention network does not provide scores as the

instance-based classifier does but it can be considered as a

proxy to that. The attention-based MIL pooling bridges the

instance-level approach and the embedding-level approach.

From the practical point of view, e.g., in the computational

pathology, it is desirable to provide ROIs together with the

final diagnosis to a doctor. Therefore, the attention mecha-

nism is potentially of great interest in practical applications.

3. Related work

MIL pooling Typically, MIL approaches utilize either the

mean pooling or the max pooling, while the latter is mostly

used (Feng & Zhou, 2017; Pinheiro & Collobert, 2015;

Zhu et al., 2017). Both operators are non-trainable which

potentially limits their applicability. There are MIL pooling

operators that contain global adaptive parameters, such as

noisy-and (Kraus et al., 2016), however, their flexibility is

restricted. We propose a fully trainable MIL pooling that

adapts to new instances.

MIL with neural networks In the classical work on MIL

it is assumed that instances are represented by precomputed

features and there is very little need to apply additional

feature extraction. Nevertheless, recent work on utilizing

fully-connected neural networks in MIL shows that it could

still be beneficial (Wang et al., 2016). Similarly, in computer

vision the idea of MIL combined with deep learning sig-

nificantly improves final accuracy (Oquab et al., 2014). In

this paper, we follow this line of research since it allows to

apply a flexible class of transformations that can be trained

end-to-end by backpropagation.

MIL and attention The attention mechanism is widely

used in deep learning for image captioning (Xu et al., 2015)

or text analysis (Bahdanau et al., 2014; Lin et al., 2017). In

the context of the MIL problem it has rarely been used and

only in a very limited form. In (Pappas & Popescu-Belis,

2014) an attention-based MIL was proposed but attention

weights were trained as parameters of an auxiliary linear

regression model. This idea was further expanded and the

linear regression model was replaced by a one-layer neural

network with single output (Pappas & Popescu-Belis, 2017).

The attention-based MIL operator was used very recently in

(Qi et al., 2017), however, the attention was calculated using

the dot product and it performed worse than the max opera-

tor. Here, we propose to use a two-layered neural network

to learn the MIL operator and we show that it outperforms

commonly used MIL pooling operators.

MIL for medical imaging The MIL seems to perfectly fit

medical imaging where processing a whole image consisting

of billions of pixels is computationally infeasible. Moreover,

in the medical domain it is very difficult to obtain pixel-level

annotations, that drastically reduces number of available

data. Therefore, it is tempting to divide a medical image

into smaller patches that could be further considered as a

bag with a single label (Quellec et al., 2017). This idea

attracts a great interest in the computational histopathology

where patches could correspond to cells that are believed to

indicate malignant changes (Sirinukunwattana et al., 2016).

Different MIL approaches were used for histopathology

data, such as, Gaussian processes (Kandemir et al., 2014;

2016) or a two-stage approach with neural networks and EM

algorithm to determine instance classes (Hou et al., 2016).
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Other applications of MIL methods in medical imaging are

mammography (nodule) classification (Zhu et al., 2017)

and microscopy cell detection (Kraus et al., 2016). In this

paper, we show that the proposed attention-based deep MIL

approach can be used not only to provide the final diagnosis

but also to indicate ROIs in a histopathology slide.

4. Experiments

In the experiments we aim at evaluating the proposed ap-

proach: a MIL model parameterized with neural networks

and a (gated) attention-based pooling layer (’Attention’

and ’Gated-Attention’). We evaluate our approach on a

number of different MIL datasets: five MIL benchmark

datasets (MUSK1, MUSK2, FOX, TIGER, ELEPHANT), an

MNIST-based image dataset (MNIST-BAGS) and two real-

life histopathology datasets (BREAST CANCER, COLON

CANCER). We want to verify two research questions in the

experiments: (i) whether our approach achieves the best per-

formance or is comparable to the best performing method,

(ii) if our method can provide interpretable results by using

the attention weights that indicate key instances or ROIs.

In order to obtain a fair comparison we use a common eval-

uation methodology, i.e., 10-fold-cross-validation, and five

repetitions per experiment. In the case of MNIST-BAGS we

use a fixed division into training and test set. In order to cre-

ate test bags we solely sampled images from the MNIST test

set. During training we only used images from the MNIST

training set. For all experiments we use modified versions

of models that have shown high classification performance

on the individual datasets (Wang et al., 2016; LeCun et al.,

1998; Sirinukunwattana et al., 2016). The MIL pooling lay-

ers are either located before the last layer of the model (the

embedded-based approach) or after last layer of the model

(the instance-based approach). If an attention-based MIL

pooling layer is used the number of parameters in V was

determined using a validation set. We tested the following

dimensions (L): 64, 128 and 256. The different dimensions

only resulted in minor changes of the model’s performance.

For layers using the gated attention mechanism V and U

have the same number of parameters. Finally, all layers

were initialized according to Glorot & Bengio (2010) and

biases were set to zero.

We compare our approach to various MIL methods on MIL

benchmark datasets. On the image datasets our method is

compared with instance-level and embedding-level neural

networks and commonly used MIL pooling layers (max and

mean). In the following, we are using ’Instance+max/mean’

and ’Embedding+max/mean’ to indicate networks that are

build from convolutional layers and fully-connected layers.

In contrast to networks purely build from fully-connected

layers, referred to as ’mi-Net’ and ’MI-Net’ (Wang et al.,

2016).

On MNIST-BAGS we include a SVM-based MIL model,

called (MI-SVM). We do not present results of MI-SVM

on the histopathology datasets since we could not train (in-

cluding hyperparameter search and five times 10-fold-cross-

validation procedure) the model in a reasonable amount of

time.3 In order to compare the bag level performance we use

the following metrics: the classification accuracy, precision,

recall, F-score, and the area under the receiver operating

characteristic curve (AUC).

4.1. Classical MIL datasets

Details In the first experiment we aim at verifying whether

our approach can compete with the best MIL methods on

historically important benchmark datasets. Since all five

datasets contain precomputed features and only a small num-

ber of instances and bags, neural networks are most likely

not well suited. First we predict drug activity (MUSK1 and

MUSK2). A molecule has the desired drug effect if and

only if one or more of its conformations bind to the target

binding site. Since molecules can adopt multiple shapes, a

bag is made up of shapes belonging to the same molecule

(Dietterich et al., 1997). The three remaining datasets, ELE-

PHANT, FOX and TIGER, contain features extracted from

images. Each bag consists of a set of segments of an image.

For each category, positive bags are images that contain

the animal of interest, and negative bags are images that

contain other animals (Andrews et al., 2003). For detailed

information on the number of bags, instances and features

in each dataset see Section 6.3 in the Appendix.

In our experiments we use the same architecture, optimizer

and hyperparameters as in the MI-Net model (Wang et al.,

2016).

Table 1. Results on classical MIL datasets. Experiments were run

5 times and an average of the classification accuracy (± a standard

error of a mean) is reported. [1] (Andrews et al., 2003), [2] (Gärtner

et al., 2002), [3] (Zhang & Goldman, 2002) [4] (Zhou et al., 2009)

[5] (Wei et al., 2017) [6] (Wang et al., 2016)

METHOD MUSK1 MUSK2 FOX TIGER ELEPHANT

mi-SVM [1] 0.874±N/A 0.836±N/A 0.582±N/A 0.784±N/A 0.822±N/A

MI-SVM [1] 0.779±N/A 0.843±N/A 0.578±N/A 0.840±N/A 0.843±N/A

MI-Kernel [2] 0.880±0.031 0.893±0.015 0.603±0.028 0.842±0.010 0.843±0.016

EM-DD [3] 0.849±0.044 0.869±0.048 0.609±0.045 0.730±0.043 0.771±0.043

mi-Graph [4] 0.889±0.033 0.903±0.039 0.620±0.044 0.860±0.037 0.869±0.035

miVLAD [5] 0.871±0.043 0.872±0.042 0.620±0.044 0.811±0.039 0.850±0.036

miFV [5] 0.909±0.040 0.884±0.042 0.621±0.049 0.813±0.037 0.852±0.036

mi-Net [6] 0.889±0.039 0.858±0.049 0.613±0.035 0.824±0.034 0.858±0.037

MI-Net [6] 0.887±0.041 0.859±0.046 0.622±0.038 0.830±0.032 0.862±0.034

MI-Net with DS [6] 0.894±0.042 0.874±0.043 0.630±0.037 0.845±0.039 0.872±0.032

MI-Net with RC [6] 0.898±0.043 0.873±0.044 0.619±0.047 0.836±0.037 0.857±0.040

Attention 0.892±0.040 0.858±0.048 0.615±0.043 0.839±0.022 0.868±0.022

Gated-Attention 0.900±0.050 0.863±0.042 0.603±0.029 0.845±0.018 0.857±0.027

Results and discussion The results of the experiment are

3Learning a single MI-SVM took approximately one week due
to the large number of patches.
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presented in Table 1. Our approaches (Attention and Gated-

Attention) are comparable with the best performing classical

MIL methods (notice the standard error of the mean).

4.2. MNIST-bags

Details The main disadvantage of the classical MIL bench-

mark datasets is that instances are represented by precom-

puted features. In order to consider a more challenging

scenario, we propose to investigate a dataset that is created

using the well-known MNIST image dataset. A bag is made

up of a random number of 28× 28 grayscale images taken

from the MNIST dataset. The number of images in a bag is

Gaussian-distributed and the closest integer value is taken.

A bag is given a positive label if it contains one or more

images with the label ’9’. We chose ’9’ since it can be easily

mistaken with ’7’ or ’4’. We investigate the influence of

the number of bags in the training set as well as the average

number of instances per bag on the prediction performance.

During evaluation we use a fixed number of 1000 test bags.

For all experiments a LeNet5 model is used (LeCun et al.,

1998), see Table 8 and 9 in the Appendix. The models are

trained with the Adam optimization algorithm (Kingma &

Ba, 2014). We keep the default parameters for β1 and β2,

see Table 10 in the Appendix. In addition, we compare our

method with a SVM-based MIL method (MI-SVM) (An-

drews et al., 2003) that uses a Gaussian kernel on raw pixel

features4.

In the experiments we use different numbers of the mean

bag size, namely, 10, 50 and 100, and the variance 2, 10, 20,

respectively. Moreover, we use varying numbers of training

bags, i.e., 50, 100, 150, 200, 300, 400, 500. These different

settings allow us to verify how different number of train-

ing bags and different number of instances influence MIL

models. We compare instance-based and embedding-based

approaches parameterized with a neural network (LeNet5)

with mean and max MIL pooling. We use AUC as the

evaluation metric.

Results and discussion The results of AUC for the mean

bag sizes equal to 10, 50 and 100 are presented in Figure 1,

2 and 3, respectively, and detailed results are given in the

Appendix. The findings of the experiment are the follow-

ing: First, the proposed attention-based deep MIL approach

performs much better than other methods in the small sam-

ple size regime. Moreover, when there is a small effective

size of the training set that corresponds to 50-150 bags for

around 10 instances per bag (see Figure 1) or 50-100 bags

in the case of on average 50 instances in a bag (see Figure

2), our method still achieves significantly higher AUC than

all other methods. Second, we notice that our approach

is more flexible and obtained better results than the SVM-

4We use code provided with (Doran & Ray, 2014): https:
//github.com/garydoranjr/misvm

Figure 1. The test AUC for MNIST-BAGS with on average 10
instances per bag.

Figure 2. The test AUC for MNIST-BAGS with on average 50
instances per bag.

Figure 3. The test AUC for MNIST-BAGS with on average 100
instances per bag.

https://github.com/garydoranjr/misvm
https://github.com/garydoranjr/misvm
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based approach in all cases except large effective sample

sizes (see Figure 3). Third, the embedding-based models

performed better than the instance-based models. However,

for a sufficient number of training images (number of train-

ing bags and training instances per bag) all models achieve

very similar results. Fourth, the mean operator performs

significantly worse than the max operator. However, the

embedding-based model with the mean operator converged

eventually to the best value but always later than the one

with max. See Section 6.4 in the Appendix for details.

The results of this experiment indicate that for a small-

sample size regime our approach is preferable to others.

Since attention serves as a gradient update filter during

backpropagation (Wang et al., 2017), instances with higher

weights will contribute more to learning the encoder network

of instances. This is especially important since medical

imaging problems contain only a small number of cases.

In general, the more instances are in a bag the easier the

MIL task becomes, since the MIL assumption states that

every instance in a negative bag is negative. For example, a

negative bag of size 100 from the MNIST-bags dataset will

include about 11 negative examples per class.

Finally, we present an exemplary result of the attention

mechanism in Figure 4. In this example a bag consists of 13
images. For each digit the corresponding attention weight is

given by the trained network. The bag is properly predicted

as positive and all nines are correctly highlighted. Hence,

the attention mechanism works as expected. More examples

are given in the Appendix.

a1=0.00002 a2=0.22608 a3=0.00001 a4=0.00008 a5=0.00001 a6=0.24766 a7=0.00008

a8=0.00002 a9=0.28002 a10=0.00006 a11=0.00006 a12=0.00009 a13=0.24581

Figure 4. Example of attention weights for a positive bag.

4.3. Histopathology datasets

Details An automatic detection of cancerous regions in

hematoxylin and eosin (H&E) stained whole-slide images

is a task with high clinical relevance. Current supervised ap-

proaches utilize pixel-level annotations (Litjens et al., 2017).

However, data preparation requires large amount of time

from pathologists which highly interferes with their daily

routines. Hence, a successful solution working with weak

labels would hold a great promise to reduce the workload

of the pathologists. In the following, we perform two exper-

iments on classifying weakly-labeled real-life histopathol-

ogy images of the breast cancer dataset (BREAST CANCER)

(Gelasca et al., 2008) and the colon cancer dataset (COLON

CANCER) (Sirinukunwattana et al., 2016).

BREAST CANCER consists of 58 weakly labeled 896× 768
H&E images. An image is labeled malignant if it contains

breast cancer cells, otherwise it is benign. We divide every

image into 32 × 32 patches. This results in 672 patches

per bag. A patch is discarded if it contains 75% or more of

white pixels.

COLON CANCER comprises 100 H&E images. The images

originate from a variety of tissue appearance from both nor-

mal and malignant regions. For every image the majority of

nuclei of each cell were marked. In total there are 22,444

nuclei with associated class label, i.e. epithelial, inflamma-

tory, fibroblast, and miscellaneous. A bag is composed of

27×27 patches. Furthermore, a bag is given a positive label

if it contains one or more nuclei from the epithelial class.

Tagging epithelial cells is highly relevant from a clinical

point of view, since colon cancer originates from epithelial

cells (Ricci-Vitiani et al., 2007).

For both datasets we use the model proposed in (Sirinukun-

wattana et al., 2016) for the transformation f . All models

are trained with the Adam optimization algorithm (Kingma

& Ba, 2014). Due to the limited amount of data samples in

both datasets we performed data augmentation to prevent

overfitting. See the Appendix for further details.

Results and discussion We present results in Table 2 and 3

for BREAST CANCER and COLON CANCER, respectively.

First, we notice that the obtained results confirm our findings

in MNIST-BAGS experiment that our approach outperforms

all other methods. A trend that is especially visible in the

small-sample size regime of the MNIST-BAGS. Surprisingly,

the embedding-based method with the max pooling failed

almost completely on BREAST CANCER but in general this

dataset is difficult due to high variability of slides and small

number of cases. The proposed method is not only most

accurate but it also received the highest recall. High re-

call is especially important in the medical domain since

false negatives could lead to severe consequences including

patient fatality. We also notice that the gated-attention mech-

anism performs better than the plain attention mechanism

on BREAST CANCER while these two behave similarly on

COLON CANCER.

Eventually, we present the usefulness of the attention mech-

anism in providing ROIs. In Figure 5 we show a histopathol-

ogy image divided into patches containing (mostly) single

cells. We create a heatmap by multiplying patches by its

corresponding attention weight. Although only image-level

annotations are used during training, there is a substan-

tial matching between the heatmap in Figure 5(d) and the

ground truth in Figure 5(c). Additionally, we notice that
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Table 2. Results on BREAST CANCER. Experiments were run 5 times and an average (± a standard error of the mean) is reported.

METHOD ACCURACY PRECISION RECALL F-SCORE AUC

Instance+max 0.614±0.020 0.585±0.03 0.477±0.087 0.506±0.054 0.612±0.026
Instance+mean 0.672±0.026 0.672±0.034 0.515±0.056 0.577±0.049 0.719±0.019

Embedding+max 0.607±0.015 0.558±0.013 0.546±0.070 0.543±0.042 0.650±0.013
Embedding+mean 0.741±0.023 0.741±0.023 0.654±0.054 0.689±0.034 0.796±0.012

Attention 0.745±0.018 0.718±0.021 0.715±0.046 0.712±0.025 0.775±0.016
Gated-Attention 0.755±0.016 0.728±0.016 0.731±0.042 0.725±0.023 0.799±0.020

Table 3. Results on COLON CANCER. Experiments were run 5 times and an average (± a standard error of the mean) is reported.

METHOD ACCURACY PRECISION RECALL F-SCORE AUC

Instance+max 0.842 ± 0.021 0.866 ± 0.017 0.816 ± 0.031 0.839 ± 0.023 0.914 ± 0.010
Instance+mean 0.772 ± 0.012 0.821 ± 0.011 0.710 ± 0.031 0.759 ± 0.017 0.866 ± 0.008

Embedding+max 0.824 ± 0.015 0.884 ± 0.014 0.753 ± 0.020 0.813 ± 0.017 0.918 ± 0.010
Embedding+mean 0.860 ± 0.014 0.911 ± 0.011 0.804 ± 0.027 0.853 ± 0.016 0.940 ± 0.010

Attention 0.904 ± 0.011 0.953 ± 0.014 0.855 ± 0.017 0.901 ± 0.011 0.968 ± 0.009
Gated-Attention 0.898 ± 0.020 0.944 ± 0.016 0.851 ± 0.035 0.893 ± 0.022 0.968 ± 0.010

(a) (b)

(c) (d)

Figure 5. (a) H&E stained histology image. (b) 27×27 patches

centered around all marked nuclei. (c) Ground truth: Patches that

belong to the class epithelial. (d) Heatmap: Every patch from (b)

multiplied by its corresponding attention weight, we rescaled the

attention weights using a′

k = (ak−min(a))/(max(a)−min(a)).

the instance-based classifier tends to select only a small

subset of positive patches (see Figure 10(e) in Appendix)

that confirms low instance accuracy of the instance-based

approach discussed in (Kandemir & Hamprecht, 2015). For

more examples please see the Appendix.

The obtained results again confirm that the proposed ap-

proach attains high predictive performance and allows to

properly highlight ROIs. Moreover, the attention weights

can be used to create a reliable heatmap.

5. Conclusion

In this paper, we proposed a flexible and interpretable MIL

approach that is fully parameterized by neural networks.

We outlined the usefulness of deep learning for modeling

a permutation-invariant bag score function in terms of the

Fundamental Theorem of Symmetric Functions. Moreover,

we presented a trainable MIL pooling based on the (gated)

attention mechanism. We showed empirically on five MIL

datasets, one image corpora and two real-life histopathology

datasets that our method is on a par with the best performing

methods or performs the best in terms of different evaluation

metrics. Additionally, we showed that our approach pro-

vides an interpretation of the decision by presenting ROIs,

which is extremely important in many practical applications.

We strongly believe that the presented line of research is

worth pursuing further. Here we focused on a binary MIL

problem, however, the multi-class MIL is more interesting

and challenging (Feng & Zhou, 2017). Moreover, in some

applications it is worth to consider repulsion points (Scott

et al., 2005), i.e., instances for which a bag is always nega-

tive, or assume dependencies among instances within a bag

(Zhou et al., 2009). We leave investigating these issues for

future research.
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Gärtner, Thomas, Flach, Peter A, Kowalczyk, Adam, and

Smola, Alexander J. Multi-instance kernels. In ICML,

volume 2, pp. 179–186, 2002.

Gelasca, Elisa Drelie, Byun, Jiyun, Obara, Boguslaw, and

Manjunath, BS. Evaluation and benchmark for biological

image segmentation. In IEEE International Conference

on Image Processing, pp. 1816–1819, 2008.

Glorot, Xavier and Bengio, Yoshua. Understanding the

difficulty of training deep feedforward neural networks.

In AISTATS, pp. 249–256, 2010.

Hou, Le, Samaras, Dimitris, Kurc, Tahsin M, Gao, Yi, Davis,

James E, and Saltz, Joel H. Patch-based convolutional

neural network for whole slide tissue image classification.

In CVPR, pp. 2424–2433, 2016.

Kandemir, Melih and Hamprecht, Fred A. Computer-aided

diagnosis from weak supervision: a benchmarking study.

Computerized Medical Imaging and Graphics, 42:44–50,

2015.

Kandemir, Melih, Zhang, Chong, and Hamprecht, Fred A.

Empowering multiple instance histopathology cancer di-

agnosis by cell graphs. In MICCAI, pp. 228–235, 2014.

Kandemir, Melih, Haußmann, Manuel, Diego, Ferran, Ra-

jamani, Kumar T, van der Laak, Jeroen, and Hamprecht,

Fred A. Variational Weakly Supervised Gaussian Pro-

cesses. In BMVC, 2016.

Keeler, James D, Rumelhart, David E, and Leow,

Wee Kheng. Integrated segmentation and recognition

of hand-printed numerals. In NIPS, pp. 557–563, 1991.

Kingma, Diederik P and Ba, Jimmy. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014.

Kraus, Oren Z, Ba, Jimmy Lei, and Frey, Brendan J. Clas-

sifying and segmenting microscopy images with deep

multiple instance learning. Bioinformatics, 32(12):i52–

i59, 2016.
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