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Abstract

IMPORTANCE Deep learning–based methods, such as the sliding window approach for cropped-

image classification and heuristic aggregation for whole-slide inference, for analyzing histological

patterns in high-resolutionmicroscopy images have shown promising results. These approaches,

however, require a laborious annotation process and are fragmented.

OBJECTIVE To evaluate a novel deep learning method that uses tissue-level annotations for high-

resolution histological image analysis for Barrett esophagus (BE) and esophageal adenocarcinoma

detection.

DESIGN, SETTING, AND PARTICIPANTS This diagnostic study collected deidentified high-

resolution histological images (N = 379) for training a newmodel composed of a convolutional neural

network and a grid-based attention network. Histological images of patients who underwent

endoscopic esophagus and gastroesophageal junctionmucosal biopsy between January 1, 2016, and

December 31, 2018, at Dartmouth-Hitchcock Medical Center (Lebanon, NewHampshire) were

collected.

MAINOUTCOMES ANDMEASURES Themodel was evaluated on an independent testing set of 123

histological imageswith 4 classes: normal, BE-no-dysplasia, BE-with-dysplasia, and adenocarcinoma.

Performance of this model was measured and compared with that of the current state-of-the-art

sliding window approach using the following standardmachine learning metrics: accuracy, recall,

precision, and F1 score.

RESULTS Of the independent testing set of 123 histological images, 30 (24.4%) were in the BE-no-

dysplasia class, 14 (11.4%) in the BE-with-dysplasia class, 21 (17.1%) in the adenocarcinoma class, and

58 (47.2%) in the normal class. Classification accuracies of the proposedmodel were 0.85 (95% CI,

0.81-0.90) for the BE-no-dysplasia class, 0.89 (95% CI, 0.84-0.92) for the BE-with-dysplasia class,

and 0.88 (95% CI, 0.84-0.92) for the adenocarcinoma class. The proposed model achieved a mean

accuracy of 0.83 (95% CI, 0.80-0.86) and marginally outperformed the sliding window approach

on the same testing set. The F1 scores of the attention-basedmodel were at least 8% higher for each

class compared with the sliding window approach: 0.68 (95% CI, 0.61-0.75) vs 0.61 (95% CI, 0.53-

0.68) for the normal class, 0.72 (95% CI, 0.63-0.80) vs 0.58 (95% CI, 0.45-0.69) for the BE-no-

dysplasia class, 0.30 (95% CI, 0.11-0.48) vs 0.22 (95% CI, 0.11-0.33) for the BE-with-dysplasia class,

and 0.67 (95% CI, 0.54-0.77) vs 0.58 (95% CI, 0.44-0.70) for the adenocarcinoma class. However,

this outperformance was not statistically significant.

CONCLUSIONS ANDRELEVANCE Results of this study suggest that the proposed attention-based

deep neural network framework for BE and esophageal adenocarcinoma detection is important

because it is based solely on tissue-level annotations, unlike existing methods that are based on
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Abstract (continued)

regions of interest. This newmodel is expected to open avenues for applying deep learning to digital

pathology.

JAMA Network Open. 2019;2(11):e1914645. doi:10.1001/jamanetworkopen.2019.14645

Introduction

Barrett esophagus (BE) is a transformation of the normal squamous epithelium of the esophagus into

metaplastic columnar epithelium.1 Barrett esophagus is important because it predisposes patients

to the increased risk of adenocarcinoma of the esophagus and gastroesophageal junction.2,3

Comparedwith the general population, patients with BE have a 30 to 125 times higher risk of cancer.4

The mean 5-year survival rate for esophageal adenocarcinoma (EAC) is less than 15% in the United

States.5 Furthermore, the incidence of EAC in the United States increased dramatically over 3

decades.6-10Histological diagnosis of BE requires the identification of metaplastic columnar

epitheliumwith goblet cells (ie, intestinal metaplasia).11 Evaluating the development of the

premalignant andmalignant neoplasm in BE shows amoderate interobserver variability, with a mean

κ coefficient of less than 0.50 even among subspecialized gastrointestinal pathologists.12

In digital pathology, tissue slides are scanned as high-resolution images. High resolution is

necessary because each slide contains thousands of cells, for which the cellular structures must be

visible to allow the identification of regions of the tissue with diseases or lesions. The size of lesions is

often relatively small, andmost of the tissue areas in a given slide are normal. Even for highly trained

pathologists, localizing the decisive regions of interest (ROIs) containing lesions for the classification

of the whole slide is time-consuming and prone tomiss an ROI.

In recent years, deep learning has made considerable advances in classifying microscopy

images. The most common approach in this domain involves a sliding windowmodel for cropped-

image classification, followed by statistical methods of aggregation for whole-slide inference.13-23 In

the sliding window approach, pathologists annotate bounding boxes (ie, ROIs) on whole slides to

train a classifier on small cropped images, typically in sizes ranging from 200 × 200 pixels to

500 × 500 pixels. For evaluating a whole slide, this cropped-image classifier is applied to extracted

windows from the image, and then a heuristic, often developed in conjunction with a domain-expert

pathologist, is used to determine how the distribution of cropped-image classification scores

translates into a whole-slide diagnosis.

The sliding window approach has several limitations, however. First, given that cropped-image

classifiers are needed, all images in the training setmust be annotated by pathologists with bounding

boxes around each ROI. Second, developing a heuristic for aggregating cropped-image

classifications, which requires pathologist insight, is dependent on the nature of the classification

task and is not widely scalable. Third, cropped images are classified independently of their neighbors,

and whole-slide classification does not consider correlations between neighboring windows. To

overcome these limitations in this study, we developed an attentionmechanism that mines the ROI

from high-resolution slides without explicit supervision.

Our work was inspired by attention models applied to regular-image analysis tasks, especially

image captioning.24,25 Attention mechanisms are described as a part of the prediction module that

sequentially selects subsets of input to be processed.24 Although this definition is not applicable to

nonsequential tasks, the essence of attention mechanisms can be restructured for neural networks

to generate a dynamic representation of features by weighting them to capture a holistic context of

input. Unlike hard attention, in which an ROI is selected by a stochastic sampling process, soft

attention generates a nondiscrete attentionmap that pays fractional attention to each region and

produces better gradient flow and thus is easier to optimize. Recent advancement of soft attention

enabled end-to-end training on convolutional neural network models.26-29 For example, spatial

transformer networks capture high-level information from inputs to derive affine transformation
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parameters, which are subsequently applied to spatial invariant input for a convolutional neural

network.29 For semantic segmentation tasks, the attentionmechanism is applied to learn multiscale

features.26 Residual attention networks use soft attention masks to extract features in different

granularities.28

For analyzing images in detail, a top-down, recurrent attention, convolutional neural network

has been proposed.27 To put our work into perspective, that proposed model is based on the soft

attentionmechanism in feature space but is designed for the classification of high-resolution images

that are not typically encountered in the field of computer vision. The attentionmechanism has

several applications in themedical domain, such as using soft attention to generate masks around

lesion areas on computed tomography images30 and using recurrent attentionmodels fused with

reinforcement learning to locate lung nodules31 or enlarged hearts32 in chest radiography images. In

pathology, recorded navigation of pathologists has been used as attention maps to detect

carcinoma.33 Soft attention has been deployed in 2 parallel networks for the classification of thorax

disease.30 Although we drew inspiration from this earlier work, our proposed attention-basedmodel

is different in that it provides a novel framework to directly reuse extracted features in a single

attention network.

In this study, we developed a model that uses a convolutional attention-based mechanism to

classify microscopy images. This attention-based model has 3 major advantages over the existing

sliding windowmethod. First, our model dynamically identifies ROIs in a high-resolution image and

makes a whole-slide classification based on the analysis of only selected regions. This process is

analogous to how pathologists examine slides under themicroscope. Second, our proposedmodel is

trainable end to endwith only tissue-level labels. All components of themodel are optimized through

backpropagation. Unlike the sliding window approach, themodel does not need bounding box

annotations for ROIs or pathologist insight for heuristic development. Third, our model has a flexible

architecture with regard to input size for images. Inspired by fully convolutional network

philosophy,34 the model’s grid-based attentionmodule uses a 3-dimensional (3-D) convolution

operation that does not require a fixed-size input grid. The input size can be any rectangular shape

that fits in the memory of graphic processing units, which all modern deep learning frameworks use

to accelerate computations.

Methods

Data Set

For this diagnostic study, whole-slide images were collected from patients who underwent

endoscopic esophagus and gastroesophageal junctionmucosal biopsy between January 1, 2016, and

December 31, 2018, at Dartmouth-Hitchcock Medical Center, a tertiary academic medical center in

Lebanon, New Hampshire. The use of data collected for this study was approved by the Dartmouth

Institutional Review Board, which waived the requirement of informed consent as the collected data

were deidentified. The study is in compliance with the Declaration of Helsinki on Ethical Principles

for Medical Research Involving Human Subjects.35 In addition, the study followed the Standards for

Reporting of Diagnostic Accuracy (STARD) reporting guidelines.36

A scanner (Aperio AT2; Leica Biosystems Inc) was used to digitize hematoxylin-eosin–stained

whole-slide images at 20×magnification. Scanning with 20×magnification is routinely performed in

the clinical workflow for faster scanning throughput and efficient file size. We had a total of 180

whole-slide images, of which 116 (64.4%) were used as the training set and 64 (35.6%) were used as

the testing set. Of the training set, 23whole-slide images (19.8%)were reserved for validation. These

whole-slide images can cover multiple pieces of tissue. Therefore, the whole-slide images were

separated into 379 high-resolution images later in the preprocessing step, with each image covering

a single piece of tissue.

To determine labels for whole-slide images and to train the existing state-of-the-art sliding

window approach as the baseline, 2 of our expert pathologists from the Department of Pathology
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and Laboratory Medicine at Dartmouth-Hitchcock Medical Center (A.S., B.R.) annotated bounding

boxes around lesions in these images (eMethods 1 in the Supplement). We considered these labels as

the reference standard, as any disagreements in annotation were resolved through further

discussion among our senior domain-expert pathologist annotators. These bounding boxes were not

needed in training the proposed attention-basedmodel.

This study used categories of esophageal dysplasia and carcinoma based on the Vienna

classification system.37 The normal class included normal squamous epithelium, normal squamous

and columnar junctional epithelium, and normal columnar epithelium. Barrett esophagus negative

for dysplasia was included in the BE-no-dysplasia class. Barrett esophagus is defined by columnar

epitheliumwith goblet cells (intestinal metaplasia) and preservation of orderly glandular architecture

of the columnar epitheliumwith surfacematuration. The BE-with-dysplasia class included low-grade

dysplasia (noninvasive low-grade neoplasia) and high-grade dysplasia (noninvasive high-grade

neoplasia). Columnar epitheliumwith low-grade dysplasia is characterized by nuclear

pseudostratification, mild to moderate nuclear hyperchromasia and irregularity, and the cytologic

atypia extending to the surface epithelium. High-grade dysplasia demonstratedmarked cytologic

atypia, including loss of polarity, severe nuclear enlargement and hyperchromasia, numerous mitotic

figures, and architectural abnormalities such as lateral budding, branching, and villous formation as

well as variation in the size and shape of crypts.

In contrast to the Vienna classification system, wemerged BEwith low-grade dysplasia and

high-grade classes into 1 class owing to the low number of collected samples for each class. The

adenocarcinoma class included invasive carcinoma (intramucosal carcinoma and submucosal

carcinoma and beyond) and high-grade dysplasia suggestive of invasive carcinoma. Cases in the

adenocarcinoma class may present the following features: single-cell infiltration, sharply angulated

glands, small glands in a back-to-back pattern, confluent glands, cribriform or solid growth,

ulceration occurring within high-grade dysplasia, dilated dysplastic glands with necrotic debris, or

dysplastic glands undermining squamous epithelium.

Two-StepMethod and Testing

The proposed attention-basedmodel has 2 steps, which are shown in Figure 1. The first step is the

extraction of grid-based features from the high-resolution image, at which point each grid cell in the

whole slide is analyzed to generate a feature map (Figure 1A and B). The second step is the

application of the attentionmechanism on the extracted features for slide classification (Figure 1C).

The feature extractor is jointly optimized across all the grid cells with the attention module in an

end-to-end fashion. In the end-to-end training pipeline, the cross-entropy loss over all classes is

computed on class predictions. The loss is backpropagated to optimize all parameters in the network

without anymanual adjustment for attentionmodules. Themodel does not need bounding box

annotations around ROIs, and all optimization is done to only the labels at the tissue level. Further

details of themodel architecture of the grid-based feature extraction and attention-based

classification are provided in eMethods 2 in the Supplement.

To evaluate the attention-based classificationmodel for high-resolutionmicroscopy images, we

applied the steps to high-resolution scanned slides of tissues endoscopically removed from patients

who were at risk for esophageal cancer. We compared the performance results of the proposed

model with those of the state-of-the-art sliding window approach.22

For preprocessing, we removed the white background from the slides and extracted only

regions of the images that contained tissue. eFigure 1A in the Supplement shows a typical whole-slide

image from the data set. These whole-slide images can cover multiple pieces of tissue, so we

separated them into subimages with each covering only a single piece of tissue. Themedian

(interquartile range) width of the tissues was 4500 (3000-6500) pixels and themedian

(interquartile range) height was 5500 (4000-7500) pixels. Every tissue image was given an overall

label based on the labels of its lesions. If multiple lesions with different classes were present, we used

the class with the highest risk as the corresponding label, as that lesion would have the highest
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implication clinically. If no abnormal lesions were found in an image, it was assigned to the normal

class. After this preprocessing step, each image was assigned to 1 of 4 classes: normal, BE-no-

dysplasia, BE-with-dysplasia, and adenocarcinoma (eFigure 1B in the Supplement).

The data set included 379 images after preprocessing. One-third of the data set was reserved

for testing. To avoid possible data leakage, we placed all tissues extracted from 1 whole-slide image

into the same set of images when the training and testing sets were split. The Table summarizes the

results of the testing set.

SlidingWindowApproach as Baseline

To compare the proposedmodel with previous methods for high-resolution image analysis, we

implemented the current state-of-the-art sliding window approach22 as a baseline. For this method,

we used the annotated bounding box labels to generate small, cropped images of 224 × 224 pixel

size for training a cropped-image classifier. For preprocessing, we normalized the color channels and

performed standard data augmentation, including color jittering, random flips, and rotations. For

training, we initialized ResNet-18 with MSRA (Microsoft Research Asia) initialization.38We optimized

the model with a cross-entropy loss function for 100 epochs, using standard weight regularization

techniques and learning rate decay. We trained the cropped-image classifier to predict the class of

any given window on a high-resolution image. For whole-slide inference, we performed a grid search

of the validation set for optimal thresholds to filter noise. Then, our 2 pathologists (A.S., B.R.) were

consulted to develop heuristics for aggregating cropped-image predictions. We chose the thresholds

and heuristics that performed the best on the validation set and applied those to the whole-slide

images in the testing set.

Attention-BasedModel

We implemented the attention-basedmodel as described. Given the size of features extracted from

the ResNet-18 model, we used 512 × 3 × 3, 3-D convolutional filters in the attention module, with

implicit zero padding of 0 for depth, 1 for height, and 1 for width dimensions. We used 64 of these

filters to increase the robustness of the attentionmodule, as patterns in the feature space are likely

Figure 1. Overview of Proposed Attention-BasedModel
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A, An input image is divided into r × c grid cells (dividing lines are shown only for

visualization). B, Features extracted from each grid cell build a grid-based feature map

tensor U. C, Learnable 3-dimensional convolutional filters of size k × d × d (where d

denotes the height and width of the convolutional filters) are applied on U feature map

to generate an attentionmap α, which operates as the weights for an affine combination

of feature vectors in U. The α represents a 2-dimensional attentionmapwhose size is r in

height and c in width; CNN, convolutional neural network; r and c, the number of rows

and columns of input tissue grid; U, a tensor of features extracted from each grid cell, and

its size is r in height, c in width, and k in depth; and z, a vector of features representing

a whole-input image.
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too complex to be recognized and attended by a single filter. To avoid overfitting and encourage each

filter to capture different patterns, we regularized the attentionmodule by applying dropout39with

P = .50 after concatenating all of the feature vectors. We initialized the entire network with MSRA

initialization for convolutional filters,38 unit weight and zero bias for batch normalizations,40 and

Glorot initialization for fully connected layers.41Only the cross-entropy loss against class labels was

used in training. Other information, such as the location of bounding boxes, was not given to the

network as guidance to optimal attentionmaps. Themodel identified such ROIs automatically.

We initialized the feature extraction network with weights pretrained on the ImageNet data

set.42 Input for the network was extracted grid cells of 492 × 492 pixels that were resized to

224 × 224 pixels. We normalized the input values by themean (SD) of pixel values computed over all

tissues in the training set. In training, the last fully connected layer of the networkwas removed, and

all residual blocks except for the last one were frozen, serving as a regularizationmechanism.

We trained the entire network on large, high-resolution images. For data augmentation, we

applied random rotation and random scaling, with a scaling factor between 0.8 and 1.2 during

Table. Classification Results for the Testing Seta

Metric

Sliding Window
Approach Performance
(95% CI)b

Attention-Based
Model Performance
(95% CI)

Normal class

Accuracy 0.63 (0.56-0.69) 0.70 (0.64-0.76)

Recall 0.62 (0.53-0.71) 0.69 (0.61-0.77)

Precision 0.60 (0.51-0.69) 0.68 (0.59-0.76)

Specificity 0.63 (0.57-0.72) 0.71 (0.62-0.79)

F1 score 0.61 (0.53-0.68) 0.68 (0.61-0.75)

BE-no-dysplasia class

Accuracy 0.85 (0.80-0.89) 0.85 (0.81-0.90)

Recall 0.43 (0.31-0.56) 0.77 (0.66-0.87)

Precision 0.87 (0.73-0.97) 0.68 (0.57-0.78)

Specificity 0.98 (0.95-1.00) 0.88 (0.83-0.93)

F1 score 0.58 (0.45-0.69) 0.72 (0.63-0.80)

BE-with-dysplasia class

Accuracy 0.72 (0.66-0.77) 0.89 (0.84-0.92)

Recall 0.36 (0.18-0.54) 0.21 (0.07-0.38)

Precision 0.16 (0.08-0.26) 0.50 (0.20-0.80)

Specificity 0.76 (0.70-0.82) 0.97 (0.94-0.99)

F1 score 0.22 (0.11-0.33) 0.30 (0.11-0.48)

Adenocarcinoma class

Accuracy 0.87 (0.83-0.91) 0.88 (0.84-0.92)

Recall 0.52 (0.37-0.68) 0.71 (0.57-0.85)

Precision 0.65 (0.48-0.80) 0.63 (0.49-0.76)

Specificity 0.94 (0.90-0.98) 0.91 (0.87-0.95)

F1 score 0.58 (0.44-0.70) 0.67 (0.54-0.77)

Mean

Accuracy 0.76 (0.73-0.80) 0.83 (0.80-0.86)

Recall 0.48 (0.41-0.56) 0.60 (0.53-0.66)

Precision 0.57 (0.51-0.63) 0.62 (0.53-0.71)

F1 score 0.50 (0.43-0.56) 0.59 (0.52-0.66)

Abbreviation: BE, Barrett esophagus.

a The proposed attention-basedmodel's performancewas assessed on the basis

of accuracy, recall, precision, specificity, and F1 score. Results were rounded

to 2 decimal places. The model outperformed the sliding window baseline in

both accuracy and F1 score for all classes.

b The sliding window approach is explained inWei et al.22

JAMANetworkOpen | Gastroenterology andHepatology Deep Learning for Detection of Cancerous and Precancerous Esophagus Tissue

JAMA Network Open. 2019;2(11):e1914645. doi:10.1001/jamanetworkopen.2019.14645 (Reprinted) November 6, 2019 6/13

Downloaded From: https://jamanetwork.com/ on 08/27/2022



training. We used the Adam optimizer with an initial learning rate of 1 × 10−3, decaying by 0.95 after

each epoch, and reset the learning rate to 1 × 10−4 every 50 epochs in a total of 200 epochs, similar

to the cyclical learning rate.43,44We set themini-batch size to 2 tomaximize the use of memory on

the graphic processing unit (Nvidia Titan Xp; NVIDIA Corporation). The model was implemented in

PyTorch.45 At testing, the network took amean 0.34 seconds to analyze a high-resolution image.

Statistical Analysis

Data were analyzed in October 2018. For quantitative evaluation, 4 standardmetrics were used for

classification under a 1-vs-rest strategy: accuracy, recall, precision, and F1 score. To estimate 95% CIs,

bootstrappingwas used for all metrics. The 2-tailedMcNemar-Bowker test was used, and α = .05was

considered statistically significant. Statistical analysis was carried outwith SciPy, version 1.0.0 (SciPy

developers).

Results

The data set contained a total of 379 histological images, of which 195 (51.5%) were in the normal

class, 80 (21.1%) were in the BE-no-dysplasia class, 46 (12.1%) were in the BE-with-dysplasia class,

and 58 (15.3%) were in the adenocarcinoma class. Of the independent testing set of 123 images, 58

(47.2%) normal, 30 (24.4%) BE-no-dysplasia, 14 (11.4%) BE-with-dysplasia, and 21 (17.1%)

adenocarcinoma images were used to evaluate trainedmodels and to analyze the classification

performance from both quantitative and qualitative aspects. The eTable in the Supplement provides

a detailed description of the data set.

The classification results on the testing set are summarized in the Table. Compared with the

sliding window baseline, the proposedmodel achieved better accuracy and F1 score in all classes.

Especially for F1 score, which is the harmonicmean of precision and recall, the attention-basedmodel

outperformed the sliding window approach by at least 8% for each class: 0.68 (95% CI, 0.61-0.75)

vs 0.61 (95% CI, 0.53-0.68) for the normal class, 0.72 (95% CI, 0.63-0.80) vs 0.58 (95% CI,

0.45-0.69) for the BE-no-dysplasia class, 0.30 (95% CI, 0.11-0.48) vs 0.22 (95% CI, 0.11-0.33) for the

BE-with-dysplasia class, and 0.67 (95% CI, 0.54-0.77) vs 0.58 (95% CI, 0.44-0.70) for the

adenocarcinoma class. However, this outperformance was not statistically significant at the α = .05

level with theMcNemar-Bowker test.

Results of the attention-basedmodel had the following sensitivities for recall: 0.69 (95% CI,

0.61-0.77) for the normal class, 0.77 (95% CI, 0.66-0.87) for the BE-no-dysplasia class, 0.21 (95% CI,

0.07-0.38) for the BE-with-dysplasia class, and 0.71 (95% CI, 0.57-0.85) for the adenocarcinoma

class. The specificities under this model were as follows: 0.71 (95% CI, 0.62-0.79) for the normal

class, 0.88 (95% CI, 0.83-0.93) for the BE-no-dysplasia class, 0.97 (95% CI, 0.94-0.99) for the

BE-with-dysplasia class, and 0.91 (95% CI, 0.87-0.95) for the adenocarcinoma class. Classification

accuracies of the proposedmodel were 0.85 (95% CI, 0.81-0.90) for the BE-no-dysplasia class, 0.89

(95% CI, 0.84-0.92) for the BE-with-dysplasia class, and 0.88 (95% CI, 0.84-0.92) for the

adenocarcinoma class. The proposedmodel achieved amean accuracy of 0.83 (95% CI, 0.80-0.86).

Our quantitative analysis showed the proposedmodel’s good performance as follows: 0.68

(95% CI, 0.61-0.75) for the normal class, 0.72 (95% CI, 0.63-0.80) for the BE-no-dysplasia class, and

0.67 (95% CI, 0.54-0.77) for the adenocarcinoma class. Both the attention-based and the sliding

windowmodels, however, did not perform as well in identifying the images of BE-with-dysplasia

class: 0.30 (95% CI, 0.11-0.48) for the attention-basedmodel and 0.22 (95% CI, 0.11-0.33) for the

sliding window approach. As shown in the confusion matrix in Figure 2, most samples of BE-with-

dysplasia images that were misclassified by the attention-based model were predicted as normal

tissue. This prediction was likely associated with the BE-with-dysplasia class being the least frequent

category in the data set, representing only 11% of the images. For further comparison, see the

receiver operating characteristic curves of bothmodels for each class plotted in Figure 3. The
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attention-basedmodel was trained without ROI annotations yet achieved compelling area under the

receiver operating characteristic curve values for each class.

The attentionmaps generated for all of the testing images were visualized to verify the

attentionmechanism in the proposedmodel. Characteristic examples for the adenocarcinoma class

are presented in Figure 4. The distributions of the attention weights across different classes indicate

that the attentionmodule looks for specific features in the adenocarcinoma class (Figure 4D). For

images without the target features, the attention weights are low for all regions (Figure 4A and B). In

Figure 4C, the attentionmap is shown to be clinically on target and focused on specific regions in

which BE with dysplasia progresses to adenocarcinoma as neoplastic epithelia begin to invade the

muscularis mucosae.46 eFigure 2 in the Supplement provides more examples.

Discussion

Results of this diagnostic study demonstrated the ability of attention-based deep learning

architecture to detect BE or EAC. The attention-basedmodel’s classification performance on the data

set was higher than that of the state-of-the-art sliding window approach. This finding is important

because the proposedmodel needs only reference labels per tissue, whereas the existing sliding

Figure 2. ConfusionMatrix for Pathologist Diagnoses andModel Predictions
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Figure 3. Performance Curves for the SlidingWindowApproach and the Attention-BasedModel
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indicates area under the receiver operating

characteristic curve; BE, Barrett esophagus.
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windowmethod requires bounding box annotations for each ROI in a tissue. The higher precision in

the BE-no-dysplasia and adenocarcinoma classes (ie, lower false-positives in identifying abnormality)

achieved by the baseline approachmay be associated with heuristic rules developed in consultation

with pathologists. The rules, however, were not perfect and thus showed low recall (ie, higher

false-negatives). Although bothmethods used a ResNet-18model for feature extraction, the

attentionmechanism of the proposedmodel further directed the information flow and forced the

network to identify local features useful for classification.

The proposedmodel is directly applicable to high-resolution images without resizing owing to

its flexible input design. Because of the time and resources required for annotating microscopy

images, having fewer requirements for these annotations would facilitate image analysis research

and development. Specifically, tissue-level annotations for training the proposed architecture can

potentially be retrieved through searching the pathological reports associated with microscopy

images. The proposedmodel is potentially applicable to histological images of diseases for which

training data are scarce or bounding box annotations are not available. To our knowledge, themodel

is the first to automate the detection of BE and EAC on histopathological slides using a deep learning

approach.

Limitations

This study has some limitations. First, all experiments were conducted on slides collected from a

single medical center and scanned with the same equipment. Second, the data set was relatively

small compared with conventional data sets in deep learning; in particular, the number of slides of BE

with dysplasia was small even after consolidating the classes of BE with low-grade dysplasia and

high-grade dysplasia, resulting in lower performance for that class. To evaluate the robustness and

Figure 4. Visualization of AttentionMaps Attending Adenocarcinoma Class Features

NormalA BE no dysplasiaB

BE with dysplasiaC AdenocarcinomaD

Examples of attentionmaps are generated by an attentionmodule that is optimized for

the features of the adenocarcinoma class. The left column shows whole-slide images

from the testing set, whereas the right column shows attentionmaps of the selected

attentionmodule for input images from 4 classes: normal (A), Barrett esophagus (BE) no

dysplasia (B), BE with dysplasia (C), and adenocarcinoma (D). Higher attention weight

is denoted by white, and lower weight is denoted by black. For visualization purposes,

eachmap is normalized so that its maximum value is 1. The accuracy of attended regions

for the adenocarcinoma class images is verified qualitatively by 2 expert pathologists. In

contrast, the attentionmodule is inattentive to lower-risk-class images.
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generalizability of the proposedmodel, further verification with different classification tasks and

larger data sets from various institutions is required and should be pursued in future research.

Third, even with the proposedmethod, which was built to analyze entire tissue regions, current

graphic processing units do not have enoughmemory capacity to process very large images. For such

slides, we can divide the tissue area into manageable subtissue images. Alternatively, the feature

extractor, which is the largest source of memory consumption in the proposed approach, can be

optimized to address this issue. The ResNet-18 architecture used in the attention-basedmodel

achieved high performance with a relatively low number of parameters. There is, however, room for

further reduction of parameters whilemaintaining high performance, whichwe intend to pursue in

future studies.

Conclusions

In this diagnostic study, we developed an attention-basedmodel for high-resolutionmicroscopy

image analysis. Analogous to how pathologists examine slides under themicroscope, themodel uses

weighted features from the entire slide to classify microscopy images. Results showed that the

model marginally outperformed the current sliding window approach on a data set of esophagus

tissue with 4 classes (normal, BE-no-dysplasia, BE-with-dysplasia, and adenocarcinoma). Previous

methods for analyzing microscopy images were limited by bounding box annotations and unscalable

heuristics. Themodel presented herewas trained end to endwith labels only at the tissue level, thus

removing the need for high-cost data annotation and creating new opportunities for applying deep

learning in digital pathology.
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