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Abstract: We study the problem of object detection in remote sensing images. As a simple but
effective feature extractor, Feature Pyramid Network (FPN) has been widely used in several generic
vision tasks. However, it still faces some challenges when used for remote sensing object detection, as
the objects in remote sensing images usually exhibit variable shapes, orientations, and sizes. To this
end, we propose a dedicated object detector based on the FPN architecture to achieve accurate object
detection in remote sensing images. Specifically, considering the variable shapes and orientations
of remote sensing objects, we first replace the original lateral connections of FPN with Deformable
Convolution Lateral Connection Modules (DCLCMs), each of which includes a 3× 3 deformable
convolution to generate feature maps with deformable receptive fields. Additionally, we further
introduce several Attention-based Multi-Level Feature Fusion Modules (A-MLFFMs) to integrate
the multi-level outputs of FPN adaptively, further enabling multi-scale object detection. Extensive
experimental results on the DIOR dataset demonstrated the state-of-the-art performance achieved by
the proposed method, with the highest mean Average Precision (mAP) of 73.6%.

Keywords: object detection; remote sensing; deformable convolution; multi-level feature fusion;
attention module

1. Introduction

Thanks to the development of earth observation-related techniques, acquiring
massive remote sensing images for automatic image interpretation has become
increasingly available. As one of the fundamental but challenging tasks in automatic image
interpretation, object detection in remote sensing images not only requires recognizing the
categories of objects in remote sensing images, but also determining their exact locations
and sizes. Albeit the great significance of this task in several real-world applications [1–5],
multiclass remote sensing object detection remains a challenging task and deserved further
exploration, due to the complex scenes and diverse objects of remote sensing images.

Recently, data-driven deep learning techniques have achieved great success in several
fields [6–11]. In particular, the area of object detection in natural scene images has also
been significantly revolutionized. Overall, existing detectors can be divided into two-stage
and one-stage detectors. Two-stage detectors [9,12–21] first generate candidate regions
by using a region proposal algorithm [15,22]. Then, these candidate regions are further
refined and classified by a region-wise network. However, one-stage detectors [23–28] use
convolutional neural networks (CNNs) to extract the convolutional features of the input
image and directly predict the locations and categories of objects on these feature maps
in a single pass, and hence do not require a proposal generation procedure. In general,
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two-stage detectors have higher detection accuracy while one-stage detectors have faster
detection speed.

Among all existing two-stage object detectors, the pioneering Region-based Convolutional
Neural Network (R-CNN) [12] first generates a set of region proposals via selective search [22],
and then utilizes Alexnet [29] to extract the convolutional features of each proposal. Finally,
Support Vector Machines (SVM) [30] is applied to these features to recognize the object
categories within each proposal. Albeit excellent detection performance, this method is
time-consuming as it repeatedly applies Alexnet on a large number of overlapped proposals
per image without shared computation. Motivated by this, Fast R-CNN [14] first feeds
the whole image into CNNs only once to extract a feature map. Then, a Region of Interest
(RoI) pooling layer is used to map each proposal on this feature map and extract a fixed-
length feature vector for each proposal. Finally, each feature vector is passed through fully
connected (FC) layers to perform object classification and bounding box regression. Fast R-
CNN has greatly sped up the object detection efficiency but still relies on external methods,
such as selective search to generate region proposals, which has become the bottleneck in
improving detection efficiency. Therefore, Faster R-CNN [15] is proposed to use a region
proposal network (RPN) to replace the selective search in Fast R-CNN for generating high-
quality proposals, which simultaneously improves both efficiency and accuracy. However,
since Faster R-CNN only utilizes the top layer feature map from CNNs for object detection
and the top layer feature map has a fixed shape and single-scale receptive field, Faster
R-CNN can hardly detect multi-scale objects well. To this end, Feature Pyramid Network
(FPN) [9] is further introduced with a top-down path and lateral connections to construct a
feature pyramid. The shallow and deep layers in the pyramid are responsible for detecting
small and large objects, respectively. Mask R-CNN [16] introduces a segment branch based
on FPN and simultaneously performs object detection and instance segmentation.

Compared with the two-stage object detectors, one-stage detectors consider object
detection as a regression problem. For example, You Only Look Once (YOLO) [24] is
proposed to apply CNNs on the whole image to extract its multi-scale feature maps and
directly predict the bounding boxes and categories of objects in each position of the top
layer feature map. Different from YOLO, which only utilizes the top layer feature map
for object detection, single shot multibox detector (SSD) [23] sets default boxes on the
multi-scale feature maps extracted by CNNs and employs the shallow and deep layers to
detect small and large objects, respectively. However, only a few default boxes contain
objects, which may cause the easy background samples to dominate the training process.
Therefore, RetinaNet [27] is proposed with a focal loss to make the detector focus more
attention on the hard samples that are difficult to classify during training.

On the other hand, thanks to the publicly available remote sensing datasets, such as
DIOR [31], DOTA [32], FAIR1M [33], and RSOD [34], a number of detectors have been
proposed for multi-scale remote sensing object detection [35–39]. In particular, most of
these methods are two-stage object detectors [31] and employ FPN as the feature extractor.
The details of FPN are shown in Figure 1. Specifically, given an input image, FPN first
utilizes CNNs, such as ResNet-50, to extract its multi-scale convolutional features, then
employs nearest neighbor interpolation and lateral connections (1× 1 convolutional layers
(Convs)) to fuse the adjacent feature maps extracted by CNNs and construct a feature
pyramid. Finally, each feature map in the feature pyramid is responsible for detecting
objects in a specific range of sizes. As a feature extractor, FPN has greatly improved the
object detection accuracy and been widely used for multi-scale object detection.
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Figure 1. Flowchart of FPN.

Considering the objects in optical remote sensing images have variable shapes,
orientations, and sizes, directly applying FPN to remote sensing object detection still faces
the following two challenges. First, since the feature maps extracted by the FPN have
fixed-shape receptive fields, as indicated in Figure 1, the original FPN, which only adopts
1× 1 Convs as lateral connections to fuse these feature maps, can hardly generate precise
feature maps with deformable fields to detect remote sensing objects with variable shapes
and orientations. Second, remote sensing objects usually have large variations in size, and
it is critically important to integrate the multi-level outputs of FPN to effectively detect
these objects [18,39–41]. However, each proposal in the original FPN is predicted on a
single feature level, whereas the useful information in other feature levels is ignored,
which may harm its detection performance for multi-scale objects. To alleviate the above
problem, several methods have been proposed to integrate the multi-level outputs of FPN.
For instance, to enhance the current level features, the Cross-Scale Feature Fusion (CSFF)
method [42] first concatenates the features of the remaining levels along the channel axis,
and then adds the concatenated features with the current level features. Libra R-CNN [18]
first integrates the multi-level outputs of FPN by using element-wise summation, then in
turn adds the integrated features with the multi-level outputs of FPN to generate more
discriminative pyramidal features for object detection. Although these two methods have
effectively improved object detection accuracy, they still suffer from the following
drawback. As different parts of the multi-level outputs of FPN show different significance
to object detection, directly integrating them using concatenation or element-wise
summation may not be able to generate optimal feature maps for detecting multi-scale
remote sensing objects well.

To this end, we propose a new object detection framework based on FPN in this paper;
the pipeline of our method can be seen in Figure 2. Compared with the original FPN (see
Figure 1), the proposed method introduces two novel modules, i.e., Deformable Convolution
Lateral Connection Module (DCLCM) and Attention-based Multi-Level Feature Fusion
Module (A-MLFFM) to alleviate the above two problems, respectively. Specifically, we first
replace the original lateral connections of FPN with the proposed DCLCMs. Each DCLCM
includes a 3 × 3 deformable convolution to generate feature maps having deformable
receptive fields for detecting remote sensing objects with various shapes and orientations
better. Second, we propose several A-MLFFMs, each of which introduces a novel attention
module to adaptively integrate the multi-level outputs of FPN. In this way, multi-level
refined features A2 − A5 can be generated for multi-scale object detection. Specifically,
A-MLFFM concatenates the features of the current layer with the features of the remaining
layers to fully exploit the complementary information contained in different layers of FPN
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and enhance the current layer features. Different from previous methods [42–44], which
directly resize and concatenate multi-scale feature maps, in each A-MLFFM, a novel attention
module is proposed and deployed after concatenation to emphasize the important features
of the concatenated feature map.
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Figure 2. Flowchart of the proposed method.

The main contributions of this letter are summarized as follows.

(1) We replace the original lateral connections in FPN (1× 1 Convs) with the proposed
DCLCM, which aims to generate feature maps having deformable receptive fields, so
as to effectively detect remote sensing objects with various shapes and orientations.

(2) Several A-MLFFMs, each of which contains a novel attention module, are proposed to
adaptively fuse multi-level features and generate more powerful pyramidal features
for object detection.

(3) Experimental results on the DIOR dataset validate the state-of-the-art performance of
the proposed method.

The rest of this paper is structured as follows: in Section 2, we briefly introduce the
literature related to our work, and the details of the proposed method are described in
Section 3, including the DCLCM and A-MLFFM. In Section 4, we describe the experimental
setup and implementation details, and the experimental results are reported in Section 5.
Finally, conclusions are summarized in Section 5.

2. Related Work

In this section, we will briefly introduce the literature related to our work, including
the studies on object detection in remote sensing images, multi-level feature fusion, and
attention mechanism.

2.1. Object Detection in Remote Sensing Images

Object detection in remote sensing images has been studied for decades. Earlier works
typically use handcrafted features to detect remote sensing objects, producing very limited
detection performance. In addition, most of them are designed to detect a single class of
objects, and often fail to deal with objects with cluttered background.

Inspired by the great success of CNNs-based object detection methods in natural scene
images, extensive studies have been devoted to object detection in optical remote sensing
images recently. For instance, SCRDet [45] uses the supervised pixel attention network and
channel attention network to suppress noise and highlight target features, thus improving
the detection performance of small and cluttered objects. Yang et al. [46] propose a Dense
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Feature Pyramid Network (DFPN), which builds high-level semantic feature maps for all
scales by means of dense connections to enhance the feature propagation and feature reuse.
Yao et al. [47] design a unified EssNet backbone, which applies dilated convolution to
maintain the resolution of deep level features, and then generate high-quality feature maps
for detecting multi-scale objects. Dong et al. [35] develop a Receptive Field Expansion Block
(RFEB) and add it on the top of the backbone of FPN to expand the receptive field of the
whole network adaptively. In this way, the context information surrounding each object can
be captured to help object detection. Qian et al. [48] propose a Multi-Level Feature Fusion
(MLFF) module, which concatenates the feature grids pooled from the multi-level outputs
of FPN to handle the problem of multi-scale object detection in aerial images. Lu et al. [49]
design a multi-layer feature fusion structure to enhance the semantic information of the
shallow features for detecting small objects better. Dong et al. [39] aggregate the multi-level
outputs of FPN and the global context of the whole image by averaging them, and then
in turn add the aggregated features with the multi-level outputs of FPN to generate more
discriminative pyramidal features for remote sensing object detection.

In addition, some methods have been proposed to detect objects in wide area motion
imagery in recent years. For example, taking a set of extremely large video frames as input,
ClusterNet [50] combines the motion and appearance information within the convolutional
architecture to locate multiple objects simultaneously. Zhou et al. [51] propose a new object
detector, which first uses background subtraction with a low threshold to identify a large
number of potential detections, then uses two CNNs considering both spatial-temporal
information to remove false alarms and disentangle merged detections, respectively.

2.2. Multi-Level Feature Fusion

Remote sensing objects usually have large-scale variations, earlier object detectors,
such as region-based CNN (R-CNN) [12], Fast R-CNN [14], Faster R-CNN [15], and Region-
based Fully Convolutional Network (R-FCN) [52], for which only utilizing the top layer
feature map of CNNs for object detection is suboptimal. To alleviate this issue, a lot of
detectors have been proposed to exploit the multi-level outputs of CNNs for object detection.
For instance, a single shot multibox detector (SSD) [23] directly utilizes the shallow and
deep layer features of CNNs to detect small and large objects, respectively. However,
the shallow layer features of CNNs lack semantic information, which may decrease its
recognition performance for small objects. To this end, FPN [9] introduces a top-down
path and lateral connections to pass the semantic information from deep layers to shallow
layers, and construct a feature pyramid. The shallow and deep layers in the pyramid are
responsible for detecting small and large objects, respectively. FPN has greatly increased the
detection accuracy and become the mainstream way for multi-scale object detection. Based
on FPN, a lot of detectors have been proposed. For example, an additional bottom-up path
is created in PA-Net [40] to shorten the information path between the shallow layers and
deep layers, and thus the accurate localization information existed in shallow layers can
be passed to deep layers. NAS-FPN [53] adopts Neural Architecture Search (NAS) [54] to
find the optimal feature pyramid architecture automatically. In addition, EfficientDet [19]
finds that PANet suffers from too many parameters and computational load, and prunes
PA-Net [40] to improve the model efficiency. In the field of remote sensing object detection,
in order to fully exploit the multi-level outputs of FPN, and enhance the current level
features, the CSFF method [42] first concatenates the features of the remaining levels along
the channel axis, and then adds the concatenated features with the current level features.

In the aforementioned models, when fusing multi-scale features with different resolutions,
most models first resize them to the same resolution, and then sum or concatenate them.
In this paper, referring to the previous methods [42–44], we use concatenation to fuse the multi-
level outputs of FPN, and make two improvements to fuse them better. First, since different
parts of the multi-level outputs of FPN show different importance for object detection,
a novel attention module is proposed and deployed after concatenation to emphasize
the important features of the concatenated feature map. In this way, we can adaptively
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exploit the complementary information contained in different outputs of FPN. Second, since
the objects in remote sensing images have variable shapes and orientations, the original
outputs of FPN, which have fixed-shape receptive fields, can hardly handle these objects
well. To this end, we replace the original lateral connections of FPN with DCLCMs, each of
which contains a 3× 3 deformable convolution to generate feature maps with deformable
receptive fields before concatenating them. More details are described in Section 3.

2.3. Attention Mechanism

In recent years, the attention mechanism has been widely used in various computer
vision tasks, and achieved promising results [39,55–61]. Among all the existing attention
modules, Squeeze-and-Excitation (SE) attention [62] is the most popular one. It computes
channel attention by using 2D global average pooling. However, 2D global average pooling
may cause SE attention loss of the positional information of objects, which is critically
important for remote sensing object detection. To alleviate the positional information loss,
the coordinate attention block [63] exploits two 1D global average pooling to pool the input
feature map along the horizontal and vertical directions, generating two feature maps,
respectively. Then, these two feature maps are encoded into two attention maps by using
1× 1 convolution layers. Finally, both attention maps are multiplied with the input feature
map to emphasize the features of targets. The positional information of targets can thus be
preserved by the coordinate attention. However, as described above, coordinate attention
computes the importance of each row or each column of the input feature map only using
the information in the corresponding row or column, and the contextual information
surrounding the corresponding row or column is not exploited, which is suboptimal for
object detection. Based on coordinate attention, this paper proposes a novel attention
module, which computes the importance of each row or each column of the input feature
map using both the information in the corresponding row or column and the information
surrounding the corresponding row or column; thus, it can produce more precise attention
maps for object detection.

3. Materials and Methods
3.1. Overview of the Proposed Method

The framework of the proposed method is summarized in Figure 2. Specifically,
given an input image, we first use ResNet-50 [6] to extract its multi-scale convolutional
features C2-C5. Then, we replace the original lateral connections of the FPN with the
proposed DCLCMs, and obtain new pyramidal features P2-P5 following the operation of
FPN. To make full use of P2-P5 for object detection and detect multi-scale objects better,
we propose several A-MLFFMs, each of which adaptively concatenates the features of
the current layer with the features of the remaining layers to enhance the current layer
features. In this way, the complementary information contained in different outputs of FPN
is fully exploited, and the corresponding generated multi-scale feature maps A2-A5 are
more conducive to multi-scale remote sensing object detection. In the following, we will
elaborate the details of DCLCM and A-MLFFM.

3.2. Deformable Convolution Lateral Connection Module (DCLCM)

Given an input feature map x, the standard 2D convolutional process consists of
two steps—first, sampling over the input feature map using a regular grid R (for a 3× 3
standard convolution, R = {(−1, −1), (−1, 0), . . . , (1, 0), (1, 1)}); second, summing the
sampled values weighted by w.

Specifically, for each location p on the output feature map y, the output value y(p) is
computed as follows:

y(p) = ∑
pn∈R

(w(pn) · x(p + pn)) (1)

where pn enumerates the locations in R. x(p + pn) represents the input of convolution
when the sampling location is p + pn.
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In deformable convolution (DConv), as shown in Figure 3, the regular grid R is
augmented with offsets, which are learned from the input feature map. This paper uses
{∆pn|n = 1, 2, ..., N}, N = |R| to represent the learned offsets, and Equation (1) is thus
modified as follows for DConv:

y(p) = ∑
pn∈R

(w(pn) · x(p + pn + ∆pn)) (2)

Due to the irregular offsets, DConv can adaptively adjust the sampling locations
according to the input feature map and output a feature map with deformable
receptive fields.

Conv

2N
offset field offsets

Input feature map Output feature map

3×3
DConv

Input feature map Output feature map

Figure 3. Flowchart of DCLCM.

Since the feature maps extracted by the backbone of FPN have fixed-shape receptive
fields, the original FPN, which only adopts 1 × 1 convolution layers as the lateral
connections, can hardly generate precise feature maps with deformable fields to detect
remote sensing objects with variable shapes and orientations. To this end, as shown in
Figure 2, we replace the original lateral connections of FPN with DCLCMs, each of which
includes a 3× 3 DConv to generate new pyramidal features for detecting remote sensing
objects better.

3.3. Attention-Based Multi-Level Feature Fusion Module (A-MLFFM)

A-MLFFMs take P2 − P5 as inputs and generate more powerful pyramidal representations
A2 − A5 for the subsequent object detection. Figure 4 illustrates the details of the proposed
A-MLFFM for generating A3. Likewise, A2, A4, and A5 can be generated in a similar
way. As shown in Figure 4, when generating A3, A-MLFFM regards P3 as the base feature
map, while regarding the other three feature maps, i.e., P2, P4, and P5 as the auxiliary
feature maps. The base feature map is used to construct the primary features of A3, while
the auxiliary feature maps offer complementary features to remedy the inadequacy of
P3 for object detection. Specifically, the proposed A-MLFFM first introduces four 1× 1
convolutional layers (Convs) and applies them after the multi-level outputs of FPN to
generate four intermediate feature maps, namely P

′
2 − P

′
5. During this process, for the other

three auxiliary feature maps, the output channels of 1× 1 Conv are set to 128. For the
base feature map, the output channels of 1× 1 Conv are set to 256. In addition, to save
computational cost and memory usage, if the input level is higher than the output one
(e.g., P4 and P5), the input feature map is processed by the operations of Conv followed by
bilinear interpolation upsampling. Conversely, for lower input level (e.g., P2), the input
feature map is first downsampled by average pooling and then passed to 1× 1 Conv.
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Then, P
′
2 − P

′
5 with the same spatial resolution are concatenated along the channel

axis to generate a multi-scale concatenated feature map named Fcon. Since different parts
of Fcon show different importance to object detection, a novel attention module is added
after Fcon to weigh it. The attention module will assign larger weights to the features
that are important to object detection, making A-MLFFM able to adaptively exploit the
complementary information contained in different parts of Fcon.

Finally, a 3× 3 Conv is used to adjust the channels of the refined feature map from 640
to 256 for the final object detection.

3×3
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d = 640

AM

�3
multi-scale concatenated 
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Figure 4. Structure of the proposed A-MLFFM, taking the generation of A3 as an example.

In short, the overall process of A-MLFFM for generating A3 is as follows:

P
′
2 = Conv1×1(Down(P2)) (3)

P
′
3 = Conv1×1(P3) (4)

P
′
4 = Up(Conv1×1(P4)) (5)

P
′
5 = Up(Conv1×1(P5)) (6)

Fcon = Concat(P
′
2, P

′
3, P

′
4, P

′
5) (7)

Fcon_use f ul = AM(Fcon) (8)

A3 = Conv3×3(Fcon_use f ul) (9)

where Conv represents standard convolution. The subscripts 3× 3 and 1× 1 denote the
kernel size. Up, Down, and Concat denote the operations of bilinear interpolation, average
pooling, and concatenation, respectively. AM is the proposed attention module.

In the following, we will describe the structure of the proposed attention module.

The Proposed Attention Module (AM)

The function of attention module here is to highlight the significant features of Fcon.
Among all the existing attention modules [55–63], Squeeze-and-Excitation (SE) attention [62]
is the most popular one. Specifically, as shown in Figure 5a, given an input feature map, SE
attention first uses a 2D global average pooling to aggregate the input feature map into a
channel descriptor. Then, the channel descriptor is passed to two fully connected layers
to compute the importance of each channel in the input feature map. However, 2D global
average pooling may cause SE attention loss of the positional information of objects, which is
critically important for remote sensing object detection. To alleviate the positional information
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loss, the coordinate attention module [63] (see Figure 5b) uses two pooling layers with kernel
size of (1, W) and (H, 1) to pool the input feature map along the horizontal and vertical
directions, generating two feature maps, respectively. Then, these two feature maps are
encoded into two attention maps by using 1× 1 convolution layers. Finally, both attention
maps are multiplied with the input feature map to emphasize the features of targets.
The positional information of targets can thus be preserved by the coordinate attention.
However, as described above, coordinate attention computes the importance of each row
or each column of the input feature map only using the information in the corresponding
row or column. The contextual information surrounding the corresponding row or column
is not exploited, which is suboptimal for object detection. Based on coordinate attention,
a novel attention module is proposed to produce more precise attention maps.
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Figure 5. Schematic comparison of the classic SE attention (a), coordinate attention (b), and the
proposed attention module (c). Here, ‘X Avg Pool’ and ‘Y Avg Pool’ represent two pooling layers
with kernel size of (1, W) and (H, 1), respectively.

Specifically, as shown in Figure 5c, given the input feature map Fcon ∈ RC∗H∗W ,
the proposed attention module first exploits two pooling layers with kernel size of (1, W)
and (H, 1) to aggregate Fcon into two feature maps. Then, unlike coordinate attention that
sends these two feature maps to 1× 1 convolutional layers to generate two corresponding
attention maps, the proposed attention module sends them to a shared convolutional
network, which contains two 7× 1 convolutional layers to produce the above two attention
maps. In this manner, the proposed attention module computes the importance of each row
or each column of the input feature map using both the information in the corresponding
row or column and the information surrounding the corresponding row or column and
thus can produce more precise attention maps. In addition, different from the SE attention
and coordinate attention, we use exponential linear unit (ELU) [64] instead of rectified
linear unit (ReLU) between two fully connected layers to facilitate gradient propagation.
Finally, following coordinate attention, both attention maps are multiplied with the input
feature map to emphasize the features of targets.

4. Experiments and Results
4.1. Dataset

In this paper, the proposed method is evaluated on the DIOR dataset, which is one of
the largest and most diverse datasets for object detection in remote sensing images. The
DIOR dataset contained 23,463 images, and each image has the spatial size of 800× 800 pixels.
The training and testing datasets contain 11,725 and 11,738 images, respectively. In addition,
192,472 instances are annotated with horizontal rectangles in DIOR. The instances in DIOR
have variable shapes, orientations, and sizes. Figure 6 shows the 20 object categories
in DIOR.
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train station
(TS)

vehicle

windmill

Figure 6. Object categories in the DIOR dataset. The white rectangles represent the ground truths in
each image.

4.2. Evaluation Metrics

In object detection, each predicted bounding box can be divided into two types,
i.e., true positive (TP) and false positive (FP). Specifically, if the Intersection over Union
(IoU) between a predicted box and a ground truth exceeds a given threshold (set as 0.5
in this paper), the predicted box is recognized as TP. FP is just the opposite. In addition,
the ground truth, which is not matched with any predicted bounding box is recognized
as false negative (FN). Set NTP, NFP and NFN as the number of TPs, FPs, and FNs, and
the precision P and recall R can be obtained by the following equations:

P =
NTP

NTP + NFP
=

NTP

all detections
(10)

R =
NTP

NTP + NFN
=

NTP

all ground truths
(11)

Average Precision (AP) computes the mean value of P for recall value from R = 0 to
R = 1 and higher AP indicates better detection performance. Thus, for multi-class object
detection, mean AP (mAP), which is the mean value of AP over all classes, is adopted to
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evaluate the performance of different detectors. In addition, we adopt the PASCAL VOC
07 metric [65] to calculate the AP of each category in this paper.

4.3. Implementation Details

In this paper, ResNet-50 [6] pretrained on the ImageNet [66] is chosen as the backbone
for convolutional feature extraction. All detectors are trained on four NVIDIA TITAN X
GPUs, and we adopt stochastic gradient descent algorithm to optimize the parameters
of each detector. The number of total epochs and the initial learning rate are set to 12
and 0.02, respectively, and at the 8th and 11th epochs, the learning rate is divided by 10.
In addition, in order to avoid the instability of convergence at the beginning of training,
the warm-up learning rate is used (the learning rate is increased from 2× 10−5 to 2× 10−2

linearly during the first 800 iterations). The batch size is set to 12 (three images per GPU,
and each image is resized to the size of 800× 800 pixels).

4.4. Ablation Study and Analysis

The proposed method contains two modules, i.e., DCLCM and A-MLFFM. To demonstrate
their individual effectiveness, an ablation study is conducted over the DIOR dataset. As shown
in Table 1, we compare the detection mAP of FPN and FPN with different combinations of
DCLCM and A-MLFFM on DIOR.

Table 1. Detection accuracy comparisons between FPN and FPN with different combinations of
DCLCM and A-MLFFM on the DIOR Dataset.

Category FPN [9] FPN + DCLCM FPN +
A-MLFFM

FPN + DCLCM
+ A-MLFFM

airplane 70.2 70.6 70.3 70.7
airport 75.2 83.0 79.2 83.1

BF 71.5 71.6 71.8 71.9
BC 86.1 86.6 86.8 86.5

bridge 46.8 49.0 50.5 49.3
chimney 76.9 79.0 78.0 78.2

dam 64.4 68.8 69.2 70.3
ESA 76.4 78.8 82.0 83.7
ETS 69.7 73.4 74.3 76.7
GF 75.3 76.6 75.7 76.0

GTF 79.6 80.6 78.6 80.2
harbor 56.6 57.5 52.8 55.9

overpass 60.8 62.2 61.3 62.7
ship 88.5 88.7 88.9 89.0

stadium 60.7 69.8 69.5 71.3
ST 70.6 71.4 78.0 79.1
TC 81.4 81.3 81.2 81.4
TS 54.9 61.2 57.0 60.1

vehicle 54.4 54.8 55.5 55.6
windmill 88.5 88.2 88.6 89.4

mAP 70.4 72.7 72.5 73.6

• DCLCM Only. After we replace the original lateral connections of FPN with the
proposed DCLCMs, 2.3% mAP improvement can be achieved on the DIOR dataset.
The objects in remote sensing images have variable shapes and orientations, which
may seriously affect the detection performance of FPN. By integrating the DCLCM
into FPN, more precise feature maps with deformable receptive fields can be generated
to detect these remote sensing objects well.

• A-MLFFM Only. When we insert the proposed A-MLFFMs into FPN, the detection
mAP is improved by 72.1% on the DIOR dataset. Each A-MLFFM contains a novel
attention module to fuse the multi-level outputs of FPN adaptively. In this way,
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the complementary information contained in different outputs of FPN can be fully
exploited to detect remote sensing objects with various sizes better.

• Both DCLCM and A-MLFFM. By introducing both of the proposed DCLCM and
A-MLFFM into FPN simultaneously, the detection mAP can be further increased to
73.6% on the DIOR dataset, which demonstrates that DCLCM and A-MLFFM are two
complementary modules, and the utilization of them allows the proposed method to
achieve the best detection accuracy.

Qualitatively, as illustrated in Figure 7, compared with the baseline method FPN,
the proposed method can reduce the number of false and missing detections, as well as
locate remote sensing objects more precisely.

(a) (b)

Figure 7. Some detection results comparison between FPN and the proposed method. (a) prediction
of FPN; (b) prediction of the proposed method. The green, blue, and red rectangles represent TPs,
FPs, and FNs, respectively.
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4.5. Effectiveness of the Attention Module in A-MLFFM

To clearly verify the effectiveness of the attention module in A-MLFFM, we conduct
comparative experiments on the DIOR dataset. Specifically, we first remove the attention
module from A-MLFFM, and obtain a new module named multi-level feature fusion
module (MLFFM). Then, we add different attention modules in the proposed A-MLFFM.
As shown in Table 2, compared to FPN with MLFFM, after we add different attention
modules in A-MLFFM, the detection mAP can be increased, which demonstrate the
effectiveness of the attention module in A-MLFFM. In addition, FPN with A-MLFFM,
which contains the proposed attention module, can achieve the best detection mAP. This
demonstrates the superiority of the proposed attention compared with SE attention and
coordinate attention module.

Table 2. Detection accuracy comparison between FPN with MLFFM and FPN with A-MLFFM
containing different attention modules on the DIOR Dataset.

Category FPN + MLFFM FPN + A-MLFFM
(SE Attention [62])

FPN + A-MLFFM
(CA Block [63])

FPN + A-MLFFM
(the Proposed Attention)

airplane 70.4 70.2 70.3 70.3
airport 75.8 78.3 78.5 79.2

BF 71.4 71.7 71.8 71.8
BC 86.3 86.1 86.4 86.8

bridge 48.2 48.2 48.6 50.5
chimney 78.1 78.0 77.5 78.0

dam 65.0 66.0 66.5 69.2
ESA 79.4 80.6 78.8 82.0
ETS 69.8 73.9 73.3 74.3
GF 76.3 76.4 76.4 75.7

GTF 80.5 78.6 80.9 78.6
harbor 54.7 53.3 53.3 52.8

overpass 61.5 61.8 61.6 61.3
ship 88.9 88.5 88.7 88.9

stadium 71.3 69.7 71.6 69.5
ST 71.0 71.3 71.4 78.0
TC 81.4 81.4 81.5 81.2
TS 55.1 56.4 55.6 57.0

vehicle 55.0 55.2 55.3 55.5
windmill 88.6 89.0 88.6 88.6

mAP 71.4 71.7 71.8 72.5

4.6. Comparison with Other Multi-Level Feature Fusion Modules

In order to reveal the superiority of the proposed A-MLFFM, we compare it with three
representative multi-level feature fusion modules, including the balanced feature pyramid
(BFP) [18], cross-scale feature fusion (CSFF) [42], and adaptive feature pooling (AFP) [40]
on the DIOR dataset. Specifically, we add them after the multi-level outputs of FPN. As can
be seen from Table 3, compared with the other three methods, FPN with the proposed
A-MLFFM can achieve the highest mAP of 72.5% on DIOR.

4.7. Comparison with Other State-of-the-Art Methods

To further evaluate the performance of the proposed method, we quantitatively
compare it with seven considered state-of-the-art object detection methods, encompassing
the original FPN [9], Libra R-CNN [18], Remote-sensing Spatial Adaptation DETector
(RSADet) [67], deformable convolution networks (DCNs) [68], Double-head R-CNN [17],
adaptive balanced network (ABNet) [69], and FPN with receptive field expansion
block [35]. The detection accuracy of all these methods is illustrated in Table 4, from which
we can see that the proposed method achieves the highest detection mAP of 73.6% on the
DIOR dataset. Some visualization results of proposed method are shown in Figure 8. It can
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be observed that, even remote sensing objects have different degrees of scale changes and
deformation, the proposed method can detect them well.

Table 3. Detection accuracy comparisons of FPN with different multi-level feature fusion modules on
the DIOR dataset.

Category FPN + CSFF [42] FPN + AFP [40] FPN + BFP [18] FPN + A-MLFFM

airplane 69.9 69.6 70.5 70.3
airport 74.4 75.4 78.1 79.2

BF 71.6 71.7 71.7 71.8
BC 86.3 86.4 86.3 86.8

bridge 47.0 47.1 47.4 50.5
chimney 78.1 77.8 77.9 78.0

dam 63.8 66.3 64.8 69.2
ESA 76.3 76.3 75.9 82.0
ETS 73.0 70.1 72.8 74.3
GF 75.4 74.3 75.3 75.7

GTF 80.8 80.5 80.7 78.6
harbor 53.9 52.8 55.9 52.8

overpass 61.0 61.1 60.3 61.3
ship 88.6 88.7 88.8 88.9

stadium 71.5 72.4 69.9 69.5
ST 71.1 71.0 70.8 78.0
TC 81.4 81.4 81.5 81.2
TS 55.1 56.6 56.3 57.0

vehicle 54.5 54.7 54.8 55.5
windmill 88.7 88.3 88.6 88.6

mAP 71.1 71.1 71.4 72.5

Table 4. Detection accuracy comparisons of different methods on the DIOR dataset. * indicates
our implementation.

Category FPN * [9] Libra
R-CNN * [18] RSADet [67] DCNs * [68] Double-Head

R-CNN * [17] ABNet [69] FPN with
RFEB [35] Ours

airplane 70.2 70.9 73.6 70.2 70.4 66.8 70.0 70.9
arport 75.2 76.5 86.0 81.7 80.2 84.0 83.9 83.1

BF 71.5 71.4 72.6 71.7 71.9 74.9 77.1 71.9
BC 86.1 86.0 89.6 86.2 86.9 87.7 86.9 86.5

bridge 46.8 47.4 43.6 48.0 49.3 50.3 47.8 49.3
chimney 76.9 77.4 75.3 75.7 78.5 78.2 77.6 78.2

dam 64.4 66.0 62.3 67.1 65.9 67.8 71.3 70.3
ESA 76.4 76.9 79.5 78.8 77.6 85.9 79.5 83.7
ETS 69.7 73.6 68.7 73.5 73.2 74.2 70.6 76.7
GF 75.3 76.1 78.6 75.5 76.2 79.7 77.3 76.0

GTF 79.6 80.4 79.1 79.6 81.5 81.2 78.7 80.2
harbor 56.6 55.9 57.9 57.2 56.2 55.4 57.7 55.9

overpass 60.8 61.2 59.2 61.2 61.8 61.6 60.4 62.7
ship 88.5 89.0 90.0 88.4 88.8 75.1 88.4 89.0

stadium 60.7 70.0 55.8 69.4 73.6 74.0 67.7 71.3
ST 70.6 71.2 77.0 77.1 71.3 66.7 76.2 79.1
TC 81.4 88.0 87.8 81.3 87.9 87.0 86.9 81.4
TS 54.9 55.3 65.3 60.4 58.7 62.2 63.7 60.1

vehicle 54.4 54.6 55.3 54.7 54.9 53.6 54.5 55.6
windmill 88.5 88.7 86.5 88.9 89.0 89.1 88.2 89.4

mAP 70.4 71.8 72.2 72.3 72.7 72.8 73.2 73.6
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Figure 8. Some detection results of the proposed method on the DIOR dataset. The green rectangles
represent TPs.
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5. Conclusions

This paper proposes a novel object detection framework based on FPN to improve the
object detection accuracy in remote sensing images. First, we replace the original lateral
connections of FPN with DCLCMs to generate feature maps with deformable receptive
fields for detecting remote sensing objects with variable shapes and orientations better.
Second, taking these newly generated feature maps as input, A-MLFFMs generate more
powerful pyramidal features by fusing them adaptively. In this way, the complementary
information contained in different outputs of FPN can be fully exploited. The experiment
results on the DIOR dataset indicate that, compared with the considered state-of-the-art
methods, the proposed method can achieve highest detection mAP of 73.6%.

The proposed method has a limitation when detecting oriented objects, and we will
expand its framework in the future to achieve the oriented object detection. In addition, we
will consider the computational load of deformable convolution in DCLCM and adopt the
structure like a residual module to optimize the detection speed of the proposed method.
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