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Abstract—Since the human face preserves the richest informa-
tion for recognizing individuals, face recognition has been widely
investigated and achieved great success in various applications
in the past decades. However, face spoofing attacks (e.g. face
video replay attack) remain a threat to modern face recognition
systems.Though many effective methods have been proposed for
anti-spoofing, we find that the performance of many existing
methods is degraded by illuminations. It motivates us to de-
velop illumination-invariant methods for anti-spoofing. In this
paper, we propose a two stream convolutional neural network
(TSCNN) which works on two complementary space: RGB space
(original imaging space) and multi-scale retinex (MSR) space
(illumination-invariant space). Specifically, RGB space contains
the detailed facial textures yet is sensitive to illumination; MSR
is invariant to illumination yet contains less detailed facial
information. In addition, MSR images can effectively capture
the high-frequency information, which is discriminative for face
spoofing detection. Images from two spaces are fed to the
TSCNN to learn the discriminative features for anti-spoofing. To
effectively fuse the features from two sources (RGB and MSR), we
propose an attention-based fusion method, which can effectively
capture the complementarity of two features. We evaluate the
proposed framework on various databases, i.e. CASIA-FASD,
REPLAY-ATTACK and OULU, and achieve very competitive
performance. To further verify the generalization capacity of the
proposed strategies, we conduct cross-database experiments, and
the results show the great effectiveness of our method.

Index Terms—Face spoofing, multi-scale retinex, deep learning,
attention model, feature fusion.

I. INTRODUCTION

C
OMPARED with traditional authentication approaches

including password, verification code and secret ques-

tion, biometrics authentication is more user-friendly. Since

the human face preserves rich information for recognizing

individuals, face becomes the most popular biometric cue with

the excellent performance of identity recognition. Currently,

person identification can easily use the face images captured

from a distance without physical contact with the camera on

the mobile devices, e.g. mobile phone.

As the application of face recognition system becomes more

and more popular with the widespread of the Mobile phone,

their weaknesses of security become increasingly conspicuous.

For example, owing to the popularity of social network, it is

quite easy to access a person’s face image on the Internet to
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attack a face recognition system. Hence, a deep attention for

face spoofing detection has been drawn and it has motivated

great quantity of studies in the past few years.

In general, there are mainly four types of face spoofing

attacks: photo attack, masking attack, video replay attack and

3D attack. Due to the high cost of the masking attack and

3D attack, therefore, the photo attack and video reply attack

are the two most common attacks. Photo and video replay

attacks can be launched with still face images and videos of

the user in front of the camera, which are actually recaptured

from the real ones. Obviously, the recaptured image is of

lower quality compared with the real one in the same capture

conditions. The lower quality of attacks can result from: lack

of high frequency information [1]–[5], image banding or moire

effects [6], [7], video noise signatures, etc. Clearly, these

image quality degradation factors can work as the useful cues

to distinguish the real faces and the fake ones.

Face spoofing detection, which is also called face liveness

detection, has been designed to counter different types of

spoofing attacks. Face spoofing detection usually works as a

preprocessing step of the face recognition systems to judge

whether the face image is acquired from a real person or a

printed photo (replay video). Therefore, face spoofing detec-

tion is actually a binary classification problem.

To counter the face spoofing attacks, there are mainly

four solutions available in the research literature: (1) micro-

texture based methods, (2) image quality based methods, (3)

motion based methods, and (4) reflectance based methods.

For (1), local micro-texture features are demonstrated as a

useful cue when attacked by photo and video. Researchers start

the texture-based methods by feeding hand-crafted features

extracted from facial texture to classifiers [8]–[12]. With the

development of deep learning, CNN [13]–[15] is utilized to

learn discriminative features for face spoofing detection. For

(2), the low imaging quality of the fake images offers the

useful clues [1]–[7], e.g. the loss to high frequency infor-

mation, these clues have successfully been used for spoofing

detection. For (3), motion-based methods mainly contain:

physiological reaction based [16]–[18] and physical movement

based [19], [20]. Motion-based methods may become less

effective when conducted by video replay which can present

the facial motions. For (4), reflectance of the face image is

another widely used cue for liveness detection because the

lighting reflectance from real face (3D) and attacking (mostly
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Fig. 1. Motivation of the fusion of RGB (Col 1) and MSR (Col 3) images. The
individual feature scores of RGB (Col 2) and MSR (Col 4) and fused scores
(Col 5) are shown. The fused scores are improved compared with individual
scores.

2D, such as photo and replay attacks) face is very different

[1], [21], [22].

In this work, we propose a novel deep learning based micro-

texture based (MTB) method. The existing MTB methods

usually process and analyze the input images in original

RGB color space. However, the RGB images are sensitive to

illuminations. The RGB based MTB methods can potentially

reduce their performance in the presence of illuminations. This

motivates us to develop a illumination-robust MTB method.

Therefore, we proposed a two-stream convolutional neural

network (TSCNN) which is trained on two complementary

space: RGB space (original space) and multi-scale retinex

(MSR) [23] space (illumination-invariant space).

First, both RGB and MSR images contain discriminative

information: RGB images can be used to train end-to-end

discriminative CNNs for spoofing detection; MSR can capture

high frequency information, and this information is verified

particularly effective for spoofing detection. Second, RGB and

MSR images are complementary: RGB space contains the

detailed facial information yet is sensitive to illumination;

MSR is invariant to illumination yet contains less detailed

facial information. In the framework of TSCNN, the RGB and

MSR images are fed to two CNNs (two branches of TSCNN)

separately and generate two features which are discriminative

for anti-spoofing. To effectively fuse these two features, we

propose a learning-based fusion method inspired by attention

mechanism [24] detailed in Section III-C. Apart from the

commonly used fusion methods, e.g. feature averaging fusion,

our attention-based fusion can adaptively weight features to

achieve promising performance of fused features. Fig.1 shows

the complementarity of RGB and MSR and the importance of

the feature fusion. Our contributions can be summarized as:

• We propose a two-stream CNN (TSCNN) which accepts

two complementary information (RGB and MSR images)

as input. To our knowledge, we are the first to investigate

the fusion of these two discriminative clues (RGB and

MSR) for face anti-spoofing.

• To adaptively and effectively fuse two features gener-

ated by TSCNN, we proposed an attention-based fusion

method. The proposed fusion method can make the

TSCNN generalize well to images under various lighting

conditions.

• We conduct extensive evaluations on three popular anti-

spoofing databases: CASIA-FASD, REPLAY-ATTACK

and OULU. The results show the effectiveness of the

proposed strategies. In addition, we run cross-database

experiments with very competitive results, showing the

great generalization capacity of the proposed method.

II. RELATED WORKS

A. Face Spoofing Detection

In these years, various methods have been proposed for

face spoofing detection. In this section, we briefly review the

existing anti-spoofing methods.

Texture Based Methods Texture based methods focus on

exploring different texture-based features for face spoofing

detection. The features can be simply classified as: hand-

crafted features and deep learning based features.

We first introduce hand-crafted feature based method. Based

on the idea that specific frequency bands preserve most texture

information of real faces, the work in [3] employed various

difference-of-Gaussian filters to select a favorable frequency

band for detection. Texture features used in face detection

and face recognition tasks can be migrate to face spoofing

detection and perform quite well.

Apart from hand-crafted features, deep learning, in particu-

lar, CNN based features achieved great success in recent years.

In this category, the CNN learns the discriminative features for

liveness detection. The large amount of training data guides

the CNN to learn an effective feature. [25] extracts the local

texture features and depth features from the face images and

fuses them for face spoofing detection. Furthermore, a LSTM-

CNN architecture [26] was proposed to fuse the predictions

of the multiple frames of a video, which was proved to be

effective for video face spoofing detection.

Image Quality Based Methods Methods in this category

are motivated by the fact that the photo and replay video are

likely to have an image quality degradation in the recapture

process. In [1], the method exploits to analyze the attack

photos in 2D Fourier spectra, showing interesting results.

However, the performance might drop for higher-quality image

data. Moreover, in [5], an image quality based method was

proposed by applying chromatic moment feature, specular

reflection feature, blurriness feature and color diversity feature.

Motion Based Methods This type of methods aim to select

the physiological reaction motions such as eye blinking, lips

movements and the head motions to distinguish the real

face from the fake one. In [20], different movements in the

facial parts were extracted as features for this task. Though

physiological sign based methods have shown satisfactory

performance to counter printed photo attacks with the user

cooperation, they may become less effective for video replay

attack. However, [27] advances a method for facial anti-

spoofing by applying dynamic mode decomposition (DMD),

which can conveniently represent the temporal information of

the replay video as a single image with the same dimensions

as frames in the video. This method based on the motion in-

formation is proved less time consuming and is more accurate.

Reflectance Based Methods The reflectance differences

between the real and fake faces, in particular for the print
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attack and replay attack, can offer important information for

face spoofing detection. The reflectance cue from a single

image is used to detect the face spoofing [1], [22]. [28]

utilizes the different multi-spectral reflectance distributions to

distinguish real and fake faces based on Lambertian model.

Multi-Feature Fusion Based Methods The fusion of mul-

tiple features show improved accuracy compared to individual

feature. [29] proposed a feature fusion with video motion

feature and texture feature to distinguish the authenticity of

the face. The author obtains the moving image from the face

video and the LBP feature from the last frame, fuses them and

uses the linear discriminant analysis (LDA) for classification.

[9] extracts the texture features from three multi-scale filtering

methods, then the resulting features are concatenated to form

the fused feature for classification.

Other Methods Apart from the aforementioned methods,

additional hardwares can also be employed for face spoofing

detection. Unlike face images directly captured by camera, 3D

depth information [30]–[32] and multi-spectrum and infrared

(IR) image. [30] proposed a method for face liveness detection

based on 3D projective invariants. In [31], the authors pro-

posed to recover sparse 3D shapes for face images to counter

the different kinds of photo attacks.

Summary The methods we introduced can usually achieve

promising performance of anti-spoofing on intra-database sce-

nario, however, it is still challenging to achieve strong perfor-

mance for inter-database scenario. The degraded generalization

capacity results from many cross-database factors: different

capture devices, different imaging environments, different

illuminations, different facial poses, etc. In this work, we

propose an anti-spoofing method which is illumination-robust,

generalizing well to environments with strong illumination

environments and without, achieves promising cross-database

performance.

B. Multi-Scale Retinex

Many related researches have been conducted to simulate

the human vision system using different luminance algorithms.

Land’s Retinex theory [33] proposed the a lightness model

named as Retinex theory to measure the lightness reflexion

in an image. After that, the Retinex algorithm has been

successfully applied to image enhancement [34], [35]. [36]

introduced a model called Single Scale Retinex (SSR), which

applied the Gaussian filter to normalize illumination of source

image. The work [37] focused on the filter of the SSR and

employed an improved SSR with the guided filter and achieved

promising image enhancement performance. The performance

of SSR algorithm is highly dependent on the parameter of

Gaussian filter. To overcome this limitation, a multi-scale

Retinex (MSR) model [23], which weights the outputs of

several SSRs, is proposed. [38] proposed a novel MSR based

on an adaptive weights to aggregate the SSRs and applied

in image contrast enhancement. In our work, we applied

MSR because: (1) MSR can separate an image to illumination

component and reflectance component, and the illumination-

removed reflectance component is used for liveness detection;

(2) the MSR algorithm can be regarded as a optimized high

pass filter, thus it can effectively preserve the high frequency

components which is discriminative between the real and fake

faces.

C. Feature Fusion

Existing fusion methods consist of two part: early fusion

(feature-level fusion) and late fusion (Score-level fusion).

Feature aggregation or subspace learning is actually the early

fusion. Aggregation approaches are usually performed by

simply element averaging or concatenation [39]. Subspace

learning methods aim to project the concatenated feature to

a subspace with the best use of the complementarity of the

features. Late fusion is to fuse the predicted scores after

computation based on different classifier by averaging [40] or

stacking another classifier result [41]. For the deep learning

task, researchers usually use simple fusion methods for fusing

deep features features, such as score fusion, feature averaging,

etc. In our work, we proposed an attention based fusion

method, aiming to exploit the best use of the features to fuse.

D. Visual Attention Model

Visual attention is a powerful mechanism that enables

perception to focus on important part which offers more

information. To combine spatial and temporal information [42]

employed an end-to-end deep neural network. In [43], the

authors proposed a novel visual attention model to integrate

different spatial features including color, orientation and lu-

minance orientation features, which can reflect the region of

interests of the human visual system. Different mechanisms of

attention have been employed to deal with the computer vision

tasks, including action recognition [44], emotion recognition

[45], image classification [46]. On the whole, the attention

model is usually used for aggregating features extracted by

different images. Inspired by the great success of attention

models, we apply attention model to fuse our features derived

from RGB images and MSR images.

III. METHODOLOGY

Spoofing detection is actually a binary (real vs. fake face)

classification problem. In deep learning era, a natural solution

of this task is to feed the input RGB images to a carefully

designed CNN with classification loss (softmax and cross

entropy loss) for end-to-end training. This CNN-based frame-

work has been widely investigated by [25], [26], [47]–[50].

Despite the strong nonlinear feature learning capacity of

deep learning, the performance of anti-spoofing degrades when

the input images are captured by different devices, under dif-

ferent lighting, etc. In this work, we aim to train a CNN which

generalizes better to various environments, mainly various

lightings.

The RGB images are sensitive to illumination variations yet

cover very detailed facial texture information. Motivated by

extensive research of (single-scale and multi-scale) Retinex

image, we find the Retinex (we use Multi-Scale Retinex -

MSR in this work) image is invariant to illumination yet

loses minor facial texture. Thus, in this work, we propose a
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Fig. 2. (A) is the overall pipeline; In (B), every single block represents one SSR module. The outputs of all SSR modules are weighted with scale parameters
to form MSR; (C) illustrates the work flow of attention-based fusion.

two-stream CNN (TSCNN) which trains two separate CNNs

accepting RGB images and MSR images as input respectively.

To effectively fuse RGB feature and MSR feature, we propose

an attention based fusion method.

In this section, firstly, we introduce the theory of the Retinex

to explain the reason why MSR image is discriminative for

anti-spoofing. After that, the complementarity of the RGB

and MSR features is analyzed and the proposed TSCNN is

detailed. Last, we introduce our attention-based feature fusion

method.

A. The Retinex Theory

Assumption Retinex theory was first raised by Land and

McCann in 1971 [33]. According to the literal meaning of the

word ‘Retinex’, it is a portmanteau constituted by ‘retina’ and

‘cortex’, imitating how the human visual system works. The

Retinex theory is based on the assumption that the color of

the object is determined by the reflection ability of light of

different wavelengths. The color of the object is not affected

by the non-uniformity illumination. The theory separates the

source image S(x, y) into two parts: the reflectance R(x, y)
and the illumination L(x, y). In particular, R(x, y) and L(x, y)
contain different components of frequency. R(x, y) focuses

on high frequency components, while L(x, y) tends to low

frequency components. We formulate Retinex by Eq. (1):

S(x, y) = R(x, y) · L(x, y) (1)

where x and y are image pixel coordinates.

Motivation L(x, y) and R(x, y) represent the illumination

and reflectance (facial skin texture in our task) components

respectively. L(x, y) is determined by the light source, while

R(x, y) is determined by the property of the surface of cap-

tured objects, i.e face in our application. Illumination is clearly

not relevant to most classification tasks including face spoofing

detection, thus the separation of illumination and reflectance

(texture) is important because the separated reflectance only

can be used for illumination-invariant classification. Since

Retinex theory aims to conduct this separation, Retinex is used

in this work for illumination-invariant face spoofing detection.

Computation For the convenience of calculation, Eq. (1) is

usually transformed into the logarithmic domain:

log[S(x, y)] = log[R(x, y)] + log[L(x, y)] (2)

where log[S(x, y)], log[R(x, y)], and log[L(x, y)] are repre-

sented by s(x, y), r(x, y), and l(x, y) for convenience.

Since s(x, y) is logarithmic form of the original image, we

can calculate the Retinex output r(x, y) by appraising l(x, y).
Thus, the performance of the Retinex is determined by the

estimation of l(x, y). Selecting the apposite method to estimate

l(x, y) is a considerable step for illumination normalization.

Summarizing the previous work of the Retinex, the illumi-

nation image can be generated from the source image using

the center/surround Retinex. Single-scale Retinex (SSR) [36]

is a center/surround based Retinex and is formulated as Eq.

(3):

r(x, y) = s(x, y)− log[S(x, y) ∗ F (x, y)] (3)

where F (x, y) denotes the surround function, and Symbol ‘*’

is the convolution operation. There are several forms of the

surround function which depends on the effect of the SSR.
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The work [36] shows that a Gaussian filter works well for the

illumination normalization.

G(x, y) = Ke−(x2+y2)/c (4)

where c is the scale parameter of Gaussian surround function.

The value of c is empirically determined. K is selected to

satisfy:
∫∫

F (x, y)dxdy = 1 (5)

Let G(x, y) represent F (x, y), then Eq. (3) can be rewritten

as:

r(x, y) = s(x, y)− log[S(x, y) ∗G(x, y)] (6)

The large illumination discontinuities produce halo effects

which are often visible. This limitation expands SSR to a

more balanced method, multi-scale retinex (MSR) [23], by

superposing several outputs of SSRs with small, middle, and

large scale parameters at certain weights, shown in Fig.2 (B).

Specifically, this is expressed by,

rMSR(x, y) =

k
∑

i=1

wi

{

log[S(x, y)]− log[S(x, y) ∗Gi(x, y)]
}

(7)

Summary Retinex (MSR in our work) is used for face

spoofing detection with two reasons. (1) The MSR can

separate illumination and reflectance. In this work, we use

the reflectance images (MSR image) to train a CNN for

illumination-invariant face spoofing detection. (2) Since the

fake face image is regraded as the recaptured image in

many cases, which may lose some high frequency information

compared to genuine ones. Thus, high frequency information

can work as a discriminative clue for anti-spoofing. MSR

algorithm can be viewed as an optimized high pass filter to

capture the high frequency information for spoofing detection.

B. Two Stream Convolutional Neural Network (TSCNN)

In this section, we introduce our framework for anti-spoof:

TSCNN. Specifically, the original RGB images are converted

to MSR images in an off-line way. The two image sources

(RGB and MSR) are separately fed to two CNN for end-to-

end training with cross-entropy binary classification loss. The

learned two features (derived from RGB and MSR images)

are then learned to fuse using attention mechanism. In the

remaining parts of this section, we will detail each component

of our framework.

Complementarity of RGB and MSR Images RGB color

space is commonly used for capturing and displaying color

images. The advantage of the use of RGB images is clear:

RGB images can naturally capture detailed facial texture

which is discriminative for spoofing detection. However, the

disadvantage of RGB image is that it is very sensitive to

illumination variation. The intrinsic reason is that RGB space

has high correlation between the three color channels, making

it rather difficult to separate the luminance and chrominance

information. Because the luminance conditions of face images

in real world are different and the separation of luminance

(illumination) and chrominance (skin color) is rather difficult,

the features learned from RGB space tend to be affected by

illumination.

The MSR algorithm can achieve illumination invariant face

image by removing the illumination effects as introduced in

SectionIII-A. Thus, the MSR face image preserves the micro-

texture information of facial skin without the illumination

effects. Apart from the illumination-invariant merit of MSR

images, MSR images can generate discriminative information

for spoofing detection. Specifically, MSR algorithm removes

the low frequency components (illumination) from the original

image and leaves the high frequency ones (texture details).

However, the high frequency information is discriminative for

spoof detection because: the real faces have rich facial texture

details, while the fake faces, in particular recaptured faces,

lose some of such details.

As analyzed above, RGB and MSR images are comple-

mentary because: RGB images contain detailed facial texture

yet are sensitive to illuminations; while MSR images contain

less detailed texture yet are illumination invariant. In addition,

MSR images can keep high frequency information, which is

also discriminative for spoofing detection.

Two-stream Architecture Our method is motivated by the

fact that both RGB and MSR features are discriminative for

face spoofing detection. It is natural to train CNNs using

these two sources of information. In this work, therefore, we

proposed a two-stream convolutional neural network (TSCNN)

as shown in Fig.2 (A). The TSCNN consists of two identical

sub-networks with different inputs (RGB and MSR images)

and extract the learned features derived from RGB and MSR

images following the last convolution layer of the two sub-

networks. Given one input image/frame, we use MTCNN [51]

for face and landmark detection. Then the detected faces are

aligned using affine transformation. The RGB stream operates

on single RGB frames extracted from a video sequence. For

the MSR stream, the single RGB frames (processed to gray

scale first) are converted to MSR images as shown in Fig.2-

(B). Then MSR images are fed to the MSR subnetwork for

training. Each stream is based on the same network, in this

work, we use two successful networks (MobileNet [52] and

ResNet-18 [53]). To effectively fuse the features from two

streams, we propose an attention based fusion block, shown

in Fig.2-(C), which will be detailed in Section III-C.

To formulate the TSCNN framework (M ), we introduce

a quadruplet M = (ERGB , EMSR, F, C). Here ERGB and

EMSR are features extractors for RGB and MSR streams

respectively. F is a fusion function and C is the classifier.

The feature extractor is a mapping E : I → f that takes an

input image (either RGB or MSR) I and outputs a feature f
of D-dimension.

Both the extracted feature fRGB and fMSR must have the

same dimension of D to be compatible for early (feature)

fusion. In particular, fRGB and fMSR can be obtained via dif-

ferent extractors (CNNs), while the feature dimension should

be assured the same.

The fusion function F aggregates fRGB and fMSR into a

fused feature v via F :
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v = F (fRGB , fMSR) (8)

The fused feature is then fed into a classifier C. Thus, the

TSCNN can be formulated as an optimization problem:

min
w

1

N

N
∑

i=1

l[C(F (fRGB , fMSR)), y] (9)

where l(:, :) is a loss function, N is the number of samples,

y is the one-hot encoding label vector.

Backbone Deep Networks CNNs have been successfully

applied to face anti-spoofing [25], [26], [47]–[49]. Most ex-

isting works trained their CNN models from scratch using the

existing face anti-spoofing databases, which are quite small

and captured in unitary environments. Since CNNs are data

hungry model, small training data might lead to overfitting.

To overcome overfitting and improve the performance of many

computer vision tasks, model finetuning/pretraining from big

image classification database, usually ImageNet [54], is an

effective way. In this work, we used two backbone networks

pretrained on ImageNet, i.e MobileNet [52] (lighter, less

accurate) and ResNet-18 [53] (heavier, more accurate) for

spoofing detection.

To adapt the MobileNet and ResNet-18 models to our face

anti-spoofing problem, we finetuned the pretrained models

using the face spoofing database. The 2-class cross-entropy

loss, i.e. Eq (10), is used for binary classification (real vs fake

faces). The output of bottleneck layers of MobileNet (1024D)

and ResNet-18 (512D) models work as the features for anti-

spoofing.

C = −
1

N

N
∑

i

[yilnŷi + (1− yi)ln(1− ŷi)] (10)

where i is the index of training sample, N is the number of

training samples, ŷi is the predict value of the ith sample, yi
is the label of the ith sample.

C. Attention based Feature fusion

Feature fusion is important for performance improvement

in many computer vision tasks. Improper fusion methods

can make the fused feature works worse than individual

features. In deep learning era, fusion methods including score

averaging, feature concatenation, feature averaging, feature

max pooling and feature min pooling are normally used. In

our anti-spoofing task, we find these fusion methods cannot

explore deeply the interplay of features from different sources,

therefore, we propose an attention-based fusion method as

shown in Fig.2-(C).

The proposed attention-based fusion methods is actually a

general framework which can be used for many deep learning

based fusion scenarios, certainly including the fusion of RGB

and MSR features. Given a set of features {fi, i = 1, ..., N},

we try to learn a set of weights corresponding to the features

{wi, i = 1, ..., N} to generate the aggregated feature v:

v =

N
∑

i=1

wifi (11)

Clearly, the key part of our attention method is to learn

the weights {wi} of Eq. (11). Note that our method becomes

feature average fusion if wi = 1/N , showing the generaliza-

tion capacity of our method. In our task of spoofing detection,

N = 2, and the features to be fused are fRGB and fMSR.

Apart from learning wi directly, we learn a kernel q which

has the same dimensionality of fi. q is used to filter the feature

vectors via dot product:

di = qT fi (12)

The filter generates a vector which represent the significance

of the corresponding feature, named di. To convert the signif-

icances to weights wi subject to
∑

i wi = 1, we passed di to

a softmax operator and achieve all positive weights wi:

wi =
edi

∑

j e
dj

(13)

Obviously, the aggregation result r is unrelated with the

quantity of input feature fi. The only parameters to learn is

the filter kernel q, which is easy to be trained via standard

backpropagation and stochastic gradient descent.

IV. EXPERIMENTS

In this Section, we conduct extensive experiments and

evaluate our method. We first have a brief introduction of

three benchmark databases in Section IV-A. After that, we

present the experimental settings of our method in section B

so that the other researchers can reproduce our results. The

following sections (SectionIV-C to G) present the results on

the three databases. In particular, the results on CASIA-FASD

are shown with the seven test scenarios.

A. Benchmark Database

In this subsection, to assess the effectiveness of our pro-

posed anti-spoofing technique, an experimental evaluation on

the CASIA Face Anti-Spoofing Database [55], the REPLAY-

ATTACK database [56] and the OULU database [57] is

provided. These three datasets consist of real client accesses

and different types of attacks, which are captured in different

imaging qualities with different cameras. In the following

paragraphs, we will have a brief introduction of the databases.

1) The CASIA Face Anti-Spoofing Database (CASIA

FASD): The CASIA Face Anti-Spoofing Database is divided

into the training set consisted of 20 subjects and the test

set containing 30 individuals(see, Fig.3). The fake faces were

made by capturing the genuine faces. Three different cameras

are used in this database to collect the videos with various

imaging qualities: low, normal, and high. In addition, the

individuals were asked to blink and not to keep still in the

videos to collect abundant frames for detection. Three types

of face attacks were designed as follows: 1) Warped Photo

Attack: A high resolution (1920 × 1080) image, which is

recorded by a Sony NEX-5 camera, was used to print a

photo. The attacker simulates the facial motion by warps the

photo in a warped photo attack. 2) Cut Photo Attack: The

high resolution printed photos are then used for the cut photo

attacks. In this scenario, an attacker hides behinds the photo
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Fig. 3. Sample from the CASIA FASD. From top to bottom: low, normal and
high quality images. From the left to the right: real faces and warped photo,
cut photo and video replay attacks.

Fig. 4. Samples from the REPLAY-ATTACK database. The first row presents
images taken from the controlled scenario, while the second row corresponds
to the images from the adverse scenario. From the left to the right: real faces
and high definition, mobile and print attacks.

Fig. 5. Samples from the OULU-NPU database. From top to bottom is the
three sessions with different acquisition conditions. From the left to the right:
real faces, print attack 1, print attack 2, video attack 1 and video attack 2.

and exhibits eye-blinking through the holes of the eye region,

which was cut off before attack. In addition, the attacker put

a intact photo behind the cut photo, putting the eye region

overlapping from the holes and moving the intact photo up

and down slightly to simulate the blinking of the eyes. 3)

Video Attack: In this attack, the high resolution videos are

displayed on an iPad and captured by a camera.

2) REPLAY-ATTACK Database: The REPLAY-ATTACK

Database consists of video recordings of real accesses and

attack attempts to 50 clients (see, Fig.4). There are 1200

videos taken by the webcam on a MacBook with the resolution

320 × 240 under two illumination conditions: 1) controlled

condition with a uniform background and light supplied by

a fluorescent lamp, 2) adverse condition with non-uniform

background and the day-light. For performance evaluation,

the data set is divided into three subsets of training (360

videos), development (360 videos), and testing (480 videos).

To generate the fake faces, a high resolution videos were taken

for each person using a Canon PowerShot camera and an

iPhone 3GS camera, under the same illumination conditions.

Three types of attacks were designed: (1) Print Attacks: High

resolution pictures were printed on A4 paper and recaptured

by cameras; (2) Mobile Attacks: High resolution pictures

and videos were displayed on the screen of an iPhone 3GS

and recaptured by cameras; (3) High Definition Attacks: the

pictures and the videos were displayed on the screen of an

iPad with resolution of 1024 × 168.

3) OULU-NPU Database: OULU-NPU face presentation

attack database consists of 4950 real access and attack videos

that were recorded using front facing cameras of six different

mobile phones (see, Fig.5). The real videos and attack materi-

als were collected in three sessions with different illumination

condition. The attack types considered in the OULU-NPU

database are print and video-replay. These attacks were created

using two printers (Printer 1 and 2) and two display devices

(Display 1 and 2). The videos of the real accesses and attacks,

corresponding to the 55 subjects, are divided into three subject-

disjoint subsets for training, development and testing with 20,

15 and 20 users, respectively.

B. Experimental Settings

In our experiments, we followed the protocols associated

with each of the three databases which allows a fair com-

parison with other methods proposed in the state of art. For

CASIA FASD, the model parameters are trained and tuned

using the training set and the results are reported in terms of

Equal Error Rate (EER) on the test set. Since the REPLAY-

ATTACK database provides a validation set, the results are

given in terms of EER on the validation set and the Half Total

Error Rate (HTER) on the test set following the official test

protocol. EER is achieved at the point where the false rejection

rate (FRR) is equal to false acceptance rate (FAR). To compute

HTER, we first compute EER and the corresponding threshold

on the validation set. Then HTER can be calculated via the

threshold on the test set.

Following [58], we evaluate our method on OULU-NPU

database with two metrics: Attack Presentation Classification

Error Rate (APCER) (Eq. (14)) and Bona Fide Presentation

Classification Error Rate (BPCER) (Eq. (15)).

APCERPAI =
1

NPAI

NPAI
∑

i=1

(1−Resi) (14)
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BPCER =

∑NBF

i=1 Resi

NBF
(15)

where, NPAI is the number of the attack presentations for

the certain presentation attack instruments (PAI), NBF is the

total number of the bona fide presentations. If the prediction

of ith presentation is attack, Resi gets the value "1", while

the prediction is bona fide, the value of Resi is "0". These

two metrics correspond to the False Acceptance Rate (FAR)

and False Rejection Rate (FRR) commonly used in the PAD

related literature [58], [59]. In addition, we apply the average

of the APCER and the BPCER, called Average Classification

Error Rate (ACER), to measure the overall performances.

For the operational systems, the metrics we used (EER,

HTER, APCER and BPCER) cannot quantify verification

performance. Following the Face Recognition Vendor Test

(FRVT) and the common metrics of face recognition, the

Receiver Operating Characteristic (ROC) is used to measure

the performance of liveness detection. To clearly visualize

the TPR@FAR=0.1 and TPR@FAR=0.01 in the figures, the

logarithmic coordinates are used for the X-axis of the ROC

curves.

To be consistent with many previous works, the pre-

processing steps are needed, consisted of frame sampling and

face alignment. Since these three databases consist of videos,

we extract the frames from each video. After that, the MTCNN

[51] is used for face detection and landmark detection. Then

the detected faces are aligned to size of 128 × 128. For

every aligned face, we conduct data augmentation including

horizontal flipping, random rotation (0-20 degree), and random

crop (114 × 114).

For each database, we used the training set to fine-tune

the MobileNet and ResNet-18 model with cross-entropy loss

and the testing set and validation set are used to evaluate the

performance.

For the learning parameter setting, we set the momentum as

0.9 and the learning rate as 0.0001 for training the network. It

is observed that the network training converges after 50 epochs

with the batch size 128 during the training.

C. Results of CASIA-FASD

The CASIA-FASD is split into the training set comprised

of 20 subjects and the test set containing 30 individuals. For

each of the seven attacking scenarios, the data should then

be selected from the corresponding training and test sets for

model training and evaluation.

Different color spaces might lead to different performance

of anti-spoofing [48], though RGB color is the most widely

used. To explore the effect of color space, we conduct

experiments and compare the performance of three color

spaces: RGB, HSV and YCbCr. All the training settings of

3 color space keep the same. Specifically, the original input

images/frames in database are converted to MSR images. Then

the images of different color spaces are fed to our TSCNN

respectively. The spoofing detection results (EER, the lower

the better) based on MobileNet and ResNet-18 are reported

in Table I. The ROC curves are shown in Fig.6-(a) and

the attention Fusion results in terms of TPR@FAR=0.1 and

TPR@FAR=0.01 are presented in Table VII.

Results: (1) From results on seven scenarios, RGB and

YCbCr generally outperform HSV color space using both

ResNet-18 and MobileNet. And the results of RGB and YCbCr

are quite similar.

(2) We can see that RGB, HSV and YCbCr features all work

better than MSR features for both MobileNet (4.931%, 5.134%

and 5.091% vs. 9.531%) and ResNet-18 (3.437%, 4.831% and

3.635 vs. 7.883%).

(3) The fusion of MSR and RGB features works better than

MSR and HSV, MSR and YCbCr for both MobileNet (4.175%

VS 5.061% and 4.339%) and ResNet-18 (3.145% VS 4.661%

and 4.761%). (4) The fusion of MSR and RGB features works

better than individual one for MobileNet (fusion: 4.175% vs

RGB: 4.931% and MSR: 9.513%). The same conclusion can

be drawn for ResNet-18 fusion. As for the reason why RGB

is better than HSV and YCbCr, we believe that the MSR plays

a role of reducing the impact of illuminations, while the RGB

tries to preserve the detailed facial textures. However, HSV and

YCbCr are based on the separation of the luminance and the

chrominance, which are not effective for the fusion with MSR.

It verifies the complementarity of RGB and MSR images.

(4) From the Table VII, not surprisingly, the overall results

of CASIA-FASD with ResNet (99.71% and 85.33%) are better

than that with MobileNet (98.95% and 82.51%).

D. Results of REPLAY-ATTACK and OULU-NPU

REPLAY-ATTACK and OULU-NPU are divided into three

subsets: training, test and development. The training set is used

to train a classifier or feature extractor while the development

set is typically employed to adjust parameters of the classifier.

The test set is used for result evaluation. In this experiment,

we follow the experimental settings of CASIA-FASD and use

MobileNet and ResNet-18 for evaluation.

From Table II and Fig.6-b, we can see the fusion of MSR

and RGB works better than individual ones in terms of EER

(fusion: 0.131% vs RGB: 0.384% and MSR: 7.365%) and

HTER (fusion: 0.254% vs RGB: 1.561% and MSR: 8.584%)

on REPLAY-ATTACK database using MobileNet. The same

conclusion can be found for ResNet-18. From Table VII,

the overall results of REPLAY-ATTACK using MobileNet

(99.42% and 99.13%) are better than that with ResNet-18

(99.21% and 98.59%). In addition, we further fuse the fused

MobileNet features (RGB+MSR) and fused ResNet-18 fea-

tures (RGB+MSR). Because feature dimensionality of original

MobileNet (1024D) and ResNet-18 (512D) is different, we

change the bottleneck layer of the MobileNet to be of 512D

to conduct our attention-based fusion. From Table II, we can

see this further fusion works better than ResNet fusion, but

slightly worse than the MobileNet fusion.

To further verify the effectiveness of the fusion of RGB and

MSR on illumination variations, we conduct the experiment on

REPLAY-ATTACK database which contains two illumination

conditions: 1) controlled condition with a uniform background

and light supplied by a fluorescent lamp, 2) adverse condition

with non-uniform background and the day-light. To discuss
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TABLE I
EER (%) OF THREE COLOR SPACES AND MSR FEATURES ON CASIA-FASD DATABASE IN SEVEN SCENARIOS

Attack Scenarios Low Normal High Warped Cut Video Overall

LBP
RGB 15.301 8.996 6.412 8.551 6.011 5.661 7.802
MSR 10.690 10.302 5.331 7.609 8.091 8.701 9.003

RGB+MSR Fusion 8.996 9.330 5.981 7.604 6.771 4.390 7.408

MobileNet

RGB 10.610 4.606 5.260 5.934 3.978 3.846 4.931
HSV 8.714 5.884 6.995 3.723 4.709 4.682 5.143

YCbCr 8.441 4.993 4.519 6.410 5.792 3.904 5.091
MSR 7.056 8.129 5.818 9.828 5.126 9.833 9.531

RGB+MSR Fusion 6.745 4.068 3.258 5.258 2.453 2.647 4.175
HSV+MSR Fusion 7.633 4.982 5.601 4.679 4.510 4.511 5.061

YCbCr+MSR Fusion 7.003 5.120 3.227 4.031 6.001 3.799 4.339

ResNet

RGB 4.021 5.851 1.703 5.019 1.941 2.679 3.437
HSV 6.341 2.291 5.815 3.459 2.992 4.578 4.831

YCbCr 7.441 2.185 1.713 4.249 3.329 3.716 3.635
MSR 6.793 6.270 10.098 7.665 5.087 9.531 7.883

RGB+MSR Fusion 3.545 2.170 2.785 4.419 2.572 4.931 3.145

HSV+MSR Fusion 5.319 2.907 4.886 3.299 2.555 4.931 4.661
YCbCr+MSR Fusion 6.178 3.099 4.690 4.003 3.133 3.999 4.761

Fig. 6. ROC curves on REPLAY-ATTACK and CASIA-FASD databases. (a) ROC curves on CASIA-FASD with ResNet under different color spaces and
MSR. (b) ROC curves on REPLAY-ATTACK with MobileNet with LBP and CNNs.

the improvements over lightings, we divided the database into

two parts: adverse illumination and controlled illumination and

run the experiments separately. From Table III and Fig.7-(a),

MSR features have the better results than RGB features in

adverse illumination (stronger lighting), showing the robust-

ness of MSR on strong lightings. On the other hand, RGB

outperforms MSR features in controlled illumination (close to

neutral lighting), showing the RGB has the strong capacity to

maintain the texture details under neutral illuminations. After

fusion, the results are improved in both adverse and controlled

illumination. So the Fusion of MSR and RGB can effectively

handle various lightings and improve the performance.

For the OULU-NPU database, we follow [58] to use four

metrics: we present EER in development set and APCER,

BPCER and ACER in test set.

Table IV and Table VII shows the results of RGB, MSR
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Fig. 7. ROC curves on on REPLAY-ATTACK and CASIA-FASD databases. (a) ROC curves on REPLAY-ATTACK with MobileNet under different
illuminations. (b) ROC curves on CASIA-FASD with ResNet under different fusion methods.

TABLE II
EER (%) AND HTER (%) OF RGB AND MSR FEATURES ON

REPLAY-ATTACK DATABASE

Method
REPLAY-ATTACK
EER HTER

LBP RGB 3.990 4.788

LBP MSR 4.701 5.060

MobileNet RGB 0.384 1.561

ResNet RGB 0.628 2.038

MobileNet MSR 7.365 8.584

ResNet MSR 8.350 9.576

LBP Attention Fusion 3.491 4.903

MobileNet Attention Fusion 0.131 0.254

ResNet Attention Fusion 0.210 0.389

ResNet + MobileNet Attention Fusion 0.177 0.293

TABLE III
EER (%) AND HTER (%) OF RGB AND MSR FEATURES ON ADVERSE

ILLUMINATION AND CONTROLLED ILLUMINATION IN REPLAY-ATTACK
DATABASE

Method

Adverse
illumination

Controlled
illumination

EER HTER EER HTER

MobileNet RGB 0.451 1.971 0.140 1.107

ResNet RGB 0.705 2.444 0.411 1.677

MobileNet MSR 7.660 8.621 6.138 7.218

ResNet MSR 8.720 9.031 7.993 8.930

MobileNet Attention Fusion 0.165 1.299 0.093 0.097

ResNet Attention Fusion 0.285 1.433 0.169 1.310

and fusion feature based on MobileNet and ResNet-18. In

terms of ACER and EER, we can see the fusion of RGB and

MSR performs better than individual ones. For most results in

four protocols, the fusion of features significantly outperforms

individual features.

The consistent improvement of feature fusion shows the

effectiveness of the use of two information sources: RGB and

MSR. As shown in Table II and Table IV, the popular networks

(MobileNet and ResNet-18) achieve competitive performances

on REPLAY-ATTACK and OULU-NPU database .

TABLE IV
EER (%), APCER (%) , BPCER (%) AND ACER (%) OF RGB AND MSR

FEATURES ON OULU-NPU DATABASE

Prot. Methods
Dev Test

EER(%) APCER(%) BPCER(%) ACER(%)

1

MobileNet RGB 6.1 9.6 6.2 7.9
ResNet RGB 2.3 3.5 8.7 6.1

MobileNet MSR 10.5 10.6 9.4 10.0
ResNet MSR 5.7 7.5 9.3 8.4
MobileNet

Attention Fusion
5.2 3.9 9.5 6.7

ResNet

Attention Fusion
2.1 5.1 6.7 5.9

2

MobileNet RGB 5.7 6.5 10.7 8.6
ResNet RGB 2.7 3.7 8.1 5.9

MobileNet MSR 9.6 8.9 9.9 9.4
ResNet MSR 4.3 3.8 11.6 7.8
MobileNet

Attention Fusion
5.1 3.6 9.0 6.3

ResNet

Attention Fusion
2.0 7.6 2.2 4.9

3

MobileNet RGB 5.3±0.5 3.5±1.8 9.3±2.6 6.4±3.7
ResNet RGB 2.7±0.8 9.3±0.8 5.7±1.2 7.2±2.6

MobileNet MSR 10.8±1.2 6.9±2.5 12.3±0.9 9.7±1.9
ResNet MSR 4.6±0.8 8.3±1.9 9.4±1.8 8.7±2.1
MobileNet

Attention Fusion
5.1±0.3 8.7±4.5 5.3±2.3 6.3±2.2

ResNet

Attention Fusion
1.9±0.4 3.9±2.8 7.3±1.1 5.6±1.6

4

MobileNet RGB 6.3±0.4 12.3±7.5 9.7±2.6 10.3±3.1
ResNet RGB 2.6±0.5 17.9±9.1 10.1±5.5 14.9±6.4

MobileNet MSR 11.8±1.8 24.7±10.5 21.3±12.8 22.0±11.6
ResNet MSR 6.6±0.7 19.6±9.1 16.2±8.8 17.1±8.1
MobileNet

Attention Fusion
6.1±0.7 10.9±4.6 12.7±5.1 11.3±3.9

ResNet

Attention Fusion
2.3±0.3 11.3±3.9 9.7±4.8 9.8±4.2

E. Attention based fusion results

As mentioned above, RGB feature is mainly focusing on

micro-texture of facial skin on the all frequencies together,

while the MSR feature is focusing on the high frequencies

which reduces the influence of illumination. Table I, Table II

and Table IV have verified the effectiveness of the fusion of

these two features (RGB and MSR). In this section, we further

explore this effectiveness.
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TABLE V
EER (%) OF DIFFERENT FUSION METHODS ON CASIA-FASD DATABASES IN SEVEN SCENARIOS

Attack Scenarios Low Normal High Warped Cut Video Overall

MobileNet

Concatenated Features 7.808 3.473 5.957 5.364 3.267 4.479 5.191
Score Average 10.611 4.612 5.312 5.934 3.971 3.877 4.953

Feature Average 8.086 3.311 5.819 5.253 3.333 4.278 5.108
Feature Max 8.048 3.410 6.017 5.347 3.321 4.529 5.201
Feature Min 7.820 3.458 5.380 5.149 3.267 4.064 4.887

Attention Fusion 6.745 4.068 3.258 5.258 2.453 2.647 4.175

ResNet

Concatenated Features 5.568 3.099 4.302 4.092 2.516 3.143 3.380
Score Average 5.902 2.969 3.830 4.202 2.658 3.224 3.332

Feature Average 6.242 3.291 4.689 3.935 2.929 3.956 3.895
Feature Max 5.846 4.039 4.536 4.331 3.091 4.198 4.189
Feature Min 7.244 2.825 4.941 4.280 3.030 3.984 4.157

Attention Fusion 3.545 2.170 2.785 4.419 2.572 4.931 3.145

First, we show some qualitative results via visualization.

Compared with average feature fusion which weights different

features equally, attention fusion has the flexibility to adap-

tively weight the features in an asymmetry way. Therefore,

our attention-based fusion has the potential to obtain the

better weights leading to better performance. Fig.8-(A) shows

this asymmetry weighting mechanism of our attention-based

fusion method. The samples in Fig.8-(A) are selected from

REPLAY-ATTACK database which covers two imaging light-

ness conditions: adverse illumination (uneven, complicated

lightings), controlled illumination (even, neutral lightings).

From the samples in Fig.8, we can see the weights for

MSR and RGB are adaptively asymmetry. Under adverse

(uneven, complicated lightings) illumination, the weights of

MSR images are higher than those of RGB ones because MSR

images are more illumination-invariant than RGB ones. Under

controlled illumination, unsurprisingly, the RGB images gain

higher weights. Fig.8 (B) shows some samples under different

illuminations with three scores (RGB, MSR, the fusion of

them). We can see some samples failed with individual RGB or

MSR scores, but the fusion results lead to correct recognition,

showing the effectiveness of the fusion of RGB and MSR, in

particular, under various illuminations.

Second, we show some qualitative results. Specifically,

we compare the proposed attention-based fusion methods

with some popular feature fusion methods including score

averaging, feature concatenation, feature averaging, feature

max pooling, feature min pooling and the proposed attention

method. The fusion results are presented separately for differ-

ent databases.

Table V shows the results of CASIA-FASD with the seven

scenarios. In addition, Fig.7-(b) shows the ROC curves of

the popular feature fusion methods using MobileNet. The

proposed attention based fusion method achieves the lowest

EER across all other scenarios (’Overall’) 4.175% (MobileNet)

and 3.145% (ResNet-18), showing that the superiority of

the our fusion methods against others. For MoblieNet and

ResNet-18, the 2nd and 3rd best performed fusion methods are

{’Feature Min’ and ’Score Average’} and {’Score Average’

and ’Concatenated Features’}, respectively.

Table IV-E shows the fusion results on REPLAY-ATTACK

and OULU-NPU. We can see that our attention-based fusion

works consistently better than all other fusion methods on

both REPLAY-ATTACK (EER and HTER) and OULU-NPU

(EER). The promising performance results from the fact that

attention-based fusion can adaptively weight the RGB and

MSR features.

TABLE VI
EER (%) AND HTER (%)OF DIFFERENT FUSION METHODS ON

REPLAY-ATTACK AND OULU-NPU DATABASES

Methods
REPLAY-ATTACK OULU-NPU
EER HTER EER

MobileNet

Concatenated Features 0.412 0.381 6.381
Score Average 0.363 0.360 6.472

Feature Average 0.396 0.395 7.549
Feature Max 0.310 0.294 8.317
Feature Min 0.574 0.565 9.841

Attention Fusion 0.131 0.254 5.692

ResNet

Concatenated Features 0.841 0.668 4.518
Score Average 1.278 1.178 9.565

Feature Average 0.873 0.725 5.358
Feature Max 0.958 0.906 4.964
Feature Min 0.579 0.490 2.578

Attention Fusion 0.210 0.389 2.021

F. Comparisons with State-of-the-art

Table VIII presents the comparisons of our approach with

the state-of-the-art methods for face spoofing detection. In gen-

eral, the proposed algorithm outperforms many competitors,

demonstrating the effectiveness of our method by fusing RGB

feature and MSR feature with attention model.

For REPLAY-ATTACK database, the proposed method

achieves the best (MobileNet+Attention) and 2nd best

(ResNet-18+Attention) performance in terms of EER, show-

ing the effectiveness of the fusion of two clues (RGB and

MSR). In terms of HTER, our method (MobileNet+Attention)

achieves the 2nd best performance, slightly lower than Bottle-

neck feature fusion + NN [50]. However, our method greatly

outperforms [50] in terms of EER.

For CASIA-FASD database, it can be seen in Table VIII that

we also achieve the best (ResNet-18 + Attention) and 2nd best

(MobileNet + Attention) performance in terms of EER.

For OULU-NPU database, as shown in Table IX, we can

achieve 2nd best performance for most results under the four

protocols, while the method of [63] works best, which uses

the additional information of 3D depth shape and rPPG (The

rPPG signal provides temporal information about face liveness,
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Fig. 8. Results on REPLAY-ATTACK database. (A) Attention fusion weights (numbers in the boxes) showing the importance of RGB and MSR. Samples
cover 2 imaging lightness conditions: adverse illumination (Row 1 and 2) and controlled illumination (Row 3 and 4). (B) Three prediction scores: RGB, MSR
and the fusion of them (numbers in the boxes). The red and green boxes indicate the wrong and correct predictions respectively.

TABLE VII
TPR@FAR=0.1 AND TPR@FAR=0.01 OF THE ATTENTION FUSION RESULTS ON CASIA-FASD, REPLAY-ATTACK AND OULU-NPU DATABASES

Database Methods Protocol TPR@FAR=0.1 TPR@FAR=0.01

CASIA-FASD
ResNet Attention Fusion overall 99.71% 85.33%

MobileNet Attention Fusion overall 98.95% 82.51%

REPLAY-ATTACK
ResNet Attention Fusion overall 99.21% 98.59%

MobileNet Attention Fusion overall 99.42% 99.13%

OULU-NPU

ResNet Attention Fusion

Prot.1 94.15% 83.44%
Prot.2 95.11% 86.78%
Prot.3 93.59%±0.5% 84.39%±0.4%
Prot.4 93.09%±0.4% 83.69%±0.5%

MobileNet Attention Fusion

Prot.1 98.94% 96.74%
Prot.2 99.10% 96.86%
Prot.3 98.41%±0.6% 96.04%±0.5%
Prot.4 97.83%±0.4% 95.22%±0.6%

which is related to the intensity changes of facial skin over

time).

To summarize, our method can achieve very strong perfor-

mance across all the three benchmark databases, showing the

merits of the proposed method.

G. Cross-Database Comparisons

The spoofing faces of different databases are captured using

different devices under different environments (e.g. lightings).

Therefore, it is interesting to evaluate our strategy in a cross-

database protocol to verify its generalization capacity.We con-

ducted a cross-database evaluation between CASIA-FASD and

REPLAY-ATTACK. To be more specific, cross-database is to

train and tune the classifier on one database and test on another

database. The generalization ability of the system in this case

is manifested by the HTER obtained on the validation and test

sets. The countermeasure was trained and tuned with CASIA-

FASD or REPLAY-ATTACK each time, and then tested on

the other databases. The results are reported in Table IV-F

compared with the state-of-the-art techniques in this cross-

database manner.

Due to the domain shift (different imaging environments)

between databases, the performaence of all the anti-spoofing

methods drops. Compared with the state-of-the-art methods,
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TABLE VIII
COMPARISON BETWEEN THE PROPOSED COUNTERMEASURE AND

STATE-OF-THE-ART METHODS ON REPLAY-ATTACK AND

CASIA-FASD DATABASES IN TERMS OF EER(%) AND HTER(%)

Methods
REPLAY-ATTACK CASIA-FASD
EER HTER EER

Motion [60] 11.6 11.7 26.6

LBP [56] 13.9 13.8 18.2

LBP-TOP [61] 7.90 7.60 10.00

CDD [62] - - 11.8

DOG [3] - - 17.0

DMD [27] 5.3 3.8 21.8

IQA [4] - 15.2 32.4

CNN [14] 6.10 2.10 7.40

IDA [5] - 7.4 -

Motion + LBP [29] 4.50 5.11 -

Color-LBP [10] 0.40 2.90 6.20

Bottleneck feature
fusion + NN [50]

0.83 0.00 5.83

Ours (MobileNet

+ Attention)
0.131 0.254 4.175

Ours (ResNet-18

+ Attention)
0.210 0.389 3.145

TABLE IX
COMPARISON BETWEEN THE PROPOSED COUNTERMEASURE AND

STATE-OF-THE-ART METHODS ON OULU-NPU DATABASE IN TERMS OF

EER (%), APCER (%), BPCER (%) AND ACER (%)

Prot. Methods
Dev Test

EER(%) APCER(%) BPCER(%) ACER(%)

1

CpqD [58] 0.6 2.9 10.8 6.9
GRADANT [58] 1.1 1.3 12.5 6.9

Depth + rPPG [63] - 1.6 1.6 1.6
MobileNet

Attention Fusion
5.2 3.9 9.5 6.7

ResNet

Attention Fusion
2.1 5.1 6.7 5.9

2

MixedFASNet [58] 1.3 9.7 2.5 6.1
GRADANT [58] 0.9 3.1 1.9 2.5

Depth + rPPG [63] - 2.7 2.7 2.7
MobileNet

Attention Fusion
5.1 3.6 9.0 6.3

ResNet

Attention Fusion
2.0 7.6 2.2 4.9

3

MixedFASNet [58] 1.4±0.5 5.3±6.7 7.8±5.5 6.5±4.6
GRADANT [58] 0.9±0.4 2.6±3.9 5.0±5.3 3.8±2.4

Depth + rPPG [63] - 2.7±1.3 3.1±1.7 2.9±1.5
MobileNet

Attention Fusion
5.1±0.3 8.7±4.5 5.3±2.3 6.3±2.2

ResNet

Attention Fusion
1.9±0.4 3.9±2.8 7.3±1.1 5.6±1.6

4

Massy HNU [58] 1.0±0.4 35.8±35.3 8.3±4.1 22.1±17.6
GRADANT [58] 1.1±0.3 5.0±4.5 15.0±7.1 10.0±5.0

Depth + rPPG [63] - 9.3±5.6 10.4±6.0 9.5±6.0
MobileNet

Attention Fusion
6.1±0.7 10.9±4.6 12.7±5.1 11.3±3.9

ResNet

Attention Fusion
2.3±0.3 11.3±3.9 9.7±4.8 9.8±4.2

TABLE X
INTER-DATABASE TEST RESULTS IN TERMS OF HTER (%) ON THE

CASIA-FASD AND REPLAY-ATTACK DATABASE

Method
Train Test Train Test

CASIA
FASD

REPLAY
ATTACK

REPLAY
ATTACK

CASIA
FASD

Motion [60] 50.2% 47.9%

LBP [56] 55.9% 57.6%

LBP-TOP [61] 49.7% 60.6%

Motion-Mag [64] 50.1% 47.0%

Spectral cubes [22] 34.4% 45.5%

CNN [14] 48.5% 39.6%

Color-LBP [10] 47.0% 39.6%

Colour Texture [8] 30.3% 37.7%

Depth + rPPG [63] 27.6% 28.4%

Deep-Learning [13] 48.2% 45.4%

KSA [65] 33.1% 32.1%

Frame difference [66] 50.25% 43.05%

Ours (MobileNet +
Attention)

30.0% 33.4%

Ours (ResNet-18 +
Attention)

36.2% 34.7%

TABLE XI
INTER-DATABASE TEST RESULTS FOR RGB FEATURES IN TERMS OF

MAXIMUM MEAN DISCREPANCY ON THE CASIA-FASD AND

REPLAY-ATTACK DATABASE

Model Train Val MMD

Resnet18 RGB

CASIA-FASD CASIA-FASD 0.7653
CASIA-FASD REPLAY-ATTACK 1.4561

REPLAY-ATTACK REPLAY-ATTACK 0.6871

REPLAY-ATTACK CASIA-FASD 1.3484

Mobilenet RGB

CASIA-FASD CASIA-FASD 0.8654
CASIA-FASD REPLAY-ATTACK 1.3276

REPLAY-ATTACK REPLAY-ATTACK 0.7469
REPLAY-ATTACK CASIA-FASD 1.2765

TABLE XII
INTER-DATABASE TEST RESULTS FOR MSR FEATURES IN TERMS OF

MAXIMUM MEAN DISCREPANCY ON THE CASIA-FASD AND

REPLAY-ATTACK DATABASE

Model Train Val MMD

Resnet18 MSR

CASIA-FASD CASIA-FASD 0.9831
CASIA-FASD REPLAY-ATTACK 1.8746

REPLAY-ATTACK REPLAY-ATTACK 0.6541

REPLAY-ATTACK CASIA-FASD 1.0133

Mobilenet MSR

CASIA-FASD CASIA-FASD 0.8655
CASIA-FASD REPLAY-ATTACK 1.7749

REPLAY-ATTACK REPLAY-ATTACK 0.8811
REPLAY-ATTACK CASIA-FASD 1.1661

TABLE XIII
INTER-DATABASE TEST RESULTS FOR RGB AND MSR FUSION

FEATURES IN TERMS OF MAXIMUM MEAN DISCREPANCY ON THE

CASIA-FASD AND REPLAY-ATTACK DATABASE

Model Train Val MMD

Resnet18
RGB + MSR Fusion

CASIA-FASD CASIA-FASD 0.6215

CASIA-FASD REPLAY-ATTACK 1.2511
REPLAY-ATTACK REPLAY-ATTACK 0.7003
REPLAY-ATTACK CASIA-FASD 1.1295

Mobilenet
RGB + MSR Fusion

CASIA-FASD CASIA-FASD 0.6619
CASIA-FASD REPLAY-ATTACK 1.3518

REPLAY-ATTACK REPLAY-ATTACK 0.7139
REPLAY-ATTACK CASIA-FASD 1.0551
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our method (MobileNet + Attention) achieves the 2nd best

performance (30.0% and 33.4%), slightly worse than the

best one [63] (27.6% and 28.4%). However, [63] uses more

auxiliary information (3D face shape, rPPG signals) than our

method.

To explore the reasons of performance drop in the cross-

database evaluation, we consider the standard distribution

distance metric, maximum mean discrepancy (MMD) [67] to

measure the distance domain shift between the source feature

and target feature distributions.

MMD(FT , FV ) =
∥

∥

∥

∥

∥

∥

1

|FT |

∑

ft∈FT

φ(ft)−
1

|FV |

∑

fv∈FV

φ(fv)

∥

∥

∥

∥

∥

∥

(16)

As shown in the equation above, we define a representation

φ(), which operates on train data features, ft ∈ FT and

validate data features, fv ∈ FV . The larger the value of MMD,

the bigger the domain shift.

From the result of Table XI XII XIII, we can see that: (1)

When we train and test on the same database, the MMD is

smaller than that train and test on different databases for both

MobileNet and ResNet-18.

(2) Since the CASIA-FASD has seven scenarios, when we

train on the CASIA-FASD database and test on the REPLAY-

ATTACK database, the MMD is bigger than that we train

on the REPLAY-ATTACK and test on the CASIA-FASD

database.

(3) The fusion of RGB and MSR features reduced the MMD

of the cross-database compared with individual one for both

MobileNet and ResNet-18.

V. CONCLUSION

In this paper, we proposed an attention-based two stream

convolutional networks for face spoofing detection to distin-

guish real and fake faces. The proposed approach applies

the complementary features (RGB and MSR) extracted via

CNN models (MobileNet and ResNet-18) and then employs

the attention based fusion method to fuse these two features.

The adaptively weighted features contain more discriminative

information under various lighting conditions.

We evaluated our approaches of face spoofing on three chal-

lenging databases, i.e. CASIA-FASD, REPLAY-ATTACK and

OULU-NPU, which indicated the competitive performance in

both intra-database and inter-database. The experiments of

fusion methods show that the attention model can achieve

promising results on feature fusion. The cross-database evalu-

ations show the effectiveness of the fusion of RGB and MSR

information.
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