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Abstract

Forecasting the traffic flows is a critical issue for researchers
and practitioners in the field of transportation. However, it
is very challenging since the traffic flows usually show high
nonlinearities and complex patterns. Most existing traffic
flow prediction methods, lacking abilities of modeling the dy-
namic spatial-temporal correlations of traffic data, thus can-
not yield satisfactory prediction results. In this paper, we
propose a novel attention based spatial-temporal graph con-
volutional network (ASTGCN) model to solve traffic flow
forecasting problem. ASTGCN mainly consists of three in-
dependent components to respectively model three tempo-
ral properties of traffic flows, i.e., recent, daily-periodic and
weekly-periodic dependencies. More specifically, each com-
ponent contains two major parts: 1) the spatial-temporal at-
tention mechanism to effectively capture the dynamic spatial-
temporal correlations in traffic data; 2) the spatial-temporal
convolution which simultaneously employs graph convolu-
tions to capture the spatial patterns and common standard
convolutions to describe the temporal features. The output of
the three components are weighted fused to generate the fi-
nal prediction results. Experiments on two real-world datasets
from the Caltrans Performance Measurement System (PeMS)
demonstrate that the proposed ASTGCN model outperforms
the state-of-the-art baselines.

Introduction

Recently, many countries are committed to vigorously de-
velop the Intelligent Transportation System (ITS) (Zhang
et al. 2011) to help for efficient traffic management. Traf-
fic forecasting is an indispensable part of ITS, especially on
the highway which has large traffic flows and fast driving
speed. Since the highway is relatively closed, once a conges-
tion occurs, it will seriously affect the traffic capacity. Traf-
fic flow is a fundamental measurement reflecting the state of
the highway. If it can be predicted accurately in advance, ac-
cording to this, traffic management authorities will be able
to guide vehicles more reasonably to enhance the running
efficiency of the highway network.

Highway traffic flow forecasting is a typical problem of
spatial-temporal data forecasting. Traffic data are recorded
at fixed points in time and at fixed locations distributed
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Figure 1: The spatial-temporal correlation diagram of traffic
flow

in continuous space. Apparently, the observations made at
neighboring locations and time stamps are not independent
but dynamically correlated with each other. Therefore, the
key to solve such problems is to effectively extracting the
spatial-temporal correlations of data. Fig. 1 demonstrates the
spatial-temporal correlations of traffic flows (also can be ve-
hicle speed, lane occupancy, etc.). The bold line between
two points represents their mutual influence strength. The
darker the color of line is, the greater the influence is. In the
spatial dimension (Fig. 1(a)), we can find that different loca-
tions have different impacts on A and even a same location
has varying influence on A as time goes by. In the temporal
dimension (Fig. 1(b)), the historical observations of differ-
ent locations have varying impacts on A’s traffic states at
different times in the future. In conclusion, the correlations
in traffic data on the highway network show strong dynamics
in both the spatial dimension and temporal dimension. How
to explore nonlinear and complex spatial-temporal data to
discover its inherent spatial-temporal patterns and to make
accurate traffic flow predictions is a very challenging issue.

Fortunately, with the development of the transportation
industry, many cameras, sensors and other information col-
lection devices have been deployed on the highway. Each
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device is placed at a unique geospatial location, constantly
generating time series data about traffic. These devices have
accumulated a large amount of rich traffic time series data
with geographic information, providing a solid data founda-
tion for traffic forecasting. Many researchers have already
made great efforts to solve such problems. Early, time series
analysis models are employed for traffic prediction prob-
lems. Yet, it is difficult for them to handle the unstable and
nonlinear data in practice. Later, traditional machine learn-
ing methods are developed to model more complex data,
but it is still difficult for them to simultaneously consider
the spatial-temporal correlations of high-dimensional traffic
data. Moreover, the prediction performances of this kind of
methods rely heavily on feature engineering, which often re-
quires lots of experiences from experts in the corresponding
domain. In recent years, many researchers use deep learn-
ing methods to deal with high-dimensional spatial-temporal
data, i.e., convolutional neural networks (CNN) are adopted
to effectively extract the spatial features of grid-based data;
graph convolutional neural networks (GCN) are used for de-
scribing spatial correlation of graph-based data. However,
these methods still fail to simultaneously model the spatial-
temporal features and dynamic correlations of traffic data.

In order to tackle the above challenges, we pro-
pose a novel deep learning model: Attention based
Spatial-Temporal Graph Convolution Network (ASTGCN)
to collectively predict traffic flow at every location on the
traffic network. This model can process the traffic data di-
rectly on the original graph-based traffic network and ef-
fectively capture the dynamic spatial-temporal features. The
main contributions of this paper are summarized as follows:

• We develop a spatial-temporal attention mechanism to
learn the dynamic spatial-temporal correlations of traffic
data. Specifically, a spatial attention is applied to model
the complex spatial correlations between different loca-
tions. A temporal attention is applied to capture the dy-
namic temporal correlations between different times.

• A novel spatial-temporal convolution module is designed
for modeling spatial-temporal dependencies of traffic
data. It consists of graph convolutions for capturing spa-
tial features from the original graph-based traffic network
structure and convolutions in the temporal dimension for
describing dependencies from nearby time slices.

• Extensive experiments are carried out on real-world high-
way traffic datasets, which verify that our model achieves
the best prediction performances compared to the existing
baselines.

Related work

Traffic forecasting After years of continuous researches
and practices, many achievements have been made in the
studies about traffic forecasting. The statistical models used
for traffic prediction include HA, ARIMA (Williams and
Hoel 2003), VAR (Zivot and Wang 2006), etc. These ap-
proaches require data to satisfy some assumptions, but traf-
fic data is too complex to satisfy these assumptions, so they
usually perform poorly in practice. Machine learning meth-
ods such as KNN (Van Lint and Van Hinsbergen 2012) and

SVM (Jeong et al. 2013) can model more complex data, but
they need careful feature engineering. Since deep learning
has brought about breakthroughs in many domains, such as
speech recognition and image processing, more and more
researchers apply deep learning to spatial-temporal data pre-
diction. Zhang et al. (2018) designed a ST-ResNet model
based on the residual convolution unit to predict crowd
flows. Yao et al. (2018b) proposed a method to predict traffic
by integrating CNN and long-short term memory (LSTM) to
jointly model both spatial and temporal dependencies. Yao
et al. (2018a) further proposed a Spatial-Temporal Dynamic
Network for taxi demand prediction which can learn the sim-
ilarity between locations dynamically. Although the spatial-
temporal features of the traffic data can be extracted by these
model, their limitation is that the input must be standard 2D
or 3D grid data.

Convolutions on graphs The traditional convolution can
effectively extract the local patterns of data, but it can only
be applied for the standard grid data. Recently, the graph
convolution generalizes the traditional convolution to data
of graph structures. Two mainstreams of graph convolution
methods are the spatial methods and the spectral methods.
The spatial methods directly perform convolution filters on
a graph’s nodes and their neighbors. So, the core of this
kind of methods is to select the neighborhood of nodes.
Niepert, Ahmed, and Kutzkov (2016) proposed a heuristic
linear method to select the neighborhood of every center
node, which achieved good results in social network tasks.
Li et al. (2018) introduced graph convolutions into human
action recognition tasks. Several partitioning strategies were
proposed here to divide the neighborhood of each node into
different subsets and to ensure the numbers of each node’s
subsets are equal. The spectral methods, in which the lo-
cality of the graph convolution is considered by spectral
analysis. A general graph convolution framework based on
the Graph Laplacian is proposed by Bruna et al. (2014),
then Defferrard, Bresson, and Vandergheynst (2016) opti-
mized the method by using Chebyshev polynomial approx-
imation to realize eigenvalue decomposition. Yu, Yin, and
Zhu (2018) proposed a gated graph convolution network for
traffic prediction based on this method, but the model does
not consider the dynamic spatial-temporal correlations of
traffic data.

Attention mechanism Recently, attention mechanisms
have been widely used in various tasks such as natural lan-
guage processing, image caption and speech recognition.
The goal of the attention mechanism is to select information
that is relatively critical to the current task from all input. Xu
et al. (2015) proposed two attention mechanisms in the im-
age description task and adopted a visualization method to
intuitively show the effect of the attention mechanism. For
classifying nodes of a graph, Velickovic et al. (2018) lever-
aged self-attentional layers to process graph-structured data
by neural networks and achieved state-of-the-art results. To
forecast the time series, Liang et al. (2018) proposed a multi-
level attention network to adaptively adjust the correlations
among multiple geographic sensor time series. However, it
is time-consuming in practice since a separate model needs
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to be trained for each time series.

Motivated by the studies mentioned above, considering
the graph structure of the traffic network and the dynamic
spatio-temporal patterns of the traffic data, we simultane-
ously employ graph convolutions and the attention mecha-
nisms to model the network-structure traffic data.

Preliminaries

Traffic Networks

In this study, we define a traffic network as an undirected
graph G = (V,E,A), as shown in Fig. 2(a), where V is a
finite set of |V | = N nodes; E is a set of edges, indicating
the connectivity between the nodes; A ∈ R

N×N denotes
the adjacency matrix of graph G . Each node on the traffic
network G detects F measurements with the same sampling
frequency, that is, each node generates a feature vector of
length F at each time slice, as shown by the solid lines in
Fig. 2(b).

(b)

1

𝑡𝑖𝑚𝑒

flow
occupy
speed
forecasting target

(a)

0

𝑡𝑖𝑚𝑒

Figure 2: (a) The spatial-temporal structure of traffic data,
where the data at each time slice forms a graph; (b) Three
measurements are detected on a node and the future traf-
fic flow is the forecasting target. Here, all measurements are
normalized to [0,1].

Traffic Flow Forecasting

Suppose the f -th time series recorded on each node in the
traffic network G is the traffic flow sequence, and f ∈

(1, ..., F ). We use x
c,i
t ∈ R to denote the value of the

c-th feature of node i at time t , and xi
t ∈ R

F denotes
the values of all the features of node i at time t. Xt =
(x1

t , x2t , ..., xN
t )T ∈ R

N×F denotes the values of all the fea-
tures of all the nodes at time t. X = (X1,X2, ...,Xτ )

T ∈
R

N×F×τ denotes the value of all the features of all the nodes
over τ time slices. In addition, we set yit = x

f,i
t ∈ R to rep-

resent the traffic flow of node i at time t in the future.

Problem. Given X , all kinds of the historical measure-
ments of all the nodes on the traffic network over past
τ time slices, predict future traffic flow sequences Y =
(y1, y2, ..., yN )T ∈ R

N×Tp of all the nodes on the whole
traffic network over the next Tp time slices, where yi =
(yiτ+1, y

i
τ+2, ..., y

i
τ+Tp

) ∈ R
Tp denotes the future traffic

flow of node i from τ + 1.

Attention Based Spatial-Temporal Graph

Convolutional Networks
Fig. 3 presents the overall framework of the ASTGCN
model proposed in this paper. It consists of three indepen-
dent components with the same structure, which are de-
signed to respectively model the recent, daily-periodic and
weekly-periodic dependencies of the historical data.
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Figure 3: The framework of ASTGCN. SAtt: Spatial Atten-
tion; TAtt: Temporal Attention GCN: Graph Convolution;
Conv: Convolution; FC: Fully-connected; ST block: Spatial-
Temporal block.

Suppose the sampling frequency is q times per day. As-
sume that the current time is t0 and the size of predicting
window is Tp. As shown in Fig. 4, we intercept three time
series segments of length Th, Td and Tw along the time axis
as the input of the recent, daily-period and weekly-period
component respectively, where Th, Td and Tw are all integer
multiples of Tp. Details about the three time series segments
are as follows:

(1) The recent segment:
X h = (Xt0−Th+1,Xt0−Th+2, ...,Xt0) ∈ R

N×F×Th , a seg-
ment of historical time series directly adjacent to the predict-
ing period, as shown by the green part of Fig. 4. Intuitively,
the formation and dispersion of traffic congestions are grad-
ual. So, the just past traffic flows inevitably have influence
on the future traffic flows.

(2) The daily-periodic segment:
X d = (Xt0−(Td/Tp)∗q+1, ...,Xt0−(Td/Tp)∗q+Tp

,
Xt0−(Td/Tp−1)∗q+1, ...,Xt0−(Td/Tp−1)∗q+Tp

, ...,

Xt0−q+1, ...,Xt0−q+Tp
) ∈ R

N×F×Td consists of the seg-
ments on the past few days at the same time period as the
predicting period, as shown by the red part of Fig. 4. Due
to the regular daily routine of people, traffic data may show
repeated patterns, such as the daily morning peaks. The pur-
pose of the daily-period component is to model the daily
periodicity of traffic data.

(3) The weekly-periodic segment:
Xw = (Xt0−7∗(Tw/Tp)∗q+1, ...,Xt0−7∗(Tw/Tp)∗q+Tp

,
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Xt0−7∗(Tw/Tp−1)∗q+1, ...,Xt0−7∗(Tw/Tp−1)∗q+Tp
, ...,

Xt0−7∗q+1, ...,Xt0−7∗q+Tp
) ∈ R

F×N×Tw is composed of
the segments on last few weeks, which have the same week
attributes and time intervals as the forecasting period, as
shown by the blue part of Fig. 4. Usually, the traffic patterns
on Monday have a certain similarity with the traffic patterns
on Mondays in history, but may be greatly different from
those on weekends. Thus, the weekly-period component is
designed to capture the weekly periodic features in traffic
data.

6/14/2018 Thur.

8:00-8:55 am

6/14/2018 Thur.

6:00-7:55 am

𝑇ℎ……
6/13/2018 Wed.

8:00-8:55 am

6/12/2018 Tue.

8:00-8:55 am

𝑇𝑑
… …

6/17/2018 Thur.

8:00-8:55 am

5/31/2018 Thur.

8:00-8:55 am

… …
𝑇𝑤 𝑇𝑝

Figure 4: An example of constructing the input of time series
segments (suppose the size of predicting window is 1 hour,
and Th, Td and Tw are twice of Tp.

The three components share the same network structure
and each of them consists of several spatial-temporal blocks
and a fully-connected layer. There are a spatial-temporal at-
tention module and a spatial-temporal convolution module
in each spatial-temporal block. In order to optimize the train-
ing efficiency, we adopted a residual learning framework
(He et al. 2016) in each component. In the end, the out-
puts of the three components are further merged based on
a parameter matrix to obtain the final prediction result. The
overall network structure is elaborately designed to describe
the dynamic spatial-temporal correlations of traffic flows.

Spatial-Temporal Attention

A novel spatial-temporal attention mechanism is proposed
in our model to capture the dynamic spatial and temporal
correlations on the traffic network (as described in Fig. 1).
It contains two kinds of attentions, i.e., spatial attention and
temporal attention.

Spatial attention In the spatial dimension, the traffic con-
ditions of different locations have influence among each
other and the mutual influence is highly dynamic. Here, we
use an attention mechanism (Feng et al. 2017) to adaptively
capture the dynamic correlations between nodes in the spa-
tial dimension.

Take the spatial attention in the recent component as an
example:

S = Vs · σ((X
(r−1)
h W1)W2(W3X

(r−1)
h )T + bs) (1)

S′

i,j =
exp(Si,j)∑N
j=1 exp(Si,j)

(2)

where X
(r−1)
h = (X1,X2, ...XTr−1

) ∈ R
N×Cr−1×Tr−1 is

the input of the rth spatial-temporal block. Cr−1 is the num-
ber of channels of the input data in the rth layer. When
r = 1 , C0 = F . Tr−1 is the length of the temporal dimen-
sion in the rth layer. When r = 1, in the recent component
T0 = Th (in the daily-period component T0 = Td and in

the weekly-period component T0 = Tw). Vs, bs ∈ R
N×N ,

W1 ∈ R
Tr−1 , W2 ∈ R

Cr−1×Tr−1 , W3 ∈ R
Cr−1 are learn-

able parameters and sigmoid σ is used as the activation
function. The attention matrix S is dynamically computed
according to the current input of this layer. The value of
an element Si,j in S semantically represents the correlation
strength between node i and node j. Then a softmax func-
tion is used to ensure the attention weights of a node sum to
one. When performing the graph convolutions, we will ac-
company the adjacency matrix A with the spatial attention
matrix S′ ∈ R

N×N to dynamic adjust the impacting weights
between nodes.

Temporal attention In the temporal dimension, there ex-
ist correlations between the traffic conditions in different
time slices, and the correlations are also varying under dif-
ferent situations. Likewise, we use an attention mechanism
to adaptively attach different importance to data:

E = Ve · σ(((X
(r−1)
h )T U1)U2(U3X

(r−1)
h ) + be) (3)

E′

i,j =
exp(Ei,j)∑Tr−1

j=1 exp(Ei,j)
(4)

where Ve, be ∈ R
Tr−1×Tr−1 , U1 ∈ R

N , U2 ∈ R
Cr−1×N ,

U3 ∈ R
Cr−1 are learnable parameters. The temporal cor-

relation matrix E is determined by the varying inputs. The
value of an element Ei,j in E semantically indicates the
strength of dependencies between time i and j. At last, E is
normalized by the softmax function. We directly apply the
normalized temporal attention matrix to the input and get

X̂
(r−1)

h = (X̂1, X̂2, ..., X̂Tr−1
) = (X1,X2, ...,XTr−1

)E′ ∈

R
N×Cr−1×Tr−1 to dynamically adjust the input by merging

relevant information.

Spatial-Temporal Convolution

The spatial-temporal attention module let the network auto-
matically pay relatively more attention on valuable informa-
tion. The input adjusted by the attention mechanism is fed
into the spatial-temporal convolution module, whose struc-
ture is presented in Fig. 5. The spatial-temporal convolution
module proposed here consists of a graph convolution in
the spatial dimension, capturing spatial dependencies from
neighborhood and a convolution along the temporal dimen-
sion, exploiting temporal dependencies from nearby times.

𝑡𝑖𝑚𝑒
graph convolution 

in spatial dimension

convolution 

in temporal dimension

Figure 5: The architecture of spatial-temporal convolutions
of ASTGCN.
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Graph convolution in spatial dimension The spectral
graph theory generalizes the convolution operation from
grid-based data to graph structure data. In this study, the
traffic network is a graph structure in nature, and the fea-
tures of each node can be regarded as the signals on the
graph (Shuman et al. 2013). Hence, in order to make full
use of the topological properties of the traffic network, at
each time slice we adopt graph convolutions based on the
spectral graph theory to directly process the signals, exploit-
ing signal correlations on the traffic network in the spatial
dimension. The spectral method transforms a graph into an
algebraic form to analyze the topological attributes of graph,
such as the connectivity in the graph structure.

In spectral graph analysis, a graph is represented by its
corresponding Laplacian matrix. The properties of the graph
structure can be obtained by analyzing Laplacian matrix
and its eigenvalues. Laplacian matrix of a graph is defined
as L = D − A, and its normalized form is L = IN −

D−
1

2 AD−
1

2 ∈ R
N×N , where A is the adjacent matrix, IN

is a unit matrix, and the degree matrix D ∈ R
N×N is a di-

agonal matrix, consisting of node degrees, Dii =
∑

j Aij .

The eigenvalue decomposition of the Laplacian matrix is

L = UΛUT , where Λ = diag([λ0, ..., λN−1]) ∈ R
N×N

is a diagonal matrix, and U is Fourier basis. Taking the traf-
fic flow at time t as an example, the signal all over the graph

is x = x
f
t ∈ R

N , and the graph Fourier transform of the sig-

nal is defined as x̂ = UTx. According to the properties of
the Laplacian matrix, U is an orthogonal matrix, so the cor-
responding inverse Fourier transform is x = Ux̂. The graph
convolution is a convolution operation implemented by us-
ing linear operators that diagonalize in the Fourier domain
to replace the classical convolution operator (Henaff, Bruna,
and LeCun 2015). Based on this, the signal x on the graph
G is filtered by a kernel gθ:

gθ ∗G x = gθ(L)x = gθ(UΛUT )x = Ugθ(Λ)UTx (5)

where ∗G denotes a graph convolution operation. Since
the convolution operation of the graph signal is equal to
the product of these signals which have been transformed
into the spectral domain by graph Fourier transform (Si-
monovsky and Komodakis 2017), the above formula can be
understood as Fourier transforming gθ and x respectively
into the spectral domain, then multiplying their transformed
results, and doing the inverse Fourier transform to get the
final result of the convolution operation. However, it is ex-
pensive to directly perform the eigenvalue decomposition on
the Laplacian matrix when the scale of the graph is large.
Therefore, Chebyshev polynomials are adopted in this pa-
per to solve this problem approximately but efficiently (Si-
monovsky and Komodakis 2017):

gθ ∗G x = gθ(L)x =

K−1∑

k=0

θkTk(L̃)x (6)

where the parameter θ ∈ R
K is a vector of polynomial co-

efficients. L̃ = 2
λmax

L − IN , λmax is the maximum eigen-

value of the Laplacian matrix. The recursive definition of the
Chebyshev polynomial is Tk(x) = 2xTk−1(x) − Tk−2(x),

where T0(x) = 1 , T1(x) = x. Using approximate expan-
sion of Chebyshev polynomial to solve this formulation cor-
responds to extracting information of the surrounding 0 to
(K − 1)th-order neighbors centered on each node in the
graph by the convolution kernel gθ. The graph convolution
module uses the Rectified Linear Unit (ReLU) as the final
activation function, i.e., ReLU(gθ ∗G x).

In order to dynamically adjust the correlations between
nodes, for each term of Chebyshev polynomial, we accom-

pany Tk(L̃) with the spatial attention matrix S′ ∈ R
N×N ,

then obtain Tk(L̃) ⊙ S′, where ⊙ is the Hadamard product.
Therefore, the above graph convolution formula changes to

gθ ∗G x = gθ(L)x =
∑K−1

k=0 θk(Tk(L̃)⊙ S′)x.
We can generalize this definition to the graph signal

with multiple channels. For example, in the recent com-

ponent, the input is X̂
(r−1)

h = (X̂1, X̂2, ..., X̂Tr−1
) ∈

R
N×Cr−1×Tr−1 , where the feature of each node has Cr−1

channels. For each time slice t, performing Cr filters on the

graph X̂t, we get gθ ∗G X̂t, where Θ = (Θ1,Θ2, ...,ΘCr
) ∈

R
K×Cr−1×Cr is the convolution kernel parameter (Kipf and

Welling 2017). Therefore, each node is updated by the infor-
mation of the 0∼K-1 neighbors of the node.

Convolution in temporal dimension After the graph con-
volution operations having captured neighboring informa-
tion for each node on the graph in the spatial dimension, a
standard convolution layer in the temporal dimension is fur-
ther stacked to update the signal of a node by merging the
information at the neighboring time slice, as shown by the
right part in Fig. 5. Also take the operation on the rth layer
in the recent component as an example:

X
(r)
h = ReLU(Φ ∗ (ReLU(gθ ∗G X̂

(r−1)

h ))) ∈ R
Cr×N×Tr

(7)
where ∗ denotes a standard convolution operation, Φ is the
parameters of the temporal dimension convolution kernel,
and the activation function is ReLU.

In conclusion, a spatial-temporal convolution module
is able to well capture the temporal and spatial features
of traffic data. A spatial-temporal attention module and
a spatial-temporal convolution module forms a spatial-
temporal block. Multiple spatial-temporal blocks are stacked
to further extract larger range of dynamic spatial-temporal
correlations. Finally, a fully connected layer is appended
to make sure the output of each component has the same
dimension and shape with the forecasting target. The final
fully connected layer uses ReLU as the activation function.

Multi-Component Fusion

In this section, we will discuss how to integrate the outputs
of the three components. Take forecasting the traffic flow
on the whole traffic network at 8:00 am on Friday as an
example. It can be observed that the traffic flows at some
areas have obvious peak periods in the morning, so the out-
puts of the daily-period and weekly-period components are
more crucial. However, there are no distinct traffic cycle pat-
terns in some other places, thus the daily-period and weekly-
period components may be helpless. Consequently, when
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the outputs of different components are fused, the impacting
weights of the three components for each node are different,
and they should be learned from the historical data. So the
final prediction result after the fusion is:

Ŷ = Wh ⊙ Ŷh + Wd ⊙ Ŷd + Ww ⊙ Ŷw (8)

where ⊙ is the Hadamard product. Wh, Wd and Ww are
learning parameters, reflecting the influence degrees of the
three temporal-dimensional components on the forecasting
target.

Experiments

In order to evaluate the performance of our model, we car-
ried out comparative experiments on two real-world high-
way traffic datasets.

Datasets

We validate our model on two highway traffic datasets
PeMSD4 and PeMSD8 from California. The datasets are
collected by the Caltrans Performance Measurement System
(PeMS) (Chen et al. 2001) in real time every 30 seconds. The
traffic data are aggregated into every 5-minute interval from
the raw data. The system has more than 39,000 detectors
deployed on the highway in the major metropolitan areas in
California. Geographic information about the sensor stations
are recorded in the datasets. There are three kinds of traffic
measurements considered in our experiments, including to-
tal flow, average speed, and average occupancy.

PeMSD4 It refers to the traffic data in San Francisco Bay
Area, containing 3848 detectors on 29 roads. The time span
of this dataset is from January to February in 2018. We
choose data on the first 50 days as the training set, and the
remains as the test set.

PeMSD8 It is the traffic data in San Bernardino from July
to August in 2016, which contains 1979 detectors on 8 roads.
The data on the first 50 days are used as the training set and
the data on the last 12 days are the test set.

Preprocessing

We remove some redundant detectors to ensure the distance
between any adjacent detectors is longer than 3.5 miles. Fi-
nally, there are 307 detectors in the PeMSD4 and 170 detec-
tors in the PeMSD8. The traffic data are aggregated every 5
minutes, so each detector contains 288 data points per day.
The missing values are filled by the linear interpolation. In
addition, the data are transformed by zero-mean normaliza-
tion x′ = x−mean(x) to let the average be 0.

Settings

We implemented the ASTGCN model based on the MXNet1

framework. According to Kipf and Welling (2017), we test
the number of the terms of Chebyshev polynomial K ∈
{1, 2, 3}. As K becomes larger, the forecasting performance
improves slightly. So does the kernel size in the temporal di-
mension. Considering the computing efficiency and the de-
gree of improvement of the forecasting performance, we set

1https://mxnet.apache.org/

K = 3 and the kernel size along the temporal dimension
to 3. In our model, all the graph convolution layers use 64
convolution kernels. All the temporal convolution layers use
64 convolution kernels and the time span of the data is ad-
justed by controlling the step size of the temporal convo-
lutions. For the lengths of the three segments, we set them
as: Th = 24, Td = 12, Tw = 24. The size of the predicting
window Tp = 12, that is to say, we aim at predicting the traf-
fic flow over one hour in the future. In this paper, the mean
square error (MSE) between the estimator and the ground
truth are used as the loss function and minimized by back-
propagation. During the training phase, the batch size is 64
and the learning rate is 0.0001. In addition, in order to verify
the impact of the spatio-temporal attention mechanism pro-
posed here, we also design a degraded version of ASTGCN,
named Multi-Component Spatial-Temporal Graph Convolu-
tion Networks (MSTGCN), which gets rid of the spatial-
temporal attention. The settings of MSTGCN are the same
as those of ASTGCN, except no spatial-temporal attention.

Baselines

We compare our model with the following eight baselines:

• HA: Historical Average method. Here, we use the average
value of the last 12 time slices to predict the next value.

• ARIMA (Williams and Hoel 2003): Auto-Regressive In-
tegrated Moving Average method is a well-known time
series analysis method for predicting the future values.

• VAR (Zivot and Wang 2006): Vector Auto-Regressive is a
more advanced time series model, which can capture the
pairwise relationships among all traffic flow series.

• LSTM (Hochreiter and Schmidhuber 1997): Long Short-
Term Memory network, a special RNN model.

• GRU (Chung et al. 2014): Gated Recurrent Unit network,
a special RNN model.

• STGCN (Li et al. 2018): A spatial-temporal graph convo-
lution model based on the spatial method.

• GLU-STGCN (Yu, Yin, and Zhu 2018): A graph convolu-
tion network with a gating mechanism, which is specially
designed for traffic forecasting.

• GeoMAN (Liang et al. 2018): A multi-level attention-
based recurrent neural network model proposed for the
geo-sensory time series prediction problem.

Root mean square error (RMSE) and mean absolute error
(MAE) are used as the evaluation metrics.

Comparison and Result Analysis

We compare our models with the eight baseline methods on
PeMSD4 and PeMSD8. Table 1 shows the average results of
traffic flow prediction performance over the next one hour.

It can be seen from Table 1 that our ASTGCN achieves
the best performance in both two datasets in terms of all
evaluation metrics. We can observe that the prediction re-
sults of the traditional time series analysis methods are usu-
ally not ideal, demonstrating those methods’ limited abilities
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Model
PeMSD4 PeMSD8

RMSE MAE RMSE MAE
HA 54.14 36.76 44.03 29.52

ARIMA 68.13 32.11 43.30 24.04
VAR 51.73 33.76 31.21 21.41

LSTM 45.82 29.45 36.96 23.18
GRU 45.11 28.65 35.95 22.20

STGCN 38.29 25.15 27.87 18.88
GLU-STGCN 38.41 27.28 30.78 20.99

GeoMAN 37.84 23.64 28.91 17.84

MSTGCN (ours) 35.64 22.73 26.47 17.47
ASTGCN (ours) 32.82 21.80 25.27 16.63

Table 1: Average performance comparison of different ap-
proaches on PeMSD4 and PeMSD8.

of modeling nonlinear and complex traffic data. By com-
parison, the methods based on deep learning generally ob-
tain better prediction results than the traditional time series
analysis methods. Among them, the models which simulta-
neously take both the temporal and spatial correlations into
account, including STGCN, GLU-STGCN, GeoMAN and
two versions of our model, are superior to the traditional
deep learning models such as LSTM and GRU. Besides,
GeoMAN performs better than STGCN and GLU-STGCN,
indicating the multi-level attention mechanisms applied in
GeoMAN are efficient in capturing the dynamic changings
of traffic data. Our MSTGCN, without any attention mech-
anisms, achieve better results than the previous state-of-the-
art models, proving the advantages of our model in describ-
ing spatial-temporal features of the highway traffic data.
Then combined with the spatial-temporal attention mecha-
nisms, our ASTGCN further reduces the forecasting errors.

Fig. 6 shows the changes of prediction performance of
various methods as the prediction interval increases. Overall,
as the prediction interval becomes longer, the correspond-
ing difficulty of prediction is getting greater, hence the pre-
diction errors also increase. As can be seen from the fig-
ure, the methods only taking the temporal correlation into
account can achieve good results in the short-term predic-
tion, such as HA, ARIMA, LSTM and GRU. However, with
the increase of the prediction interval, their prediction ac-
curacy drops dramatically. By comparison, the performance
of VAR drops slower than those methods. This is mainly be-
cause VAR can simultaneously consider the spatial-temporal
correlations which are more important in the long-term pre-
diction. However, when the scale of the traffic network be-
comes larger, i.e., there are more time series considered in
the model, the prediction error of VAR increases, as shown
in Fig.6, its performance on PeMSD4 is worse than that
on PeMSD8. The errors of deep learning methods increase
slowly with prediction interval increases, and their overall
performance is good. Our ASTGCN model achieves the best
prediction performance almost all the time. Especially in the
long-term prediction, the differences between ASTGCN and
other baselines are more significant, showing that the strat-
egy of combining attention mechanism with graph convolu-

(b) The prediction results of different methods on PeMSD8

(a) The prediction results of different methods on PeMSD4

Figure 6: Performance changes of different methods as the
forecasting interval increases.

tion can better mine the dynamic spatial-temporal patterns
of traffic data.
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Figure 7: The attention matrix obtained from the spatial at-
tention mechanism.

In order to investigate the role of attention mechanisms in
our model intuitively, we perform a case study: picking out
a sub-graph with 10 detectors from the PeMSD8 and show-
ing the average spatial attention matrix among detectors in
the training set. As shown on the right side of Fig. 7, in the
spatial attention matrix, the i-th row represents the correla-
tion strength between each detector and the i-th detector. For
instance, look at the last row, we can know traffic flows on
the 9th detector is closely related to those on the 3th and 8th
detectors. This is reasonable since these three detectors are
close in space on the real traffic network, as shown on the
left side of Fig. 7. Hence, our model not only achieves a best
forecasting performance but also shows an interpretability
advantage.
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Conclusion and Future Work

In this paper, a novel attention based spatial-temporal graph
convolution model called ASTGCN is proposed and suc-
cessfully applied to forecasting traffic flow. The model
combines the spatial-temporal attention mechanism and
the spatial-temporal convolution, including graph convolu-
tions in the spatial dimension and standard convolutions in
the temporal dimension, to simultaneously capture the dy-
namic spatial-temporal characteristics of traffic data. Exper-
iments on two real-world datasets show that the forecast-
ing accuracy of the proposed model is superior to existing
models. The code has been released at: https://github.com/
wanhuaiyu/ASTGCN.

Actually, the highway traffic flow is affected by many ex-
ternal factors, like weather and social events. In the future,
we will take some external influencing factors into account
to further improve the forecasting accuracy. Since the AST-
GCN is a general spatial-temporal forecasting framework
for the graph structure data, we can also apply it to other
pragmatic applications, such as estimating time of arrival.
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